/* * Copyright (c) 2007-2023 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* $apfw: git commit 6602420f2f101b74305cd78f7cd9e0c8fdedae97 $ */ /* $OpenBSD: pf.c,v 1.567 2008/02/20 23:40:13 henning Exp $ */ /* * Copyright (c) 2001 Daniel Hartmeier * Copyright (c) 2002 - 2013 Henning Brauer * NAT64 - Copyright (c) 2010 Viagenie Inc. (http://www.viagenie.ca) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NPFSYNC #include #endif /* NPFSYNC */ #include #include #include #include #include #if DUMMYNET #include #endif /* DUMMYNET */ #if SKYWALK #include #endif /* SKYWALK */ /* * For RandomULong(), to get a 32 bits random value * Note that random() returns a 31 bits value, see rdar://11159750 */ #include #define DPFPRINTF(n, x) (pf_status.debug >= (n) ? printf x : ((void)0)) /* * On Mac OS X, the rtableid value is treated as the interface scope * value that is equivalent to the interface index used for scoped * routing. A valid scope value is anything but IFSCOPE_NONE (0), * as per definition of ifindex which is a positive, non-zero number. * The other BSDs treat a negative rtableid value as invalid, hence * the test against INT_MAX to handle userland apps which initialize * the field with a negative number. */ #define PF_RTABLEID_IS_VALID(r) \ ((r) > IFSCOPE_NONE && (r) <= INT_MAX) /* * Global variables */ static LCK_GRP_DECLARE(pf_lock_grp, "pf"); LCK_MTX_DECLARE(pf_lock, &pf_lock_grp); static LCK_GRP_DECLARE(pf_perim_lock_grp, "pf_perim"); LCK_RW_DECLARE(pf_perim_lock, &pf_perim_lock_grp); /* state tables */ struct pf_state_tree_lan_ext pf_statetbl_lan_ext; struct pf_state_tree_ext_gwy pf_statetbl_ext_gwy; static uint32_t pf_state_tree_ext_gwy_nat64_cnt = 0; struct pf_palist pf_pabuf; struct pf_status pf_status; u_int32_t ticket_pabuf; static MD5_CTX pf_tcp_secret_ctx; static u_char pf_tcp_secret[16]; static int pf_tcp_secret_init; static int pf_tcp_iss_off; static struct pf_anchor_stackframe { struct pf_ruleset *rs; struct pf_rule *r; struct pf_anchor_node *parent; struct pf_anchor *child; } pf_anchor_stack[64]; struct pool pf_src_tree_pl, pf_rule_pl, pf_pooladdr_pl; struct pool pf_state_pl, pf_state_key_pl; typedef void (*hook_fn_t)(void *); struct hook_desc { TAILQ_ENTRY(hook_desc) hd_list; hook_fn_t hd_fn; void *hd_arg; }; #define HOOK_REMOVE 0x01 #define HOOK_FREE 0x02 #define HOOK_ABORT 0x04 static void *hook_establish(struct hook_desc_head *, int, hook_fn_t, void *); static void hook_runloop(struct hook_desc_head *, int flags); struct pool pf_app_state_pl; static void pf_print_addr(struct pf_addr *addr, sa_family_t af); static void pf_print_sk_host(struct pf_state_host *, u_int8_t, int, u_int8_t); static void pf_print_host(struct pf_addr *, u_int16_t, u_int8_t); static void pf_init_threshold(struct pf_threshold *, u_int32_t, u_int32_t); static void pf_add_threshold(struct pf_threshold *); static int pf_check_threshold(struct pf_threshold *); static void pf_change_ap(int, pbuf_t *, struct pf_addr *, u_int16_t *, u_int16_t *, u_int16_t *, struct pf_addr *, u_int16_t, u_int8_t, sa_family_t, sa_family_t, int); static int pf_modulate_sack(pbuf_t *, int, struct pf_pdesc *, struct tcphdr *, struct pf_state_peer *); static void pf_change_a6(struct pf_addr *, u_int16_t *, struct pf_addr *, u_int8_t); static void pf_change_addr(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u, sa_family_t af, sa_family_t afn); static void pf_change_icmp(struct pf_addr *, u_int16_t *, struct pf_addr *, struct pf_addr *, u_int16_t, u_int16_t *, u_int16_t *, u_int16_t *, u_int16_t *, u_int8_t, sa_family_t); static void pf_send_tcp(const struct pf_rule *, sa_family_t, const struct pf_addr *, const struct pf_addr *, u_int16_t, u_int16_t, u_int32_t, u_int32_t, u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, u_int16_t, struct ether_header *, struct ifnet *); static void pf_send_icmp(pbuf_t *, u_int8_t, u_int8_t, sa_family_t, struct pf_rule *); static struct pf_rule *pf_match_translation(struct pf_pdesc *, pbuf_t *, int, int, struct pfi_kif *, struct pf_addr *, union pf_state_xport *, struct pf_addr *, union pf_state_xport *, int); static struct pf_rule *pf_get_translation_aux(struct pf_pdesc *, pbuf_t *, int, int, struct pfi_kif *, struct pf_src_node **, struct pf_addr *, union pf_state_xport *, struct pf_addr *, union pf_state_xport *, union pf_state_xport * #if SKYWALK , netns_token * #endif ); static void pf_attach_state(struct pf_state_key *, struct pf_state *, int); static u_int32_t pf_tcp_iss(struct pf_pdesc *); static int pf_test_rule(struct pf_rule **, struct pf_state **, int, struct pfi_kif *, pbuf_t *, int, void *, struct pf_pdesc *, struct pf_rule **, struct pf_ruleset **, struct ifqueue *); #if DUMMYNET static int pf_test_dummynet(struct pf_rule **, int, struct pfi_kif *, pbuf_t **, struct pf_pdesc *, struct ip_fw_args *); #endif /* DUMMYNET */ static int pf_test_fragment(struct pf_rule **, int, struct pfi_kif *, pbuf_t *, void *, struct pf_pdesc *, struct pf_rule **, struct pf_ruleset **); static int pf_test_state_tcp(struct pf_state **, int, struct pfi_kif *, pbuf_t *, int, void *, struct pf_pdesc *, u_short *); static int pf_test_state_udp(struct pf_state **, int, struct pfi_kif *, pbuf_t *, int, void *, struct pf_pdesc *, u_short *); static int pf_test_state_icmp(struct pf_state **, int, struct pfi_kif *, pbuf_t *, int, void *, struct pf_pdesc *, u_short *); static int pf_test_state_other(struct pf_state **, int, struct pfi_kif *, struct pf_pdesc *); static int pf_match_tag(struct pf_rule *, struct pf_mtag *, int *); static void pf_hash(struct pf_addr *, struct pf_addr *, struct pf_poolhashkey *, sa_family_t); static int pf_map_addr(u_int8_t, struct pf_rule *, struct pf_addr *, struct pf_addr *, struct pf_addr *, struct pf_src_node **); static int pf_get_sport(struct pf_pdesc *, struct pfi_kif *, struct pf_rule *, struct pf_addr *, union pf_state_xport *, struct pf_addr *, union pf_state_xport *, struct pf_addr *, union pf_state_xport *, struct pf_src_node ** #if SKYWALK , netns_token * #endif ); static void pf_route(pbuf_t **, struct pf_rule *, int, struct ifnet *, struct pf_state *, struct pf_pdesc *); static void pf_route6(pbuf_t **, struct pf_rule *, int, struct ifnet *, struct pf_state *, struct pf_pdesc *); static u_int8_t pf_get_wscale(pbuf_t *, int, u_int16_t, sa_family_t); static u_int16_t pf_get_mss(pbuf_t *, int, u_int16_t, sa_family_t); static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, u_int16_t); static void pf_set_rt_ifp(struct pf_state *, struct pf_addr *, sa_family_t af); static int pf_check_proto_cksum(pbuf_t *, int, int, u_int8_t, sa_family_t); static int pf_addr_wrap_neq(struct pf_addr_wrap *, struct pf_addr_wrap *); static struct pf_state *pf_find_state(struct pfi_kif *, struct pf_state_key_cmp *, u_int); static int pf_src_connlimit(struct pf_state **); static void pf_stateins_err(const char *, struct pf_state *, struct pfi_kif *); static int pf_check_congestion(struct ifqueue *); #if 0 static const char *pf_pptp_ctrl_type_name(u_int16_t code); #endif static void pf_pptp_handler(struct pf_state *, int, int, struct pf_pdesc *, struct pfi_kif *); static void pf_pptp_unlink(struct pf_state *); static void pf_grev1_unlink(struct pf_state *); static int pf_test_state_grev1(struct pf_state **, int, struct pfi_kif *, int, struct pf_pdesc *); static int pf_ike_compare(struct pf_app_state *, struct pf_app_state *); static int pf_test_state_esp(struct pf_state **, int, struct pfi_kif *, int, struct pf_pdesc *); static int pf_test6(int, struct ifnet *, pbuf_t **, struct ether_header *, struct ip_fw_args *); #if INET static int pf_test(int, struct ifnet *, pbuf_t **, struct ether_header *, struct ip_fw_args *); #endif /* INET */ extern struct pool pfr_ktable_pl; extern struct pool pfr_kentry_pl; extern int path_mtu_discovery; struct pf_pool_limit pf_pool_limits[PF_LIMIT_MAX] = { { .pp = &pf_state_pl, .limit = PFSTATE_HIWAT }, { .pp = &pf_app_state_pl, .limit = PFAPPSTATE_HIWAT }, { .pp = &pf_src_tree_pl, .limit = PFSNODE_HIWAT }, { .pp = &pf_frent_pl, .limit = PFFRAG_FRENT_HIWAT }, { .pp = &pfr_ktable_pl, .limit = PFR_KTABLE_HIWAT }, { .pp = &pfr_kentry_pl, .limit = PFR_KENTRY_HIWAT }, }; #if SKYWALK && defined(XNU_TARGET_OS_OSX) const char *compatible_anchors[] = { "com.apple.internet-sharing", "com.apple/250.ApplicationFirewall", "com.apple/200.AirDrop" }; #endif // SKYWALK && defined(XNU_TARGET_OS_OSX) void * pf_lazy_makewritable(struct pf_pdesc *pd, pbuf_t *pbuf, int len) { void *p; if (pd->lmw < 0) { return NULL; } VERIFY(pbuf == pd->mp); p = pbuf->pb_data; if (len > pd->lmw) { if ((p = pbuf_ensure_writable(pbuf, len)) == NULL) { len = -1; } pd->lmw = len; if (len >= 0) { pd->pf_mtag = pf_find_mtag_pbuf(pbuf); switch (pd->af) { case AF_INET: { struct ip *h = p; pd->src = (struct pf_addr *)(uintptr_t)&h->ip_src; pd->dst = (struct pf_addr *)(uintptr_t)&h->ip_dst; pd->ip_sum = &h->ip_sum; break; } case AF_INET6: { struct ip6_hdr *h = p; pd->src = (struct pf_addr *)(uintptr_t)&h->ip6_src; pd->dst = (struct pf_addr *)(uintptr_t)&h->ip6_dst; break; } } } } return len < 0 ? NULL : p; } static const int * pf_state_lookup_aux(struct pf_state **state, struct pfi_kif *kif, int direction, int *action) { if (*state == NULL || (*state)->timeout == PFTM_PURGE) { *action = PF_DROP; return action; } if (direction == PF_OUT && (((*state)->rule.ptr->rt == PF_ROUTETO && (*state)->rule.ptr->direction == PF_OUT) || ((*state)->rule.ptr->rt == PF_REPLYTO && (*state)->rule.ptr->direction == PF_IN)) && (*state)->rt_kif != NULL && (*state)->rt_kif != kif) { *action = PF_PASS; return action; } return 0; } #define STATE_LOOKUP() \ do { \ int action; \ *state = pf_find_state(kif, &key, direction); \ if (*state != NULL && pd != NULL && \ !(pd->pktflags & PKTF_FLOW_ID)) { \ pd->flowsrc = (*state)->state_key->flowsrc; \ pd->flowhash = (*state)->state_key->flowhash; \ if (pd->flowhash != 0) { \ pd->pktflags |= PKTF_FLOW_ID; \ pd->pktflags &= ~PKTF_FLOW_ADV; \ } \ } \ if (pf_state_lookup_aux(state, kif, direction, &action)) \ return (action); \ } while (0) /* * This macro resets the flowID information in a packet descriptor which was * copied in from a PF state. This should be used after a protocol state lookup * finds a matching PF state, but then decides to not use it for various * reasons. */ #define PD_CLEAR_STATE_FLOWID(_pd) \ do { \ if (__improbable(((_pd)->pktflags & PKTF_FLOW_ID) && \ ((_pd)->flowsrc == FLOWSRC_PF))) { \ (_pd)->flowhash = 0; \ (_pd)->flowsrc = 0; \ (_pd)->pktflags &= ~PKTF_FLOW_ID; \ } \ \ } while (0) #define STATE_ADDR_TRANSLATE(sk) \ (sk)->lan.addr.addr32[0] != (sk)->gwy.addr.addr32[0] || \ ((sk)->af_lan == AF_INET6 && \ ((sk)->lan.addr.addr32[1] != (sk)->gwy.addr.addr32[1] || \ (sk)->lan.addr.addr32[2] != (sk)->gwy.addr.addr32[2] || \ (sk)->lan.addr.addr32[3] != (sk)->gwy.addr.addr32[3])) #define STATE_TRANSLATE(sk) \ ((sk)->af_lan != (sk)->af_gwy || \ STATE_ADDR_TRANSLATE(sk) || \ (sk)->lan.xport.port != (sk)->gwy.xport.port) #define STATE_GRE_TRANSLATE(sk) \ (STATE_ADDR_TRANSLATE(sk) || \ (sk)->lan.xport.call_id != (sk)->gwy.xport.call_id) #define BOUND_IFACE(r, k) \ ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : pfi_all #define STATE_INC_COUNTERS(s) \ do { \ s->rule.ptr->states++; \ VERIFY(s->rule.ptr->states != 0); \ if (s->anchor.ptr != NULL) { \ s->anchor.ptr->states++; \ VERIFY(s->anchor.ptr->states != 0); \ } \ if (s->nat_rule.ptr != NULL) { \ s->nat_rule.ptr->states++; \ VERIFY(s->nat_rule.ptr->states != 0); \ } \ } while (0) #define STATE_DEC_COUNTERS(s) \ do { \ if (s->nat_rule.ptr != NULL) { \ VERIFY(s->nat_rule.ptr->states > 0); \ s->nat_rule.ptr->states--; \ } \ if (s->anchor.ptr != NULL) { \ VERIFY(s->anchor.ptr->states > 0); \ s->anchor.ptr->states--; \ } \ VERIFY(s->rule.ptr->states > 0); \ s->rule.ptr->states--; \ } while (0) static __inline int pf_src_compare(struct pf_src_node *, struct pf_src_node *); static __inline int pf_state_compare_lan_ext(struct pf_state_key *, struct pf_state_key *); static __inline int pf_state_compare_ext_gwy(struct pf_state_key *, struct pf_state_key *); static __inline int pf_state_compare_id(struct pf_state *, struct pf_state *); struct pf_src_tree tree_src_tracking; struct pf_state_tree_id tree_id; struct pf_state_queue state_list; RB_GENERATE(pf_src_tree, pf_src_node, entry, pf_src_compare); RB_GENERATE(pf_state_tree_lan_ext, pf_state_key, entry_lan_ext, pf_state_compare_lan_ext); RB_GENERATE(pf_state_tree_ext_gwy, pf_state_key, entry_ext_gwy, pf_state_compare_ext_gwy); RB_GENERATE(pf_state_tree_id, pf_state, entry_id, pf_state_compare_id); #define PF_DT_SKIP_LANEXT 0x01 #define PF_DT_SKIP_EXTGWY 0x02 static const u_int16_t PF_PPTP_PORT = 1723; static const u_int32_t PF_PPTP_MAGIC_NUMBER = 0x1A2B3C4D; struct pf_pptp_hdr { u_int16_t length; u_int16_t type; u_int32_t magic; }; struct pf_pptp_ctrl_hdr { u_int16_t type; u_int16_t reserved_0; }; struct pf_pptp_ctrl_generic { u_int16_t data[0]; }; #define PF_PPTP_CTRL_TYPE_START_REQ 1 struct pf_pptp_ctrl_start_req { u_int16_t protocol_version; u_int16_t reserved_1; u_int32_t framing_capabilities; u_int32_t bearer_capabilities; u_int16_t maximum_channels; u_int16_t firmware_revision; u_int8_t host_name[64]; u_int8_t vendor_string[64]; }; #define PF_PPTP_CTRL_TYPE_START_RPY 2 struct pf_pptp_ctrl_start_rpy { u_int16_t protocol_version; u_int8_t result_code; u_int8_t error_code; u_int32_t framing_capabilities; u_int32_t bearer_capabilities; u_int16_t maximum_channels; u_int16_t firmware_revision; u_int8_t host_name[64]; u_int8_t vendor_string[64]; }; #define PF_PPTP_CTRL_TYPE_STOP_REQ 3 struct pf_pptp_ctrl_stop_req { u_int8_t reason; u_int8_t reserved_1; u_int16_t reserved_2; }; #define PF_PPTP_CTRL_TYPE_STOP_RPY 4 struct pf_pptp_ctrl_stop_rpy { u_int8_t reason; u_int8_t error_code; u_int16_t reserved_1; }; #define PF_PPTP_CTRL_TYPE_ECHO_REQ 5 struct pf_pptp_ctrl_echo_req { u_int32_t identifier; }; #define PF_PPTP_CTRL_TYPE_ECHO_RPY 6 struct pf_pptp_ctrl_echo_rpy { u_int32_t identifier; u_int8_t result_code; u_int8_t error_code; u_int16_t reserved_1; }; #define PF_PPTP_CTRL_TYPE_CALL_OUT_REQ 7 struct pf_pptp_ctrl_call_out_req { u_int16_t call_id; u_int16_t call_sernum; u_int32_t min_bps; u_int32_t bearer_type; u_int32_t framing_type; u_int16_t rxwindow_size; u_int16_t proc_delay; u_int8_t phone_num[64]; u_int8_t sub_addr[64]; }; #define PF_PPTP_CTRL_TYPE_CALL_OUT_RPY 8 struct pf_pptp_ctrl_call_out_rpy { u_int16_t call_id; u_int16_t peer_call_id; u_int8_t result_code; u_int8_t error_code; u_int16_t cause_code; u_int32_t connect_speed; u_int16_t rxwindow_size; u_int16_t proc_delay; u_int32_t phy_channel_id; }; #define PF_PPTP_CTRL_TYPE_CALL_IN_1ST 9 struct pf_pptp_ctrl_call_in_1st { u_int16_t call_id; u_int16_t call_sernum; u_int32_t bearer_type; u_int32_t phy_channel_id; u_int16_t dialed_number_len; u_int16_t dialing_number_len; u_int8_t dialed_num[64]; u_int8_t dialing_num[64]; u_int8_t sub_addr[64]; }; #define PF_PPTP_CTRL_TYPE_CALL_IN_2ND 10 struct pf_pptp_ctrl_call_in_2nd { u_int16_t call_id; u_int16_t peer_call_id; u_int8_t