/* * Copyright (c) 2020-2022 Apple Inc. All rights reserved. * * @APPLE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this * file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_LICENSE_HEADER_END@ */ #include #include #include #include #include #include "log_mem.h" #define BLOCK_INVALID ((size_t)-1) #define BLOCK_LEVEL_BASE(level) ((1 << (level)) - 1) #define BLOCK_SIZE(level) (1 << (level)) #define BLOCK_PARENT(b) (((b) % 2 == 0) ? ((b) >> 1) - 1 : ((b) >> 1)) #define BLOCK_LCHILD(b) (((b) << 1) + 1) #define BLOCK_BUDDY(b) (((b) & 0x1) ? (b) + 1 : (b) - 1) #define BLOCK_INDEX(lm, l, a, s) \ (BLOCK_LEVEL_BASE(l) + ((uintptr_t)(a) - (uintptr_t)(lm)->lm_mem) / (s)) #define MAP_SIZE(size_order, min_order) \ MAX(1, (1 << ((size_order) - (min_order) + 1)) / 8) #define BITMAP_BUCKET_SIZE (8 * sizeof(((logmem_t *)0)->lm_mem_map[0])) #define BITMAP_BUCKET(i) ((i) / BITMAP_BUCKET_SIZE) #define BITMAP_BIT(i) (uint8_t)(1 << (BITMAP_BUCKET_SIZE - ((i) % BITMAP_BUCKET_SIZE) - 1)) #define logmem_lock(lock, lm) if ((lock)) lck_spin_lock(&(lm)->lm_lock) #define logmem_unlock(lock, lm) if ((lock)) lck_spin_unlock(&(lm)->lm_lock) static LCK_GRP_DECLARE(logmem_lck_grp, "logmem_lck_grp"); static bool bitmap_get(logmem_t *lm, size_t block) { return lm->lm_mem_map[BITMAP_BUCKET(block)] & BITMAP_BIT(block); } static void bitmap_set(logmem_t *lm, size_t block) { lm->lm_mem_map[BITMAP_BUCKET(block)] |= BITMAP_BIT(block); } static void bitmap_clear(logmem_t *lm, size_t block) { lm->lm_mem_map[BITMAP_BUCKET(block)] &= ~BITMAP_BIT(block); } static void bitmap_reserve_root(logmem_t *lm, size_t block) { const size_t top_block = BLOCK_LEVEL_BASE(lm->lm_cap_order - lm->lm_max_order); for (ssize_t next = BLOCK_PARENT(block); next >= top_block; next = BLOCK_PARENT(next)) { /* * If the rest of the root path is already marked as * allocated we are done. */ if (bitmap_get(lm, next)) { break; } bitmap_set(lm, next); } } static void bitmap_release_root(logmem_t *lm, size_t block) { const size_t top_block = BLOCK_LEVEL_BASE(lm->lm_cap_order - lm->lm_max_order); int buddy_allocated = 0; while (block > top_block) { buddy_allocated = bitmap_get(lm, BLOCK_BUDDY(block)); block = BLOCK_PARENT(block); /* * If there is another allocation within the parent subtree * in place we cannot mark the rest of the root path as free. */ if (buddy_allocated) { break; } bitmap_clear(lm, block); } } static void bitmap_update_subtree(logmem_t *lm, size_t level, size_t block, void (*fun)(logmem_t *, size_t)) { const size_t lcount = lm->lm_cap_order - lm->lm_min_order - level + 1; for (size_t l = 0, n = 1; l < lcount; l++, n <<= 1) { for (int i = 0; i < n; i++) { fun(lm, block + i); } block = BLOCK_LCHILD(block); } } static void bitmap_release_subtree(logmem_t *lm, size_t level, size_t block) { bitmap_update_subtree(lm, level, block, bitmap_clear); } static void bitmap_reserve_subtree(logmem_t *lm, size_t level, size_t block) { bitmap_update_subtree(lm, level, block, bitmap_set); } static size_t block_size_level(logmem_t *lm, size_t amount) { for (size_t l = lm->lm_min_order; l <= lm->lm_max_order; l++) { if (amount <= BLOCK_SIZE(l)) { return lm->lm_cap_order - l; } } return BLOCK_INVALID; } static size_t block_locate(logmem_t *lm, void *addr, size_t