/* * Copyright (c) 2000-2016 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */ /* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 */ /* * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce * support for mandatory and extensible security protections. This notice * is included in support of clause 2.2 (b) of the Apple Public License, * Version 2.0. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* acct_process */ #include #include /* kevent_proc_copy_uptrs */ #include #include /* bsd_getthreadname */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if SYSV_SHM #include /* shmexit */ #endif /* SYSV_SHM */ #if CONFIG_PERSONAS #include #endif /* CONFIG_PERSONAS */ #if CONFIG_MEMORYSTATUS #include #endif /* CONFIG_MEMORYSTATUS */ #if CONFIG_DTRACE /* Do not include dtrace.h, it redefines kmem_[alloc/free] */ void dtrace_proc_exit(proc_t p); #include #endif /* CONFIG_DTRACE */ #if CONFIG_MACF #include #include #include #endif /* CONFIG_MACF */ #ifdef CONFIG_EXCLAVES void task_add_conclave_crash_info(task_t task, void *crash_info_ptr); #endif /* CONFIG_EXCLAVES */ #if CONFIG_MEMORYSTATUS static void proc_memorystatus_remove(proc_t p); #endif /* CONFIG_MEMORYSTATUS */ void proc_prepareexit(proc_t p, int rv, boolean_t perf_notify); void gather_populate_corpse_crashinfo(proc_t p, task_t corpse_task, mach_exception_data_type_t code, mach_exception_data_type_t subcode, uint64_t *udata_buffer, int num_udata, void *reason, exception_type_t etype); mach_exception_data_type_t proc_encode_exit_exception_code(proc_t p); exception_type_t get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info); __private_extern__ void munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p); __private_extern__ void munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p); static void populate_corpse_crashinfo(proc_t p, task_t corpse_task, struct rusage_superset *rup, mach_exception_data_type_t code, mach_exception_data_type_t subcode, uint64_t *udata_buffer, int num_udata, os_reason_t reason, exception_type_t etype); static void proc_update_corpse_exception_codes(proc_t p, mach_exception_data_type_t *code, mach_exception_data_type_t *subcode); extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg, char *buffer, uint32_t buffersize, int32_t *retval); extern void proc_piduniqidentifierinfo(proc_t p, struct proc_uniqidentifierinfo *p_uniqidinfo); extern void task_coalition_ids(task_t task, uint64_t ids[COALITION_NUM_TYPES]); extern uint64_t get_task_phys_footprint_limit(task_t); int proc_list_uptrs(void *p, uint64_t *udata_buffer, int size); extern uint64_t task_corpse_get_crashed_thread_id(task_t corpse_task); extern unsigned int exception_log_max_pid; extern void IOUserServerRecordExitReason(task_t task, os_reason_t reason); /* * Flags for `reap_child_locked`. */ __options_decl(reap_flags_t, uint32_t, { /* * Parent is exiting, so the kernel is responsible for reaping children. */ REAP_DEAD_PARENT = 0x01, /* * Childr process was re-parented to initproc. */ REAP_REPARENTED_TO_INIT = 0x02, /* * `proc_list_lock` is held on entry. */ REAP_LOCKED = 0x04, /* * Drop the `proc_list_lock` on return. Note that the `proc_list_lock` will * be dropped internally by the function regardless. */ REAP_DROP_LOCK = 0x08, }); static void reap_child_locked(proc_t parent, proc_t child, reap_flags_t flags); static KALLOC_TYPE_DEFINE(zombie_zone, struct rusage_superset, KT_DEFAULT); /* * Things which should have prototypes in headers, but don't */ void proc_exit(proc_t p); int wait1continue(int result); int waitidcontinue(int result); kern_return_t sys_perf_notify(thread_t thread, int pid); kern_return_t task_exception_notify(exception_type_t exception, mach_exception_data_type_t code, mach_exception_data_type_t subcode, bool fatal); void delay(int); #if __has_feature(ptrauth_calls) int exit_with_pac_exception(proc_t p, exception_type_t exception, mach_exception_code_t code, mach_exception_subcode_t subcode); #endif /* __has_feature(ptrauth_calls) */ int exit_with_guard_exception(proc_t p, mach_exception_data_type_t code, mach_exception_data_type_t subcode); int exit_with_port_space_exception(proc_t p, mach_exception_data_type_t code, mach_exception_data_type_t subcode); static int exit_with_mach_exception(proc_t p, os_reason_t reason, exception_type_t exception, mach_exception_code_t code, mach_exception_subcode_t subcode); #if CONFIG_EXCLAVES int exit_with_exclave_exception(proc_t p); #endif /* CONFIG_EXCLAVES */ int exit_with_jit_exception(proc_t p); #if DEVELOPMENT || DEBUG static LCK_GRP_DECLARE(proc_exit_lpexit_spin_lock_grp, "proc_exit_lpexit_spin"); static LCK_MTX_DECLARE(proc_exit_lpexit_spin_lock, &proc_exit_lpexit_spin_lock_grp); static pid_t proc_exit_lpexit_spin_pid = -1; /* wakeup point */ static int proc_exit_lpexit_spin_pos = -1; /* point to block */ static int proc_exit_lpexit_spinning = 0; enum { PELS_POS_START = 0, /* beginning of proc_exit */ PELS_POS_PRE_TASK_DETACH, /* before task/proc detach */ PELS_POS_POST_TASK_DETACH, /* after task/proc detach */ PELS_POS_END, /* end of proc_exit */ PELS_NPOS /* # valid values */ }; /* Panic if matching processes (delimited by ',') exit on error. */ static TUNABLE_STR(panic_on_eexit_pcomms, 128, "panic_on_error_exit", ""); static int proc_exit_lpexit_spin_pid_sysctl SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) pid_t new_value; int changed; int error; if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin", NULL, 0)) { return ENOENT; } error = sysctl_io_number(req, proc_exit_lpexit_spin_pid, sizeof(proc_exit_lpexit_spin_pid), &new_value, &changed); if (error == 0 && changed != 0) { if (new_value < -1) { return EINVAL; } lck_mtx_lock(&proc_exit_lpexit_spin_lock); proc_exit_lpexit_spin_pid = new_value; wakeup(&proc_exit_lpexit_spin_pid); proc_exit_lpexit_spinning = 0; lck_mtx_unlock(&proc_exit_lpexit_spin_lock); } return error; } static int proc_exit_lpexit_spin_pos_sysctl SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int new_value; int changed; int error; if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin", NULL, 0)) { return ENOENT; } error = sysctl_io_number(req, proc_exit_lpexit_spin_pos, sizeof(proc_exit_lpexit_spin_pos), &new_value, &changed); if (error == 0 && changed != 0) { if (new_value < -1 || new_value >= PELS_NPOS) { return EINVAL; } lck_mtx_lock(&proc_exit_lpexit_spin_lock); proc_exit_lpexit_spin_pos = new_value; wakeup(&proc_exit_lpexit_spin_pid); proc_exit_lpexit_spinning = 0; lck_mtx_unlock(&proc_exit_lpexit_spin_lock); } return error; } static int proc_exit_lpexit_spinning_sysctl SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int new_value; int changed; int error; if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin", NULL, 0)) { return ENOENT; } error = sysctl_io_number(req, proc_exit_lpexit_spinning, sizeof(proc_exit_lpexit_spinning), &new_value, &changed); if (error == 0 && changed != 0) { return EINVAL; } return error; } SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spin_pid, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, sizeof(pid_t), proc_exit_lpexit_spin_pid_sysctl, "I", "PID to hold in proc_exit"); SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spin_pos, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, sizeof(int), proc_exit_lpexit_spin_pos_sysctl, "I", "position to hold in proc_exit"); SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spinning, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, NULL, sizeof(int), proc_exit_lpexit_spinning_sysctl, "I", "is a thread at requested pid/pos"); static inline void proc_exit_lpexit_check(pid_t pid, int pos) { if (proc_exit_lpexit_spin_pid == pid) { bool slept = false; lck_mtx_lock(&proc_exit_lpexit_spin_lock); while (proc_exit_lpexit_spin_pid == pid && proc_exit_lpexit_spin_pos == pos) { if (!slept) { os_log(OS_LOG_DEFAULT, "proc_exit_lpexit_check: Process[%d] waiting during proc_exit at pos %d as requested", pid, pos); slept = true; } proc_exit_lpexit_spinning = 1; msleep(&proc_exit_lpexit_spin_pid, &proc_exit_lpexit_spin_lock, PWAIT, "proc_exit_lpexit_check", NULL); proc_exit_lpexit_spinning = 0; } lck_mtx_unlock(&proc_exit_lpexit_spin_lock); if (slept) { os_log(OS_LOG_DEFAULT, "proc_exit_lpexit_check: Process[%d] driving on from pos %d", pid, pos); } } } #endif /* DEVELOPMENT || DEBUG */ /* * NOTE: Source and target may *NOT* overlap! * XXX Should share code with bsd/dev/ppc/unix_signal.c */ void siginfo_user_to_user32(user_siginfo_t *in, user32_siginfo_t *out) { out->si_signo = in->si_signo; out->si_errno = in->si_errno; out->si_code = in->si_code; out->si_pid = in->si_pid; out->si_uid = in->si_uid; out->si_status = in->si_status; out->si_addr = CAST_DOWN_EXPLICIT(user32_addr_t, in->si_addr); /* following cast works for sival_int because of padding */ out->si_value.sival_ptr = CAST_DOWN_EXPLICIT(user32_addr_t, in->si_value.sival_ptr); out->si_band = (user32_long_t)in->si_band; /* range reduction */ } void siginfo_user_to_user64(user_siginfo_t *in, user64_siginfo_t *out) { out->si_signo = in->si_signo; out->si_errno = in->si_errno; out->si_code = in->si_code; out->si_pid = in->si_pid; out->si_uid = in->si_uid; out->si_status = in->si_status; out->si_addr = in->si_addr; /* following cast works for sival_int because of padding */ out->si_value.sival_ptr = in->si_value.sival_ptr; out->si_band = in->si_band; /* range reduction */ } static int copyoutsiginfo(user_siginfo_t *native, boolean_t is64, user_addr_t uaddr) { if (is64) { user64_siginfo_t sinfo64; bzero(&sinfo64, sizeof(sinfo64)); siginfo_user_to_user64(native, &sinfo64); return copyout(&sinfo64, uaddr, sizeof(sinfo64)); } else { user32_siginfo_t sinfo32; bzero(&sinfo32, sizeof(sinfo32)); siginfo_user_to_user32(native, &sinfo32); return copyout(&sinfo32, uaddr, sizeof(sinfo32)); } } void gather_populate_corpse_crashinfo(proc_t p, task_t corpse_task, mach_exception_data_type_t code, mach_exception_data_type_t subcode, uint64_t *udata_buffer, int num_udata, void *reason, exception_type_t etype) { struct rusage_superset rup; gather_rusage_info(p, &rup.ri, RUSAGE_INFO_CURRENT); rup.ri.ri_phys_footprint = 0; populate_corpse_crashinfo(p, corpse_task, &rup, code, subcode, udata_buffer, num_udata, reason, etype); } static void proc_update_corpse_exception_codes(proc_t p, mach_exception_data_type_t *code, mach_exception_data_type_t *subcode) { mach_exception_data_type_t code_update = *code; mach_exception_data_type_t subcode_update = *subcode; if (p->p_exit_reason == OS_REASON_NULL) { return; } switch (p->p_exit_reason->osr_namespace) { case OS_REASON_JETSAM: if (p->p_exit_reason->osr_code == JETSAM_REASON_MEMORY_PERPROCESSLIMIT) { /* Update the code with EXC_RESOURCE code for high memory watermark */ EXC_RESOURCE_ENCODE_TYPE(code_update, RESOURCE_TYPE_MEMORY); EXC_RESOURCE_ENCODE_FLAVOR(code_update, FLAVOR_HIGH_WATERMARK); EXC_RESOURCE_HWM_ENCODE_LIMIT(code_update, ((get_task_phys_footprint_limit(proc_task(p))) >> 20)); subcode_update = 0; break; } break; default: break; } *code = code_update; *subcode = subcode_update; return; } mach_exception_data_type_t proc_encode_exit_exception_code(proc_t p) { uint64_t subcode = 0; if (p->p_exit_reason == OS_REASON_NULL) { return 0; } /* Embed first 32 bits of osr_namespace and osr_code in exception code */ ENCODE_OSR_NAMESPACE_TO_MACH_EXCEPTION_CODE(subcode, p->p_exit_reason->osr_namespace); ENCODE_OSR_CODE_TO_MACH_EXCEPTION_CODE(subcode, p->p_exit_reason->osr_code); return (mach_exception_data_type_t)subcode; } static void populate_corpse_crashinfo(proc_t p, task_t corpse_task, struct rusage_superset *rup, mach_exception_data_type_t code, mach_exception_data_type_t subcode, uint64_t *udata_buffer, int num_udata, os_reason_t reason, exception_type_t etype) { mach_vm_address_t uaddr = 0; mach_exception_data_type_t exc_codes[EXCEPTION_CODE_MAX]; exc_codes[0] = code; exc_codes[1] = subcode; cpu_type_t cputype; struct proc_uniqidentifierinfo p_uniqidinfo; struct proc_workqueueinfo pwqinfo; int retval = 0; uint64_t crashed_threadid = task_corpse_get_crashed_thread_id(corpse_task); boolean_t is_corpse_fork; uint32_t csflags; unsigned int pflags = 0; uint64_t max_footprint_mb; uint64_t max_footprint; uint64_t ledger_internal; uint64_t ledger_internal_compressed; uint64_t ledger_iokit_mapped; uint64_t ledger_alternate_accounting; uint64_t ledger_alternate_accounting_compressed; uint64_t ledger_purgeable_nonvolatile; uint64_t ledger_purgeable_nonvolatile_compressed; uint64_t ledger_page_table; uint64_t ledger_phys_footprint; uint64_t ledger_phys_footprint_lifetime_max; uint64_t ledger_network_nonvolatile; uint64_t ledger_network_nonvolatile_compressed; uint64_t ledger_wired_mem; uint64_t ledger_tagged_footprint; uint64_t ledger_tagged_footprint_compressed; uint64_t ledger_media_footprint; uint64_t ledger_media_footprint_compressed; uint64_t ledger_graphics_footprint; uint64_t ledger_graphics_footprint_compressed; uint64_t ledger_neural_footprint; uint64_t ledger_neural_footprint_compressed; void *crash_info_ptr = task_get_corpseinfo(corpse_task); #if CONFIG_MEMORYSTATUS int memstat_dirty_flags = 0; #endif if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_EXCEPTION_CODES, sizeof(exc_codes), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, exc_codes, sizeof(exc_codes)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PID, sizeof(pid_t), &uaddr)) { pid_t pid = proc_getpid(p); kcdata_memcpy(crash_info_ptr, uaddr, &pid, sizeof(pid)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PPID, sizeof(p->p_ppid), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_ppid, sizeof(p->p_ppid)); } /* Don't include the crashed thread ID if there's an exit reason that indicates it's irrelevant */ if ((p->p_exit_reason == OS_REASON_NULL) || !