result_code; u_int8_t error_code; u_int16_t rxwindow_size; u_int16_t txdelay; u_int16_t reserved_1; }; #define PF_PPTP_CTRL_TYPE_CALL_IN_3RD 11 struct pf_pptp_ctrl_call_in_3rd { u_int16_t call_id; u_int16_t reserved_1; u_int32_t connect_speed; u_int16_t rxwindow_size; u_int16_t txdelay; u_int32_t framing_type; }; #define PF_PPTP_CTRL_TYPE_CALL_CLR 12 struct pf_pptp_ctrl_call_clr { u_int16_t call_id; u_int16_t reserved_1; }; #define PF_PPTP_CTRL_TYPE_CALL_DISC 13 struct pf_pptp_ctrl_call_disc { u_int16_t call_id; u_int8_t result_code; u_int8_t error_code; u_int16_t cause_code; u_int16_t reserved_1; u_int8_t statistics[128]; }; #define PF_PPTP_CTRL_TYPE_ERROR 14 struct pf_pptp_ctrl_error { u_int16_t peer_call_id; u_int16_t reserved_1; u_int32_t crc_errors; u_int32_t fr_errors; u_int32_t hw_errors; u_int32_t buf_errors; u_int32_t tim_errors; u_int32_t align_errors; }; #define PF_PPTP_CTRL_TYPE_SET_LINKINFO 15 struct pf_pptp_ctrl_set_linkinfo { u_int16_t peer_call_id; u_int16_t reserved_1; u_int32_t tx_accm; u_int32_t rx_accm; }; static const size_t PF_PPTP_CTRL_MSG_MINSIZE = sizeof(struct pf_pptp_hdr) + sizeof(struct pf_pptp_ctrl_hdr); union pf_pptp_ctrl_msg_union { struct pf_pptp_ctrl_start_req start_req; struct pf_pptp_ctrl_start_rpy start_rpy; struct pf_pptp_ctrl_stop_req stop_req; struct pf_pptp_ctrl_stop_rpy stop_rpy; struct pf_pptp_ctrl_echo_req echo_req; struct pf_pptp_ctrl_echo_rpy echo_rpy; struct pf_pptp_ctrl_call_out_req call_out_req; struct pf_pptp_ctrl_call_out_rpy call_out_rpy; struct pf_pptp_ctrl_call_in_1st call_in_1st; struct pf_pptp_ctrl_call_in_2nd call_in_2nd; struct pf_pptp_ctrl_call_in_3rd call_in_3rd; struct pf_pptp_ctrl_call_clr call_clr; struct pf_pptp_ctrl_call_disc call_disc; struct pf_pptp_ctrl_error error; struct pf_pptp_ctrl_set_linkinfo set_linkinfo; u_int8_t data[0]; }; struct pf_pptp_ctrl_msg { struct pf_pptp_hdr hdr; struct pf_pptp_ctrl_hdr ctrl; union pf_pptp_ctrl_msg_union msg; }; #define PF_GRE_FLAG_CHECKSUM_PRESENT 0x8000 #define PF_GRE_FLAG_VERSION_MASK 0x0007 #define PF_GRE_PPP_ETHERTYPE 0x880B struct pf_grev1_hdr { u_int16_t flags; u_int16_t protocol_type; u_int16_t payload_length; u_int16_t call_id; /* * u_int32_t seqno; * u_int32_t ackno; */ }; static const u_int16_t PF_IKE_PORT = 500; struct pf_ike_hdr { u_int64_t initiator_cookie, responder_cookie; u_int8_t next_payload, version, exchange_type, flags; u_int32_t message_id, length; }; #define PF_IKE_PACKET_MINSIZE (sizeof (struct pf_ike_hdr)) #define PF_IKEv1_EXCHTYPE_BASE 1 #define PF_IKEv1_EXCHTYPE_ID_PROTECT 2 #define PF_IKEv1_EXCHTYPE_AUTH_ONLY 3 #define PF_IKEv1_EXCHTYPE_AGGRESSIVE 4 #define PF_IKEv1_EXCHTYPE_INFORMATIONAL 5 #define PF_IKEv2_EXCHTYPE_SA_INIT 34 #define PF_IKEv2_EXCHTYPE_AUTH 35 #define PF_IKEv2_EXCHTYPE_CREATE_CHILD_SA 36 #define PF_IKEv2_EXCHTYPE_INFORMATIONAL 37 #define PF_IKEv1_FLAG_E 0x01 #define PF_IKEv1_FLAG_C 0x02 #define PF_IKEv1_FLAG_A 0x04 #define PF_IKEv2_FLAG_I 0x08 #define PF_IKEv2_FLAG_V 0x10 #define PF_IKEv2_FLAG_R 0x20 struct pf_esp_hdr { u_int32_t spi; u_int32_t seqno; u_int8_t payload[]; }; static __inline int pf_addr_compare(struct pf_addr *a, struct pf_addr *b, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: if (a->addr32[0] > b->addr32[0]) { return 1; } if (a->addr32[0] < b->addr32[0]) { return -1; } break; #endif /* INET */ case AF_INET6: if (a->addr32[3] > b->addr32[3]) { return 1; } if (a->addr32[3] < b->addr32[3]) { return -1; } if (a->addr32[2] > b->addr32[2]) { return 1; } if (a->addr32[2] < b->addr32[2]) { return -1; } if (a->addr32[1] > b->addr32[1]) { return 1; } if (a->addr32[1] < b->addr32[1]) { return -1; } if (a->addr32[0] > b->addr32[0]) { return 1; } if (a->addr32[0] < b->addr32[0]) { return -1; } break; } return 0; } static __inline int pf_src_compare(struct pf_src_node *a, struct pf_src_node *b) { int diff; if (a->rule.ptr > b->rule.ptr) { return 1; } if (a->rule.ptr < b->rule.ptr) { return -1; } if ((diff = a->af - b->af) != 0) { return diff; } if ((diff = pf_addr_compare(&a->addr, &b->addr, a->af)) != 0) { return diff; } return 0; } static __inline int pf_state_compare_lan_ext(struct pf_state_key *a, struct pf_state_key *b) { int diff; int extfilter; if ((diff = a->proto - b->proto) != 0) { return diff; } if ((diff = a->af_lan - b->af_lan) != 0) { return diff; } extfilter = PF_EXTFILTER_APD; switch (a->proto) { case IPPROTO_ICMP: case IPPROTO_ICMPV6: if ((diff = a->lan.xport.port - b->lan.xport.port) != 0) { return diff; } break; case IPPROTO_TCP: if ((diff = a->lan.xport.port - b->lan.xport.port) != 0) { return diff; } if ((diff = a->ext_lan.xport.port - b->ext_lan.xport.port) != 0) { return diff; } break; case IPPROTO_UDP: if ((diff = a->proto_variant - b->proto_variant)) { return diff; } extfilter = a->proto_variant; if ((diff = a->lan.xport.port - b->lan.xport.port) != 0) { return diff; } if ((extfilter < PF_EXTFILTER_AD) && (diff = a->ext_lan.xport.port - b->ext_lan.xport.port) != 0) { return diff; } break; case IPPROTO_GRE: if (a->proto_variant == PF_GRE_PPTP_VARIANT && a->proto_variant == b->proto_variant) { if (!!(diff = a->ext_lan.xport.call_id - b->ext_lan.xport.call_id)) { return diff; } } break; case IPPROTO_ESP: if (!!(diff = a->ext_lan.xport.spi - b->ext_lan.xport.spi)) { return diff; } break; default: break; } switch (a->af_lan) { #if INET case AF_INET: if ((diff = pf_addr_compare(&a->lan.addr, &b->lan.addr, a->af_lan)) != 0) { return diff; } if (extfilter < PF_EXTFILTER_EI) { if ((diff = pf_addr_compare(&a->ext_lan.addr, &b->ext_lan.addr, a->af_lan)) != 0) { return diff; } } break; #endif /* INET */ case AF_INET6: if ((diff = pf_addr_compare(&a->lan.addr, &b->lan.addr, a->af_lan)) != 0) { return diff; } if (extfilter < PF_EXTFILTER_EI || !PF_AZERO(&b->ext_lan.addr, AF_INET6)) { if ((diff = pf_addr_compare(&a->ext_lan.addr, &b->ext_lan.addr, a->af_lan)) != 0) { return diff; } } break; } if (a->app_state && b->app_state) { if (a->app_state->compare_lan_ext && b->app_state->compare_lan_ext) { diff = (const char *)b->app_state->compare_lan_ext - (const char *)a->app_state->compare_lan_ext; if (diff != 0) { return diff; } diff = a->app_state->compare_lan_ext(a->app_state, b->app_state); if (diff != 0) { return diff; } } } return 0; } static __inline int pf_state_compare_ext_gwy(struct pf_state_key *a, struct pf_state_key *b) { int diff; int extfilter; int a_nat64, b_nat64; if ((diff = a->proto - b->proto) != 0) { return diff; } if ((diff = a->af_gwy - b->af_gwy) != 0) { return diff; } a_nat64 = (a->af_lan == PF_INET6 && a->af_gwy == PF_INET) ? 1 : 0; b_nat64 = (b->af_lan == PF_INET6 && b->af_gwy == PF_INET) ? 1 : 0; if ((diff = a_nat64 - b_nat64) != 0) { return diff; } extfilter = PF_EXTFILTER_APD; switch (a->proto) { case IPPROTO_ICMP: case IPPROTO_ICMPV6: if ((diff = a->gwy.xport.port - b->gwy.xport.port) != 0) { return diff; } break; case IPPROTO_TCP: if ((diff = a->ext_gwy.xport.port - b->ext_gwy.xport.port) != 0) { return diff; } if ((diff = a->gwy.xport.port - b->gwy.xport.port) != 0) { return diff; } break; case IPPROTO_UDP: if ((diff = a->proto_variant - b->proto_variant)) { return diff; } extfilter = a->proto_variant; if ((diff = a->gwy.xport.port - b->gwy.xport.port) != 0) { return diff; } if ((extfilter < PF_EXTFILTER_AD) && (diff = a->ext_gwy.xport.port - b->ext_gwy.xport.port) != 0) { return diff; } break; case IPPROTO_GRE: if (a->proto_variant == PF_GRE_PPTP_VARIANT && a->proto_variant == b->proto_variant) { if (!!(diff = a->gwy.xport.call_id - b->gwy.xport.call_id)) { return diff; } } break; case IPPROTO_ESP: if (!!(diff = a->gwy.xport.spi - b->gwy.xport.spi)) { return diff; } break; default: break; } switch (a->af_gwy) { #if INET case AF_INET: if ((diff = pf_addr_compare(&a->gwy.addr, &b->gwy.addr, a->af_gwy)) != 0) { return diff; } if (extfilter < PF_EXTFILTER_EI) { if ((diff = pf_addr_compare(&a->ext_gwy.addr, &b->ext_gwy.addr, a->af_gwy)) != 0) { return diff; } } break; #endif /* INET */ case AF_INET6: if ((diff = pf_addr_compare(&a->gwy.addr, &b->gwy.addr, a->af_gwy)) != 0) { return diff; } if (extfilter < PF_EXTFILTER_EI || !PF_AZERO(&b->ext_gwy.addr, AF_INET6)) { if ((diff = pf_addr_compare(&a->ext_gwy.addr, &b->ext_gwy.addr, a->af_gwy)) != 0) { return diff; } } break; } if (a->app_state && b->app_state) { if (a->app_state->compare_ext_gwy && b->app_state->compare_ext_gwy) { diff = (const char *)b->app_state->compare_ext_gwy - (const char *)a->app_state->compare_ext_gwy; if (diff != 0) { return diff; } diff = a->app_state->compare_ext_gwy(a->app_state, b->app_state); if (diff != 0) { return diff; } } } return 0; } static __inline int pf_state_compare_id(struct pf_state *a, struct pf_state *b) { if (a->id > b->id) { return 1; } if (a->id < b->id) { return -1; } if (a->creatorid > b->creatorid) { return 1; } if (a->creatorid < b->creatorid) { return -1; } return 0; } void pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) { switch (af) { #if INET case AF_INET: dst->addr32[0] = src->addr32[0]; break; #endif /* INET */ case AF_INET6: dst->addr32[0] = src->addr32[0]; dst->addr32[1] = src->addr32[1]; dst->addr32[2] = src->addr32[2]; dst->addr32[3] = src->addr32[3]; break; } } struct pf_state * pf_find_state_byid(struct pf_state_cmp *key) { pf_status.fcounters[FCNT_STATE_SEARCH]++; return RB_FIND(pf_state_tree_id, &tree_id, (struct pf_state *)(void *)key); } static struct pf_state * pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) { struct pf_state_key *sk = NULL; struct pf_state *s; pf_status.fcounters[FCNT_STATE_SEARCH]++; switch (dir) { case PF_OUT: sk = RB_FIND(pf_state_tree_lan_ext, &pf_statetbl_lan_ext, (struct pf_state_key *)key); break; case PF_IN: /* * Generally, a packet can match to * at most 1 state in the GWY table, with the sole exception * of NAT64, where a packet can match with at most 2 states * on the GWY table. This is because, unlike NAT44 or NAT66, * NAT64 forward translation is done on the input, not output. * This means a forwarded packet could cause PF to generate 2 states * on both input and output. * * NAT64 reverse translation is done on input. If a packet * matches NAT64 state on the GWY table, prioritize it * over any IPv4 state on the GWY table. */ if (pf_state_tree_ext_gwy_nat64_cnt > 0 && key->af_lan == PF_INET && key->af_gwy == PF_INET) { key->af_lan = PF_INET6; sk = RB_FIND(pf_state_tree_ext_gwy, &pf_statetbl_ext_gwy, (struct pf_state_key *) key); key->af_lan = PF_INET; } if (sk == NULL) { sk = RB_FIND(pf_state_tree_ext_gwy, &pf_statetbl_ext_gwy, (struct pf_state_key *)key); } /* * NAT64 is done only on input, for packets coming in from * from the LAN side, need to lookup the lan_ext tree. */ if (sk == NULL) { sk = RB_FIND(pf_state_tree_lan_ext, &pf_statetbl_lan_ext, (struct pf_state_key *)key); if (sk && sk->af_lan == sk->af_gwy) { sk = NULL; } } break; default: panic("pf_find_state"); } /* list is sorted, if-bound states before floating ones */ if (sk != NULL) { TAILQ_FOREACH(s, &sk->states, next) if (s->kif == pfi_all || s->kif == kif) { return s; } } return NULL; } struct pf_state * pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) { struct pf_state_key *sk = NULL; struct pf_state *s, *ret = NULL; pf_status.fcounters[FCNT_STATE_SEARCH]++; switch (dir) { case PF_OUT: sk = RB_FIND(pf_state_tree_lan_ext, &pf_statetbl_lan_ext, (struct pf_state_key *)key); break; case PF_IN: sk = RB_FIND(pf_state_tree_ext_gwy, &pf_statetbl_ext_gwy, (struct pf_state_key *)key); /* * NAT64 is done only on input, for packets coming in from * from the LAN side, need to lookup the lan_ext tree. */ if ((sk == NULL) && pf_nat64_configured) { sk = RB_FIND(pf_state_tree_lan_ext, &pf_statetbl_lan_ext, (struct pf_state_key *)key); if (sk && sk->af_lan == sk->af_gwy) { sk = NULL; } } break; default: panic("pf_find_state_all"); } if (sk != NULL) { ret = TAILQ_FIRST(&sk->states); if (more == NULL) { return ret; } TAILQ_FOREACH(s, &sk->states, next) (*more)++; } return ret; } static void pf_init_threshold(struct pf_threshold *threshold, u_int32_t limit, u_int32_t seconds) { threshold->limit = limit * PF_THRESHOLD_MULT; threshold->seconds = seconds; threshold->count = 0; threshold->last = pf_time_second(); } static void pf_add_threshold(struct pf_threshold *threshold) { u_int32_t t = pf_time_second(), diff = t - threshold->last; if (diff >= threshold->seconds) { threshold->count = 0; } else { threshold->count -= threshold->count * diff / threshold->seconds; } threshold->count += PF_THRESHOLD_MULT; threshold->last = t; } static int pf_check_threshold(struct pf_threshold *threshold) { return threshold->count > threshold->limit; } static int pf_src_connlimit(struct pf_state **state) { int bad = 0; (*state)->src_node->conn++; VERIFY((*state)->src_node->conn != 0); (*state)->src.tcp_est = 1; pf_add_threshold(&(*state)->src_node->conn_rate); if ((*state)->rule.ptr->max_src_conn && (*state)->rule.ptr->max_src_conn < (*state)->src_node->conn) { pf_status.lcounters[LCNT_SRCCONN]++; bad++; } if ((*state)->rule.ptr->max_src_conn_rate.limit && pf_check_threshold(&(*state)->src_node->conn_rate)) { pf_status.lcounters[LCNT_SRCCONNRATE]++; bad++; } if (!bad) { return 0; } if ((*state)->rule.ptr->overload_tbl) { struct pfr_addr p; u_int32_t killed = 0; pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; if (pf_status.debug >= PF_DEBUG_MISC) { printf("pf_src_connlimit: blocking address "); pf_print_host(&(*state)->src_node->addr, 0, (*state)->state_key->af_lan); } bzero(&p, sizeof(p)); p.pfra_af = (*state)->state_key->af_lan; switch ((*state)->state_key->af_lan) { #if INET case AF_INET: p.pfra_net = 32; p.pfra_ip4addr = (*state)->src_node->addr.v4addr; break; #endif /* INET */ case AF_INET6: p.pfra_net = 128; p.pfra_ip6addr = (*state)->src_node->addr.v6addr; break; } pfr_insert_kentry((*state)->rule.ptr->overload_tbl, &p, pf_calendar_time_second()); /* kill existing states if that's required. */ if ((*state)->rule.ptr->flush) { struct pf_state_key *sk; struct pf_state *st; pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; RB_FOREACH(st, pf_state_tree_id, &tree_id) { sk = st->state_key; /* * Kill states from this source. (Only those * from the same rule if PF_FLUSH_GLOBAL is not * set) */ if (sk->af_lan == (*state)->state_key->af_lan && (((*state)->state_key->direction == PF_OUT && PF_AEQ(&(*state)->src_node->addr, &sk->lan.addr, sk->af_lan)) || ((*state)->state_key->direction == PF_IN && PF_AEQ(&(*state)->src_node->addr, &sk->ext_lan.addr, sk->af_lan))) && ((*state)->rule.ptr->flush & PF_FLUSH_GLOBAL || (*state)->rule.ptr == st->rule.ptr)) { st->timeout = PFTM_PURGE; st->src.state = st->dst.state = TCPS_CLOSED; killed++; } } if (pf_status.debug >= PF_DEBUG_MISC) { printf(", %u states killed", killed); } } if (pf_status.debug >= PF_DEBUG_MISC) { printf("\n"); } } /* kill this state */ (*state)->timeout = PFTM_PURGE; (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; return 1; } int pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, struct pf_addr *src, sa_family_t af) { struct pf_src_node k; if (*sn == NULL) { k.af = af; PF_ACPY(&k.addr, src, af); if (rule->rule_flag & PFRULE_RULESRCTRACK || rule->rpool.opts & PF_POOL_STICKYADDR) { k.rule.ptr = rule; } else { k.rule.ptr = NULL; } pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; *sn = RB_FIND(pf_src_tree, &tree_src_tracking, &k); } if (*sn == NULL) { if (!rule->max_src_nodes || rule->src_nodes < rule->max_src_nodes) { (*sn) = pool_get(&pf_src_tree_pl, PR_WAITOK); } else { pf_status.lcounters[LCNT_SRCNODES]++; } if ((*sn) == NULL) { return -1; } bzero(*sn, sizeof(struct pf_src_node)); pf_init_threshold(&(*sn)->conn_rate, rule->max_src_conn_rate.limit, rule->max_src_conn_rate.seconds); (*sn)->af = af; if (rule->rule_flag & PFRULE_RULESRCTRACK || rule->rpool.opts & PF_POOL_STICKYADDR) { (*sn)->rule.ptr = rule; } else { (*sn)->rule.ptr = NULL; } PF_ACPY(&(*sn)->addr, src, af); if (RB_INSERT(pf_src_tree, &tree_src_tracking, *sn) != NULL) { if (pf_status.debug >= PF_DEBUG_MISC) { printf("pf: src_tree insert failed: "); pf_print_host(&(*sn)->addr, 0, af); printf("\n"); } pool_put(&pf_src_tree_pl, *sn); *sn = NULL; /* signal the caller that no additional cleanup is needed */ return -1; } (*sn)->creation = pf_time_second(); (*sn)->ruletype = rule->action; if ((*sn)->rule.ptr != NULL) { (*sn)->rule.ptr->src_nodes++; } pf_status.scounters[SCNT_SRC_NODE_INSERT]++; pf_status.src_nodes++; } else { if (rule->max_src_states && (*sn)->states >= rule->max_src_states) { pf_status.lcounters[LCNT_SRCSTATES]++; return -1; } } return 0; } static void pf_stateins_err(const char *tree, struct pf_state *s, struct pfi_kif *kif) { struct pf_state_key *sk = s->state_key; if (pf_status.debug >= PF_DEBUG_MISC) { printf("pf: state insert failed: %s %s ", tree, kif->pfik_name); switch (sk->proto) { case IPPROTO_TCP: printf("TCP"); break; case IPPROTO_UDP: printf("UDP"); break; case IPPROTO_ICMP: printf("ICMP4"); break; case IPPROTO_ICMPV6: printf("ICMP6"); break; default: printf("PROTO=%u", sk->proto); break; } printf(" lan: "); pf_print_sk_host(&sk->lan, sk->af_lan, sk->proto, sk->proto_variant); printf(" gwy: "); pf_print_sk_host(&sk->gwy, sk->af_gwy, sk->proto, sk->proto_variant); printf(" ext_lan: "); pf_print_sk_host(&sk->ext_lan, sk->af_lan, sk->proto, sk->proto_variant); printf(" ext_gwy: "); pf_print_sk_host(&sk->ext_gwy, sk->af_gwy, sk->proto, sk->proto_variant); if (s->sync_flags & PFSTATE_FROMSYNC) { printf(" (from sync)"); } printf("\n"); } } static __inline struct pf_state_key * pf_insert_state_key_ext_gwy(struct pf_state_key *psk) { struct pf_state_key * ret = RB_INSERT(pf_state_tree_ext_gwy, &pf_statetbl_ext_gwy, psk); if (!ret && psk->af_lan == PF_INET6 && psk->af_gwy == PF_INET) { pf_state_tree_ext_gwy_nat64_cnt++; } return ret; } static __inline struct pf_state_key * pf_remove_state_key_ext_gwy(struct pf_state_key *psk) { struct pf_state_key * ret = RB_REMOVE(pf_state_tree_ext_gwy, &pf_statetbl_ext_gwy, psk); if (ret && psk->af_lan == PF_INET6 && psk->af_gwy == PF_INET) { pf_state_tree_ext_gwy_nat64_cnt--; } return ret; } int pf_insert_state(struct pfi_kif *kif, struct pf_state *s) { struct pf_state_key *cur; struct pf_state *sp; VERIFY(s->state_key != NULL); s->kif = kif; if ((cur = RB_INSERT(pf_state_tree_lan_ext, &pf_statetbl_lan_ext, s->state_key)) != NULL) { /* key exists. check for same kif, if none, add to key */ TAILQ_FOREACH(sp, &cur->states, next) if (sp->kif == kif) { /* collision! */ pf_stateins_err("tree_lan_ext", s, kif); pf_detach_state(s, PF_DT_SKIP_LANEXT | PF_DT_SKIP_EXTGWY); return -1; } pf_detach_state(s, PF_DT_SKIP_LANEXT | PF_DT_SKIP_EXTGWY); pf_attach_state(cur, s, kif == pfi_all ? 1 : 0); } /* if cur != NULL, we already found a state key and attached to it */ if (cur == NULL && (cur = pf_insert_state_key_ext_gwy(s->state_key)) != NULL) { /* must not happen. we must have found the sk above! */ pf_stateins_err("tree_ext_gwy", s, kif); pf_detach_state(s, PF_DT_SKIP_EXTGWY); return -1; } if (s->id == 0 && s->creatorid == 0) { s->id = htobe64(pf_status.stateid++); s->creatorid = pf_status.hostid; } if (RB_INSERT(pf_state_tree_id, &tree_id, s) != NULL) { if (pf_status.debug >= PF_DEBUG_MISC) { printf("pf: state insert failed: " "id: %016llx creatorid: %08x", be64toh(s->id), ntohl(s->creatorid)); if (s->sync_flags & PFSTATE_FROMSYNC) { printf(" (from sync)"); } printf("\n"); } pf_detach_state(s, 0); return -1; } TAILQ_INSERT_TAIL(&state_list, s, entry_list); pf_status.fcounters[FCNT_STATE_INSERT]++; pf_status.states++; VERIFY(pf_status.states != 0); pfi_kif_ref(kif, PFI_KIF_REF_STATE); #if NPFSYNC pfsync_insert_state(s); #endif return 0; } static int pf_purge_thread_cont(int err) { #pragma unused(err) static u_int32_t nloops = 0; int t = 1; /* 1 second */ /* * Update coarse-grained networking timestamp (in sec.); the idea * is to piggy-back on the periodic timeout callout to update * the counter returnable via net_uptime(). */ net_update_uptime(); lck_rw_lock_shared(&pf_perim_lock); lck_mtx_lock(&pf_lock); /* purge everything if not running */ if (!pf_status.running) { pf_purge_expired_states(pf_status.states); pf_purge_expired_fragments(); pf_purge_expired_src_nodes(); /* terminate thread (we don't currently do this) */ if (pf_purge_thread == NULL) { lck_mtx_unlock(&pf_lock); lck_rw_done(&pf_perim_lock); thread_deallocate(current_thread()); thread_terminate(current_thread()); /* NOTREACHED */ return 0; } else { /* if there's nothing left, sleep w/o timeout */ if (pf_status.states == 0 && pf_normalize_isempty() && RB_EMPTY(&tree_src_tracking)) { nloops = 0; t = 0; } goto done; } } /* process a fraction of the state table every second */ pf_purge_expired_states(1 + (pf_status.states / pf_default_rule.timeout[PFTM_INTERVAL])); /* purge other expired types every PFTM_INTERVAL seconds */ if (++nloops >= pf_default_rule.timeout[PFTM_INTERVAL]) { pf_purge_expired_fragments(); pf_purge_expired_src_nodes(); nloops = 0; } done: lck_mtx_unlock(&pf_lock); lck_rw_done(&pf_perim_lock); (void) tsleep0(pf_purge_thread_fn, PWAIT, "pf_purge_cont", t * hz, pf_purge_thread_cont); /* NOTREACHED */ VERIFY(0); return 0; } void pf_purge_thread_fn(void *v, wait_result_t w) { #pragma unused(v, w) (void) tsleep0(pf_purge_thread_fn, PWAIT, "pf_purge", 0, pf_purge_thread_cont); /* * tsleep0() shouldn't have returned as PCATCH was not set; * therefore assert in this case. */ VERIFY(0); } u_int64_t pf_state_expires(const struct pf_state *state) { u_int32_t t; u_int32_t start; u_int32_t end; u_int32_t states; LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); /* handle all PFTM_* > PFTM_MAX here */ if (state->timeout == PFTM_PURGE) { return pf_time_second(); } VERIFY(state->timeout != PFTM_UNLINKED); VERIFY(state->timeout < PFTM_MAX); t = state->rule.ptr->timeout[state->timeout]; if (!t) { t = pf_default_rule.timeout[state->timeout]; } start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; if (start) { end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; states = state->rule.ptr->states; } else { start = pf_default_rule.timeout[PFTM_ADAPTIVE_START]; end = pf_default_rule.timeout[PFTM_ADAPTIVE_END]; states = pf_status.states; } if (end && states > start && start < end) { if (states < end) { return state->expire + t * (end - states) / (end - start); } else { return pf_time_second(); } } return state->expire + t; } void pf_purge_expired_src_nodes(void) { struct pf_src_node *cur, *next; LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); for (cur = RB_MIN(pf_src_tree, &tree_src_tracking); cur; cur = next) { next = RB_NEXT(pf_src_tree, &tree_src_tracking, cur); if (cur->states <= 0 && cur->expire <= pf_time_second()) { if (cur->rule.ptr != NULL) { cur->rule.ptr->src_nodes--; if (cur->rule.ptr->states <= 0 && cur->rule.ptr->max_src_nodes <= 0) { pf_rm_rule(NULL, cur->rule.ptr); } } RB_REMOVE(pf_src_tree, &tree_src_tracking, cur); pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; pf_status.src_nodes--; pool_put(&pf_src_tree_pl, cur); } } } void pf_src_tree_remove_state(struct pf_state *s) { u_int32_t t; LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); if (s->src_node != NULL) { if (s->src.tcp_est) { VERIFY(s->src_node->conn > 0); --s->src_node->conn; } VERIFY(s->src_node->states > 0); if (--s->src_node->states <= 0) { t = s->rule.ptr->timeout[PFTM_SRC_NODE]; if (!t) { t = pf_default_rule.timeout[PFTM_SRC_NODE]; } s->src_node->expire = pf_time_second() + t; } } if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { VERIFY(s->nat_src_node->states > 0); if (--s->nat_src_node->states <= 0) { t = s->rule.ptr->timeout[PFTM_SRC_NODE]; if (!t) { t = pf_default_rule.timeout[PFTM_SRC_NODE]; } s->nat_src_node->expire = pf_time_second() + t; } } s->src_node = s->nat_src_node = NULL; } void pf_unlink_state(struct pf_state *cur) { LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); if (cur->src.state == PF_TCPS_PROXY_DST) { pf_send_tcp(cur->rule.ptr, cur->state_key->af_lan, &cur->state_key->ext_lan.addr, &cur->state_key->lan.addr, cur->state_key->ext_lan.xport.port, cur->state_key->lan.xport.port, cur->src.seqhi, cur->src.seqlo + 1, TH_RST | TH_ACK, 0, 0, 0, 1, cur->tag, NULL, NULL); } hook_runloop(&cur->unlink_hooks, HOOK_REMOVE | HOOK_FREE); RB_REMOVE(pf_state_tree_id, &tree_id, cur); #if NPFSYNC if (cur->creatorid == pf_status.hostid) { pfsync_delete_state(cur); } #endif cur->timeout = PFTM_UNLINKED; pf_src_tree_remove_state(cur); pf_detach_state(cur, 0); } /* callers should be at splpf and hold the * write_lock on pf_consistency_lock */ void pf_free_state(struct pf_state *cur) { LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); #if NPFSYNC if (pfsyncif != NULL && (pfsyncif->sc_bulk_send_next == cur || pfsyncif->sc_bulk_terminator == cur)) { return; } #endif VERIFY(cur->timeout == PFTM_UNLINKED); VERIFY(cur->rule.ptr->states > 0); if (--cur->rule.ptr->states <= 0 && cur->rule.ptr->src_nodes <= 0) { pf_rm_rule(NULL, cur->rule.ptr); } if (cur->nat_rule.ptr != NULL) { VERIFY(cur->nat_rule.ptr->states > 0); if (--cur->nat_rule.ptr->states <= 0 && cur->nat_rule.ptr->src_nodes <= 0) { pf_rm_rule(NULL, cur->nat_rule.ptr); } } if (cur->anchor.ptr != NULL) { VERIFY(cur->anchor.ptr->states > 0); if (--cur->anchor.ptr->states <= 0) { pf_rm_rule(NULL, cur->anchor.ptr); } } pf_normalize_tcp_cleanup(cur); pfi_kif_unref(cur->kif, PFI_KIF_REF_STATE); TAILQ_REMOVE(&state_list, cur, entry_list); if (cur->tag) { pf_tag_unref(cur->tag); } #if SKYWALK netns_release(&cur->nstoken); #endif pool_put(&pf_state_pl, cur); pf_status.fcounters[FCNT_STATE_REMOVALS]++; VERIFY(pf_status.states > 0); pf_status.states--; } void pf_purge_expired_states(u_int32_t maxcheck) { static struct pf_state *cur = NULL; struct pf_state *next; LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); while (maxcheck--) { /* wrap to start of list when we hit the end */ if (cur == NULL) { cur = TAILQ_FIRST(&state_list); if (cur == NULL) { break; /* list empty */ } } /* get next state, as cur may get deleted */ next = TAILQ_NEXT(cur, entry_list); if (cur->timeout == PFTM_UNLINKED) { pf_free_state(cur); } else if (pf_state_expires(cur) <= pf_time_second()) { /* unlink and free expired state */ pf_unlink_state(cur); pf_free_state(cur); } cur = next; } } int pf_tbladdr_setup(struct pf_ruleset *rs, struct pf_addr_wrap *aw) { LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); if (aw->type != PF_ADDR_TABLE) { return 0; } if ((aw->p.tbl = pfr_attach_table(rs, aw->v.tblname)) == NULL) { return 1; } return 0; } void pf_tbladdr_remove(struct pf_addr_wrap *aw) { LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); if (aw->type != PF_ADDR_TABLE || aw->p.tbl == NULL) { return; } pfr_detach_table(aw->p.tbl); aw->p.tbl = NULL; } void pf_tbladdr_copyout(struct pf_addr_wrap *aw) { struct pfr_ktable *kt = aw->p.tbl; LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); if (aw->type != PF_ADDR_TABLE || kt == NULL) { return; } if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL) { kt = kt->pfrkt_root; } aw->p.tbl = NULL; aw->p.tblcnt = (kt->pfrkt_flags & PFR_TFLAG_ACTIVE) ? kt->pfrkt_cnt : -1; } static void pf_print_addr(struct pf_addr *addr, sa_family_t af) { switch (af) { #if INET case AF_INET: { u_int32_t a = ntohl(addr->addr32[0]); printf("%u.%u.%u.%u", (a >> 24) & 255, (a >> 16) & 255, (a >> 8) & 255, a & 255); break; } #endif /* INET */ case AF_INET6: { u_int16_t b; u_int8_t i, curstart = 255, curend = 0, maxstart = 0, maxend = 0; for (i = 0; i < 8; i++) { if (!addr->addr16[i]) { if (curstart == 255) { curstart = i; } else { curend = i; } } else { if (curstart) { if ((curend - curstart) > (maxend - maxstart)) { maxstart = curstart; maxend = curend; curstart = 255; } } } } for (i = 0; i < 8; i++) { if (i >= maxstart && i <= maxend) { if (maxend != 7) { if (i == maxstart) { printf(":"); } } else { if (i == maxend) { printf(":"); } } } else { b = ntohs(addr->addr16[i]); printf("%x", b); if (i < 7) { printf(":"); } } } break; } } } static void pf_print_sk_host(struct pf_state_host *sh, sa_family_t af, int proto, u_int8_t proto_variant) { pf_print_addr(&sh->addr, af); switch (proto) { case IPPROTO_ESP: if (sh->xport.spi) { printf("[%08x]", ntohl(sh->xport.spi)); } break; case IPPROTO_GRE: if (proto_variant == PF_GRE_PPTP_VARIANT) { printf("[%u]", ntohs(sh->xport.call_id)); } break; case IPPROTO_TCP: case IPPROTO_UDP: printf("[%u]", ntohs(sh->xport.port)); break; default: break; } } static void pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) { pf_print_addr(addr, af); if (p) { printf("[%u]", ntohs(p)); } } void pf_print_state(struct pf_state *s) { struct pf_state_key *sk = s->state_key; switch (sk->proto) { case IPPROTO_ESP: printf("ESP "); break; case IPPROTO_GRE: printf("GRE%u ", sk->proto_variant); break; case IPPROTO_TCP: printf("TCP "); break; case IPPROTO_UDP: printf("UDP "); break; case IPPROTO_ICMP: printf("ICMP "); break; case IPPROTO_ICMPV6: printf("ICMPV6 "); break; default: printf("%u ", sk->proto); break; } pf_print_sk_host(&sk->lan, sk->af_lan, sk->proto, sk->proto_variant); printf(" "); pf_print_sk_host(&sk->gwy, sk->af_gwy, sk->proto, sk->proto_variant); printf(" "); pf_print_sk_host(&sk->ext_lan, sk->af_lan, sk->proto, sk->proto_variant); printf(" "); pf_print_sk_host(&sk->ext_gwy, sk->af_gwy, sk->proto, sk->proto_variant); printf(" [lo=%u high=%u win=%u modulator=%u", s->src.seqlo, s->src.seqhi, s->src.max_win, s->src.seqdiff); if (s->src.wscale && s->dst.wscale) { printf(" wscale=%u", s->src.wscale & PF_WSCALE_MASK); } printf("]"); printf(" [lo=%u high=%u win=%u modulator=%u", s->dst.seqlo, s->dst.seqhi, s->dst.max_win, s->dst.seqdiff); if (s->src.wscale && s->dst.wscale) { printf(" wscale=%u", s->dst.wscale & PF_WSCALE_MASK); } printf("]"); printf(" %u:%u", s->src.state, s->dst.state); } void pf_print_flags(u_int8_t f) { if (f) { printf(" "); } if (f & TH_FIN) { printf("F"); } if (f & TH_SYN) { printf("S"); } if (f & TH_RST) { printf("R"); } if (f & TH_PUSH) { printf("P"); } if (f & TH_ACK) { printf("A"); } if (f & TH_URG) { printf("U"); } if (f & TH_ECE) { printf("E"); } if (f & TH_CWR) { printf("W"); } } #define PF_SET_SKIP_STEPS(i) \ do { \ while (head[i] != cur) { \ head[i]->skip[i].ptr = cur; \ head[i] = TAILQ_NEXT(head[i], entries); \ } \ } while (0) void pf_calc_skip_steps(struct pf_rulequeue *rules) { struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; int i; cur = TAILQ_FIRST(rules); prev = cur; for (i = 0; i < PF_SKIP_COUNT; ++i) { head[i] = cur; } while (cur != NULL) { if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) { PF_SET_SKIP_STEPS(PF_SKIP_IFP); } if (cur->direction != prev->direction) { PF_SET_SKIP_STEPS(PF_SKIP_DIR); } if (cur->af != prev->af) { PF_SET_SKIP_STEPS(PF_SKIP_AF); } if (cur->proto != prev->proto) { PF_SET_SKIP_STEPS(PF_SKIP_PROTO); } if (cur->src.neg != prev->src.neg || pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) { PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); } { union pf_rule_xport *cx = &cur->src.xport; union pf_rule_xport *px = &prev->src.xport; switch (cur->proto) { case IPPROTO_GRE: case IPPROTO_ESP: PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); break; default: if (prev->proto == IPPROTO_GRE || prev->proto == IPPROTO_ESP || cx->range.op != px->range.op || cx->range.port[0] != px->range.port[0] || cx->range.port[1] != px->range.port[1]) { PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); } break; } } if (cur->dst.neg != prev->dst.neg || pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) { PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); } { union pf_rule_xport *cx = &cur->dst.xport; union pf_rule_xport *px = &prev->dst.xport; switch (cur->proto) { case IPPROTO_GRE: if (cur->proto != prev->proto || cx->call_id != px->call_id) { PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); } break; case IPPROTO_ESP: if (cur->proto != prev->proto || cx->spi != px->spi) { PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); } break; default: if (prev->proto == IPPROTO_GRE || prev->proto == IPPROTO_ESP || cx->range.op != px->range.op || cx->range.port[0] != px->range.port[0] || cx->range.port[1] != px->range.port[1]) { PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); } break; } } prev = cur; cur = TAILQ_NEXT(cur, entries); } for (i = 0; i < PF_SKIP_COUNT; ++i) { PF_SET_SKIP_STEPS(i); } } u_int32_t pf_calc_state_key_flowhash(struct pf_state_key *sk) { #if SKYWALK uint32_t flowid; struct flowidns_flow_key fk; VERIFY(sk->flowsrc == FLOWSRC_PF); bzero(&fk, sizeof(fk)); _CASSERT(sizeof(sk->lan.addr) == sizeof(fk.ffk_laddr)); _CASSERT(sizeof(sk->ext_lan.addr) == sizeof(fk.ffk_laddr)); bcopy(&sk->lan.addr, &fk.ffk_laddr, sizeof(fk.ffk_laddr)); bcopy(&sk->ext_lan.addr, &fk.ffk_raddr, sizeof(fk.ffk_raddr)); fk.ffk_af = sk->af_lan; fk.ffk_proto = sk->proto; switch (sk->proto) { case IPPROTO_ESP: case IPPROTO_AH: fk.ffk_spi = sk->lan.xport.spi; break; default: if (sk->lan.xport.spi <= sk->ext_lan.xport.spi) { fk.ffk_lport = sk->lan.xport.port; fk.ffk_rport = sk->ext_lan.xport.port; } else { fk.ffk_lport = sk->ext_lan.xport.port; fk.ffk_rport = sk->lan.xport.port; } break; } flowidns_allocate_flowid(FLOWIDNS_DOMAIN_PF, &fk, &flowid); return flowid; #else /* !SKYWALK */ struct pf_flowhash_key fh __attribute__((aligned(8))); uint32_t flowhash = 0; bzero(&fh, sizeof(fh)); if (PF_ALEQ(&sk->lan.addr, &sk->ext_lan.addr, sk->af_lan)) { bcopy(&sk->lan.addr, &fh.ap1.addr, sizeof(fh.ap1.addr)); bcopy(&sk->ext_lan.addr, &fh.ap2.addr, sizeof(fh.ap2.addr)); } else { bcopy(&sk->ext_lan.addr, &fh.ap1.addr, sizeof(fh.ap1.addr)); bcopy(&sk->lan.addr, &fh.ap2.addr, sizeof(fh.ap2.addr)); } if (sk->lan.xport.spi <= sk->ext_lan.xport.spi) { fh.ap1.xport.spi = sk->lan.xport.spi; fh.ap2.xport.spi = sk->ext_lan.xport.spi; } else { fh.ap1.xport.spi = sk->ext_lan.xport.spi; fh.ap2.xport.spi = sk->lan.xport.spi; } fh.af = sk->af_lan; fh.proto = sk->proto; try_again: flowhash = net_flowhash(&fh, sizeof(fh), pf_hash_seed); if (flowhash == 0) { /* try to get a non-zero flowhash */ pf_hash_seed = RandomULong(); goto try_again; } return flowhash; #endif /* !SKYWALK */ } static int pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) { if (aw1->type != aw2->type) { return 1; } switch (aw1->type) { case PF_ADDR_ADDRMASK: case PF_ADDR_RANGE: if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) { return 1; } if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) { return 1; } return 0; case PF_ADDR_DYNIFTL: return aw1->p.dyn == NULL || aw2->p.dyn == NULL || aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt; case PF_ADDR_NOROUTE: case PF_ADDR_URPFFAILED: return 0; case PF_ADDR_TABLE: return aw1->p.tbl != aw2->p.tbl; case PF_ADDR_RTLABEL: return aw1->v.rtlabel != aw2->v.rtlabel; default: printf("invalid address type: %d\n", aw1->type); return 1; } } u_int16_t pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) { return nat464_cksum_fixup(cksum, old, new, udp); } /* * change ip address & port * dir : packet direction * a : address to be changed * p : port to be changed * ic : ip header checksum * pc : protocol checksum * an : new ip address * pn : new port * u : should be 1 if UDP packet else 0 * af : address family of the packet * afn : address family of the new address * ua : should be 1 if ip address needs to be updated in the packet else * only the checksum is recalculated & updated. */ static __attribute__((noinline)) void pf_change_ap(int dir, pbuf_t *pbuf, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af, sa_family_t afn, int ua) { struct pf_addr ao; u_int16_t po = *p; PF_ACPY(&ao, a, af); if (ua) { PF_ACPY(a, an, afn); } *p = pn; switch (af) { #if INET case AF_INET: switch (afn) { case AF_INET: *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, ao.addr16[0], an->addr16[0], 0), ao.addr16[1], an->addr16[1], 0); *p = pn; /* * If the packet is originated from an ALG on the NAT gateway * (source address is loopback or local), in which case the * TCP/UDP checksum field contains the pseudo header checksum * that's not yet complemented. * In that case we do not need to fixup the checksum for port * translation as the pseudo header checksum doesn't include ports. * * A packet generated locally will have UDP/TCP CSUM flag * set (gets set in protocol output). * * It should be noted that the fixup doesn't do anything if the * checksum is 0. */ if (dir == PF_OUT && pbuf != NULL && (*pbuf->pb_csum_flags & (CSUM_TCP | CSUM_UDP))) { /* Pseudo-header checksum does not include ports */ *pc = ~pf_cksum_fixup(pf_cksum_fixup(~*pc, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u); } else { *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( *pc, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), po, pn, u); } break; case AF_INET6: *p = pn; *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), 0, an->addr16[2], u), 0, an->addr16[3], u), 0, an->addr16[4], u), 0, an->addr16[5], u), 0, an->addr16[6], u), 0, an->addr16[7], u), po, pn, u); break; } break; #endif /* INET */ case AF_INET6: switch (afn) { case AF_INET6: /* * If the packet is originated from an ALG on the NAT gateway * (source address is loopback or local), in which case the * TCP/UDP checksum field contains the pseudo header checksum * that's not yet complemented. * A packet generated locally * will have UDP/TCP CSUM flag set (gets set in protocol * output). */ if (dir == PF_OUT && pbuf != NULL && (*pbuf->pb_csum_flags & (CSUM_TCPIPV6 | CSUM_UDPIPV6))) { /* Pseudo-header checksum does not include ports */ *pc = ~pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( ~*pc, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), ao.addr16[2], an->addr16[2], u), ao.addr16[3], an->addr16[3], u), ao.addr16[4], an->addr16[4], u), ao.addr16[5], an->addr16[5], u), ao.addr16[6], an->addr16[6], u), ao.addr16[7], an->addr16[7], u); } else { *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( *pc, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), ao.addr16[2], an->addr16[2], u), ao.addr16[3], an->addr16[3], u), ao.addr16[4], an->addr16[4], u), ao.addr16[5], an->addr16[5], u), ao.addr16[6], an->addr16[6], u), ao.addr16[7], an->addr16[7], u), po, pn, u); } break; #ifdef INET case AF_INET: *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), ao.addr16[2], 0, u), ao.addr16[3], 0, u), ao.addr16[4], 0, u), ao.addr16[5], 0, u), ao.addr16[6], 0, u), ao.addr16[7], 0, u), po, pn, u); break; #endif /* INET */ } break; } } /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ void pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) { u_int32_t ao; memcpy(&ao, a, sizeof(ao)); memcpy(a, &an, sizeof(u_int32_t)); *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), ao % 65536, an % 65536, u); } static __attribute__((noinline)) void pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) { struct pf_addr ao; PF_ACPY(&ao, a, AF_INET6); PF_ACPY(a, an, AF_INET6); *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*c, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), ao.addr16[2], an->addr16[2], u), ao.addr16[3], an->addr16[3], u), ao.addr16[4], an->addr16[4], u), ao.addr16[5], an->addr16[5], u), ao.addr16[6], an->addr16[6], u), ao.addr16[7], an->addr16[7], u); } static __attribute__((noinline)) void pf_change_addr(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u, sa_family_t af, sa_family_t afn) { struct pf_addr ao; if (af != afn) { PF_ACPY(&ao, a, af); PF_ACPY(a, an, afn); } switch (af) { case AF_INET: switch (afn) { case AF_INET: pf_change_a(a, c, an->v4addr.s_addr, u); break; case AF_INET6: *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*c, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), 0, an->addr16[2], u), 0, an->addr16[3], u), 0, an->addr16[4], u), 0, an->addr16[5], u), 0, an->addr16[6], u), 0, an->addr16[7], u); break; } break; case AF_INET6: switch (afn) { case AF_INET: *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*c, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), ao.addr16[2], 0, u), ao.addr16[3], 0, u), ao.addr16[4], 0, u), ao.addr16[5], 0, u), ao.addr16[6], 0, u), ao.addr16[7], 0, u); break; case AF_INET6: pf_change_a6(a, c, an, u); break; } break; } } static __attribute__((noinline)) void pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) { struct pf_addr oia, ooa; PF_ACPY(&oia, ia, af); PF_ACPY(&ooa, oa, af); /* Change inner protocol port, fix inner protocol checksum. */ if (ip != NULL) { u_int16_t oip = *ip; u_int32_t opc = 0; if (pc != NULL) { opc = *pc; } *ip = np; if (pc != NULL) { *pc = pf_cksum_fixup(*pc, oip, *ip, u); } *ic = pf_cksum_fixup(*ic, oip, *ip, 0); if (pc != NULL) { *ic = pf_cksum_fixup(*ic, opc, *pc, 0); } } /* Change inner ip address, fix inner ip and icmp checksums. */ PF_ACPY(ia, na, af); switch (af) { #if INET case AF_INET: { u_int32_t oh2c = *h2c; *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, oia.addr16[0], ia->addr16[0], 0), oia.addr16[1], ia->addr16[1], 0); *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, oia.addr16[0], ia->addr16[0], 0), oia.addr16[1], ia->addr16[1], 0); *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); break; } #endif /* INET */ case AF_INET6: *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*ic, oia.addr16[0], ia->addr16[0], u), oia.addr16[1], ia->addr16[1], u), oia.addr16[2], ia->addr16[2], u), oia.addr16[3], ia->addr16[3], u), oia.addr16[4], ia->addr16[4], u), oia.addr16[5], ia->addr16[5], u), oia.addr16[6], ia->addr16[6], u), oia.addr16[7], ia->addr16[7], u); break; } /* Change outer ip address, fix outer ip or icmpv6 checksum. */ PF_ACPY(oa, na, af); switch (af) { #if INET case AF_INET: *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, ooa.addr16[0], oa->addr16[0], 0), ooa.addr16[1], oa->addr16[1], 0); break; #endif /* INET */ case AF_INET6: *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*ic, ooa.addr16[0], oa->addr16[0], u), ooa.addr16[1], oa->addr16[1], u), ooa.addr16[2], oa->addr16[2], u), ooa.addr16[3], oa->addr16[3], u), ooa.addr16[4], oa->addr16[4], u), ooa.addr16[5], oa->addr16[5], u), ooa.addr16[6], oa->addr16[6], u), ooa.addr16[7], oa->addr16[7], u); break; } } /* * Need to modulate the sequence numbers in the TCP SACK option * (credits to Krzysztof Pfaff for report and patch) */ static __attribute__((noinline)) int pf_modulate_sack(pbuf_t *pbuf, int off, struct pf_pdesc *pd, struct tcphdr *th, struct pf_state_peer *dst) { int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; u_int8_t opts[MAX_TCPOPTLEN], *opt = opts; int copyback = 0, i, olen; struct sackblk sack; #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) if (hlen < TCPOLEN_SACKLEN || !pf_pull_hdr(pbuf, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) { return 0; } while (hlen >= TCPOLEN_SACKLEN) { olen = opt[1]; switch (*opt) { case TCPOPT_EOL: /* FALLTHROUGH */ case TCPOPT_NOP: opt++; hlen--; break; case TCPOPT_SACK: if (olen > hlen) { olen = hlen; } if (olen >= TCPOLEN_SACKLEN) { for (i = 2; i + TCPOLEN_SACK <= olen; i += TCPOLEN_SACK) { memcpy(&sack, &opt[i], sizeof(sack)); pf_change_a(&sack.start, &th->th_sum, htonl(ntohl(sack.start) - dst->seqdiff), 0); pf_change_a(&sack.end, &th->th_sum, htonl(ntohl(sack.end) - dst->seqdiff), 0); memcpy(&opt[i], &sack, sizeof(sack)); } copyback = off + sizeof(*th) + thoptlen; } OS_FALLTHROUGH; default: if (olen < 2) { olen = 2; } hlen -= olen; opt += olen; } } if (copyback) { if (pf_lazy_makewritable(pd, pbuf, copyback) == NULL) { return -1; } pbuf_copy_back(pbuf, off + sizeof(*th), thoptlen, opts); } return copyback; } /* * XXX * * The following functions (pf_send_tcp and pf_send_icmp) are somewhat * special in that they originate "spurious" packets rather than * filter/NAT existing packets. As such, they're not a great fit for * the 'pbuf' shim, which assumes the underlying packet buffers are * allocated elsewhere. * * Since these functions are rarely used, we'll carry on allocating mbufs * and passing them to the IP stack for eventual routing. */ static __attribute__((noinline)) void pf_send_tcp(const struct pf_rule *r, sa_family_t af, const struct pf_addr *saddr, const struct pf_addr *daddr, u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, u_int16_t rtag, struct ether_header *eh, struct ifnet *ifp) { #pragma unused(eh, ifp) struct mbuf *m; int len, tlen; #if INET struct ip *h = NULL; #endif /* INET */ struct ip6_hdr *h6 = NULL; struct tcphdr *th = NULL; char *opt; struct pf_mtag *pf_mtag; /* maximum segment size tcp option */ tlen = sizeof(struct tcphdr); if (mss) { tlen += 4; } switch (af) { #if INET case AF_INET: len = sizeof(struct ip) + tlen; break; #endif /* INET */ case AF_INET6: len = sizeof(struct ip6_hdr) + tlen; break; default: panic("pf_send_tcp: not AF_INET or AF_INET6!"); return; } /* create outgoing mbuf */ m = m_gethdr(M_DONTWAIT, MT_HEADER); if (m == NULL) { return; } if ((pf_mtag = pf_get_mtag(m)) == NULL) { return; } if (tag) { pf_mtag->pftag_flags |= PF_TAG_GENERATED; } pf_mtag->pftag_tag = rtag; if (r != NULL && PF_RTABLEID_IS_VALID(r->rtableid)) { pf_mtag->pftag_rtableid = r->rtableid; } #if PF_ECN /* add hints for ecn */ pf_mtag->pftag_hdr = mtod(m, struct ip *); /* record address family */ pf_mtag->pftag_flags &= ~(PF_TAG_HDR_INET | PF_TAG_HDR_INET6); switch (af) { #if INET