amount, size_t *block) { size_t level = block_size_level(lm, amount); if (level != BLOCK_INVALID) { *block = BLOCK_INDEX(lm, level, addr, amount); } return level; } static size_t block_reserve(logmem_t *lm, size_t level) { assert(level != BLOCK_INVALID); const size_t base = BLOCK_LEVEL_BASE(level); const size_t end = base + BLOCK_SIZE(level); for (size_t block = base; block < end; block++) { if (!bitmap_get(lm, block)) { bitmap_reserve_root(lm, block); bitmap_reserve_subtree(lm, level, block); return block - base; } } return BLOCK_INVALID; } static void * logmem_alloc_impl(logmem_t *lm, size_t *amount, bool lock_lm) { assert(amount); os_atomic_inc(&lm->lm_cnt_allocations, relaxed); if (!lm->lm_mem) { os_atomic_inc(&lm->lm_cnt_failed_lmoff, relaxed); return NULL; } if (*amount == 0 || *amount > BLOCK_SIZE(lm->lm_max_order)) { os_atomic_inc(&lm->lm_cnt_failed_size, relaxed); return NULL; } size_t level = block_size_level(lm, *amount); logmem_lock(lock_lm, lm); size_t block = block_reserve(lm, level); logmem_unlock(lock_lm, lm); if (block == BLOCK_INVALID) { os_atomic_inc(&lm->lm_cnt_failed_full, relaxed); return NULL; } *amount = BLOCK_SIZE(lm->lm_cap_order - level); os_atomic_sub(&lm->lm_cnt_free, (uint32_t)*amount, relaxed); return &lm->lm_mem[block * *amount]; } void * logmem_alloc_locked(logmem_t *lm, size_t *amount) { return logmem_alloc_impl(lm, amount, true); } void * logmem_alloc(logmem_t *lm, size_t *amount) { return logmem_alloc_impl(lm, amount, false); } static void logmem_free_impl(logmem_t *lm, void *addr, size_t amount, bool lock_lm) { assert(addr); assert(amount > 0 && ((amount & (amount - 1)) == 0)); size_t block = BLOCK_INVALID; size_t level = block_locate(lm, addr, amount, &block); assert(level != BLOCK_INVALID); assert(block != BLOCK_INVALID); assert(lm->lm_mem); logmem_lock(lock_lm, lm); bitmap_release_root(lm, block); bitmap_release_subtree(lm, level, block); logmem_unlock(lock_lm, lm); os_atomic_add(&lm->lm_cnt_free, (uint32_t)amount, relaxed); } void logmem_free_locked(logmem_t *lm, void *addr, size_t amount) { logmem_free_impl(lm, addr, amount, true); } void logmem_free(logmem_t *lm, void *addr, size_t amount) { logmem_free_impl(lm, addr, amount, false); } size_t logmem_required_size(size_t size_order, size_t min_order) { return round_page(BLOCK_SIZE(size_order)) + round_page(MAP_SIZE(size_order, min_order)); } size_t logmem_max_size(const logmem_t *lm) { return BLOCK_SIZE(lm->lm_max_order); } bool logmem_empty(const logmem_t *lm) { return lm->lm_cnt_free == BLOCK_SIZE(lm->lm_cap_order); } bool logmem_ready(const logmem_t *lm) { return lm->lm_mem != NULL; } void logmem_init(logmem_t *lm, void *lm_mem, size_t lm_mem_size, size_t size_order, size_t min_order, size_t max_order) { assert(lm_mem_size >= logmem_required_size(size_order, min_order)); assert(size_order >= max_order); assert(max_order >= min_order); bzero(lm, sizeof(*lm)); bzero(lm_mem, lm_mem_size); lck_spin_init(&lm->lm_lock, &logmem_lck_grp, LCK_ATTR_NULL); lm->lm_mem = lm_mem; lm->lm_mem_map = (uint8_t *)((uintptr_t)lm_mem + round_page(BLOCK_SIZE(size_order))); lm->lm_mem_size = lm_mem_size; lm->lm_cap_order = size_order; lm->lm_min_order = min_order; lm->lm_max_order = max_order; lm->lm_cnt_free = BLOCK_SIZE(size_order); }