(p->p_exit_reason->osr_flags & OS_REASON_FLAG_NO_CRASHED_TID)) { if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CRASHED_THREADID, sizeof(uint64_t), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &crashed_threadid, sizeof(uint64_t)); } } static_assert(sizeof(struct proc_uniqidentifierinfo) == sizeof(struct crashinfo_proc_uniqidentifierinfo)); if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_BSDINFOWITHUNIQID, sizeof(struct proc_uniqidentifierinfo), &uaddr)) { proc_piduniqidentifierinfo(p, &p_uniqidinfo); kcdata_memcpy(crash_info_ptr, uaddr, &p_uniqidinfo, sizeof(struct proc_uniqidentifierinfo)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_RUSAGE_INFO, sizeof(rusage_info_current), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &rup->ri, sizeof(rusage_info_current)); } csflags = (uint32_t)proc_getcsflags(p); if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_CSFLAGS, sizeof(csflags), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &csflags, sizeof(csflags)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_NAME, sizeof(p->p_comm), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_comm, sizeof(p->p_comm)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_STARTTIME, sizeof(p->p_start), &uaddr)) { struct timeval64 t64; t64.tv_sec = (int64_t)p->p_start.tv_sec; t64.tv_usec = (int64_t)p->p_start.tv_usec; kcdata_memcpy(crash_info_ptr, uaddr, &t64, sizeof(t64)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_USERSTACK, sizeof(p->user_stack), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->user_stack, sizeof(p->user_stack)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_ARGSLEN, sizeof(p->p_argslen), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_argslen, sizeof(p->p_argslen)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_ARGC, sizeof(p->p_argc), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_argc, sizeof(p->p_argc)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_PATH, MAXPATHLEN, &uaddr)) { char *buf = zalloc_flags(ZV_NAMEI, Z_WAITOK | Z_ZERO); proc_pidpathinfo_internal(p, 0, buf, MAXPATHLEN, &retval); kcdata_memcpy(crash_info_ptr, uaddr, buf, MAXPATHLEN); zfree(ZV_NAMEI, buf); } pflags = p->p_flag & (P_LP64 | P_SUGID | P_TRANSLATED); if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_FLAGS, sizeof(pflags), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &pflags, sizeof(pflags)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_UID, sizeof(p->p_uid), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_uid, sizeof(p->p_uid)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_GID, sizeof(p->p_gid), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_gid, sizeof(p->p_gid)); } cputype = cpu_type() & ~CPU_ARCH_MASK; if (IS_64BIT_PROCESS(p)) { cputype |= CPU_ARCH_ABI64; } else if (proc_is64bit_data(p)) { cputype |= CPU_ARCH_ABI64_32; } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CPUTYPE, sizeof(cpu_type_t), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &cputype, sizeof(cpu_type_t)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_CPUTYPE, sizeof(cpu_type_t), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_cputype, sizeof(cpu_type_t)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_MEMORY_LIMIT, sizeof(max_footprint_mb), &uaddr)) { max_footprint = get_task_phys_footprint_limit(proc_task(p)); max_footprint_mb = max_footprint >> 20; kcdata_memcpy(crash_info_ptr, uaddr, &max_footprint_mb, sizeof(max_footprint_mb)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PHYS_FOOTPRINT_LIFETIME_MAX, sizeof(ledger_phys_footprint_lifetime_max), &uaddr)) { ledger_phys_footprint_lifetime_max = get_task_phys_footprint_lifetime_max(proc_task(p)); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_phys_footprint_lifetime_max, sizeof(ledger_phys_footprint_lifetime_max)); } // In the forking case, the current ledger info is copied into the corpse while the original task is suspended for consistency if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_INTERNAL, sizeof(ledger_internal), &uaddr)) { ledger_internal = get_task_internal(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_internal, sizeof(ledger_internal)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_INTERNAL_COMPRESSED, sizeof(ledger_internal_compressed), &uaddr)) { ledger_internal_compressed = get_task_internal_compressed(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_internal_compressed, sizeof(ledger_internal_compressed)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_IOKIT_MAPPED, sizeof(ledger_iokit_mapped), &uaddr)) { ledger_iokit_mapped = get_task_iokit_mapped(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_iokit_mapped, sizeof(ledger_iokit_mapped)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_ALTERNATE_ACCOUNTING, sizeof(ledger_alternate_accounting), &uaddr)) { ledger_alternate_accounting = get_task_alternate_accounting(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_alternate_accounting, sizeof(ledger_alternate_accounting)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_ALTERNATE_ACCOUNTING_COMPRESSED, sizeof(ledger_alternate_accounting_compressed), &uaddr)) { ledger_alternate_accounting_compressed = get_task_alternate_accounting_compressed(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_alternate_accounting_compressed, sizeof(ledger_alternate_accounting_compressed)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PURGEABLE_NONVOLATILE, sizeof(ledger_purgeable_nonvolatile), &uaddr)) { ledger_purgeable_nonvolatile = get_task_purgeable_nonvolatile(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_purgeable_nonvolatile, sizeof(ledger_purgeable_nonvolatile)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PURGEABLE_NONVOLATILE_COMPRESSED, sizeof(ledger_purgeable_nonvolatile_compressed), &uaddr)) { ledger_purgeable_nonvolatile_compressed = get_task_purgeable_nonvolatile_compressed(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_purgeable_nonvolatile_compressed, sizeof(ledger_purgeable_nonvolatile_compressed)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PAGE_TABLE, sizeof(ledger_page_table), &uaddr)) { ledger_page_table = get_task_page_table(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_page_table, sizeof(ledger_page_table)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PHYS_FOOTPRINT, sizeof(ledger_phys_footprint), &uaddr)) { ledger_phys_footprint = get_task_phys_footprint(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_phys_footprint, sizeof(ledger_phys_footprint)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NETWORK_NONVOLATILE, sizeof(ledger_network_nonvolatile), &uaddr)) { ledger_network_nonvolatile = get_task_network_nonvolatile(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_network_nonvolatile, sizeof(ledger_network_nonvolatile)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NETWORK_NONVOLATILE_COMPRESSED, sizeof(ledger_network_nonvolatile_compressed), &uaddr)) { ledger_network_nonvolatile_compressed = get_task_network_nonvolatile_compressed(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_network_nonvolatile_compressed, sizeof(ledger_network_nonvolatile_compressed)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_WIRED_MEM, sizeof(ledger_wired_mem), &uaddr)) { ledger_wired_mem = get_task_wired_mem(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_wired_mem, sizeof(ledger_wired_mem)); } bzero(&pwqinfo, sizeof(struct proc_workqueueinfo)); retval = fill_procworkqueue(p, &pwqinfo); if (retval == 0) { if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_WORKQUEUEINFO, sizeof(struct proc_workqueueinfo), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &pwqinfo, sizeof(struct proc_workqueueinfo)); } } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_RESPONSIBLE_PID, sizeof(p->p_responsible_pid), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_responsible_pid, sizeof(p->p_responsible_pid)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_PERSONA_ID, sizeof(uid_t), &uaddr)) { uid_t persona_id = proc_persona_id(p); kcdata_memcpy(crash_info_ptr, uaddr, &persona_id, sizeof(persona_id)); } #if CONFIG_COALITIONS if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(crash_info_ptr, TASK_CRASHINFO_COALITION_ID, sizeof(uint64_t), COALITION_NUM_TYPES, &uaddr)) { uint64_t coalition_ids[COALITION_NUM_TYPES]; task_coalition_ids(proc_task(p), coalition_ids); kcdata_memcpy(crash_info_ptr, uaddr, coalition_ids, sizeof(coalition_ids)); } #endif /* CONFIG_COALITIONS */ #if CONFIG_MEMORYSTATUS memstat_dirty_flags = memorystatus_dirty_get(p, FALSE); if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_DIRTY_FLAGS, sizeof(memstat_dirty_flags), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &memstat_dirty_flags, sizeof(memstat_dirty_flags)); } #endif if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_MEMORY_LIMIT_INCREASE, sizeof(p->p_memlimit_increase), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_memlimit_increase, sizeof(p->p_memlimit_increase)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_TAGGED_FOOTPRINT, sizeof(ledger_tagged_footprint), &uaddr)) { ledger_tagged_footprint = get_task_tagged_footprint(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_tagged_footprint, sizeof(ledger_tagged_footprint)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_TAGGED_FOOTPRINT_COMPRESSED, sizeof(ledger_tagged_footprint_compressed), &uaddr)) { ledger_tagged_footprint_compressed = get_task_tagged_footprint_compressed(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_tagged_footprint_compressed, sizeof(ledger_tagged_footprint_compressed)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_MEDIA_FOOTPRINT, sizeof(ledger_media_footprint), &uaddr)) { ledger_media_footprint = get_task_media_footprint(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_media_footprint, sizeof(ledger_media_footprint)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_MEDIA_FOOTPRINT_COMPRESSED, sizeof(ledger_media_footprint_compressed), &uaddr)) { ledger_media_footprint_compressed = get_task_media_footprint_compressed(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_media_footprint_compressed, sizeof(ledger_media_footprint_compressed)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_GRAPHICS_FOOTPRINT, sizeof(ledger_graphics_footprint), &uaddr)) { ledger_graphics_footprint = get_task_graphics_footprint(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_graphics_footprint, sizeof(ledger_graphics_footprint)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_GRAPHICS_FOOTPRINT_COMPRESSED, sizeof(ledger_graphics_footprint_compressed), &uaddr)) { ledger_graphics_footprint_compressed = get_task_graphics_footprint_compressed(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_graphics_footprint_compressed, sizeof(ledger_graphics_footprint_compressed)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NEURAL_FOOTPRINT, sizeof(ledger_neural_footprint), &uaddr)) { ledger_neural_footprint = get_task_neural_footprint(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_neural_footprint, sizeof(ledger_neural_footprint)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NEURAL_FOOTPRINT_COMPRESSED, sizeof(ledger_neural_footprint_compressed), &uaddr)) { ledger_neural_footprint_compressed = get_task_neural_footprint_compressed(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &ledger_neural_footprint_compressed, sizeof(ledger_neural_footprint_compressed)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_MEMORYSTATUS_EFFECTIVE_PRIORITY, sizeof(p->p_memstat_effectivepriority), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_memstat_effectivepriority, sizeof(p->p_memstat_effectivepriority)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_KERNEL_TRIAGE_INFO_V1, sizeof(struct