case AF_INET: pf_mtag->pftag_flags |= PF_TAG_HDR_INET; break; #endif /* INET */ case AF_INET6: pf_mtag->pftag_flags |= PF_TAG_HDR_INET6; break; } #endif /* PF_ECN */ /* indicate this is TCP */ m->m_pkthdr.pkt_proto = IPPROTO_TCP; /* Make sure headers are 32-bit aligned */ m->m_data += max_linkhdr; m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = NULL; bzero(m_mtod_current(m), len); switch (af) { #if INET case AF_INET: h = mtod(m, struct ip *); /* IP header fields included in the TCP checksum */ h->ip_p = IPPROTO_TCP; h->ip_len = htons(tlen); h->ip_src.s_addr = saddr->v4addr.s_addr; h->ip_dst.s_addr = daddr->v4addr.s_addr; th = (struct tcphdr *)(void *)((caddr_t)h + sizeof(struct ip)); break; #endif /* INET */ case AF_INET6: h6 = mtod(m, struct ip6_hdr *); /* IP header fields included in the TCP checksum */ h6->ip6_nxt = IPPROTO_TCP; h6->ip6_plen = htons(tlen); memcpy(&h6->ip6_src, &saddr->v6addr, sizeof(struct in6_addr)); memcpy(&h6->ip6_dst, &daddr->v6addr, sizeof(struct in6_addr)); th = (struct tcphdr *)(void *) ((caddr_t)h6 + sizeof(struct ip6_hdr)); break; } /* TCP header */ th->th_sport = sport; th->th_dport = dport; th->th_seq = htonl(seq); th->th_ack = htonl(ack); th->th_off = tlen >> 2; th->th_flags = flags; th->th_win = htons(win); if (mss) { opt = (char *)(th + 1); opt[0] = TCPOPT_MAXSEG; opt[1] = 4; #if BYTE_ORDER != BIG_ENDIAN HTONS(mss); #endif bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); } switch (af) { #if INET case AF_INET: { struct route ro; /* TCP checksum */ th->th_sum = in_cksum(m, len); /* Finish the IP header */ h->ip_v = 4; h->ip_hl = sizeof(*h) >> 2; h->ip_tos = IPTOS_LOWDELAY; /* * ip_output() expects ip_len and ip_off to be in host order. */ h->ip_len = len; h->ip_off = (path_mtu_discovery ? IP_DF : 0); h->ip_ttl = ttl ? ttl : ip_defttl; h->ip_sum = 0; bzero(&ro, sizeof(ro)); ip_output(m, NULL, &ro, 0, NULL, NULL); ROUTE_RELEASE(&ro); break; } #endif /* INET */ case AF_INET6: { struct route_in6 ro6; /* TCP checksum */ th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), tlen); h6->ip6_vfc |= IPV6_VERSION; h6->ip6_hlim = IPV6_DEFHLIM; ip6_output_setsrcifscope(m, IFSCOPE_UNKNOWN, NULL); ip6_output_setdstifscope(m, IFSCOPE_UNKNOWN, NULL); bzero(&ro6, sizeof(ro6)); ip6_output(m, NULL, &ro6, 0, NULL, NULL, NULL); ROUTE_RELEASE(&ro6); break; } } } static __attribute__((noinline)) void pf_send_icmp(pbuf_t *pbuf, u_int8_t type, u_int8_t code, sa_family_t af, struct pf_rule *r) { struct mbuf *m0; struct pf_mtag *pf_mtag; m0 = pbuf_clone_to_mbuf(pbuf); if (m0 == NULL) { return; } if ((pf_mtag = pf_get_mtag(m0)) == NULL) { return; } pf_mtag->pftag_flags |= PF_TAG_GENERATED; if (PF_RTABLEID_IS_VALID(r->rtableid)) { pf_mtag->pftag_rtableid = r->rtableid; } #if PF_ECN /* add hints for ecn */ pf_mtag->pftag_hdr = mtod(m0, struct ip *); /* record address family */ pf_mtag->pftag_flags &= ~(PF_TAG_HDR_INET | PF_TAG_HDR_INET6); switch (af) { #if INET case AF_INET: pf_mtag->pftag_flags |= PF_TAG_HDR_INET; m0->m_pkthdr.pkt_proto = IPPROTO_ICMP; break; #endif /* INET */ case AF_INET6: pf_mtag->pftag_flags |= PF_TAG_HDR_INET6; m0->m_pkthdr.pkt_proto = IPPROTO_ICMPV6; break; } #endif /* PF_ECN */ switch (af) { #if INET case AF_INET: icmp_error(m0, type, code, 0, 0); break; #endif /* INET */ case AF_INET6: icmp6_error(m0, type, code, 0); break; } } /* * Return 1 if the addresses a and b match (with mask m), otherwise return 0. * If n is 0, they match if they are equal. If n is != 0, they match if they * are different. */ int pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, struct pf_addr *b, sa_family_t af) { int match = 0; switch (af) { #if INET case AF_INET: if ((a->addr32[0] & m->addr32[0]) == (b->addr32[0] & m->addr32[0])) { match++; } break; #endif /* INET */ case AF_INET6: if (((a->addr32[0] & m->addr32[0]) == (b->addr32[0] & m->addr32[0])) && ((a->addr32[1] & m->addr32[1]) == (b->addr32[1] & m->addr32[1])) && ((a->addr32[2] & m->addr32[2]) == (b->addr32[2] & m->addr32[2])) && ((a->addr32[3] & m->addr32[3]) == (b->addr32[3] & m->addr32[3]))) { match++; } break; } if (match) { if (n) { return 0; } else { return 1; } } else { if (n) { return 1; } else { return 0; } } } /* * Return 1 if b <= a <= e, otherwise return 0. */ int pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, struct pf_addr *a, sa_family_t af) { switch (af) { #if INET case AF_INET: if ((a->addr32[0] < b->addr32[0]) || (a->addr32[0] > e->addr32[0])) { return 0; } break; #endif /* INET */ case AF_INET6: { int i; /* check a >= b */ for (i = 0; i < 4; ++i) { if (a->addr32[i] > b->addr32[i]) { break; } else if (a->addr32[i] < b->addr32[i]) { return 0; } } /* check a <= e */ for (i = 0; i < 4; ++i) { if (a->addr32[i] < e->addr32[i]) { break; } else if (a->addr32[i] > e->addr32[i]) { return 0; } } break; } } return 1; } int pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) { switch (op) { case PF_OP_IRG: return (p > a1) && (p < a2); case PF_OP_XRG: return (p < a1) || (p > a2); case PF_OP_RRG: return (p >= a1) && (p <= a2); case PF_OP_EQ: return p == a1; case PF_OP_NE: return p != a1; case PF_OP_LT: return p < a1; case PF_OP_LE: return p <= a1; case PF_OP_GT: return p > a1; case PF_OP_GE: return p >= a1; } return 0; /* never reached */ } int pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) { #if BYTE_ORDER != BIG_ENDIAN NTOHS(a1); NTOHS(a2); NTOHS(p); #endif return pf_match(op, a1, a2, p); } int pf_match_xport(u_int8_t proto, u_int8_t proto_variant, union pf_rule_xport *rx, union pf_state_xport *sx) { int d = !0; if (sx) { switch (proto) { case IPPROTO_GRE: if (proto_variant == PF_GRE_PPTP_VARIANT) { d = (rx->call_id == sx->call_id); } break; case IPPROTO_ESP: d = (rx->spi == sx->spi); break; case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_ICMP: case IPPROTO_ICMPV6: if (rx->range.op) { d = pf_match_port(rx->range.op, rx->range.port[0], rx->range.port[1], sx->port); } break; default: break; } } return d; } int pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) { if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) { return 0; } return pf_match(op, a1, a2, u); } int pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) { if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) { return 0; } return pf_match(op, a1, a2, g); } static int pf_match_tag(struct pf_rule *r, struct pf_mtag *pf_mtag, int *tag) { if (*tag == -1) { *tag = pf_mtag->pftag_tag; } return (!r->match_tag_not && r->match_tag == *tag) || (r->match_tag_not && r->match_tag != *tag); } int pf_tag_packet(pbuf_t *pbuf, struct pf_mtag *pf_mtag, int tag, unsigned int rtableid, struct pf_pdesc *pd) { if (tag <= 0 && !PF_RTABLEID_IS_VALID(rtableid) && (pd == NULL || !(pd->pktflags & PKTF_FLOW_ID))) { return 0; } if (pf_mtag == NULL && (pf_mtag = pf_get_mtag_pbuf(pbuf)) == NULL) { return 1; } if (tag > 0) { pf_mtag->pftag_tag = tag; } if (PF_RTABLEID_IS_VALID(rtableid)) { pf_mtag->pftag_rtableid = rtableid; } if (pd != NULL && (pd->pktflags & PKTF_FLOW_ID)) { *pbuf->pb_flowsrc = pd->flowsrc; *pbuf->pb_flowid = pd->flowhash; *pbuf->pb_flags |= pd->pktflags; *pbuf->pb_proto = pd->proto; } return 0; } void pf_step_into_anchor(int *depth, struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, int *match) { struct pf_anchor_stackframe *f; (*r)->anchor->match = 0; if (match) { *match = 0; } if (*depth >= (int)sizeof(pf_anchor_stack) / (int)sizeof(pf_anchor_stack[0])) { printf("pf_step_into_anchor: stack overflow\n"); *r = TAILQ_NEXT(*r, entries); return; } else if (*depth == 0 && a != NULL) { *a = *r; } f = pf_anchor_stack + (*depth)++; f->rs = *rs; f->r = *r; if ((*r)->anchor_wildcard) { f->parent = &(*r)->anchor->children; if ((f->child = RB_MIN(pf_anchor_node, f->parent)) == NULL) { *r = NULL; return; } *rs = &f->child->ruleset; } else { f->parent = NULL; f->child = NULL; *rs = &(*r)->anchor->ruleset; } *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); } int pf_step_out_of_anchor(int *depth, struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, int *match) { struct pf_anchor_stackframe *f; int quick = 0; do { if (*depth <= 0) { break; } f = pf_anchor_stack + *depth - 1; if (f->parent != NULL && f->child != NULL) { if (f->child->match || (match != NULL && *match)) { f->r->anchor->match = 1; if (match) { *match = 0; } } f->child = RB_NEXT(pf_anchor_node, f->parent, f->child); if (f->child != NULL) { *rs = &f->child->ruleset; *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); if (*r == NULL) { continue; } else { break; } } } (*depth)--; if (*depth == 0 && a != NULL) { *a = NULL; } *rs = f->rs; if (f->r->anchor->match || (match != NULL && *match)) { quick = f->r->quick; } *r = TAILQ_NEXT(f->r, entries); } while (*r == NULL); return quick; } void pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) { switch (af) { #if INET case AF_INET: naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | ((rmask->addr32[0] ^ 0xffffffff) & saddr->addr32[0]); break; #endif /* INET */ case AF_INET6: naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | ((rmask->addr32[0] ^ 0xffffffff) & saddr->addr32[0]); naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | ((rmask->addr32[1] ^ 0xffffffff) & saddr->addr32[1]); naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | ((rmask->addr32[2] ^ 0xffffffff) & saddr->addr32[2]); naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | ((rmask->addr32[3] ^ 0xffffffff) & saddr->addr32[3]); break; } } void pf_addr_inc(struct pf_addr *addr, sa_family_t af) { switch (af) { #if INET case AF_INET: addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); break; #endif /* INET */ case AF_INET6: if (addr->addr32[3] == 0xffffffff) { addr->addr32[3] = 0; if (addr->addr32[2] == 0xffffffff) { addr->addr32[2] = 0; if (addr->addr32[1] == 0xffffffff) { addr->addr32[1] = 0; addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); } else { addr->addr32[1] = htonl(ntohl(addr->addr32[1]) + 1); } } else { addr->addr32[2] = htonl(ntohl(addr->addr32[2]) + 1); } } else { addr->addr32[3] = htonl(ntohl(addr->addr32[3]) + 1); } break; } } #define mix(a, b, c) \ do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while (0) /* * hash function based on bridge_hash in if_bridge.c */ static void pf_hash(struct pf_addr *inaddr, struct pf_addr *hash, struct pf_poolhashkey *key, sa_family_t af) { u_int32_t a = 0x9e3779b9, b = 0x9e3779b9, c = key->key32[0]; switch (af) { #if INET case AF_INET: a += inaddr->addr32[0]; b += key->key32[1]; mix(a, b, c); hash->addr32[0] = c + key->key32[2]; break; #endif /* INET */ case AF_INET6: a += inaddr->addr32[0]; b += inaddr->addr32[2]; mix(a, b, c); hash->addr32[0] = c; a += inaddr->addr32[1]; b += inaddr->addr32[3]; c += key->key32[1]; mix(a, b, c); hash->addr32[1] = c; a += inaddr->addr32[2]; b += inaddr->addr32[1]; c += key->key32[2]; mix(a, b, c); hash->addr32[2] = c; a += inaddr->addr32[3]; b += inaddr->addr32[0]; c += key->key32[3]; mix(a, b, c); hash->addr32[3] = c; break; } } static __attribute__((noinline)) int pf_map_addr(sa_family_t af, struct pf_rule *r, struct pf_addr *saddr, struct pf_addr *naddr, struct pf_addr *init_addr, struct pf_src_node **sn) { unsigned char hash[16]; struct pf_pool *rpool = &r->rpool; struct pf_addr *raddr = &rpool->cur->addr.v.a.addr; struct pf_addr *rmask = &rpool->cur->addr.v.a.mask; struct pf_pooladdr *acur = rpool->cur; struct pf_src_node k; if (*sn == NULL && r->rpool.opts & PF_POOL_STICKYADDR && (r->rpool.opts & PF_POOL_TYPEMASK) != PF_POOL_NONE) { k.af = af; PF_ACPY(&k.addr, saddr, af); if (r->rule_flag & PFRULE_RULESRCTRACK || r->rpool.opts & PF_POOL_STICKYADDR) { k.rule.ptr = r; } else { k.rule.ptr = NULL; } pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; *sn = RB_FIND(pf_src_tree, &tree_src_tracking, &k); if (*sn != NULL && !PF_AZERO(&(*sn)->raddr, rpool->af)) { PF_ACPY(naddr, &(*sn)->raddr, rpool->af); if (pf_status.debug >= PF_DEBUG_MISC) { printf("pf_map_addr: src tracking maps "); pf_print_host(&k.addr, 0, af); printf(" to "); pf_print_host(naddr, 0, rpool->af); printf("\n"); } return 0; } } if (rpool->cur->addr.type == PF_ADDR_NOROUTE) { return 1; } if (rpool->cur->addr.type == PF_ADDR_DYNIFTL) { if (rpool->cur->addr.p.dyn == NULL) { return 1; } switch (rpool->af) { #if INET case AF_INET: if (rpool->cur->addr.p.dyn->pfid_acnt4 < 1 && (rpool->opts & PF_POOL_TYPEMASK) != PF_POOL_ROUNDROBIN) { return 1; } raddr = &rpool->cur->addr.p.dyn->pfid_addr4; rmask = &rpool->cur->addr.p.dyn->pfid_mask4; break; #endif /* INET */ case AF_INET6: if (rpool->cur->addr.p.dyn->pfid_acnt6 < 1 && (rpool->opts & PF_POOL_TYPEMASK) != PF_POOL_ROUNDROBIN) { return 1; } raddr = &rpool->cur->addr.p.dyn->pfid_addr6; rmask = &rpool->cur->addr.p.dyn->pfid_mask6; break; } } else if (rpool->cur->addr.type == PF_ADDR_TABLE) { if ((rpool->opts & PF_POOL_TYPEMASK) != PF_POOL_ROUNDROBIN) { return 1; /* unsupported */ } } else { raddr = &rpool->cur->addr.v.a.addr; rmask = &rpool->cur->addr.v.a.mask; } switch (rpool->opts & PF_POOL_TYPEMASK) { case PF_POOL_NONE: PF_ACPY(naddr, raddr, rpool->af); break; case PF_POOL_BITMASK: ASSERT(af == rpool->af); PF_POOLMASK(naddr, raddr, rmask, saddr, af); break; case PF_POOL_RANDOM: if (init_addr != NULL && PF_AZERO(init_addr, rpool->af)) { switch (af) { #if INET case AF_INET: rpool->counter.addr32[0] = htonl(random()); break; #endif /* INET */ case AF_INET6: if (rmask->addr32[3] != 0xffffffff) { rpool->counter.addr32[3] = RandomULong(); } else { break; } if (rmask->addr32[2] != 0xffffffff) { rpool->counter.addr32[2] = RandomULong(); } else { break; } if (rmask->addr32[1] != 0xffffffff) { rpool->counter.addr32[1] = RandomULong(); } else { break; } if (rmask->addr32[0] != 0xffffffff) { rpool->counter.addr32[0] = RandomULong(); } break; } PF_POOLMASK(naddr, raddr, rmask, &rpool->counter, rpool->af); PF_ACPY(init_addr, naddr, rpool->af); } else { PF_AINC(&rpool->counter, rpool->af); PF_POOLMASK(naddr, raddr, rmask, &rpool->counter, rpool->af); } break; case PF_POOL_SRCHASH: ASSERT(af == rpool->af); PF_POOLMASK(naddr, raddr, rmask, saddr, af); pf_hash(saddr, (struct pf_addr *)(void *)&hash, &rpool->key, af); PF_POOLMASK(naddr, raddr, rmask, (struct pf_addr *)(void *)&hash, af); break; case PF_POOL_ROUNDROBIN: if (rpool->cur->addr.type == PF_ADDR_TABLE) { if (!pfr_pool_get(rpool->cur->addr.p.tbl, &rpool->tblidx, &rpool->counter, &raddr, &rmask, rpool->af)) { goto get_addr; } } else if (rpool->cur->addr.type == PF_ADDR_DYNIFTL) { if (rpool->cur->addr.p.dyn != NULL && !pfr_pool_get(rpool->cur->addr.p.dyn->pfid_kt, &rpool->tblidx, &rpool->counter, &raddr, &rmask, af)) { goto get_addr; } } else if (pf_match_addr(0, raddr, rmask, &rpool->counter, rpool->af)) { goto get_addr; } try_next: if ((rpool->cur = TAILQ_NEXT(rpool->cur, entries)) == NULL) { rpool->cur = TAILQ_FIRST(&rpool->list); } if (rpool->cur->addr.type == PF_ADDR_TABLE) { rpool->tblidx = -1; if (pfr_pool_get(rpool->cur->addr.p.tbl, &rpool->tblidx, &rpool->counter, &raddr, &rmask, rpool->af)) { /* table contains no address of type * 'rpool->af' */ if (rpool->cur != acur) { goto try_next; } return 1; } } else