kernel_triage_info_v1), &uaddr)) { char triage_strings[KDBG_TRIAGE_MAX_STRINGS][KDBG_TRIAGE_MAX_STRLEN]; ktriage_extract(thread_tid(current_thread()), triage_strings, KDBG_TRIAGE_MAX_STRINGS * KDBG_TRIAGE_MAX_STRLEN); kcdata_memcpy(crash_info_ptr, uaddr, (void*) triage_strings, sizeof(struct kernel_triage_info_v1)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_TASK_IS_CORPSE_FORK, sizeof(is_corpse_fork), &uaddr)) { is_corpse_fork = is_corpsefork(corpse_task); kcdata_memcpy(crash_info_ptr, uaddr, &is_corpse_fork, sizeof(is_corpse_fork)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_EXCEPTION_TYPE, sizeof(etype), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &etype, sizeof(etype)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CRASH_COUNT, sizeof(int), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_crash_count, sizeof(int)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_THROTTLE_TIMEOUT, sizeof(int), &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, &p->p_throttle_timeout, sizeof(int)); } char signing_id[MAX_CRASHINFO_SIGNING_ID_LEN] = {}; if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_SIGNING_ID, sizeof(signing_id), &uaddr)) { const char * id = cs_identity_get(p); if (id) { strlcpy(signing_id, id, sizeof(signing_id)); } kcdata_memcpy(crash_info_ptr, uaddr, &signing_id, sizeof(signing_id)); } char team_id[MAX_CRASHINFO_TEAM_ID_LEN] = {}; if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_TEAM_ID, sizeof(team_id), &uaddr)) { const char * id = csproc_get_teamid(p); if (id) { strlcpy(team_id, id, sizeof(team_id)); } kcdata_memcpy(crash_info_ptr, uaddr, &team_id, sizeof(team_id)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_VALIDATION_CATEGORY, sizeof(uint32_t), &uaddr)) { uint32_t category = 0; if (csproc_get_validation_category(p, &category) != KERN_SUCCESS) { category = CS_VALIDATION_CATEGORY_INVALID; } kcdata_memcpy(crash_info_ptr, uaddr, &category, sizeof(category)); } if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_TRUST_LEVEL, sizeof(uint32_t), &uaddr)) { uint32_t trust = 0; kern_return_t ret = get_trust_level_kdp(get_task_pmap(corpse_task), &trust); if (ret != KERN_SUCCESS) { trust = KCDATA_INVALID_CS_TRUST_LEVEL; } kcdata_memcpy(crash_info_ptr, uaddr, &trust, sizeof(trust)); } if (p->p_exit_reason != OS_REASON_NULL && reason == OS_REASON_NULL) { reason = p->p_exit_reason; } if (reason != OS_REASON_NULL) { if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, EXIT_REASON_SNAPSHOT, sizeof(struct exit_reason_snapshot), &uaddr)) { struct exit_reason_snapshot ers = { .ers_namespace = reason->osr_namespace, .ers_code = reason->osr_code, .ers_flags = reason->osr_flags }; kcdata_memcpy(crash_info_ptr, uaddr, &ers, sizeof(ers)); } if (reason->osr_kcd_buf != 0) { uint32_t reason_buf_size = (uint32_t)kcdata_memory_get_used_bytes(&reason->osr_kcd_descriptor); assert(reason_buf_size != 0); if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, KCDATA_TYPE_NESTED_KCDATA, reason_buf_size, &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, reason->osr_kcd_buf, reason_buf_size); } } } if (num_udata > 0) { if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(crash_info_ptr, TASK_CRASHINFO_UDATA_PTRS, sizeof(uint64_t), num_udata, &uaddr)) { kcdata_memcpy(crash_info_ptr, uaddr, udata_buffer, sizeof(uint64_t) * num_udata); } } #if CONFIG_EXCLAVES task_add_conclave_crash_info(corpse_task, crash_info_ptr); #endif /* CONFIG_EXCLAVES */ } exception_type_t get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info) { kcdata_iter_t iter = kcdata_iter((void *)corpse_info->kcd_addr_begin, corpse_info->kcd_length); __assert_only uint32_t type = kcdata_iter_type(iter); assert(type == KCDATA_BUFFER_BEGIN_CRASHINFO); iter = kcdata_iter_find_type(iter, TASK_CRASHINFO_EXCEPTION_TYPE); exception_type_t *etype = kcdata_iter_payload(iter); return *etype; } /* * Collect information required for generating lightwight corpse for current * task, which can be terminating. */ kern_return_t current_thread_collect_backtrace_info( kcdata_descriptor_t *new_desc, exception_type_t etype, mach_exception_data_t code, mach_msg_type_number_t codeCnt, void *reasonp) { kcdata_descriptor_t kcdata; kern_return_t kr; int frame_count = 0, max_frames = 100; mach_vm_address_t uuid_info_addr = 0; uint32_t uuid_info_count = 0; uint32_t btinfo_flag = 0; mach_vm_address_t btinfo_flag_addr = 0, kaddr = 0; natural_t alloc_size = BTINFO_ALLOCATION_SIZE; mach_msg_type_number_t th_info_count = THREAD_IDENTIFIER_INFO_COUNT; thread_identifier_info_data_t th_info; char threadname[MAXTHREADNAMESIZE]; void *btdata_kernel = NULL; typedef uintptr_t user_btframe_t __kernel_data_semantics; user_btframe_t *btframes = NULL; os_reason_t reason = (os_reason_t)reasonp; struct backtrace_user_info info = BTUINFO_INIT; struct rusage_superset rup; uint32_t platform; task_t task = current_task(); proc_t p = current_proc(); bool has_64bit_addr = task_get_64bit_addr(current_task()); bool has_64bit_data = task_get_64bit_data(current_task()); if (new_desc == NULL) { return KERN_INVALID_ARGUMENT; } /* First, collect backtrace frames */ btframes = kalloc_data(max_frames * sizeof(btframes[0]), Z_WAITOK | Z_ZERO); if (!btframes) { return KERN_RESOURCE_SHORTAGE; } frame_count = backtrace_user(btframes, max_frames, NULL, &info); if (info.btui_error || frame_count == 0) { kfree_data(btframes, max_frames * sizeof(btframes[0])); return KERN_FAILURE; } if ((info.btui_info & BTI_TRUNCATED) != 0) { btinfo_flag |= TASK_BTINFO_FLAG_BT_TRUNCATED; } /* Captured in kcdata descriptor below */ btdata_kernel = kalloc_data(alloc_size, Z_WAITOK | Z_ZERO); if (!btdata_kernel) { kfree_data(btframes, max_frames * sizeof(btframes[0])); return KERN_RESOURCE_SHORTAGE; } kcdata = task_btinfo_alloc_init((mach_vm_address_t)btdata_kernel, alloc_size); if (!kcdata) { kfree_data(btdata_kernel, alloc_size); kfree_data(btframes, max_frames * sizeof(btframes[0])); return KERN_RESOURCE_SHORTAGE; } /* First reserve space in kcdata blob for the btinfo flag fields */ if (KERN_SUCCESS != kcdata_get_memory_addr(kcdata, TASK_BTINFO_FLAGS, sizeof(uint32_t), &btinfo_flag_addr)) { kfree_data(btdata_kernel, alloc_size); kfree_data(btframes, max_frames * sizeof(btframes[0])); kcdata_memory_destroy(kcdata); return KERN_RESOURCE_SHORTAGE; } if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata, (has_64bit_addr ? TASK_BTINFO_BACKTRACE64 : TASK_BTINFO_BACKTRACE), sizeof(uintptr_t), frame_count, &kaddr)) { kcdata_memcpy(kcdata, kaddr, btframes, sizeof(uintptr_t) * frame_count); } #if __LP64__ /* We only support async stacks on 64-bit kernels */ frame_count = 0; if (info.btui_async_frame_addr != 0) { if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_ASYNC_START_INDEX, sizeof(uint32_t), &kaddr)) { uint32_t idx = info.btui_async_start_index; kcdata_memcpy(kcdata, kaddr, &idx, sizeof(uint32_t)); } struct backtrace_control ctl = { .btc_frame_addr = info.btui_async_frame_addr, .btc_addr_offset = BTCTL_ASYNC_ADDR_OFFSET, }; info = BTUINFO_INIT; frame_count = backtrace_user(btframes, max_frames, &ctl, &info); if (info.btui_error == 0 && frame_count > 0) { if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata, TASK_BTINFO_ASYNC_BACKTRACE64, sizeof(uintptr_t), frame_count, &kaddr)) { kcdata_memcpy(kcdata, kaddr, btframes, sizeof(uintptr_t) * frame_count); } } if ((info.btui_info & BTI_TRUNCATED) != 0) { btinfo_flag |= TASK_BTINFO_FLAG_ASYNC_BT_TRUNCATED; } } #endif /* Backtrace collection done, free the frames buffer */ kfree_data(btframes, max_frames * sizeof(btframes[0])); btframes = NULL; thread_set_exec_promotion(current_thread()); /* Next, suspend the task briefly and collect image load infos */ task_suspend_internal(task); /* all_image_info struct is ABI, in agreement with address width */ if (has_64bit_addr) { struct user64_dyld_all_image_infos task_image_infos = {}; struct btinfo_sc_load_info64 sc_info; (void)copyin((user_addr_t)task_get_all_image_info_addr(task), &task_image_infos, sizeof(struct user64_dyld_all_image_infos)); uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; uuid_info_addr = task_image_infos.uuidArray; sc_info.sharedCacheSlide = task_image_infos.sharedCacheSlide; sc_info.sharedCacheBaseAddress = task_image_infos.sharedCacheBaseAddress; memcpy(&sc_info.sharedCacheUUID, &task_image_infos.sharedCacheUUID, sizeof(task_image_infos.sharedCacheUUID)); if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_SC_LOADINFO64, sizeof(sc_info), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &sc_info, sizeof(sc_info)); } } else { struct user32_dyld_all_image_infos task_image_infos = {}; struct btinfo_sc_load_info sc_info; (void)copyin((user_addr_t)task_get_all_image_info_addr(task), &task_image_infos, sizeof(struct user32_dyld_all_image_infos)); uuid_info_count = task_image_infos.uuidArrayCount; uuid_info_addr = task_image_infos.uuidArray; sc_info.sharedCacheSlide = task_image_infos.sharedCacheSlide; sc_info.sharedCacheBaseAddress = task_image_infos.sharedCacheBaseAddress; memcpy(&sc_info.sharedCacheUUID, &task_image_infos.sharedCacheUUID, sizeof(task_image_infos.sharedCacheUUID)); if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_SC_LOADINFO, sizeof(sc_info), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &sc_info, sizeof(sc_info)); } } if (!uuid_info_addr) { /* * Can happen when we catch dyld in the middle of updating * this data structure, or copyin of all_image_info struct failed. */ task_resume_internal(task); thread_clear_exec_promotion(current_thread()); kfree_data(btdata_kernel, alloc_size); kcdata_memory_destroy(kcdata); return KERN_MEMORY_ERROR; } if (uuid_info_count > 0) { uint32_t uuid_info_size = (uint32_t)(has_64bit_addr ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info)); if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata, (has_64bit_addr ? TASK_BTINFO_DYLD_LOADINFO64 : TASK_BTINFO_DYLD_LOADINFO), uuid_info_size, uuid_info_count, &kaddr)) { if (copyin((user_addr_t)uuid_info_addr, (void *)kaddr, uuid_info_size * uuid_info_count)) { task_resume_internal(task); thread_clear_exec_promotion(current_thread()); kfree_data(btdata_kernel, alloc_size); kcdata_memory_destroy(kcdata); return KERN_MEMORY_ERROR; } } } task_resume_internal(task); thread_clear_exec_promotion(current_thread()); /* Next, collect all other information */ thread_flavor_t tsflavor; mach_msg_type_number_t tscount; #if defined(__x86_64__) || defined(__i386__) tsflavor = x86_THREAD_STATE; /* unified */ tscount = x86_THREAD_STATE_COUNT; #else tsflavor = ARM_THREAD_STATE; /* unified */ tscount = ARM_UNIFIED_THREAD_STATE_COUNT; #endif if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_STATE, sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount, &kaddr)) { struct btinfo_thread_state_data_t *bt_thread_state = (struct btinfo_thread_state_data_t *)kaddr; bt_thread_state->flavor = tsflavor; bt_thread_state->count = tscount; /* variable-sized tstate array follows */ kr = thread_getstatus_to_user(current_thread(), bt_thread_state->flavor, (thread_state_t)&bt_thread_state->tstate, &bt_thread_state->count, TSSF_FLAGS_NONE); if (kr != KERN_SUCCESS) { bzero((void *)kaddr, sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount); if (kr == KERN_TERMINATED) { btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED; } } } #if defined(__x86_64__) || defined(__i386__) tsflavor = x86_EXCEPTION_STATE; /* unified */ tscount = x86_EXCEPTION_STATE_COUNT; #else #if defined(__arm64__) if (has_64bit_data) { tsflavor = ARM_EXCEPTION_STATE64; tscount = ARM_EXCEPTION_STATE64_COUNT; } else #endif /* defined(__arm64__) */ { tsflavor = ARM_EXCEPTION_STATE; tscount = ARM_EXCEPTION_STATE_COUNT; } #endif /* defined(__x86_64__) || defined(__i386__) */ if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_EXCEPTION_STATE, sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount, &kaddr)) { struct btinfo_thread_state_data_t *bt_thread_state = (struct btinfo_thread_state_data_t *)kaddr; bt_thread_state->flavor = tsflavor; bt_thread_state->count = tscount; /* variable-sized tstate array follows */ kr = thread_getstatus_to_user(current_thread(), bt_thread_state->flavor, (thread_state_t)&bt_thread_state->tstate, &bt_thread_state->count, TSSF_FLAGS_NONE); if (kr != KERN_SUCCESS) { bzero((void *)kaddr, sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount); if (kr == KERN_TERMINATED) { btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED; } } } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PID, sizeof(pid_t), &kaddr)) { pid_t pid = proc_getpid(p); kcdata_memcpy(kcdata, kaddr, &pid, sizeof(pid)); } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PPID, sizeof(p->p_ppid), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &p->p_ppid, sizeof(p->p_ppid)); } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PROC_NAME, sizeof(p->p_comm), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &p->p_comm, sizeof(p->p_comm)); } #if CONFIG_COALITIONS if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata, TASK_BTINFO_COALITION_ID, sizeof(uint64_t), COALITION_NUM_TYPES, &kaddr)) { uint64_t coalition_ids[COALITION_NUM_TYPES]; task_coalition_ids(proc_task(p), coalition_ids); kcdata_memcpy(kcdata, kaddr, coalition_ids, sizeof(coalition_ids)); } #endif /* CONFIG_COALITIONS */ /* V0 is sufficient for ReportCrash */ gather_rusage_info(current_proc(), &rup.ri, RUSAGE_INFO_V0); rup.ri.ri_phys_footprint = 0; /* Soft crash, proc did not exit */ rup.ri.ri_proc_exit_abstime = 0; if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_RUSAGE_INFO, sizeof(struct rusage_info_v0), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &rup.ri, sizeof(struct rusage_info_v0)); } platform = proc_platform(current_proc()); if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PLATFORM, sizeof(platform), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &platform, sizeof(platform)); } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PROC_PATH, MAXPATHLEN, &kaddr)) { char *buf = zalloc_flags(ZV_NAMEI, Z_WAITOK | Z_ZERO); proc_pidpathinfo_internal(p, 0, buf, MAXPATHLEN, NULL); kcdata_memcpy(kcdata, kaddr, buf, MAXPATHLEN); zfree(ZV_NAMEI, buf); } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_UID, sizeof(p->p_uid), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &p->p_uid, sizeof(p->p_uid)); } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_GID, sizeof(p->p_gid), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &p->p_gid, sizeof(p->p_gid)); } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PROC_FLAGS, sizeof(unsigned int), &kaddr)) { unsigned int pflags = p->p_flag & (P_LP64 | P_SUGID | P_TRANSLATED); kcdata_memcpy(kcdata, kaddr, &pflags, sizeof(pflags)); } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_CPUTYPE, sizeof(cpu_type_t), &kaddr)) { cpu_type_t cputype = cpu_type() & ~CPU_ARCH_MASK; if (has_64bit_addr) { cputype |= CPU_ARCH_ABI64; } else if (has_64bit_data) { cputype |= CPU_ARCH_ABI64_32; } kcdata_memcpy(kcdata, kaddr, &cputype, sizeof(cpu_type_t)); } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_EXCEPTION_TYPE, sizeof(etype), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &etype, sizeof(etype)); } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_CRASH_COUNT, sizeof(int), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &p->p_crash_count, sizeof(int)); } if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THROTTLE_TIMEOUT, sizeof(int), &kaddr)) { kcdata_memcpy(kcdata, kaddr, &p->p_throttle_timeout, sizeof(int)); } assert(codeCnt <= EXCEPTION_CODE_MAX); if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_EXCEPTION_CODES, sizeof(mach_exception_code_t) * codeCnt, &kaddr)) { kcdata_memcpy(kcdata, kaddr, code, sizeof(mach_exception_code_t) * codeCnt); } if (reason != OS_REASON_NULL) { if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, EXIT_REASON_SNAPSHOT, sizeof(struct exit_reason_snapshot), &kaddr)) { struct exit_reason_snapshot ers = { .ers_namespace = reason->osr_namespace, .ers_code = reason->osr_code, .ers_flags = reason->osr_flags }; kcdata_memcpy(kcdata, kaddr, &ers, sizeof(ers)); } if (reason->osr_kcd_buf != 0) { uint32_t reason_buf_size = (uint32_t)kcdata_memory_get_used_bytes(&reason->osr_kcd_descriptor); assert(reason_buf_size != 0); if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, KCDATA_TYPE_NESTED_KCDATA, reason_buf_size, &kaddr)) { kcdata_memcpy(kcdata, kaddr, reason->osr_kcd_buf, reason_buf_size); } } } threadname[0] = '\0'; if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_NAME, sizeof(threadname), &kaddr)) { bsd_getthreadname(get_bsdthread_info(current_thread()), threadname); kcdata_memcpy(kcdata, kaddr, threadname, sizeof(threadname)); } kr = thread_info(current_thread(), THREAD_IDENTIFIER_INFO, (thread_info_t)&th_info, &th_info_count); if (kr == KERN_TERMINATED) { btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED; } kern_return_t last_kr = kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_ID, sizeof(uint64_t), &kaddr); /* * If the last kcdata_get_memory_addr() failed (unlikely), signal to exception * handler (ReportCrash) that lw corpse collection ran out of space and the * result is incomplete. */ if (last_kr != KERN_SUCCESS) { btinfo_flag |= TASK_BTINFO_FLAG_KCDATA_INCOMPLETE; } if (KERN_SUCCESS == kr && KERN_SUCCESS == last_kr) { kcdata_memcpy(kcdata, kaddr, &th_info.thread_id, sizeof(uint64_t)); } /* Lastly, copy the flags to the address we reserved at the beginning. */ kcdata_memcpy(kcdata, btinfo_flag_addr, &btinfo_flag, sizeof(uint32_t)); *new_desc = kcdata; return KERN_SUCCESS; } /* * We only parse exit reason kcdata blobs for critical process before they die * and we're going to panic or for opt-in, limited diagnostic tools. * * Meant to be called immediately before panicking or limited diagnostic * scenarios. */ char * exit_reason_get_string_desc(os_reason_t exit_reason) { kcdata_iter_t iter; if (exit_reason == OS_REASON_NULL || exit_reason->osr_kcd_buf == NULL || exit_reason->osr_bufsize == 0) { return NULL; } iter = kcdata_iter(exit_reason->osr_kcd_buf, exit_reason->osr_bufsize); if (!kcdata_iter_valid(iter)) { #if DEBUG || DEVELOPMENT printf("exit reason has invalid exit reason buffer\n"); #endif return NULL; } if (kcdata_iter_type(iter) != KCDATA_BUFFER_BEGIN_OS_REASON) { #if DEBUG || DEVELOPMENT printf("exit reason buffer type mismatch, expected %d got %d\n", KCDATA_BUFFER_BEGIN_OS_REASON, kcdata_iter_type(iter)); #endif return NULL; } iter = kcdata_iter_find_type(iter, EXIT_REASON_USER_DESC); if (!kcdata_iter_valid(iter)) { return NULL; } return (char *)kcdata_iter_payload(iter); } static int initproc_spawned = 0; static int sysctl_initproc_spawned(struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { if (req->newptr != 0 && (proc_getpid(req->p) != 1 || initproc_spawned != 0)) { // Can only ever be set by launchd, and only once at boot return EPERM; } return sysctl_handle_int(oidp, &initproc_spawned, 0, req); } SYSCTL_PROC(_kern, OID_AUTO, initproc_spawned, CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_INT | CTLFLAG_LOCKED, 0, 0, sysctl_initproc_spawned, "I", "Boolean indicator that launchd has reached main"); #if DEVELOPMENT || DEBUG /* disable user faults */ static TUNABLE(bool, bootarg_disable_user_faults, "-disable_user_faults", false); #endif /* DEVELOPMENT || DEBUG */ #define OS_REASON_IFLAG_USER_FAULT 0x1 #define OS_REASON_TOTAL_USER_FAULTS_PER_PROC 5 static int abort_with_payload_internal(proc_t p, uint32_t reason_namespace, uint64_t reason_code, user_addr_t payload, uint32_t payload_size, user_addr_t reason_string, uint64_t reason_flags, uint32_t internal_flags) { os_reason_t exit_reason = OS_REASON_NULL; kern_return_t kr = KERN_SUCCESS; if (internal_flags & OS_REASON_IFLAG_USER_FAULT) { uint32_t old_value = atomic_load_explicit(&p->p_user_faults, memory_order_relaxed); #if DEVELOPMENT || DEBUG if (bootarg_disable_user_faults) { return EQFULL; } #endif /* DEVELOPMENT || DEBUG */ for (;;) { if (old_value >= OS_REASON_TOTAL_USER_FAULTS_PER_PROC) { return EQFULL; } // this reloads the value in old_value if (atomic_compare_exchange_strong_explicit(&p->p_user_faults, &old_value, old_value + 1, memory_order_relaxed, memory_order_relaxed)) { break; } } } KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, proc_getpid(p), reason_namespace, reason_code, 0, 0); exit_reason = build_userspace_exit_reason(reason_namespace, reason_code, payload, payload_size, reason_string, reason_flags | OS_REASON_FLAG_ABORT); if (internal_flags & OS_REASON_IFLAG_USER_FAULT) { mach_exception_code_t code = 0; EXC_GUARD_ENCODE_TYPE(code, GUARD_TYPE_USER); /* simulated EXC_GUARD */ EXC_GUARD_ENCODE_FLAVOR(code, 0); EXC_GUARD_ENCODE_TARGET(code, reason_namespace); if (exit_reason == OS_REASON_NULL) { kr = KERN_RESOURCE_SHORTAGE; } else { kr = task_violated_guard(code, reason_code, exit_reason, TRUE); } os_reason_free(exit_reason); } else { /* * We use SIGABRT (rather than calling exit directly from here) so that * the debugger can catch abort_with_{reason,payload} calls. */ psignal_try_thread_with_reason(p, current_thread(), SIGABRT, exit_reason); } switch (kr) { case KERN_SUCCESS: return 0; case KERN_NOT_SUPPORTED: return ENOTSUP; case KERN_INVALID_ARGUMENT: return EINVAL; case KERN_RESOURCE_SHORTAGE: default: return EBUSY; } } int abort_with_payload(struct proc *cur_proc, struct abort_with_payload_args *args, __unused void *retval) { abort_with_payload_internal(cur_proc, args->reason_namespace, args->reason_code, args->payload, args->payload_size, args->reason_string, args->reason_flags, 0); return 0; } int os_fault_with_payload(struct proc *cur_proc, struct os_fault_with_payload_args *args, __unused int *retval) { return abort_with_payload_internal(cur_proc, args->reason_namespace, args->reason_code, args->payload, args->payload_size, args->reason_string, args->reason_flags, OS_REASON_IFLAG_USER_FAULT); } /* * exit -- * Death of process. */ __attribute__((noreturn)) void exit(proc_t p, struct exit_args *uap, int *retval) { p->p_xhighbits = ((uint32_t)(uap->rval) & 0xFF000000) >> 24; exit1(p, W_EXITCODE((uint32_t)uap->rval, 0), retval); thread_exception_return(); /* NOTREACHED */ while (TRUE) { thread_block(THREAD_CONTINUE_NULL); } /* NOTREACHED */ } /* * Exit: deallocate address space and other resources, change proc state * to zombie, and unlink proc from allproc and parent's lists. Save exit * status and rusage for wait(). Check for child processes and orphan them. */ int exit1(proc_t p, int rv, int *retval) { return exit1_internal(p, rv, retval, FALSE, TRUE, 0); } int exit1_internal(proc_t p, int rv, int *retval, boolean_t thread_can_terminate, boolean_t perf_notify, int jetsam_flags) { return exit_with_reason(p, rv, retval, thread_can_terminate, perf_notify, jetsam_flags, OS_REASON_NULL); } /* * NOTE: exit_with_reason drops a reference on the passed exit_reason */ int exit_with_reason(proc_t p, int rv, int *retval, boolean_t thread_can_terminate, boolean_t perf_notify, int jetsam_flags, struct os_reason *exit_reason) { thread_t self = current_thread(); struct task *task = proc_task(p); struct uthread *ut; int error = 0; bool proc_exiting = false; #if DEVELOPMENT || DEBUG /* * Debug boot-arg: panic here if matching process is exiting with non-zero code. * Example usage: panic_on_error_exit=launchd,logd,watchdogd */ if (rv && strnstr(panic_on_eexit_pcomms, p->p_comm, sizeof(panic_on_eexit_pcomms))) { panic("%s: Process %s with pid %d exited on error with code 0x%x.", __FUNCTION__, p->p_comm, proc_getpid(p), rv); } #endif /* * If a thread in this task has already * called exit(), then halt any others * right here. */ ut = get_bsdthread_info(self); (void)retval; /* * The parameter list of audit_syscall_exit() was augmented to * take the Darwin syscall number as the first parameter, * which is currently required by mac_audit_postselect(). */ /* * The BSM token contains two components: an exit status as passed * to exit(), and a return value to indicate what sort of exit it * was. The exit status is WEXITSTATUS(rv), but it's not clear * what the return value is. */ AUDIT_ARG(exit, WEXITSTATUS(rv), 0); /* * TODO: what to audit here when jetsam calls exit and the uthread, * 'ut' does not belong to the proc, 'p'. */ AUDIT_SYSCALL_EXIT(SYS_exit, p, ut, 0); /* Exit is always successfull */ DTRACE_PROC1(exit, int, CLD_EXITED); /* mark process is going to exit and pull out of DBG/disk throttle */ /* TODO: This should be done after becoming exit thread */ proc_set_task_policy(proc_task(p), TASK_POLICY_ATTRIBUTE, TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE); proc_lock(p); error = proc_transstart(p, 1, (jetsam_flags ? 1 : 0)); if (error == EDEADLK) { /* * If proc_transstart() returns EDEADLK, then another thread * is either exec'ing or exiting. Return an error and allow * the other thread to continue. */ proc_unlock(p); os_reason_free(exit_reason); if (current_proc() == p) { if (p->exit_thread == self) { panic("exit_thread failed to exit"); } if (thread_can_terminate) { thread_exception_return(); } } return error; } proc_exiting = !!(p->p_lflag & P_LEXIT); while (proc_exiting || p->exit_thread != self) { if (proc_exiting || sig_try_locked(p) <= 0) { proc_transend(p, 1); os_reason_free(exit_reason); if (get_threadtask(self) != task) { proc_unlock(p); return 0; } proc_unlock(p); thread_terminate(self); if (!thread_can_terminate) { return 0; } thread_exception_return(); /* NOTREACHED */ } sig_lock_to_exit(p); } if (exit_reason != OS_REASON_NULL) { KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_COMMIT) | DBG_FUNC_NONE, proc_getpid(p), exit_reason->osr_namespace, exit_reason->osr_code, 0, 0); } assert(p->p_exit_reason == OS_REASON_NULL); p->p_exit_reason = exit_reason; p->p_lflag |= P_LEXIT; p->p_xstat = rv; p->p_lflag |= jetsam_flags; proc_transend(p, 1); proc_unlock(p); proc_prepareexit(p, rv, perf_notify); /* Last thread to terminate will call proc_exit() */ task_terminate_internal(task); return 0; } #if CONFIG_MEMORYSTATUS /* * Remove this process from jetsam bands for freezing or exiting. Note this will block, if the process * is currently being frozen. * The proc_list_lock is held by the caller. * NB: If the process should be ineligible for future freezing or jetsaming the caller should first set * the p_refcount P_REF_DEAD bit. */ static void proc_memorystatus_remove(proc_t p) { LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); while (memorystatus_remove(p) == EAGAIN) { os_log(OS_LOG_DEFAULT, "memorystatus_remove: Process[%d] tried to exit while being frozen. Blocking exit until freeze completes.", proc_getpid(p)); msleep(&p->p_memstat_state, &proc_list_mlock, PWAIT, "proc_memorystatus_remove", NULL); } } #endif #if DEVELOPMENT boolean_t crash_behavior_test_mode = FALSE; boolean_t crash_behavior_test_would_panic = FALSE; SYSCTL_UINT(_kern, OID_AUTO, crash_behavior_test_mode, CTLFLAG_RW, &crash_behavior_test_mode, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, crash_behavior_test_would_panic, CTLFLAG_RW, &crash_behavior_test_would_panic, 0, ""); #endif /* DEVELOPMENT */ static bool _proc_is_crashing_signal(int sig) { bool result = false; switch (sig) { case SIGILL: case SIGABRT: case SIGFPE: case SIGBUS: case SIGSEGV: case SIGSYS: /* * If SIGTRAP is the terminating signal, then we can safely assume the * process crashed. (On iOS, SIGTRAP will be the terminating signal when * a process calls __builtin_trap(), which will abort.) */ case SIGTRAP: result = true; } return result; } static bool _proc_is_fatal_reason(os_reason_t reason) { if ((reason->osr_flags & OS_REASON_FLAG_ABORT) != 0) { /* Abort is always fatal even if there is no crash report generated */ return true; } if ((reason->osr_flags & OS_REASON_FLAG_NO_CRASH_REPORT) != 0) { /* * No crash report means this reason shouldn't be considered fatal * unless we are in test mode */ #if DEVELOPMENT if (crash_behavior_test_mode) { return true; } #endif /* DEVELOPMENT */ return false; } // By default all OS_REASON are fatal return true; } static TUNABLE(bool, panic_on_crash_disabled, "panic_on_crash_disabled", false); static bool proc_should_trigger_panic(proc_t p, int rv) { if (p == initproc) { /* Always panic for launchd */ return true; } if (panic_on_crash_disabled) { printf("panic-on-crash disabled via boot-arg\n"); return false; } if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_EXIT) != 0) { return true; } if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_SPAWN_FAIL) != 0) { return true; } if (p->p_posix_spawn_failed) { /* posix_spawn failures normally don't qualify for panics */ return false; } bool deadline_expired = (mach_continuous_time() > p->p_crash_behavior_deadline); if (p->p_crash_behavior_deadline != 0 && deadline_expired) { return false; } if (WIFEXITED(rv)) { int code = WEXITSTATUS(rv); if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_NON_ZERO_EXIT) != 0) { if (code == 0) { /* No panic if we exit 0 */ return false; } else { /* Panic on non-zero exit */ return true; } } else { /* No panic on normal exit if the process doesn't have the non-zero flag set */ return false; } } else if (WIFSIGNALED(rv)) { int signal = WTERMSIG(rv); /* This is a crash (non-normal exit) */ if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_CRASH) != 0) { os_reason_t reason = p->p_exit_reason; if (reason != OS_REASON_NULL) { if (!_proc_is_fatal_reason(reason)) { // Skip non-fatal terminate_with_reason return false; } if (reason->osr_namespace == OS_REASON_SIGNAL) { /* * OS_REASON_SIGNAL delivers as a SIGKILL with the actual signal * in osr_code, so we should check that signal here */ return _proc_is_crashing_signal((int)reason->osr_code); } else { /* * This branch covers the case of terminate_with_reason which * delivers a SIGTERM which is still considered a crash even * thought the signal is not considered a crashing signal */ return true; } } return _proc_is_crashing_signal(signal); } else { return false; } } else { /* * This branch implies that we didn't exit normally nor did we receive * a signal. This should be unreachable. */ return true; } } static void proc_crash_coredump(proc_t p) { (void)p; #if (DEVELOPMENT || DEBUG) && CONFIG_COREDUMP /* * For debugging purposes, generate a core file of initproc before * panicking. Leave at least 300 MB free on the root volume, and ignore * the process's corefile ulimit. fsync() the file to ensure it lands on disk * before the panic hits. */ int err; uint64_t coredump_start = mach_absolute_time(); uint64_t coredump_end; clock_sec_t tv_sec; clock_usec_t tv_usec; uint32_t tv_msec; err = coredump(p, 300, COREDUMP_IGNORE_ULIMIT | COREDUMP_FULLFSYNC); coredump_end = mach_absolute_time(); absolutetime_to_microtime(coredump_end - coredump_start, &tv_sec, &tv_usec); tv_msec = tv_usec / 1000; if (err != 0) { printf("Failed to generate core file for pid: %d: error %d, took %d.%03d seconds\n", proc_getpid(p), err, (uint32_t)tv_sec, tv_msec); } else { printf("Generated core file for pid: %d in %d.%03d seconds\n", proc_getpid(p), (uint32_t)tv_sec, tv_msec); } #endif /* (DEVELOPMENT || DEBUG) && CONFIG_COREDUMP */ } static void proc_handle_critical_exit(proc_t p, int rv) { if (!proc_should_trigger_panic(p, rv)) { // No panic, bail out return; } #if DEVELOPMENT if (crash_behavior_test_mode) { crash_behavior_test_would_panic = TRUE; // Force test mode off after hitting a panic crash_behavior_test_mode = FALSE; return; } #endif /* DEVELOPMENT */ char *exit_reason_desc = exit_reason_get_string_desc(p->p_exit_reason); if (p->p_exit_reason == OS_REASON_NULL) { printf("pid %d exited -- no exit reason available -- (signal %d, exit %d)\n", proc_getpid(p), WTERMSIG(rv), WEXITSTATUS(rv)); } else { printf("pid %d exited -- exit reason namespace %d subcode 0x%llx, description %s\n", proc_getpid(p), p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code, exit_reason_desc ? exit_reason_desc : "none"); } const char *prefix_str; char prefix_str_buf[128]; if (p == initproc) { if (strnstr(p->p_name, "preinit", sizeof(p->p_name))) { prefix_str = "LTE preinit process exited"; } else if (initproc_spawned) { prefix_str = "initproc exited"; } else { prefix_str = "initproc failed to start"; } } else { /* For processes that aren't launchd, just use the process name and pid */ snprintf(prefix_str_buf, sizeof(prefix_str_buf), "%s[%d] exited", p->p_name, proc_getpid(p)); prefix_str = prefix_str_buf; } proc_crash_coredump(p); sync(p, (void *)NULL, (int *)NULL); if (p->p_exit_reason == OS_REASON_NULL) { panic_with_options(0, NULL, DEBUGGER_OPTION_INITPROC_PANIC, "%s -- no exit reason available -- (signal %d, exit status %d %s)", prefix_str, WTERMSIG(rv), WEXITSTATUS(rv), ((proc_getcsflags(p) & CS_KILLED) ? "CS_KILLED" : "")); } else { panic_with_options(0, NULL, DEBUGGER_OPTION_INITPROC_PANIC, "%s %s -- exit reason namespace %d subcode 0x%llx description: %." LAUNCHD_PANIC_REASON_STRING_MAXLEN "s", ((proc_getcsflags(p) & CS_KILLED) ? "CS_KILLED" : ""), prefix_str, p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code, exit_reason_desc ? exit_reason_desc : "none"); } } void proc_prepareexit(proc_t p, int rv, boolean_t perf_notify) { mach_exception_data_type_t code = 0, subcode = 0; exception_type_t etype; struct uthread *ut; thread_t self = current_thread(); ut = get_bsdthread_info(self); struct rusage_superset *rup; int kr = 0; int create_corpse = FALSE; bool corpse_source = false; task_t task = proc_task(p); if (p->p_crash_behavior != 0 || p == initproc) { proc_handle_critical_exit(p, rv); } if (task) { corpse_source = vm_map_is_corpse_source(get_task_map(task)); } /* * Generate a corefile/crashlog if: * The process doesn't have an exit reason that indicates no crash report should be created * AND any of the following are true: * - The process was terminated due to a fatal signal that generates a core * - The process was killed due to a code signing violation * - The process has an exit reason that indicates we should generate a crash report * * The first condition is necessary because abort_with_reason()/payload() use SIGABRT * (which normally triggers a core) but may indicate that no crash report should be created. */ if (!(PROC_HAS_EXITREASON(p) && (PROC_EXITREASON_FLAGS(p) & OS_REASON_FLAG_NO_CRASH_REPORT)) && (hassigprop(WTERMSIG(rv), SA_CORE) || ((proc_getcsflags(p) & CS_KILLED) != 0) || (PROC_HAS_EXITREASON(p) && (PROC_EXITREASON_FLAGS(p) & OS_REASON_FLAG_GENERATE_CRASH_REPORT)))) { /* * Workaround for processes checking up on PT_DENY_ATTACH: * should be backed out post-Leopard (details in 5431025). */ if ((SIGSEGV == WTERMSIG(rv)) && (p->p_pptr->p_lflag & P_LNOATTACH)) { goto skipcheck; } /* * Crash Reporter looks for the signal value, original exception * type, and low 20 bits of the original code in code[0] * (8, 4, and 20 bits respectively). code[1] is unmodified. */ code = ((WTERMSIG(rv) & 0xff) << 24) | ((ut->uu_exception & 0x0f) << 20) | ((int)ut->uu_code & 0xfffff); subcode = ut->uu_subcode; etype = ut->uu_exception; /* Defualt to EXC_CRASH if the exception is not an EXC_RESOURCE or EXC_GUARD */ if (etype != EXC_RESOURCE || etype != EXC_GUARD) { etype = EXC_CRASH; } #if (DEVELOPMENT || DEBUG) if (p->p_pid <= exception_log_max_pid) { char *proc_name = proc_best_name(p); if (PROC_HAS_EXITREASON(p)) { record_system_event(SYSTEM_EVENT_TYPE_INFO, SYSTEM_EVENT_SUBSYSTEM_PROCESS, "process exit", "pid: %d -- process name: %s -- exit reason namespace: %d -- subcode: 0x%llx -- description: %s", proc_getpid(p), proc_name, p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code, exit_reason_get_string_desc(p->p_exit_reason)); } else { record_system_event(SYSTEM_EVENT_TYPE_INFO, SYSTEM_EVENT_SUBSYSTEM_PROCESS, "process exit", "pid: %d -- process name: %s -- exit status %d", proc_getpid(p), proc_name, WEXITSTATUS(rv)); } } #endif const bool fatal = false; kr = task_exception_notify(EXC_CRASH, code, subcode, fatal); /* Nobody handled EXC_CRASH?? remember to make corpse */ if ((kr != 0 || corpse_source) && p == current_proc()) { /* * Do not create corpse when exit is called from jetsam thread. * Corpse creation code requires that proc_prepareexit is * called by the exiting proc and not the kernel_proc. */ create_corpse = TRUE; } /* * Revalidate the code signing of the text pages around current PC. * This is an attempt to detect and repair faults due to memory * corruption of text pages. * * The goal here is to fixup infrequent memory corruptions due to * things like aging RAM bit flips. So the approach is to only expect * to have to fixup one thing per crash. This also limits the amount * of extra work we cause in case this is a development kernel with an * active memory stomp happening. */ uintptr_t bt[2]; struct backtrace_user_info btinfo = BTUINFO_INIT; unsigned int frame_count = backtrace_user(bt, 2, NULL, &btinfo); int bt_err = btinfo.btui_error; if (bt_err == 0 && frame_count >= 1) { /* * First check at the page containing the current PC. * This passes if the page code signs -or- if we can't figure out * what is at that address. The latter action is so we continue checking * previous pages which may be corrupt and caused a wild branch. */ kr = revalidate_text_page(task, bt[0]); /* No corruption found, check the previous sequential page */ if (kr == KERN_SUCCESS) { kr = revalidate_text_page(task, bt[0] - get_task_page_size(task)); } /* Still no corruption found, check the current function's caller */ if (kr == KERN_SUCCESS) { if (frame_count > 1 && atop(bt[0]) != atop(bt[1]) && /* don't recheck PC page */ atop(bt[0]) - 1 != atop(bt[1])) { /* don't recheck page before */ kr = revalidate_text_page(task, (vm_map_offset_t)bt[1]); } } /* * Log that we found a corruption. */ if (kr != KERN_SUCCESS) { os_log(OS_LOG_DEFAULT, "Text page corruption detected in dying process %d\n", proc_getpid(p)); } } } skipcheck: if (task_is_driver(task) && PROC_HAS_EXITREASON(p)) { IOUserServerRecordExitReason(task, p->p_exit_reason); } /* Notify the perf server? */ if (perf_notify) { (void)sys_perf_notify(self, proc_getpid(p)); } /* stash the usage into corpse data if making_corpse == true */ if (create_corpse == TRUE) { kr = task_mark_corpse(task); if (kr != KERN_SUCCESS) { if (kr == KERN_NO_SPACE) { printf("Process[%d] has no vm space for corpse info.