if (rpool->cur->addr.type == PF_ADDR_DYNIFTL) { rpool->tblidx = -1; if (rpool->cur->addr.p.dyn == NULL) { return 1; } if (pfr_pool_get(rpool->cur->addr.p.dyn->pfid_kt, &rpool->tblidx, &rpool->counter, &raddr, &rmask, rpool->af)) { /* table contains no address of type * 'rpool->af' */ if (rpool->cur != acur) { goto try_next; } return 1; } } else { raddr = &rpool->cur->addr.v.a.addr; rmask = &rpool->cur->addr.v.a.mask; PF_ACPY(&rpool->counter, raddr, rpool->af); } get_addr: PF_ACPY(naddr, &rpool->counter, rpool->af); if (init_addr != NULL && PF_AZERO(init_addr, rpool->af)) { PF_ACPY(init_addr, naddr, rpool->af); } PF_AINC(&rpool->counter, rpool->af); break; } if (*sn != NULL) { PF_ACPY(&(*sn)->raddr, naddr, rpool->af); } if (pf_status.debug >= PF_DEBUG_MISC && (rpool->opts & PF_POOL_TYPEMASK) != PF_POOL_NONE) { printf("pf_map_addr: selected address "); pf_print_host(naddr, 0, rpool->af); printf("\n"); } return 0; } static __attribute__((noinline)) int pf_get_sport(struct pf_pdesc *pd, struct pfi_kif *kif, struct pf_rule *r, struct pf_addr *saddr, union pf_state_xport *sxport, struct pf_addr *daddr, union pf_state_xport *dxport, struct pf_addr *naddr, union pf_state_xport *nxport, struct pf_src_node **sn #if SKYWALK , netns_token *pnstoken #endif ) { #pragma unused(kif) struct pf_state_key_cmp key; struct pf_addr init_addr; unsigned int cut; sa_family_t af = pd->af; u_int8_t proto = pd->proto; unsigned int low = r->rpool.proxy_port[0]; unsigned int high = r->rpool.proxy_port[1]; bzero(&init_addr, sizeof(init_addr)); if (pf_map_addr(af, r, saddr, naddr, &init_addr, sn)) { return 1; } if (proto == IPPROTO_ICMP) { low = 1; high = 65535; } if (!nxport) { return 0; /* No output necessary. */ } /*--- Special mapping rules for UDP ---*/ if (proto == IPPROTO_UDP) { /*--- Never float IKE source port ---*/ if (ntohs(sxport->port) == PF_IKE_PORT) { nxport->port = sxport->port; return 0; } /*--- Apply exterior mapping options ---*/ if (r->extmap > PF_EXTMAP_APD) { struct pf_state *s; TAILQ_FOREACH(s, &state_list, entry_list) { struct pf_state_key *sk = s->state_key; if (!sk) { continue; } if (s->nat_rule.ptr != r) { continue; } if (sk->proto != IPPROTO_UDP || sk->af_lan != af) { continue; } if (sk->lan.xport.port != sxport->port) { continue; } if (PF_ANEQ(&sk->lan.addr, saddr, af)) { continue; } if (r->extmap < PF_EXTMAP_EI && PF_ANEQ(&sk->ext_lan.addr, daddr, af)) { continue; } #if SKYWALK if (netns_reserve(pnstoken, naddr->addr32, NETNS_AF_SIZE(af), proto, sxport->port, NETNS_PF, NULL) != 0) { return 1; } #endif nxport->port = sk->gwy.xport.port; return 0; } } } else if (proto == IPPROTO_TCP) { struct pf_state* s; /* * APPLE MODIFICATION: * Fix allows....NAT to use a single binding for TCP session * with same source IP and source port */ TAILQ_FOREACH(s, &state_list, entry_list) { struct pf_state_key* sk = s->state_key; if (!sk) { continue; } if (s->nat_rule.ptr != r) { continue; } if (sk->proto != IPPROTO_TCP || sk->af_lan != af) { continue; } if (sk->lan.xport.port != sxport->port) { continue; } if (!(PF_AEQ(&sk->lan.addr, saddr, af))) { continue; } #if SKYWALK if (netns_reserve(pnstoken, naddr->addr32, NETNS_AF_SIZE(af), proto, sxport->port, NETNS_PF, NULL) != 0) { return 1; } #endif nxport->port = sk->gwy.xport.port; return 0; } } do { key.af_gwy = af; key.proto = proto; PF_ACPY(&key.ext_gwy.addr, daddr, key.af_gwy); PF_ACPY(&key.gwy.addr, naddr, key.af_gwy); switch (proto) { case IPPROTO_UDP: key.proto_variant = r->extfilter; break; default: key.proto_variant = 0; break; } if (dxport) { key.ext_gwy.xport = *dxport; } else { memset(&key.ext_gwy.xport, 0, sizeof(key.ext_gwy.xport)); } /* * port search; start random, step; * similar 2 portloop in in_pcbbind */ if (!(proto == IPPROTO_TCP || proto == IPPROTO_UDP || proto == IPPROTO_ICMP)) { if (dxport) { key.gwy.xport = *dxport; } else { memset(&key.gwy.xport, 0, sizeof(key.gwy.xport)); } #if SKYWALK /* Nothing to do: netns handles TCP/UDP only */ #endif if (pf_find_state_all(&key, PF_IN, NULL) == NULL) { return 0; } } else if (low == 0 && high == 0) { key.gwy.xport = *nxport; if (pf_find_state_all(&key, PF_IN, NULL) == NULL #if SKYWALK && ((proto != IPPROTO_TCP && proto != IPPROTO_UDP) || netns_reserve(pnstoken, naddr->addr32, NETNS_AF_SIZE(af), proto, nxport->port, NETNS_PF, NULL) == 0) #endif ) { return 0; } } else if (low == high) { key.gwy.xport.port = htons(low); if (pf_find_state_all(&key, PF_IN, NULL) == NULL #if SKYWALK && ((proto != IPPROTO_TCP && proto != IPPROTO_UDP) || netns_reserve(pnstoken, naddr->addr32, NETNS_AF_SIZE(af), proto, htons(low), NETNS_PF, NULL) == 0) #endif ) { nxport->port = htons(low); return 0; } } else { unsigned int tmp; if (low > high) { tmp = low; low = high; high = tmp; } /* low < high */ cut = htonl(random()) % (1 + high - low) + low; /* low <= cut <= high */ for (tmp = cut; tmp <= high; ++(tmp)) { key.gwy.xport.port = htons(tmp); if (pf_find_state_all(&key, PF_IN, NULL) == NULL #if SKYWALK && ((proto != IPPROTO_TCP && proto != IPPROTO_UDP) || netns_reserve(pnstoken, naddr->addr32, NETNS_AF_SIZE(af), proto, htons(tmp), NETNS_PF, NULL) == 0) #endif ) { nxport->port = htons(tmp); return 0; } } for (tmp = cut - 1; tmp >= low; --(tmp)) { key.gwy.xport.port = htons(tmp); if (pf_find_state_all(&key, PF_IN, NULL) == NULL #if SKYWALK && ((proto != IPPROTO_TCP && proto != IPPROTO_UDP) || netns_reserve(pnstoken, naddr->addr32, NETNS_AF_SIZE(af), proto, htons(tmp), NETNS_PF, NULL) == 0) #endif ) { nxport->port = htons(tmp); return 0; } } } switch (r->rpool.opts & PF_POOL_TYPEMASK) { case PF_POOL_RANDOM: case PF_POOL_ROUNDROBIN: if (pf_map_addr(af, r, saddr, naddr, &init_addr, sn)) { return 1; } break; case PF_POOL_NONE: case PF_POOL_SRCHASH: case PF_POOL_BITMASK: default: return 1; } } while (!PF_AEQ(&init_addr, naddr, af)); return 1; /* none available */ } static __attribute__((noinline)) struct pf_rule * pf_match_translation(struct pf_pdesc *pd, pbuf_t *pbuf, int off, int direction, struct pfi_kif *kif, struct pf_addr *saddr, union pf_state_xport *sxport, struct pf_addr *daddr, union pf_state_xport *dxport, int rs_num) { struct pf_rule *r, *rm = NULL; struct pf_ruleset *ruleset = NULL; int tag = -1; unsigned int rtableid = IFSCOPE_NONE; int asd = 0; r = TAILQ_FIRST(pf_main_ruleset.rules[rs_num].active.ptr); while (r && rm == NULL) { struct pf_rule_addr *src = NULL, *dst = NULL; struct pf_addr_wrap *xdst = NULL; struct pf_addr_wrap *xsrc = NULL; union pf_rule_xport rdrxport; if (r->action == PF_BINAT && direction == PF_IN) { src = &r->dst; if (r->rpool.cur != NULL) { xdst = &r->rpool.cur->addr; } } else if (r->action == PF_RDR && direction == PF_OUT) { dst = &r->src; src = &r->dst; if (r->rpool.cur != NULL) { rdrxport.range.op = PF_OP_EQ; rdrxport.range.port[0] = htons(r->rpool.proxy_port[0]); xsrc = &r->rpool.cur->addr; } } else { src = &r->src; dst = &r->dst; } r->evaluations++; if (pfi_kif_match(r->kif, kif) == r->ifnot) { r = r->skip[PF_SKIP_IFP].ptr; } else if (r->direction && r->direction != direction) { r = r->skip[PF_SKIP_DIR].ptr; } else if (r->af && r->af != pd->af) { r = r->skip[PF_SKIP_AF].ptr; } else if (r->proto && r->proto != pd->proto) { r = r->skip[PF_SKIP_PROTO].ptr; } else if (xsrc && PF_MISMATCHAW(xsrc, saddr, pd->af, 0, NULL)) { r = TAILQ_NEXT(r, entries); } else if (!xsrc && PF_MISMATCHAW(&src->addr, saddr, pd->af, src->neg, kif)) { r = TAILQ_NEXT(r, entries); } else if (xsrc && (!rdrxport.range.port[0] || !pf_match_xport(r->proto, r->proto_variant, &rdrxport, sxport))) { r = TAILQ_NEXT(r, entries); } else if (!xsrc && !pf_match_xport(r->proto, r->proto_variant, &src->xport, sxport)) { r = r->skip[src == &r->src ? PF_SKIP_SRC_PORT : PF_SKIP_DST_PORT].ptr; } else if (dst != NULL && PF_MISMATCHAW(&dst->addr, daddr, pd->af, dst->neg, NULL)) { r = r->skip[PF_SKIP_DST_ADDR].ptr; } else if (xdst != NULL && PF_MISMATCHAW(xdst, daddr, pd->af, 0, NULL)) { r = TAILQ_NEXT(r, entries); } else if (dst && !pf_match_xport(r->proto, r->proto_variant, &dst->xport, dxport)) { r = r->skip[PF_SKIP_DST_PORT].ptr; } else if (r->match_tag && !pf_match_tag(r, pd->pf_mtag, &tag)) { r = TAILQ_NEXT(r, entries); } else if (r->os_fingerprint != PF_OSFP_ANY && (pd->proto != IPPROTO_TCP || !pf_osfp_match(pf_osfp_fingerprint(pd, pbuf, off, pd->hdr.tcp), r->os_fingerprint))) { r = TAILQ_NEXT(r, entries); } else { if (r->tag) { tag = r->tag; } if (PF_RTABLEID_IS_VALID(r->rtableid)) { rtableid = r->rtableid; } if (r->anchor == NULL) { rm = r; } else { pf_step_into_anchor(&asd, &ruleset, rs_num, &r, NULL, NULL); } } if (r == NULL) { pf_step_out_of_anchor(&asd, &ruleset, rs_num, &r, NULL, NULL); } } if (pf_tag_packet(pbuf, pd->pf_mtag, tag, rtableid, NULL)) { return NULL; } if (rm != NULL && (rm->action == PF_NONAT || rm->action == PF_NORDR || rm->action == PF_NOBINAT || rm->action == PF_NONAT64)) { return NULL; } return rm; } /* * Get address translation information for NAT/BINAT/RDR * pd : pf packet descriptor * pbuf : pbuf holding the packet * off : offset to protocol header * direction : direction of packet * kif : pf interface info obtained from the packet's recv interface * sn : source node pointer (output) * saddr : packet source address * sxport : packet source port * daddr : packet destination address * dxport : packet destination port * nsxport : translated source port (output) * * Translated source & destination address are updated in pd->nsaddr & * pd->ndaddr */ static __attribute__((noinline)) struct pf_rule * pf_get_translation_aux(struct pf_pdesc *pd, pbuf_t *pbuf, int off, int direction, struct pfi_kif *kif, struct pf_src_node **sn, struct pf_addr *saddr, union pf_state_xport *sxport, struct pf_addr *daddr, union pf_state_xport *dxport, union pf_state_xport *nsxport #if SKYWALK , netns_token *pnstoken #endif ) { struct pf_rule *r = NULL; pd->naf = pd->af; if (direction == PF_OUT) { r = pf_match_translation(pd, pbuf, off, direction, kif, saddr, sxport, daddr, dxport, PF_RULESET_BINAT); if (r == NULL) { r = pf_match_translation(pd, pbuf, off, direction, kif, saddr, sxport, daddr, dxport, PF_RULESET_RDR); } if (r == NULL) { r = pf_match_translation(pd, pbuf, off, direction, kif, saddr, sxport, daddr, dxport, PF_RULESET_NAT); } } else { r = pf_match_translation(pd, pbuf, off, direction, kif, saddr, sxport, daddr, dxport, PF_RULESET_RDR); if (r == NULL) { r = pf_match_translation(pd, pbuf, off, direction, kif, saddr, sxport, daddr, dxport, PF_RULESET_BINAT); } } if (r != NULL) { struct pf_addr *nsaddr = &pd->naddr; struct pf_addr *ndaddr = &pd->ndaddr; PF_ACPY(nsaddr, saddr, pd->af); PF_ACPY(ndaddr, daddr, pd->af); switch (r->action) { case PF_NONAT: case PF_NONAT64: case PF_NOBINAT: case PF_NORDR: return NULL; case PF_NAT: case PF_NAT64: /* * we do NAT64 on incoming path and we call ip_input * which asserts receive interface to be not NULL. * The below check is to prevent NAT64 action on any * packet generated by local entity using synthesized * IPv6 address. */ if ((r->action == PF_NAT64) && (direction == PF_OUT)) { return NULL; } if (pf_get_sport(pd, kif, r, saddr, sxport, daddr, dxport, nsaddr, nsxport, sn #if SKYWALK , pnstoken #endif )) { DPFPRINTF(PF_DEBUG_MISC, ("pf: NAT proxy port allocation " "(%u-%u) failed\n", r->rpool.proxy_port[0], r->rpool.proxy_port[1])); return NULL; } /* * For NAT64 the destination IPv4 address is derived * from the last 32 bits of synthesized IPv6 address */ if (r->action == PF_NAT64) { ndaddr->v4addr.s_addr = daddr->addr32[3]; pd->naf = AF_INET; } break; case PF_BINAT: switch (direction) { case PF_OUT: if (r->rpool.cur->addr.type == PF_ADDR_DYNIFTL) { if (r->rpool.cur->addr.p.dyn == NULL) { return NULL; } switch (pd->af) { #if INET case AF_INET: if (r->rpool.cur->addr.p.dyn-> pfid_acnt4 < 1) { return NULL; } PF_POOLMASK(nsaddr, &r->rpool.cur->addr.p.dyn-> pfid_addr4, &r->rpool.cur->addr.p.dyn-> pfid_mask4, saddr, AF_INET); break; #endif /* INET */ case AF_INET6: if (r->rpool.cur->addr.p.dyn-> pfid_acnt6 < 1) { return NULL; } PF_POOLMASK(nsaddr, &r->rpool.cur->addr.p.dyn-> pfid_addr6, &r->rpool.cur->addr.p.dyn-> pfid_mask6, saddr, AF_INET6); break; } } else { PF_POOLMASK(nsaddr, &r->rpool.cur->addr.v.a.addr, &r->rpool.cur->addr.v.a.mask, saddr, pd->af); } break; case PF_IN: if (r->src.addr.type == PF_ADDR_DYNIFTL) { if (r->src.addr.p.dyn == NULL) { return NULL; } switch (pd->af) { #if INET case AF_INET: if (r->src.addr.p.dyn-> pfid_acnt4 < 1) { return NULL; } PF_POOLMASK(ndaddr, &r->src.addr.p.dyn-> pfid_addr4, &r->src.addr.p.dyn-> pfid_mask4, daddr, AF_INET); break; #endif /* INET */ case AF_INET6: if (r->src.addr.p.dyn-> pfid_acnt6 < 1) { return NULL; } PF_POOLMASK(ndaddr, &r->src.addr.p.dyn-> pfid_addr6, &r->src.addr.p.dyn-> pfid_mask6, daddr, AF_INET6); break; } } else { PF_POOLMASK(ndaddr, &r->src.addr.v.a.addr, &r->src.addr.v.a.mask, daddr, pd->af); } break; } break; case PF_RDR: { switch (direction) { case PF_OUT: if (r->dst.addr.type == PF_ADDR_DYNIFTL) { if (r->dst.addr.p.dyn == NULL) { return NULL; } switch (pd->af) { #if INET case AF_INET: if (r->dst.addr.p.dyn-> pfid_acnt4 < 1) { return NULL; } PF_POOLMASK(nsaddr, &r->dst.addr.p.dyn-> pfid_addr4, &r->dst.addr.p.dyn-> pfid_mask4, daddr, AF_INET); break; #endif /* INET */ case AF_INET6: if (r->dst.addr.p.dyn-> pfid_acnt6 < 1) { return NULL; } PF_POOLMASK(nsaddr, &r->dst.addr.p.dyn-> pfid_addr6, &r->dst.addr.p.dyn-> pfid_mask6, daddr, AF_INET6); break; } } else { PF_POOLMASK(nsaddr, &r->dst.addr.v.a.addr, &r->dst.addr.v.a.mask, daddr, pd->af); } if (nsxport && r->dst.xport.range.port[0]) { nsxport->port = r->dst.xport.range.port[0]; } break; case PF_IN: if (pf_map_addr(pd->af, r, saddr, ndaddr, NULL, sn)) { return NULL; } if ((r->rpool.opts & PF_POOL_TYPEMASK) == PF_POOL_BITMASK) { PF_POOLMASK(ndaddr, ndaddr, &r->rpool.cur->addr.v.a.mask, daddr, pd->af); } if (nsxport && dxport) { if (r->rpool.proxy_port[1]) { u_int32_t tmp_nport; tmp_nport = ((ntohs(dxport->port) - ntohs(r->dst.xport.range. port[0])) % (r->rpool.proxy_port[1] - r->rpool.proxy_port[0] + 1)) + r->rpool.proxy_port[0]; /* wrap around if necessary */ if (tmp_nport > 65535) { tmp_nport -= 65535; } nsxport->port = htons((u_int16_t)tmp_nport); } else if (r->rpool.proxy_port[0]) { nsxport->port = htons(r->rpool. proxy_port[0]); } } break; } break; } default: return NULL; } } return r; } int pf_socket_lookup(int direction, struct pf_pdesc *pd) { struct pf_addr *saddr, *daddr; u_int16_t sport, dport; struct inpcbinfo *pi; int inp = 0; if (pd == NULL) { return -1; } pd->lookup.uid = UID_MAX; pd->lookup.gid = GID_MAX; pd->lookup.pid = NO_PID; switch (pd->proto) { case IPPROTO_TCP: if (pd->hdr.tcp == NULL) { return -1; } sport = pd->hdr.tcp->th_sport; dport = pd->hdr.tcp->th_dport; pi = &tcbinfo; break; case IPPROTO_UDP: if (pd->hdr.udp == NULL) { return -1; } sport = pd->hdr.udp->uh_sport; dport = pd->hdr.udp->uh_dport; pi = &udbinfo; break; default: return -1; } if (direction == PF_IN) { saddr = pd->src; daddr = pd->dst; } else { u_int16_t p; p = sport; sport = dport; dport = p; saddr = pd->dst; daddr = pd->src; } switch (pd->af) { #if INET