\n", proc_getpid(p)); } else if (kr == KERN_NOT_SUPPORTED) { printf("Process[%d] was destined to be corpse. But corpse is disabled by config.\n", proc_getpid(p)); } else if (kr == KERN_TERMINATED) { printf("Process[%d] has been terminated before it could be converted to a corpse.\n", proc_getpid(p)); } else { printf("Process[%d] crashed: %s. Too many corpses being created.\n", proc_getpid(p), p->p_comm); } create_corpse = FALSE; } } if (corpse_source && !create_corpse) { /* vm_map was marked for corpse, but we decided to not create one, unmark the vmmap */ vm_map_unset_corpse_source(get_task_map(task)); } if (!proc_is_shadow(p)) { /* * Before this process becomes a zombie, stash resource usage * stats in the proc for external observers to query * via proc_pid_rusage(). * * If the zombie allocation fails, just punt the stats. */ rup = zalloc(zombie_zone); gather_rusage_info(p, &rup->ri, RUSAGE_INFO_CURRENT); rup->ri.ri_phys_footprint = 0; rup->ri.ri_proc_exit_abstime = mach_absolute_time(); /* * Make the rusage_info visible to external observers * only after it has been completely filled in. */ p->p_ru = rup; } if (create_corpse) { int est_knotes = 0, num_knotes = 0; uint64_t *buffer = NULL; uint32_t buf_size = 0; /* Get all the udata pointers from kqueue */ est_knotes = kevent_proc_copy_uptrs(p, NULL, 0); if (est_knotes > 0) { buf_size = (uint32_t)((est_knotes + 32) * sizeof(uint64_t)); buffer = kalloc_data(buf_size, Z_WAITOK); if (buffer) { num_knotes = kevent_proc_copy_uptrs(p, buffer, buf_size); if (num_knotes > est_knotes + 32) { num_knotes = est_knotes + 32; } } } /* Update the code, subcode based on exit reason */ proc_update_corpse_exception_codes(p, &code, &subcode); populate_corpse_crashinfo(p, task, rup, code, subcode, buffer, num_knotes, NULL, etype); kfree_data(buffer, buf_size); } /* * Remove proc from allproc queue and from pidhash chain. * Need to do this before we do anything that can block. * Not doing causes things like mount() find this on allproc * in partially cleaned state. */ proc_list_lock(); #if CONFIG_MEMORYSTATUS proc_memorystatus_remove(p); #endif LIST_REMOVE(p, p_list); LIST_INSERT_HEAD(&zombproc, p, p_list); /* Place onto zombproc. */ /* will not be visible via proc_find */ os_atomic_or(&p->p_refcount, P_REF_DEAD, relaxed); proc_list_unlock(); /* * If parent is waiting for us to exit or exec, * P_LPPWAIT is set; we will wakeup the parent below. */ proc_lock(p); p->p_lflag &= ~(P_LTRACED | P_LPPWAIT); p->p_sigignore = ~(sigcantmask); /* * If a thread is already waiting for us in proc_exit, * P_LTERM is set, wakeup the thread. */ if (p->p_lflag & P_LTERM) { wakeup(&p->exit_thread); } else { p->p_lflag |= P_LTERM; } /* If current proc is exiting, ignore signals on the exit thread */ if (p == current_proc()) { ut->uu_siglist = 0; } proc_unlock(p); } void proc_exit(proc_t p) { proc_t q; proc_t pp; struct task *task = proc_task(p); vnode_t tvp = NULLVP; struct pgrp * pg; struct session *sessp; struct uthread * uth; pid_t pid; int exitval; int knote_hint; uth = current_uthread(); proc_lock(p); proc_transstart(p, 1, 0); if (!(p->p_lflag & P_LEXIT)) { /* * This can happen if a thread_terminate() occurs * in a single-threaded process. */ p->p_lflag |= P_LEXIT; proc_transend(p, 1); proc_unlock(p); proc_prepareexit(p, 0, TRUE); (void) task_terminate_internal(task); proc_lock(p); } else if (!(p->p_lflag & P_LTERM)) { proc_transend(p, 1); /* Jetsam is in middle of calling proc_prepareexit, wait for it */ p->p_lflag |= P_LTERM; msleep(&p->exit_thread, &p->p_mlock, PWAIT, "proc_prepareexit_wait", NULL); } else { proc_transend(p, 1); } p->p_lflag |= P_LPEXIT; /* * Other kernel threads may be in the middle of signalling this process. * Wait for those threads to wrap it up before making the process * disappear on them. */ if ((p->p_lflag & P_LINSIGNAL) || (p->p_sigwaitcnt > 0)) { p->p_sigwaitcnt++; while ((p->p_lflag & P_LINSIGNAL) || (p->p_sigwaitcnt > 1)) { msleep(&p->p_sigmask, &p->p_mlock, PWAIT, "proc_sigdrain", NULL); } p->p_sigwaitcnt--; } proc_unlock(p); pid = proc_getpid(p); exitval = p->p_xstat; KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_START, pid, exitval, 0, 0, 0); #if DEVELOPMENT || DEBUG proc_exit_lpexit_check(pid, PELS_POS_START); #endif #if CONFIG_DTRACE dtrace_proc_exit(p); #endif proc_refdrain(p); /* We now have unique ref to the proc */ /* if any pending cpu limits action, clear it */ task_clear_cpuusage(proc_task(p), TRUE); workq_mark_exiting(p); /* * need to cancel async IO requests that can be cancelled and wait for those * already active. MAY BLOCK! */ _aio_exit( p ); /* * Close open files and release open-file table. * This may block! */ fdt_invalidate(p); /* * Once all the knotes, kqueues & workloops are destroyed, get rid of the * workqueue. */ workq_exit(p); if (uth->uu_lowpri_window) { /* * task is marked as a low priority I/O type * and the I/O we issued while in flushing files on close * collided with normal I/O operations... * no need to throttle this thread since its going away * but we do need to update our bookeeping w/r to throttled threads */ throttle_lowpri_io(0); } if (p->p_lflag & P_LNSPACE_RESOLVER) { /* * The namespace resolver is exiting; there may be * outstanding materialization requests to clean up. */ nspace_resolver_exited(p); } #if SYSV_SHM /* Close ref SYSV Shared memory*/ if (p->vm_shm) { shmexit(p); } #endif #if SYSV_SEM /* Release SYSV semaphores */ semexit(p); #endif #if PSYNCH pth_proc_hashdelete(p); #endif /* PSYNCH */ pg = proc_pgrp(p, &sessp); if (SESS_LEADER(p, sessp)) { if (sessp->s_ttyvp != NULLVP) { struct vnode *ttyvp; int ttyvid; int cttyflag = 0; struct vfs_context context; struct tty *tp; struct pgrp *tpgrp = PGRP_NULL; /* * Controlling process. * Signal foreground pgrp, * drain controlling terminal * and revoke access to controlling terminal. */ proc_list_lock(); /* prevent any t_pgrp from changing */ session_lock(sessp); if (sessp->s_ttyp && sessp->s_ttyp->t_session == sessp) { tpgrp = tty_pgrp_locked(sessp->s_ttyp); } proc_list_unlock(); if (tpgrp != PGRP_NULL) { session_unlock(sessp); pgsignal(tpgrp, SIGHUP, 1); pgrp_rele(tpgrp); session_lock(sessp); } cttyflag = (os_atomic_andnot_orig(&sessp->s_refcount, S_CTTYREF, relaxed) & S_CTTYREF); ttyvp = sessp->s_ttyvp; ttyvid = sessp->s_ttyvid; tp = session_clear_tty_locked(sessp); if (ttyvp) { vnode_hold(ttyvp); } session_unlock(sessp); if ((ttyvp != NULLVP) && (vnode_getwithvid(ttyvp, ttyvid) == 0)) { if (tp != TTY_NULL) { tty_lock(tp); (void) ttywait(tp); tty_unlock(tp); } context.vc_thread = NULL; context.vc_ucred = kauth_cred_proc_ref(p); VNOP_REVOKE(ttyvp, REVOKEALL, &context); if (cttyflag) { /* * Release the extra usecount taken in cttyopen. * usecount should be released after VNOP_REVOKE is called. * This usecount was taken to ensure that * the VNOP_REVOKE results in a close to * the tty since cttyclose is a no-op. */ vnode_rele(ttyvp); } vnode_put(ttyvp); kauth_cred_unref(&context.vc_ucred); vnode_drop(ttyvp); ttyvp = NULLVP; } if (ttyvp) { vnode_drop(ttyvp); } if (tp) { ttyfree(tp); } } session_lock(sessp); sessp->s_leader = NULL; session_unlock(sessp); } if (!proc_is_shadow(p)) { fixjobc(p, pg, 0); } pgrp_rele(pg); /* * Change RLIMIT_FSIZE for accounting/debugging. */ proc_limitsetcur_fsize(p, RLIM_INFINITY); (void)acct_process(p); proc_list_lock(); if ((p->p_listflag & P_LIST_EXITCOUNT) == P_LIST_EXITCOUNT) { p->p_listflag &= ~P_LIST_EXITCOUNT; proc_shutdown_exitcount--; if (proc_shutdown_exitcount == 0) { wakeup(&proc_shutdown_exitcount); } } /* wait till parentrefs are dropped and grant no more */ proc_childdrainstart(p); while ((q = p->p_children.lh_first) != NULL) { if (q->p_stat == SZOMB) { if (p != q->p_pptr) { panic("parent child linkage broken"); } /* check for sysctl zomb lookup */ while ((q->p_listflag & P_LIST_WAITING) == P_LIST_WAITING) { msleep(&q->p_stat, &proc_list_mlock, PWAIT, "waitcoll", 0); } q->p_listflag |= P_LIST_WAITING; /* * This is a named reference and it is not granted * if the reap is already in progress. So we get * the reference here exclusively and their can be * no waiters. So there is no need for a wakeup * after we are done. Also the reap frees the structure * and the proc struct cannot be used for wakeups as well. * It is safe to use q here as this is system reap */ reap_flags_t reparent_flags = (q->p_listflag & P_LIST_DEADPARENT) ? REAP_REPARENTED_TO_INIT : 0; reap_child_locked(p, q, REAP_DEAD_PARENT | REAP_LOCKED | reparent_flags); } else { /* * Traced processes are killed * since their existence means someone is messing up. */ if (q->p_lflag & P_LTRACED) { struct proc *opp; /* * Take a reference on the child process to * ensure it doesn't exit and disappear between * the time we drop the list_lock and attempt * to acquire its proc_lock. */ if (proc_ref(q, true) != q) { continue; } proc_list_unlock(); opp = proc_find(q->p_oppid); if (opp != PROC_NULL) { proc_list_lock(); q->p_oppid = 0; proc_list_unlock(); proc_reparentlocked(q, opp, 0, 0); proc_rele(opp); } else { /* original parent exited while traced */ proc_list_lock(); q->p_listflag |= P_LIST_DEADPARENT; q->p_oppid = 0; proc_list_unlock(); proc_reparentlocked(q, initproc, 0, 0); } proc_lock(q); q->p_lflag &= ~P_LTRACED; if (q->sigwait_thread) { thread_t thread = q->sigwait_thread; proc_unlock(q); /* * The sigwait_thread could be stopped at a * breakpoint. Wake it up to kill. * Need to do this as it could be a thread which is not * the first thread in the task. So any attempts to kill * the process would result into a deadlock on q->sigwait. */ thread_resume(thread); clear_wait(thread, THREAD_INTERRUPTED); threadsignal(thread, SIGKILL, 0, TRUE); } else { proc_unlock(q); } psignal(q, SIGKILL); proc_list_lock(); proc_rele(q); } else { q->p_listflag |= P_LIST_DEADPARENT; proc_reparentlocked(q, initproc, 0, 1); } } } proc_childdrainend(p); proc_list_unlock(); #if CONFIG_MACF if (!proc_is_shadow(p)) { /* * Notify MAC policies that proc is dead. * This should be replaced with proper label management * (rdar://problem/32126399). */ mac_proc_notify_exit(p); } #endif /* * Release reference to text vnode */ tvp = p->p_textvp; p->p_textvp = NULL; if (tvp != NULLVP) { vnode_rele(tvp); } /* * Save exit status and final rusage info, adding in child rusage * info and self times. If we were unable to allocate a zombie * structure, this information is lost. */ if (p->p_ru != NULL) { calcru(p, &p->p_stats->p_ru.ru_utime, &p->p_stats->p_ru.ru_stime, NULL); p->p_ru->ru = p->p_stats->p_ru; ruadd(&(p->p_ru->ru), &p->p_stats->p_cru); } /* * Free up profiling buffers. */ { struct uprof *p0 = &p->p_stats->p_prof, *p1, *pn; p1 = p0->pr_next; p0->pr_next = NULL; p0->pr_scale = 0; for (; p1 != NULL; p1 = pn) { pn = p1->pr_next; kfree_type(struct uprof, p1); } } proc_free_realitimer(p); /* * Other substructures are freed from wait(). */ zfree(proc_stats_zone, p->p_stats); p->p_stats = NULL; if (p->p_subsystem_root_path) { zfree(ZV_NAMEI, p->p_subsystem_root_path); p->p_subsystem_root_path = NULL; } proc_limitdrop(p); #if DEVELOPMENT || DEBUG proc_exit_lpexit_check(pid, PELS_POS_PRE_TASK_DETACH); #endif /* * Finish up by terminating the task * and halt this thread (only if a * member of the task exiting). */ proc_set_task(p, TASK_NULL); set_bsdtask_info(task, NULL); clear_thread_ro_proc(get_machthread(uth)); #if DEVELOPMENT || DEBUG proc_exit_lpexit_check(pid, PELS_POS_POST_TASK_DETACH); #endif knote_hint = NOTE_EXIT | (p->p_xstat & 0xffff); proc_knote(p, knote_hint); /* mark the thread as the one that is doing proc_exit * no need to hold proc lock in uthread_free */ uth->uu_flag |= UT_PROCEXIT; /* * Notify parent that we're gone. */ pp = proc_parent(p); if (proc_is_shadow(p)) { /* kernel can reap this one, no need to move it to launchd */ proc_list_lock(); p->p_listflag |= P_LIST_DEADPARENT; proc_list_unlock(); } else if (pp->p_flag & P_NOCLDWAIT) { if (p->p_ru != NULL) { proc_lock(pp); #if 3839178 /* * If the parent is ignoring SIGCHLD, then POSIX requires * us to not add the resource usage to the parent process - * we are only going to hand it off to init to get reaped. * We should contest the standard in this case on the basis * of RLIMIT_CPU. */ #else /* !3839178 */ /* * Add child resource usage to parent before giving * zombie to init. If we were unable to allocate a * zombie structure, this information is lost. */ ruadd(&pp->p_stats->p_cru, &p->p_ru->ru); #endif /* !3839178 */ update_rusage_info_child(&pp->p_stats->ri_child, &p->p_ru->ri); proc_unlock(pp); } /* kernel can reap this one, no need to move it to launchd */ proc_list_lock(); p->p_listflag |= P_LIST_DEADPARENT; proc_list_unlock(); } if (!proc_is_shadow(p) && ((p->p_listflag & P_LIST_DEADPARENT) == 0 || p->p_oppid)) { if (pp != initproc) { proc_lock(pp); pp->si_pid = proc_getpid(p); pp->p_xhighbits = p->p_xhighbits; p->p_xhighbits = 0; pp->si_status = p->p_xstat; pp->si_code = CLD_EXITED; /* * p_ucred usage is safe as it is an exiting process * and reference is dropped in reap */ pp->si_uid = kauth_cred_getruid(proc_ucred_unsafe(p)); proc_unlock(pp); } /* mark as a zombie */ /* No need to take proc lock as all refs are drained and * no one except parent (reaping ) can look at this. * The write is to an int and is coherent. Also parent is * keyed off of list lock for reaping */ DTRACE_PROC2(exited, proc_t, p, int, exitval); KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_END, pid, exitval, 0, 0, 0); p->p_stat = SZOMB; /* * The current process can be reaped so, no one * can depend on this */ psignal(pp, SIGCHLD); /* and now wakeup the parent */ proc_list_lock(); wakeup((caddr_t)pp); proc_list_unlock(); } else { /* should be fine as parent proc would be initproc */ /* mark as a zombie */ /* No need to take proc lock as all refs are drained and * no one except parent (reaping ) can look at this. * The write is to an int and is coherent. Also parent is * keyed off of list lock for reaping */ DTRACE_PROC2(exited, proc_t, p, int, exitval); proc_list_lock(); KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_END, pid, exitval, 0, 0, 0); /* check for sysctl zomb lookup */ while ((p->p_listflag & P_LIST_WAITING) == P_LIST_WAITING) { msleep(&p->p_stat, &proc_list_mlock, PWAIT, "waitcoll", 0); } /* safe to use p as this is a system reap */ p->p_stat = SZOMB; p->p_listflag |= P_LIST_WAITING; /* * This is a named reference and it is not granted * if the reap is already in progress. So we get * the reference here exclusively and their can be * no waiters. So there is no need for a wakeup * after we are done. AlsO the reap frees the structure * and the proc struct cannot be used for wakeups as well. * It is safe to use p here as this is system reap */ reap_child_locked(pp, p, REAP_DEAD_PARENT | REAP_LOCKED | REAP_DROP_LOCK); } if (uth->uu_lowpri_window) { /* * task is marked as a low priority I/O type and we've * somehow picked up another throttle during exit processing... * no need to throttle this thread since its going away * but we do need to update our bookeeping w/r to throttled threads */ throttle_lowpri_io(0); } proc_rele(pp); #if DEVELOPMENT || DEBUG proc_exit_lpexit_check(pid, PELS_POS_END); #endif } /* * reap_child_locked * * Finalize a child exit once its status has been saved. * * If ptrace has attached, detach it and return it to its real parent. Free any * remaining resources. * * Parameters: * - proc_t parent Parent of process being reaped * - proc_t child Process to reap * - reap_flags_t flags Control locking and re-parenting behavior */ static void reap_child_locked(proc_t parent, proc_t child, reap_flags_t flags) { struct pgrp *pg; boolean_t shadow_proc = proc_is_shadow(child); if (flags & REAP_LOCKED) { proc_list_unlock(); } /* * Under ptrace, the child should now be re-parented back to its original * parent, unless that parent was initproc or it didn't come to initproc * through re-parenting. */ bool child_ptraced = child->p_oppid != 0; if (!shadow_proc && child_ptraced) { int knote_hint; pid_t orig_ppid = 0; proc_t orig_parent = PROC_NULL; proc_lock(child); orig_ppid = child->p_oppid; child->p_oppid = 0; knote_hint = NOTE_EXIT | (child->p_xstat & 0xffff); proc_unlock(child); orig_parent = proc_find(orig_ppid); if (orig_parent) { /* * Only re-parent the process if its original parent was not * initproc and it did not come to initproc from re-parenting. */ bool reparenting = orig_parent != initproc || (flags & REAP_REPARENTED_TO_INIT) == 0; if (reparenting) { if (orig_parent != initproc) { /* * Internal fields should be safe to access here because the * child is exited and not reaped or re-parented yet. */ proc_lock(orig_parent); orig_parent->si_pid = proc_getpid(child); orig_parent->si_status = child->p_xstat; orig_parent->si_code = CLD_CONTINUED; orig_parent->si_uid = kauth_cred_getruid(proc_ucred_unsafe(child)); proc_unlock(orig_parent); } proc_reparentlocked(child, orig_parent, 1, 0); /* * After re-parenting, re-send the child's NOTE_EXIT to the * original parent. */ proc_knote(child, knote_hint); psignal(orig_parent, SIGCHLD); proc_list_lock(); wakeup((caddr_t)orig_parent); child->p_listflag &= ~P_LIST_WAITING; wakeup(&child->p_stat); proc_list_unlock(); proc_rele(orig_parent); if ((flags & REAP_LOCKED) && !(flags & REAP_DROP_LOCK)) { proc_list_lock(); } return; } else { /* * Satisfy the knote lifecycle because ptraced processes don't * broadcast NOTE_EXIT during initial child termination. */ proc_knote(child, knote_hint); proc_rele(orig_parent); } } } #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wdeprecated-declarations" proc_knote(child, NOTE_REAP); #pragma clang diagnostic pop proc_knote_drain(child); child->p_xstat = 0; if (!shadow_proc && child->p_ru) { /* * Roll up the rusage statistics to the parent, unless the parent is * ignoring SIGCHLD. POSIX requires the children's resources of such a * parent to not be included in the parent's usage (seems odd given * RLIMIT_CPU, though). */ proc_lock(parent); bool rollup_child = (parent->p_flag & P_NOCLDWAIT) == 0; if (rollup_child) { ruadd(&parent->p_stats->p_cru, &child->p_ru->ru); } update_rusage_info_child(&parent->p_stats->ri_child, &child->p_ru->ri); proc_unlock(parent); zfree(zombie_zone, child->p_ru); child->p_ru = NULL; } else if (!shadow_proc) { printf("Warning : lost p_ru for %s\n", child->p_comm); } else { assert(child->p_ru == NULL); } AUDIT_SESSION_PROCEXIT(child); #if CONFIG_PERSONAS persona_proc_drop(child); #endif /* CONFIG_PERSONAS */ /* proc_ucred_unsafe is safe, because child is not running */ (void)chgproccnt(kauth_cred_getruid(proc_ucred_unsafe(child)), -1); os_reason_free(child->p_exit_reason); proc_list_lock(); pg = pgrp_leave_locked(child); LIST_REMOVE(child, p_list); parent->p_childrencnt--; LIST_REMOVE(child, p_sibling); bool no_more_children = (flags & REAP_DEAD_PARENT) && LIST_EMPTY(&parent->p_children); if (no_more_children) { wakeup((caddr_t)parent); } child->p_listflag &= ~P_LIST_WAITING; wakeup(&child->p_stat); /* Take it out of process hash */ if (!shadow_proc) { phash_remove_locked(child); } proc_checkdeadrefs(child); nprocs--; if (flags & REAP_DEAD_PARENT) { child->p_listflag |= P_LIST_DEADPARENT; } proc_list_unlock(); pgrp_rele(pg); fdt_destroy(child); lck_mtx_destroy(&child->p_mlock, &proc_mlock_grp); lck_mtx_destroy(&child->p_ucred_mlock, &proc_ucred_mlock_grp); #if CONFIG_AUDIT lck_mtx_destroy(&child->p_audit_mlock, &proc_ucred_mlock_grp); #endif /* CONFIG_AUDIT */ #if CONFIG_DTRACE lck_mtx_destroy(&child->p_dtrace_sprlock, &proc_lck_grp); #endif lck_spin_destroy(&child->p_slock, &proc_slock_grp); proc_wait_release(child); if ((flags & REAP_LOCKED) && (flags & REAP_DROP_LOCK) == 0) { proc_list_lock(); } } int wait1continue(int result) { proc_t p; thread_t thread; uthread_t uth; struct _wait4_data *wait4_data; struct wait4_nocancel_args *uap; int *retval; if (result) { return result; } p = current_proc(); thread = current_thread(); uth = (struct uthread *)get_bsdthread_info(thread); wait4_data = &uth->uu_save.uus_wait4_data; uap = wait4_data->args; retval = wait4_data->retval; return wait4_nocancel(p, uap, retval); } int wait4(proc_t q, struct wait4_args *uap, int32_t *retval) { __pthread_testcancel(1); return wait4_nocancel(q, (struct wait4_nocancel_args *)uap, retval); } int wait4_nocancel(proc_t q, struct wait4_nocancel_args *uap, int32_t *retval) { int nfound; int sibling_count; proc_t p; int status, error; uthread_t uth; struct _wait4_data *wait4_data; AUDIT_ARG(pid, uap->pid); if (uap->pid == 0) { uap->pid = -q->p_pgrpid; } if (uap->pid == INT_MIN) { return EINVAL; } loop: proc_list_lock(); loop1: nfound = 0; sibling_count = 0; PCHILDREN_FOREACH(q, p) { if (p->p_sibling.le_next != 0) { sibling_count++; } if (uap->pid != WAIT_ANY && proc_getpid(p) != uap->pid && p->p_pgrpid != -(uap->pid)) { continue; } if (proc_is_shadow(p)) { continue; } nfound++; /* XXX This is racy because we don't get the lock!!!! */ if (p->p_listflag & P_LIST_WAITING) { /* we're not using a continuation here but we still need to stash * the args for stackshot. */ uth = current_uthread(); wait4_data = &uth->uu_save.uus_wait4_data; wait4_data->args = uap; thread_set_pending_block_hint(current_thread(), kThreadWaitOnProcess); (void)msleep(&p->p_stat, &proc_list_mlock, PWAIT, "waitcoll", 0); goto loop1; } p->p_listflag |= P_LIST_WAITING; /* only allow single thread to wait() */ if (p->p_stat == SZOMB) { reap_flags_t reap_flags = (p->p_listflag & P_LIST_DEADPARENT) ? REAP_REPARENTED_TO_INIT : 0; proc_list_unlock(); #if CONFIG_MACF if ((error = mac_proc_check_wait(q, p)) != 0) { goto out; } #endif retval[0] = proc_getpid(p); if (uap->status) { /* Legacy apps expect only 8 bits of status */ status = 0xffff & p->p_xstat; /* convert to int */ error = copyout((caddr_t)&status, uap->status, sizeof(status)); if (error) { goto out; } } if (uap->rusage) { if (p->p_ru == NULL) { error = ENOMEM; } else { if (IS_64BIT_PROCESS(q)) { struct user64_rusage my_rusage = {}; munge_user64_rusage(&p->p_ru->ru, &my_rusage); error = copyout((caddr_t)&my_rusage, uap->rusage, sizeof(my_rusage)); } else { struct user32_rusage my_rusage = {}; munge_user32_rusage(&p->p_ru->ru, &my_rusage); error = copyout((caddr_t)&my_rusage, uap->rusage, sizeof(my_rusage)); } } /* information unavailable? */ if (error) { goto out; } } /* Conformance change for 6577252. * When SIGCHLD is blocked and wait() returns because the status * of a child process is available and there are no other * children processes, then any pending SIGCHLD signal is cleared. */ if (sibling_count == 0) { int mask = sigmask(SIGCHLD); uth = current_uthread(); if ((uth->uu_sigmask & mask) != 0) { /* we are blocking SIGCHLD signals. clear any pending SIGCHLD. * This locking looks funny but it is protecting access to the * thread via p_uthlist. */ proc_lock(q); uth->uu_siglist &= ~mask; /* clear pending signal */ proc_unlock(q); } } /* Clean up */ (void)reap_child_locked(q, p, reap_flags); return 0; } if (p->p_stat == SSTOP && (p->p_lflag & P_LWAITED) == 0 && (p->p_lflag & P_LTRACED || uap->options & WUNTRACED)) { proc_list_unlock(); #if CONFIG_MACF if ((error = mac_proc_check_wait(q, p)) != 0) { goto out; } #endif proc_lock(p); p->p_lflag |= P_LWAITED; proc_unlock(p); retval[0] = proc_getpid(p); if (uap->status) { status = W_STOPCODE(p->p_xstat); error = copyout((caddr_t)&status, uap->status, sizeof(status)); } else { error = 0; } goto out; } /* * If we are waiting for continued processses, and this * process was continued */ if ((uap->options & WCONTINUED) && (p->p_flag & P_CONTINUED)) { proc_list_unlock(); #if CONFIG_MACF if ((error = mac_proc_check_wait(q, p)) != 0) { goto out; } #endif /* Prevent other process for waiting for this event */ OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag); retval[0] = proc_getpid(p); if (uap->status) { status = W_STOPCODE(SIGCONT); error = copyout((caddr_t)&status, uap->status, sizeof(status)); } else { error = 0; } goto out; } p->p_listflag &= ~P_LIST_WAITING; wakeup(&p->p_stat); } /* list lock is held when we get here any which way */ if (nfound == 0) { proc_list_unlock(); return ECHILD; } if (uap->options & WNOHANG) { retval[0] = 0; proc_list_unlock(); return 0; } /* Save arguments for continuation. Backing storage is in uthread->uu_arg, and will not be deallocated */ uth = current_uthread(); wait4_data = &uth->uu_save.uus_wait4_data; wait4_data->args = uap; wait4_data->retval = retval; thread_set_pending_block_hint(current_thread(), kThreadWaitOnProcess); if ((error = msleep0((caddr_t)q, &proc_list_mlock, PWAIT | PCATCH | PDROP, "wait", 0, wait1continue))) { return error; } goto loop; out: proc_list_lock(); p->p_listflag &= ~P_LIST_WAITING; wakeup(&p->p_stat); proc_list_unlock(); return error; } #if DEBUG #define ASSERT_LCK_MTX_OWNED(lock) \ lck_mtx_assert(lock, LCK_MTX_ASSERT_OWNED) #else #define ASSERT_LCK_MTX_OWNED(lock) /* nothing */ #endif int waitidcontinue(int result) { proc_t p; thread_t thread; uthread_t uth; struct _waitid_data *waitid_data; struct waitid_nocancel_args *uap; int *retval; if (result) { return result; } p = current_proc(); thread = current_thread(); uth = (struct uthread *)get_bsdthread_info(thread); waitid_data = &uth->uu_save.uus_waitid_data; uap = waitid_data->args; retval = waitid_data->retval; return waitid_nocancel(p, uap, retval); } /* * Description: Suspend the calling thread until one child of the process * containing the calling thread changes state. * * Parameters: uap->idtype one of P_PID, P_PGID, P_ALL * uap->id pid_t or gid_t or ignored * uap->infop Address of siginfo_t struct in * user space into which to return status * uap->options flag values * * Returns: 0 Success * !0 Error returning status to user space */ int waitid(proc_t q, struct waitid_args *uap, int32_t *retval) { __pthread_testcancel(1); return waitid_nocancel(q, (struct waitid_nocancel_args *)uap, retval); } int waitid_nocancel(proc_t q, struct waitid_nocancel_args *uap, __unused int32_t *retval) { user_siginfo_t siginfo; /* siginfo data to return to caller */ boolean_t caller64 = IS_64BIT_PROCESS(q); int nfound; proc_t p; int error; uthread_t uth; struct _waitid_data *waitid_data; if (uap->options == 0 || (uap->options & ~(WNOHANG | WNOWAIT | WCONTINUED | WSTOPPED | WEXITED))) { return EINVAL; /* bits set that aren't recognized */ } switch (uap->idtype) { case P_PID: /* child with process ID equal to... */ case P_PGID: /* child with process group ID equal to... */ if (((int)uap->id) < 0) { return EINVAL; } break; case P_ALL: /* any child */ break; } loop: proc_list_lock(); loop1: nfound = 0; PCHILDREN_FOREACH(q, p) { switch (uap->idtype) { case P_PID: /* child with process ID equal to... */ if (proc_getpid(p) != (pid_t)uap->id) { continue; } break; case P_PGID: /* child with process group ID equal to... */ if (p->p_pgrpid != (pid_t)uap->id) { continue; } break; case P_ALL: /* any child */ break; } if (proc_is_shadow(p)) { continue; } /* XXX This is racy because we don't get the lock!!!! */ /* * Wait collision; go to sleep and restart; used to maintain * the single return for waited process guarantee. */ if (p->p_listflag & P_LIST_WAITING) { (void) msleep(&p->p_stat, &proc_list_mlock, PWAIT, "waitidcoll", 0); goto loop1; } p->p_listflag |= P_LIST_WAITING; /* mark busy */ nfound++; bzero(&siginfo, sizeof(siginfo)); switch (p->p_stat) { case SZOMB: /* Exited */ if (!(uap->options & WEXITED)) { break; } proc_list_unlock(); #if CONFIG_MACF if ((error = mac_proc_check_wait(q, p)) != 0) { goto out; } #endif siginfo.si_signo = SIGCHLD; siginfo.si_pid = proc_getpid(p); /* If the child terminated abnormally due to a signal, the signum * needs to be preserved in the exit status. */ if (WIFSIGNALED(p->p_xstat)) { siginfo.si_code = WCOREDUMP(p->p_xstat) ? CLD_DUMPED : CLD_KILLED; siginfo.si_status = WTERMSIG(p->p_xstat); } else { siginfo.si_code = CLD_EXITED; siginfo.si_status = WEXITSTATUS(p->p_xstat) & 0x00FFFFFF; } siginfo.si_status |= (((uint32_t)(p->p_xhighbits) << 24) & 0xFF000000); p->p_xhighbits = 0; if ((error = copyoutsiginfo(&siginfo, caller64, uap->infop)) != 0) { goto out; } /* Prevent other process for waiting for this event? */ if (!(uap->options & WNOWAIT)) { reap_child_locked(q, p, 0); return 0; } goto out; case SSTOP: /* Stopped */ /* * If we are not interested in stopped processes, then * ignore this one. */ if (!(uap->options & WSTOPPED)) { break; } /* * If someone has already waited it, we lost a race * to be the one to return status. */ if ((p->p_lflag & P_LWAITED) != 0) { break; } proc_list_unlock(); #if CONFIG_MACF if ((error = mac_proc_check_wait(q, p)) != 0) { goto out; } #endif siginfo.si_signo = SIGCHLD; siginfo.si_pid = proc_getpid(p); siginfo.si_status = p->p_xstat; /* signal number */ siginfo.si_code = CLD_STOPPED; if ((error = copyoutsiginfo(&siginfo, caller64, uap->infop)) != 0) { goto out; } /* Prevent other process for waiting for this event? */ if (!(uap->options & WNOWAIT)) { proc_lock(p); p->p_lflag |= P_LWAITED; proc_unlock(p); } goto out; default: /* All other states => Continued */ if (!(uap->options & WCONTINUED)) { break; } /* * If the flag isn't set, then this process has not * been stopped and continued, or the status has * already been reaped by another caller of waitid(). */ if ((p->p_flag & P_CONTINUED) == 0) { break; } proc_list_unlock(); #if CONFIG_MACF if ((error = mac_proc_check_wait(q, p)) != 0) { goto out; } #endif siginfo.si_signo = SIGCHLD; siginfo.si_code = CLD_CONTINUED; proc_lock(p); siginfo.si_pid = p->p_contproc; siginfo.si_status = p->p_xstat; proc_unlock(p); if ((error = copyoutsiginfo(&siginfo, caller64, uap->infop)) != 0) { goto out; } /* Prevent other process for waiting for this event? */ if (!(uap->options & WNOWAIT)) { OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag); } goto out; } ASSERT_LCK_MTX_OWNED(&proc_list_mlock); /* Not a process we are interested in; go on to next child */ p->p_listflag &= ~P_LIST_WAITING; wakeup(&p->p_stat); } ASSERT_LCK_MTX_OWNED(&proc_list_mlock); /* No child processes that could possibly satisfy the request? */ if (nfound == 0) { proc_list_unlock(); return ECHILD; } if (uap->options & WNOHANG) { proc_list_unlock(); #if CONFIG_MACF if ((error = mac_proc_check_wait(q, p)) != 0) { return error; } #endif /* * The state of the siginfo structure in this case * is undefined. Some implementations bzero it, some * (like here) leave it untouched for efficiency. * * Thus the most portable check for "no matching pid with * WNOHANG" is to store a zero into si_pid before * invocation, then check for a non-zero value afterwards. */ return 0; } /* Save arguments for continuation. Backing storage is in uthread->uu_arg, and will not be deallocated */ uth = current_uthread(); waitid_data = &uth->uu_save.uus_waitid_data; waitid_data->args = uap; waitid_data->retval = retval; if ((error = msleep0(q, &proc_list_mlock, PWAIT | PCATCH | PDROP, "waitid", 0, waitidcontinue)) != 0) { return error; } goto loop; out: proc_list_lock(); p->p_listflag &= ~P_LIST_WAITING; wakeup(&p->p_stat); proc_list_unlock(); return error; } /* * make process 'parent' the new parent of process 'child'. */ void proc_reparentlocked(proc_t child, proc_t parent, int signallable, int locked) { proc_t oldparent = PROC_NULL; if (child->p_pptr == parent) { return; } if (locked == 0) { proc_list_lock(); } oldparent = child->p_pptr; #if __PROC_INTERNAL_DEBUG if (oldparent == PROC_NULL) { panic("proc_reparent: process %p does not have a parent", child); } #endif LIST_REMOVE(child, p_sibling); #if __PROC_INTERNAL_DEBUG if (oldparent->p_childrencnt == 0) { panic("process children count already 0"); } #endif oldparent->p_childrencnt--; #if __PROC_INTERNAL_DEBUG if (oldparent->p_childrencnt < 0) { panic("process children count -ve"); } #endif LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); parent->p_childrencnt++; child->p_pptr = parent; child->p_ppid = proc_getpid(parent); proc_list_unlock(); if ((signallable != 0) && (initproc == parent) && (child->p_stat == SZOMB)) { psignal(initproc, SIGCHLD); } if (locked == 1) { proc_list_lock(); } } /* * Exit: deallocate address space and other resources, change proc state * to zombie, and unlink proc from allproc and parent's lists. Save exit * status and rusage for wait(). Check for child processes and orphan them. */ /* * munge_rusage * LP64 support - long is 64 bits if we are dealing with a 64 bit user * process. We munge the kernel version of rusage into the * 64 bit version. */ __private_extern__ void munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p) { /* Zero-out struct so that padding is cleared */ bzero(a_user_rusage_p, sizeof(struct user64_rusage)); /* timeval changes size, so utime and stime need special handling */ a_user_rusage_p->ru_utime.tv_sec = a_rusage_p->ru_utime.tv_sec; a_user_rusage_p->ru_utime.tv_usec = a_rusage_p->ru_utime.tv_usec; a_user_rusage_p->ru_stime.tv_sec = a_rusage_p->ru_stime.tv_sec; a_user_rusage_p->ru_stime.tv_usec = a_rusage_p->ru_stime.tv_usec; /* * everything else can be a direct assign, since there is no loss * of precision implied boing 32->64. */ a_user_rusage_p->ru_maxrss = a_rusage_p->ru_maxrss; a_user_rusage_p->ru_ixrss = a_rusage_p->ru_ixrss; a_user_rusage_p->ru_idrss = a_rusage_p->ru_idrss; a_user_rusage_p->ru_isrss = a_rusage_p->ru_isrss; a_user_rusage_p->ru_minflt = a_rusage_p->ru_minflt; a_user_rusage_p->ru_majflt = a_rusage_p->ru_majflt; a_user_rusage_p->ru_nswap = a_rusage_p->ru_nswap; a_user_rusage_p->ru_inblock = a_rusage_p->ru_inblock; a_user_rusage_p->ru_oublock = a_rusage_p->ru_oublock; a_user_rusage_p->ru_msgsnd = a_rusage_p->ru_msgsnd; a_user_rusage_p->ru_msgrcv = a_rusage_p->ru_msgrcv; a_user_rusage_p->ru_nsignals = a_rusage_p->ru_nsignals; a_user_rusage_p->ru_nvcsw = a_rusage_p->ru_nvcsw; a_user_rusage_p->ru_nivcsw = a_rusage_p->ru_nivcsw; } /* For a 64-bit kernel and 32-bit userspace, munging may be needed */ __private_extern__ void munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p) { bzero(a_user_rusage_p, sizeof(struct user32_rusage)); /* timeval changes size, so utime and stime need special handling */ a_user_rusage_p->ru_utime.tv_sec = (user32_time_t)a_rusage_p->ru_utime.tv_sec; a_user_rusage_p->ru_utime.tv_usec = a_rusage_p->ru_utime.tv_usec; a_user_rusage_p->ru_stime.tv_sec = (user32_time_t)a_rusage_p->ru_stime.tv_sec; a_user_rusage_p->ru_stime.tv_usec = a_rusage_p->ru_stime.tv_usec; /* * everything else can be a direct assign. We currently ignore * the loss of precision */ a_user_rusage_p->ru_maxrss = (user32_long_t)a_rusage_p->ru_maxrss; a_user_rusage_p->ru_ixrss = (user32_long_t)a_rusage_p->ru_ixrss; a_user_rusage_p->ru_idrss = (user32_long_t)a_rusage_p->ru_idrss; a_user_rusage_p->ru_isrss = (user32_long_t)a_rusage_p->ru_isrss; a_user_rusage_p->ru_minflt = (user32_long_t)a_rusage_p->ru_minflt; a_user_rusage_p->ru_majflt = (user32_long_t)a_rusage_p->ru_majflt; a_user_rusage_p->ru_nswap = (user32_long_t)a_rusage_p->ru_nswap; a_user_rusage_p->ru_inblock = (user32_long_t)a_rusage_p->ru_inblock; a_user_rusage_p->ru_oublock = (user32_long_t)a_rusage_p->ru_oublock; a_user_rusage_p->ru_msgsnd = (user32_long_t)a_rusage_p->ru_msgsnd; a_user_rusage_p->ru_msgrcv = (user32_long_t)a_rusage_p->ru_msgrcv; a_user_rusage_p->ru_nsignals = (user32_long_t)a_rusage_p->ru_nsignals; a_user_rusage_p->ru_nvcsw = (user32_long_t)a_rusage_p->ru_nvcsw; a_user_rusage_p->ru_nivcsw = (user32_long_t)a_rusage_p->ru_nivcsw; } void kdp_wait4_find_process(thread_t thread, __unused event64_t wait_event, thread_waitinfo_t *waitinfo) { assert(thread != NULL); assert(waitinfo != NULL); struct uthread *ut = get_bsdthread_info(thread); waitinfo->context = 0; // ensure wmesg is consistent with a thread waiting in wait4 assert(!strcmp(ut->uu_wmesg, "waitcoll") || !strcmp(ut->uu_wmesg, "wait")); struct wait4_nocancel_args *args = ut->uu_save.uus_wait4_data.args; // May not actually contain a pid; this is just the argument to wait4. // See man wait4 for other valid wait4 arguments. waitinfo->owner = args->pid; } int exit_with_guard_exception( proc_t p, mach_exception_data_type_t code, mach_exception_data_type_t subcode) { os_reason_t reason = os_reason_create(OS_REASON_GUARD, (uint64_t)code); assert(reason != OS_REASON_NULL); return exit_with_mach_exception(p, reason, EXC_GUARD, code, subcode); } #if __has_feature(ptrauth_calls) int exit_with_pac_exception(proc_t p, exception_type_t exception, mach_exception_code_t code, mach_exception_subcode_t subcode) { os_reason_t reason = os_reason_create(OS_REASON_PAC_EXCEPTION, (uint64_t)code); assert(reason != OS_REASON_NULL); return exit_with_mach_exception(p, reason, exception, code, subcode); } #endif /* __has_feature(ptrauth_calls) */ int exit_with_port_space_exception(proc_t p, mach_exception_data_type_t code, mach_exception_data_type_t subcode) { os_reason_t reason = os_reason_create(OS_REASON_PORT_SPACE, (uint64_t)code); assert(reason != OS_REASON_NULL); return exit_with_mach_exception(p, reason, EXC_RESOURCE, code, subcode); } static int exit_with_mach_exception(proc_t p, os_reason_t reason, exception_type_t exception, mach_exception_code_t code, mach_exception_subcode_t subcode) { thread_t self = current_thread(); struct uthread *ut = get_bsdthread_info(self); ut->uu_exception = exception; ut->uu_code = code; ut->uu_subcode = subcode; reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; return exit_with_reason(p, W_EXITCODE(0, SIGKILL), NULL, TRUE, FALSE, 0, reason); } #if CONFIG_EXCLAVES int exit_with_exclave_exception(proc_t p) { /* Using OS_REASON_GUARD for now */ os_reason_t reason = os_reason_create(OS_REASON_GUARD, (uint64_t)GUARD_REASON_EXCLAVES); assert(reason != OS_REASON_NULL); reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; return exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, TRUE, FALSE, 0, reason); } #endif /* CONFIG_EXCLAVES */ int exit_with_jit_exception(proc_t p) { os_reason_t reason = os_reason_create(OS_REASON_GUARD, (uint64_t)GUARD_REASON_JIT); assert(reason != OS_REASON_NULL); reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; return exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, TRUE, FALSE, 0, reason); }