case AF_INET: inp = in_pcblookup_hash_exists(pi, saddr->v4addr, sport, daddr->v4addr, dport, 0, &pd->lookup.uid, &pd->lookup.gid, NULL); if (inp == 0) { struct in6_addr s6, d6; memset(&s6, 0, sizeof(s6)); s6.s6_addr16[5] = htons(0xffff); memcpy(&s6.s6_addr32[3], &saddr->v4addr, sizeof(saddr->v4addr)); memset(&d6, 0, sizeof(d6)); d6.s6_addr16[5] = htons(0xffff); memcpy(&d6.s6_addr32[3], &daddr->v4addr, sizeof(daddr->v4addr)); inp = in6_pcblookup_hash_exists(pi, &s6, sport, IFSCOPE_NONE, &d6, dport, IFSCOPE_NONE, 0, &pd->lookup.uid, &pd->lookup.gid, NULL, false); if (inp == 0) { inp = in_pcblookup_hash_exists(pi, saddr->v4addr, sport, daddr->v4addr, dport, INPLOOKUP_WILDCARD, &pd->lookup.uid, &pd->lookup.gid, NULL); if (inp == 0) { inp = in6_pcblookup_hash_exists(pi, &s6, sport, IFSCOPE_NONE, &d6, dport, IFSCOPE_NONE, INPLOOKUP_WILDCARD, &pd->lookup.uid, &pd->lookup.gid, NULL, false); if (inp == 0) { return -1; } } } } break; #endif /* INET */ case AF_INET6: inp = in6_pcblookup_hash_exists(pi, &saddr->v6addr, sport, IFSCOPE_UNKNOWN, &daddr->v6addr, dport, IFSCOPE_UNKNOWN, 0, &pd->lookup.uid, &pd->lookup.gid, NULL, false); if (inp == 0) { inp = in6_pcblookup_hash_exists(pi, &saddr->v6addr, sport, IFSCOPE_UNKNOWN, &daddr->v6addr, dport, IFSCOPE_UNKNOWN, INPLOOKUP_WILDCARD, &pd->lookup.uid, &pd->lookup.gid, NULL, false); if (inp == 0) { return -1; } } break; default: return -1; } return 1; } static __attribute__((noinline)) u_int8_t pf_get_wscale(pbuf_t *pbuf, int off, u_int16_t th_off, sa_family_t af) { int hlen; u_int8_t hdr[60]; u_int8_t *opt, optlen; u_int8_t wscale = 0; hlen = th_off << 2; /* hlen <= sizeof (hdr) */ if (hlen <= (int)sizeof(struct tcphdr)) { return 0; } if (!pf_pull_hdr(pbuf, off, hdr, hlen, NULL, NULL, af)) { return 0; } opt = hdr + sizeof(struct tcphdr); hlen -= sizeof(struct tcphdr); while (hlen >= 3) { switch (*opt) { case TCPOPT_EOL: case TCPOPT_NOP: ++opt; --hlen; break; case TCPOPT_WINDOW: wscale = opt[2]; if (wscale > TCP_MAX_WINSHIFT) { wscale = TCP_MAX_WINSHIFT; } wscale |= PF_WSCALE_FLAG; OS_FALLTHROUGH; default: optlen = opt[1]; if (optlen < 2) { optlen = 2; } hlen -= optlen; opt += optlen; break; } } return wscale; } static __attribute__((noinline)) u_int16_t pf_get_mss(pbuf_t *pbuf, int off, u_int16_t th_off, sa_family_t af) { int hlen; u_int8_t hdr[60]; u_int8_t *opt, optlen; u_int16_t mss = tcp_mssdflt; hlen = th_off << 2; /* hlen <= sizeof (hdr) */ if (hlen <= (int)sizeof(struct tcphdr)) { return 0; } if (!pf_pull_hdr(pbuf, off, hdr, hlen, NULL, NULL, af)) { return 0; } opt = hdr + sizeof(struct tcphdr); hlen -= sizeof(struct tcphdr); while (hlen >= TCPOLEN_MAXSEG) { switch (*opt) { case TCPOPT_EOL: case TCPOPT_NOP: ++opt; --hlen; break; case TCPOPT_MAXSEG: bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); #if BYTE_ORDER != BIG_ENDIAN NTOHS(mss); #endif OS_FALLTHROUGH; default: optlen = opt[1]; if (optlen < 2) { optlen = 2; } hlen -= optlen; opt += optlen; break; } } return mss; } static __attribute__((noinline)) u_int16_t pf_calc_mss(struct pf_addr *addr, sa_family_t af, u_int16_t offer) { #if INET struct sockaddr_in *dst; struct route ro; #endif /* INET */ struct sockaddr_in6 *dst6; struct route_in6 ro6; struct rtentry *rt = NULL; int hlen; u_int16_t mss = tcp_mssdflt; switch (af) { #if INET case AF_INET: hlen = sizeof(struct ip); bzero(&ro, sizeof(ro)); dst = (struct sockaddr_in *)(void *)&ro.ro_dst; dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = addr->v4addr; rtalloc(&ro); rt = ro.ro_rt; break; #endif /* INET */ case AF_INET6: hlen = sizeof(struct ip6_hdr); bzero(&ro6, sizeof(ro6)); dst6 = (struct sockaddr_in6 *)(void *)&ro6.ro_dst; dst6->sin6_family = AF_INET6; dst6->sin6_len = sizeof(*dst6); dst6->sin6_addr = addr->v6addr; rtalloc((struct route *)&ro); rt = ro6.ro_rt; break; default: panic("pf_calc_mss: not AF_INET or AF_INET6!"); return 0; } if (rt && rt->rt_ifp) { /* This is relevant only for PF SYN Proxy */ int interface_mtu = rt->rt_ifp->if_mtu; if (af == AF_INET && INTF_ADJUST_MTU_FOR_CLAT46(rt->rt_ifp)) { interface_mtu = IN6_LINKMTU(rt->rt_ifp); /* Further adjust the size for CLAT46 expansion */ interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD; } mss = interface_mtu - hlen - sizeof(struct tcphdr); mss = max(tcp_mssdflt, mss); rtfree(rt); } mss = min(mss, offer); mss = max(mss, 64); /* sanity - at least max opt space */ return mss; } static void pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr, sa_family_t af) { struct pf_rule *r = s->rule.ptr; s->rt_kif = NULL; if (!r->rt || r->rt == PF_FASTROUTE) { return; } if ((af == AF_INET) || (af == AF_INET6)) { pf_map_addr(af, r, saddr, &s->rt_addr, NULL, &s->nat_src_node); s->rt_kif = r->rpool.cur->kif; } return; } static void pf_attach_state(struct pf_state_key *sk, struct pf_state *s, int tail) { s->state_key = sk; sk->refcnt++; /* list is sorted, if-bound states before floating */ if (tail) { TAILQ_INSERT_TAIL(&sk->states, s, next); } else { TAILQ_INSERT_HEAD(&sk->states, s, next); } } static void pf_state_key_release_flowid(struct pf_state_key *sk) { #pragma unused (sk) #if SKYWALK if ((sk->flowsrc == FLOWSRC_PF) && (sk->flowhash != 0)) { flowidns_release_flowid(sk->flowhash); sk->flowhash = 0; sk->flowsrc = 0; } #endif /* SKYWALK */ } void pf_detach_state(struct pf_state *s, int flags) { struct pf_state_key *sk = s->state_key; if (sk == NULL) { return; } s->state_key = NULL; TAILQ_REMOVE(&sk->states, s, next); if (--sk->refcnt == 0) { if (!(flags & PF_DT_SKIP_EXTGWY)) { pf_remove_state_key_ext_gwy(sk); } if (!(flags & PF_DT_SKIP_LANEXT)) { RB_REMOVE(pf_state_tree_lan_ext, &pf_statetbl_lan_ext, sk); } if (sk->app_state) { pool_put(&pf_app_state_pl, sk->app_state); } pf_state_key_release_flowid(sk); pool_put(&pf_state_key_pl, sk); } } struct pf_state_key * pf_alloc_state_key(struct pf_state *s, struct pf_state_key *psk) { struct pf_state_key *sk; if ((sk = pool_get(&pf_state_key_pl, PR_WAITOK)) == NULL) { return NULL; } bzero(sk, sizeof(*sk)); TAILQ_INIT(&sk->states); pf_attach_state(sk, s, 0); /* initialize state key from psk, if provided */ if (psk != NULL) { bcopy(&psk->lan, &sk->lan, sizeof(sk->lan)); bcopy(&psk->gwy, &sk->gwy, sizeof(sk->gwy)); bcopy(&psk->ext_lan, &sk->ext_lan, sizeof(sk->ext_lan)); bcopy(&psk->ext_gwy, &sk->ext_gwy, sizeof(sk->ext_gwy)); sk->af_lan = psk->af_lan; sk->af_gwy = psk->af_gwy; sk->proto = psk->proto; sk->direction = psk->direction; sk->proto_variant = psk->proto_variant; VERIFY(psk->app_state == NULL); ASSERT(psk->flowsrc != FLOWSRC_PF); sk->flowsrc = psk->flowsrc; sk->flowhash = psk->flowhash; /* don't touch tree entries, states and refcnt on sk */ } if (sk->flowhash == 0) { ASSERT(sk->flowsrc == 0); sk->flowsrc = FLOWSRC_PF; sk->flowhash = pf_calc_state_key_flowhash(sk); } return sk; } static __attribute__((noinline)) u_int32_t pf_tcp_iss(struct pf_pdesc *pd) { MD5_CTX ctx; u_int32_t digest[4]; if (pf_tcp_secret_init == 0) { read_frandom(pf_tcp_secret, sizeof(pf_tcp_secret)); MD5Init(&pf_tcp_secret_ctx); MD5Update(&pf_tcp_secret_ctx, pf_tcp_secret, sizeof(pf_tcp_secret)); pf_tcp_secret_init = 1; } ctx = pf_tcp_secret_ctx; MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); if (pd->af == AF_INET6) { MD5Update(&ctx, (char *)&pd->src->v6addr, sizeof(struct in6_addr)); MD5Update(&ctx, (char *)&pd->dst->v6addr, sizeof(struct in6_addr)); } else { MD5Update(&ctx, (char *)&pd->src->v4addr, sizeof(struct in_addr)); MD5Update(&ctx, (char *)&pd->dst->v4addr, sizeof(struct in_addr)); } MD5Final((u_char *)digest, &ctx); pf_tcp_iss_off += 4096; return digest[0] + random() + pf_tcp_iss_off; } /* * This routine is called to perform address family translation on the * inner IP header (that may come as payload) of an ICMP(v4addr/6) error * response. */ static __attribute__((noinline)) int pf_change_icmp_af(pbuf_t *pbuf, int off, struct pf_pdesc *pd, struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst, sa_family_t af, sa_family_t naf) { struct ip *ip4 = NULL; struct ip6_hdr *ip6 = NULL; void *hdr; int hlen, olen; uint64_t ipid_salt = (uint64_t)pbuf_get_packet_buffer_address(pbuf); if (af == naf || (af != AF_INET && af != AF_INET6) || (naf != AF_INET && naf != AF_INET6)) { return -1; } /* old header */ olen = pd2->off - off; /* new header */ hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); /* Modify the pbuf to accommodate the new header */ hdr = pbuf_resize_segment(pbuf, off, olen, hlen); if (hdr == NULL) { return -1; } /* translate inner ip/ip6 header */ switch (naf) { case AF_INET: ip4 = hdr; bzero(ip4, sizeof(*ip4)); ip4->ip_v = IPVERSION; ip4->ip_hl = sizeof(*ip4) >> 2; ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen); ip4->ip_id = rfc6864 ? 0 : htons(ip_randomid(ipid_salt)); ip4->ip_off = htons(IP_DF); ip4->ip_ttl = pd2->ttl; if (pd2->proto == IPPROTO_ICMPV6) { ip4->ip_p = IPPROTO_ICMP; } else { ip4->ip_p = pd2->proto; } ip4->ip_src = src->v4addr; ip4->ip_dst = dst->v4addr; ip4->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, ip4->ip_hl << 2); break; case AF_INET6: ip6 = hdr; bzero(ip6, sizeof(*ip6)); ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_plen = htons(pd2->tot_len - olen); if (pd2->proto == IPPROTO_ICMP) { ip6->ip6_nxt = IPPROTO_ICMPV6; } else { ip6->ip6_nxt = pd2->proto; } if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM) { ip6->ip6_hlim = IPV6_DEFHLIM; } else { ip6->ip6_hlim = pd2->ttl; } ip6->ip6_src = src->v6addr; ip6->ip6_dst = dst->v6addr; break; } /* adjust payload offset and total packet length */ pd2->off += hlen - olen; pd->tot_len += hlen - olen; return 0; } #define PTR_IP(field) ((int32_t)offsetof(struct ip, field)) #define PTR_IP6(field) ((int32_t)offsetof(struct ip6_hdr, field)) static __attribute__((noinline)) int pf_translate_icmp_af(int af, void *arg) { struct icmp *icmp4; struct icmp6_hdr *icmp6; u_int32_t mtu; int32_t ptr = -1; u_int8_t type; u_int8_t code; switch (af) { case AF_INET: icmp6 = arg; type = icmp6->icmp6_type; code = icmp6->icmp6_code; mtu = ntohl(icmp6->icmp6_mtu); switch (type) { case ICMP6_ECHO_REQUEST: type = ICMP_ECHO; break; case ICMP6_ECHO_REPLY: type = ICMP_ECHOREPLY; break; case ICMP6_DST_UNREACH: type = ICMP_UNREACH; switch (code) { case ICMP6_DST_UNREACH_NOROUTE: case ICMP6_DST_UNREACH_BEYONDSCOPE: case ICMP6_DST_UNREACH_ADDR: code = ICMP_UNREACH_HOST; break; case ICMP6_DST_UNREACH_ADMIN: code = ICMP_UNREACH_HOST_PROHIB; break; case ICMP6_DST_UNREACH_NOPORT: code = ICMP_UNREACH_PORT; break; default: return -1; } break; case ICMP6_PACKET_TOO_BIG: type = ICMP_UNREACH; code = ICMP_UNREACH_NEEDFRAG; mtu -= 20; break; case ICMP6_TIME_EXCEEDED: type = ICMP_TIMXCEED; break; case ICMP6_PARAM_PROB: switch (code) { case ICMP6_PARAMPROB_HEADER: type = ICMP_PARAMPROB; code = ICMP_PARAMPROB_ERRATPTR; ptr = ntohl(icmp6->icmp6_pptr); if (ptr == PTR_IP6(ip6_vfc)) { ; /* preserve */ } else if (ptr == PTR_IP6(ip6_vfc) + 1) { ptr = PTR_IP(ip_tos); } else if (ptr == PTR_IP6(ip6_plen) || ptr == PTR_IP6(ip6_plen) + 1) { ptr = PTR_IP(ip_len); } else if (ptr == PTR_IP6(ip6_nxt)) { ptr = PTR_IP(ip_p); } else if (ptr == PTR_IP6(ip6_hlim)) { ptr = PTR_IP(ip_ttl); } else if (ptr >= PTR_IP6(ip6_src) && ptr < PTR_IP6(ip6_dst)) { ptr = PTR_IP(ip_src); } else if (ptr >= PTR_IP6(ip6_dst) && ptr < (int32_t)sizeof(struct ip6_hdr)) { ptr = PTR_IP(ip_dst); } else { return -1; } break; case ICMP6_PARAMPROB_NEXTHEADER: type = ICMP_UNREACH; code = ICMP_UNREACH_PROTOCOL; break; default: return -1; } break; default: return -1; } icmp6->icmp6_type = type; icmp6->icmp6_code = code; /* aligns well with a icmpv4 nextmtu */ icmp6->icmp6_mtu = htonl(mtu); /* icmpv4 pptr is a one most significant byte */ if (ptr >= 0) { icmp6->icmp6_pptr = htonl(ptr << 24); } break; case AF_INET6: icmp4 = arg; type = icmp4->icmp_type; code = icmp4->icmp_code; mtu = ntohs(icmp4->icmp_nextmtu); switch (type) { case ICMP_ECHO: type = ICMP6_ECHO_REQUEST; break; case ICMP_ECHOREPLY: type = ICMP6_ECHO_REPLY; break; case ICMP_UNREACH: type = ICMP6_DST_UNREACH; switch (code) { case ICMP_UNREACH_NET: case ICMP_UNREACH_HOST: case ICMP_UNREACH_NET_UNKNOWN: case ICMP_UNREACH_HOST_UNKNOWN: case ICMP_UNREACH_ISOLATED: case ICMP_UNREACH_TOSNET: case ICMP_UNREACH_TOSHOST: code = ICMP6_DST_UNREACH_NOROUTE; break; case ICMP_UNREACH_PORT: code = ICMP6_DST_UNREACH_NOPORT; break; case ICMP_UNREACH_NET_PROHIB: case ICMP_UNREACH_HOST_PROHIB: case ICMP_UNREACH_FILTER_PROHIB: case ICMP_UNREACH_PRECEDENCE_CUTOFF: code = ICMP6_DST_UNREACH_ADMIN; break; case ICMP_UNREACH_PROTOCOL: type = ICMP6_PARAM_PROB; code = ICMP6_PARAMPROB_NEXTHEADER; ptr = offsetof(struct ip6_hdr, ip6_nxt); break; case ICMP_UNREACH_NEEDFRAG: type = ICMP6_PACKET_TOO_BIG; code = 0; mtu += 20; break; default: return -1; } break; case ICMP_TIMXCEED: type = ICMP6_TIME_EXCEEDED; break; case ICMP_PARAMPROB: type = ICMP6_PARAM_PROB; switch (code) { case ICMP_PARAMPROB_ERRATPTR: code = ICMP6_PARAMPROB_HEADER; break; case ICMP_PARAMPROB_LENGTH: code = ICMP6_PARAMPROB_HEADER; break; default: return -1; } ptr = icmp4->icmp_pptr; if (ptr == 0 || ptr == PTR_IP(ip_tos)) { ; /* preserve */ } else if (ptr == PTR_IP(ip_len) || ptr == PTR_IP(ip_len) + 1) { ptr = PTR_IP6(ip6_plen); } else if (ptr == PTR_IP(ip_ttl)) { ptr = PTR_IP6(ip6_hlim); } else if (ptr == PTR_IP(ip_p)) { ptr = PTR_IP6(ip6_nxt); } else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst)) { ptr = PTR_IP6(ip6_src); } else if (ptr >= PTR_IP(ip_dst) && ptr < (int32_t)sizeof(struct ip)) { ptr = PTR_IP6(ip6_dst); } else { return -1; } break; default: return -1; } icmp4->icmp_type = type; icmp4->icmp_code = code; icmp4->icmp_nextmtu = htons(mtu); if (ptr >= 0) { icmp4->icmp_void = htonl(ptr); } break; } return 0; } /* Note: frees pbuf if PF_NAT64 is returned */ static __attribute__((noinline)) int pf_nat64_ipv6(pbuf_t *pbuf, int off, struct pf_pdesc *pd) { struct ip *ip4; struct mbuf *m; /* * ip_input asserts for rcvif to be not NULL * That may not be true for two corner cases * 1. If for some reason a local app sends DNS * AAAA query to local host * 2. If IPv6 stack in kernel internally generates a * message destined for a synthesized IPv6 end-point. */ if (pbuf->pb_ifp == NULL) { return PF_DROP; } ip4 = (struct ip *)pbuf_resize_segment(pbuf, 0, off, sizeof(*ip4)); if (ip4 == NULL) { return PF_DROP; } ip4->ip_v = 4; ip4->ip_hl = 5; ip4->ip_tos = pd->tos & htonl(0x0ff00000); ip4->ip_len = htons(sizeof(*ip4) + (pd->tot_len - off)); ip4->ip_id = 0; ip4->ip_off = htons(IP_DF); ip4->ip_ttl = pd->ttl; ip4->ip_p = pd->proto; ip4->ip_sum = 0; ip4->ip_src = pd->naddr.v4addr; ip4->ip_dst = pd->ndaddr.v4addr; ip4->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, ip4->ip_hl << 2); /* recalculate icmp checksums */ if (pd->proto == IPPROTO_ICMP) { struct icmp *icmp; int hlen = sizeof(*ip4); icmp = (struct icmp *)pbuf_contig_segment(pbuf, hlen, ICMP_MINLEN); if (icmp == NULL) { return PF_DROP; } icmp->icmp_cksum = 0; icmp->icmp_cksum = pbuf_inet_cksum(pbuf, 0, hlen, ntohs(ip4->ip_len) - hlen); } if ((m = pbuf_to_mbuf(pbuf, TRUE)) != NULL) { ip_input(m); } return PF_NAT64; } static __attribute__((noinline)) int pf_nat64_ipv4(pbuf_t *pbuf, int off, struct pf_pdesc *pd) { struct ip6_hdr *ip6; struct mbuf *m; if (pbuf->pb_ifp == NULL) { return PF_DROP; } ip6 = (struct ip6_hdr *)pbuf_resize_segment(pbuf, 0, off, sizeof(*ip6)); if (ip6 == NULL) { return PF_DROP; } ip6->ip6_vfc = htonl((6 << 28) | (pd->tos << 20)); ip6->ip6_plen = htons(pd->tot_len - off); ip6->ip6_nxt = pd->proto; ip6->ip6_hlim = pd->ttl; ip6->ip6_src = pd->naddr.v6addr; ip6->ip6_dst = pd->ndaddr.v6addr; /* recalculate icmp6 checksums */ if (pd->proto == IPPROTO_ICMPV6) { struct icmp6_hdr *icmp6; int hlen = sizeof(*ip6); icmp6 = (struct icmp6_hdr *)pbuf_contig_segment(pbuf, hlen, sizeof(*icmp6)); if (icmp6 == NULL) { return PF_DROP; } icmp6->icmp6_cksum = 0; icmp6->icmp6_cksum = pbuf_inet6_cksum(pbuf, IPPROTO_ICMPV6, hlen, ntohs(ip6->ip6_plen)); } else if (pd->proto == IPPROTO_UDP) { struct udphdr *uh; int hlen = sizeof(*ip6); uh = (struct udphdr *)pbuf_contig_segment(pbuf, hlen, sizeof(*uh)); if (uh == NULL) { return PF_DROP; } if (uh->uh_sum == 0) { uh->uh_sum = pbuf_inet6_cksum(pbuf, IPPROTO_UDP, hlen, ntohs(ip6->ip6_plen)); } } if ((m = pbuf_to_mbuf(pbuf, TRUE)) != NULL) { ip6_input(m); } return PF_NAT64; } static __attribute__((noinline)) int pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, struct pfi_kif *kif, pbuf_t *pbuf, int off, void *h, struct pf_pdesc *pd, struct pf_rule **am, struct pf_ruleset **rsm, struct ifqueue *ifq) { #pragma unused(h) struct pf_rule *nr = NULL; struct pf_addr *saddr = pd->src, *daddr = pd->dst; sa_family_t af = pd->af; struct pf_rule *r, *a = NULL; struct pf_ruleset *ruleset = NULL; struct pf_src_node *nsn = NULL; struct tcphdr *th = pd->hdr.tcp; struct udphdr *uh = pd->hdr.udp; u_short reason; int rewrite = 0, hdrlen = 0; int tag = -1; unsigned int rtableid = IFSCOPE_NONE; int asd = 0; int match = 0; int state_icmp = 0; u_int16_t mss = tcp_mssdflt; u_int8_t icmptype = 0, icmpcode = 0; #if SKYWALK netns_token nstoken = NULL; #endif struct pf_grev1_hdr *grev1 = pd->hdr.grev1; union pf_state_xport bxport, bdxport, nxport, sxport, dxport; struct pf_state_key psk; LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); PD_CLEAR_STATE_FLOWID(pd); if (direction == PF_IN && pf_check_congestion(ifq)) { REASON_SET(&reason, PFRES_CONGEST); return PF_DROP; } hdrlen = 0; sxport.spi = 0; dxport.spi = 0; nxport.spi = 0; switch (pd->proto) { case IPPROTO_TCP: sxport.port = th->th_sport; dxport.port = th->th_dport; hdrlen = sizeof(*th); break; case IPPROTO_UDP: sxport.port = uh->uh_sport; dxport.port = uh->uh_dport; hdrlen = sizeof(*uh); break; #if INET case IPPROTO_ICMP: if (pd->af != AF_INET) { break; } sxport.port = dxport.port = pd->hdr.icmp->icmp_id; hdrlen = ICMP_MINLEN; icmptype = pd->hdr.icmp->icmp_type; icmpcode = pd->hdr.icmp->icmp_code; if (ICMP_ERRORTYPE(icmptype)) { state_icmp++; } break; #endif /* INET */ case IPPROTO_ICMPV6: if (pd->af != AF_INET6) { break; } sxport.port = dxport.port = pd->hdr.icmp6->icmp6_id; hdrlen = sizeof(*pd->hdr.icmp6); icmptype = pd->hdr.icmp6->icmp6_type; icmpcode = pd->hdr.icmp6->icmp6_code; if (ICMP6_ERRORTYPE(icmptype)) { state_icmp++; } break; case IPPROTO_GRE: if (pd->proto_variant == PF_GRE_PPTP_VARIANT) { sxport.call_id = dxport.call_id = pd->hdr.grev1->call_id; hdrlen = sizeof(*pd->hdr.grev1); } break; case IPPROTO_ESP: sxport.spi = 0; dxport.spi = pd->hdr.esp->spi; hdrlen = sizeof(*pd->hdr.esp); break; } r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); bxport = sxport; bdxport = dxport; if (direction == PF_OUT) { nxport = sxport; } else { nxport = dxport; } /* check packet for BINAT/NAT/RDR */ if ((nr = pf_get_translation_aux(pd, pbuf, off, direction, kif, &nsn, saddr, &sxport, daddr, &dxport, &nxport #if SKYWALK , &nstoken #endif )) != NULL) { int ua; u_int16_t dport; if (pd->af != pd->naf) { ua = 0; } else { ua = 1; } PF_ACPY(&pd->baddr, saddr, af); PF_ACPY(&pd->bdaddr, daddr, af); switch (pd->proto) { case IPPROTO_TCP: if (pd->af != pd->naf || PF_ANEQ(saddr, &pd->naddr, pd->af)) { pf_change_ap(direction, pd->mp, saddr, &th->th_sport, pd->ip_sum, &th->th_sum, &pd->naddr, nxport.port, 0, af, pd->naf, ua); sxport.port = th->th_sport; } if (pd->af != pd->naf || PF_ANEQ(daddr, &pd->ndaddr, pd->af) || (nr && (nr->action == PF_RDR) && (th->th_dport != nxport.port))) { if (nr && nr->action == PF_RDR) { dport = nxport.port; } else { dport = th->th_dport; } pf_change_ap(direction, pd->mp, daddr, &th->th_dport, pd->ip_sum, &th->th_sum, &pd->ndaddr, dport, 0, af, pd->naf, ua); dxport.port = th->th_dport; } rewrite++; break; case IPPROTO_UDP: if (pd->af != pd->naf || PF_ANEQ(saddr, &pd->naddr, pd->af)) { pf_change_ap(direction, pd->mp, saddr, &uh->uh_sport, pd->ip_sum, &uh->uh_sum, &pd->naddr, nxport.port, 1, af, pd->naf, ua); sxport.port = uh->uh_sport; } if (pd->af != pd->naf || PF_ANEQ(daddr, &pd->ndaddr, pd->af) || (nr && (nr->action == PF_RDR) && (uh->uh_dport != nxport.port))) { if (nr && nr->action == PF_RDR) { dport = nxport.port; } else { dport = uh->uh_dport; } pf_change_ap(direction, pd->mp, daddr, &uh->uh_dport, pd->ip_sum, &uh->uh_sum, &pd->ndaddr, dport, 0, af, pd->naf, ua); dxport.port = uh->uh_dport; } rewrite++; break; #if INET case IPPROTO_ICMP: if (pd->af != AF_INET) { break; } /* * TODO: * pd->af != pd->naf not handled yet here and would be * needed for NAT46 needed to support XLAT. * Will cross the bridge when it comes. */ if (PF_ANEQ(saddr, &pd->naddr, pd->af)) { pf_change_a(&saddr->v4addr.s_addr, pd->ip_sum, pd->naddr.v4addr.s_addr, 0); pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( pd->hdr.icmp->icmp_cksum, sxport.port, nxport.port, 0); pd->hdr.icmp->icmp_id = nxport.port; } if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) { pf_change_a(&daddr->v4addr.s_addr, pd->ip_sum, pd->ndaddr.v4addr.s_addr, 0); } ++rewrite; break; #endif /* INET */ case IPPROTO_ICMPV6: if (pd->af != AF_INET6) { break; } if (pd->af != pd->naf || PF_ANEQ(saddr, &pd->naddr, pd->af)) { pf_change_addr(saddr, &pd->hdr.icmp6->icmp6_cksum, &pd->naddr, 0, pd->af, pd->naf); } if (pd->af != pd->naf || PF_ANEQ(daddr, &pd->ndaddr, pd->af)) { pf_change_addr(daddr, &pd->hdr.icmp6->icmp6_cksum, &pd->ndaddr, 0, pd->af, pd->naf); } if (pd->af != pd->naf) { if (pf_translate_icmp_af(AF_INET, pd->hdr.icmp6)) { return PF_DROP; } pd->proto = IPPROTO_ICMP; } rewrite++; break; case IPPROTO_GRE: if ((direction == PF_IN) && (pd->proto_variant == PF_GRE_PPTP_VARIANT)) { grev1->call_id = nxport.call_id; } switch (pd->af) { #if INET case AF_INET: if (PF_ANEQ(saddr, &pd->naddr, pd->af)) { pf_change_a(&saddr->v4addr.s_addr, pd->ip_sum, pd->naddr.v4addr.s_addr, 0); } if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) { pf_change_a(&daddr->v4addr.s_addr, pd->ip_sum, pd->ndaddr.v4addr.s_addr, 0); } break; #endif /* INET */ case AF_INET6: if (PF_ANEQ(saddr, &pd->naddr, pd->af)) { PF_ACPY(saddr, &pd->naddr, AF_INET6); } if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) { PF_ACPY(daddr, &pd->ndaddr, AF_INET6); } break; } ++rewrite; break; case IPPROTO_ESP: if (direction == PF_OUT) { bxport.spi = 0; } switch (pd->af) { #if INET case AF_INET: if (PF_ANEQ(saddr, &pd->naddr, pd->af)) { pf_change_a(&saddr->v4addr.s_addr, pd->ip_sum, pd->naddr.v4addr.s_addr, 0); } if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) { pf_change_a(&daddr->v4addr.s_addr, pd->ip_sum, pd->ndaddr.v4addr.s_addr, 0); } break; #endif /* INET */ case AF_INET6: if (PF_ANEQ(saddr, &pd->naddr, pd->af)) { PF_ACPY(saddr, &pd->naddr, AF_INET6); } if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) { PF_ACPY(daddr, &pd->ndaddr, AF_INET6); } break; } break; default: switch (pd->af) { #if INET case AF_INET: if ((pd->naf != AF_INET) || (PF_ANEQ(saddr, &pd->naddr, pd->af))) { pf_change_addr(saddr, pd->ip_sum, &pd->naddr, 0, af, pd->naf); } if ((pd->naf != AF_INET) || (PF_ANEQ(daddr, &pd->ndaddr, pd->af))) { pf_change_addr(daddr, pd->ip_sum, &pd->ndaddr, 0, af, pd->naf); } break; #endif /* INET */ case AF_INET6: if (PF_ANEQ(saddr, &pd->naddr, pd->af)) { PF_ACPY(saddr, &pd->naddr, af); } if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) { PF_ACPY(daddr, &pd->ndaddr, af); } break; } break; } if (nr->natpass) { r = NULL; } pd->nat_rule = nr; pd->af = pd->naf; } else { #if SKYWALK VERIFY(!NETNS_TOKEN_VALID(&nstoken)); #endif } if (nr && nr->tag > 0) { tag = nr->tag; } while (r != NULL) { r->evaluations++; if (pfi_kif_match(r->kif, kif) == r->ifnot) { r = r->skip[PF_SKIP_IFP].ptr; } else if (r->direction && r->direction != direction) { r = r->skip[PF_SKIP_DIR].ptr; } else if (r->af && r->af != pd->af) { r = r->skip[PF_SKIP_AF].ptr; } else if (r->proto && r->proto != pd->proto) { r = r->skip[PF_SKIP_PROTO].ptr; } else if (PF_MISMATCHAW(&r->src.addr, saddr, pd->af, r->src.neg, kif)) { r = r->skip[PF_SKIP_SRC_ADDR].ptr; } /* tcp/udp only. port_op always 0 in other cases */ else if (r->proto == pd->proto && (r->proto == IPPROTO_TCP || r->proto == IPPROTO_UDP) && r->src.xport.range.op && !pf_match_port(r->src.xport.range.op, r->src.xport.range.port[0], r->src.xport.range.port[1], th->th_sport)) { r = r->skip[PF_SKIP_SRC_PORT].ptr; } else if (PF_MISMATCHAW(&r->dst.addr, daddr, pd->af, r->dst.neg, NULL)) { r = r->skip[PF_SKIP_DST_ADDR].ptr; } /* tcp/udp only. port_op always 0 in other cases */ else if (r->proto == pd->proto && (r->proto == IPPROTO_TCP || r->proto == IPPROTO_UDP) && r->dst.xport.range.op && !pf_match_port(r->dst.xport.range.op, r->dst.xport.range.port[0], r->dst.xport.range.port[1], th->th_dport)) { r = r->skip[PF_SKIP_DST_PORT].ptr; } /* icmp only. type always 0 in other cases */ else if (r->type && r->type != icmptype + 1) { r = TAILQ_NEXT(r, entries); } /* icmp only. type always 0 in other cases */ else if (r->code && r->code != icmpcode + 1) { r = TAILQ_NEXT(r, entries); } else if ((r->rule_flag & PFRULE_TOS) && r->tos && !(r->tos & pd->tos)) { r = TAILQ_NEXT(r, entries); } else if ((r->rule_flag & PFRULE_DSCP) && r->tos && !(r->tos & (pd->tos & DSCP_MASK))) { r = TAILQ_NEXT(r, entries); } else if ((r->rule_flag & PFRULE_SC) && r->tos && ((r->tos & SCIDX_MASK) != pd->sc)) { r = TAILQ_NEXT(r, entries); } else if (r->rule_flag & PFRULE_FRAGMENT) { r = TAILQ_NEXT(r, entries); } else if (pd->proto == IPPROTO_TCP && (r->flagset & th->th_flags) != r->flags) { r = TAILQ_NEXT(r, entries); } /* tcp/udp only. uid.op always 0 in other cases */ else if (r->uid.op && (pd->lookup.done || ((void)(pd->lookup.done = pf_socket_lookup(direction, pd)), 1)) && !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], pd->lookup.uid)) { r = TAILQ_NEXT(r, entries); } /* tcp/udp only. gid.op always 0 in other cases */ else if (r->gid.op && (pd->lookup.done || ((void)(pd->lookup.done = pf_socket_lookup(direction, pd)), 1)) && !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], pd->lookup.gid)) { r = TAILQ_NEXT(r, entries); } else if (r->prob && r->prob <= (RandomULong() % (UINT_MAX - 1) + 1)) { r = TAILQ_NEXT(r, entries); } else if (r->match_tag && !pf_match_tag(r, pd->pf_mtag, &tag)) { r = TAILQ_NEXT(r, entries); } else if (r->os_fingerprint != PF_OSFP_ANY && (pd->proto != IPPROTO_TCP || !pf_osfp_match( pf_osfp_fingerprint(pd, pbuf, off, th), r->os_fingerprint))) { r = TAILQ_NEXT(r, entries); } else { if (r->tag) { tag = r->tag; } if (PF_RTABLEID_IS_VALID(r->rtableid)) { rtableid = r->rtableid; } if (r->anchor == NULL) { match = 1; *rm = r; *am = a; *rsm = ruleset; if ((*rm)->quick) { break; } r = TAILQ_NEXT(r, entries); } else { pf_step_into_anchor(&asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match); } } if (r == NULL && pf_step_out_of_anchor(&asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match)) { break; } } r = *rm; a = *am; ruleset = *rsm; REASON_SET(&reason, PFRES_MATCH); if (r->log || (nr != NULL && nr->log)) { if (rewrite > 0) { if (rewrite < off + hdrlen) { rewrite = off + hdrlen; } if (pf_lazy_makewritable(pd, pbuf, rewrite) == NULL) { REASON_SET(&reason, PFRES_MEMORY); #if SKYWALK netns_release(&nstoken); #endif return PF_DROP; } pbuf_copy_back(pbuf, off, hdrlen, pd->hdr.any); } PFLOG_PACKET(kif, h, pbuf, pd->af, direction, reason, r->log ? r : nr, a, ruleset, pd); } if ((r->action == PF_DROP) && ((r->rule_flag & PFRULE_RETURNRST) || (r->rule_flag & PFRULE_RETURNICMP) || (r->rule_flag & PFRULE_RETURN))) { /* undo NAT changes, if they have taken place */ /* XXX For NAT64 we are not reverting the changes */ if (nr != NULL && nr->action != PF_NAT64) { if (direction == PF_OUT) { pd->af = af; switch (pd->proto) { case IPPROTO_TCP: pf_change_ap(direction, pd->mp, saddr, &th->th_sport, pd->ip_sum, &th->th_sum, &pd->baddr, bxport.port, 0, af, pd->af, 1); sxport.port = th->th_sport; rewrite++; break; case IPPROTO_UDP: pf_change_ap(direction, pd->mp, saddr, &pd->hdr.udp->uh_sport, pd->ip_sum, &pd->hdr.udp->uh_sum, &pd->baddr, bxport.port, 1, af, pd->af, 1); sxport.port = pd->hdr.udp->uh_sport; rewrite++; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: /* nothing! */ break; case IPPROTO_GRE: PF_ACPY(&pd->baddr, saddr, af); ++rewrite; switch (af) { #if INET case AF_INET: pf_change_a(&saddr->v4addr.s_addr, pd->ip_sum, pd->baddr.v4addr.s_addr, 0); break; #endif /* INET */ case AF_INET6: PF_ACPY(saddr, &pd->baddr, AF_INET6); break; } break; case IPPROTO_ESP: PF_ACPY(&pd->baddr, saddr, af); switch (af) { #if INET case AF_INET: pf_change_a(&saddr->v4addr.s_addr, pd->ip_sum, pd->baddr.v4addr.s_addr, 0); break; #endif /* INET */ case AF_INET6: PF_ACPY(saddr, &pd->baddr, AF_INET6); break; } break; default: switch (af) { case AF_INET: pf_change_a(&saddr->v4addr.s_addr, pd->ip_sum, pd->baddr.v4addr.s_addr, 0); break; case AF_INET6: PF_ACPY(saddr, &pd->baddr, af); break; } } } else { switch (pd->proto) { case IPPROTO_TCP: pf_change_ap(direction, pd->mp, daddr, &th->th_dport, pd->ip_sum, &th->th_sum, &pd->bdaddr, bdxport.port, 0, af, pd->af, 1); dxport.port = th->th_dport; rewrite++; break; case IPPROTO_UDP: pf_change_ap(direction, pd->mp, daddr, &pd->hdr.udp->uh_dport, pd->ip_sum, &pd->hdr.udp->uh_sum, &pd->bdaddr, bdxport.port, 1, af, pd->af, 1); dxport.port = pd->hdr.udp->uh_dport; rewrite++; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: /* nothing! */ break; case IPPROTO_GRE: if (pd->proto_variant == PF_GRE_PPTP_VARIANT) { grev1->call_id = bdxport.call_id; } ++rewrite; switch (af) { #if INET case AF_INET: pf_change_a(&daddr->v4addr.s_addr, pd->ip_sum, pd->bdaddr.v4addr.s_addr, 0); break; #endif /* INET */ case AF_INET6: PF_ACPY(daddr, &pd->bdaddr, AF_INET6); break; } break; case IPPROTO_ESP: switch (af) { #if INET case AF_INET: pf_change_a(&daddr->v4addr.s_addr, pd->ip_sum, pd->bdaddr.v4addr.s_addr, 0); break; #endif /* INET */ case AF_INET6: PF_ACPY(daddr, &pd->bdaddr, AF_INET6); break; } break; default: switch (af) { case AF_INET: pf_change_a(&daddr->v4addr.s_addr, pd->ip_sum, pd->bdaddr.v4addr.s_addr, 0); break; case AF_INET6: PF_ACPY(daddr, &pd->bdaddr, af); break; } } } } if (pd->proto == IPPROTO_TCP && ((r->rule_flag & PFRULE_RETURNRST) || (r->rule_flag & PFRULE_RETURN)) && !(th->th_flags & TH_RST)) { u_int32_t ack = ntohl(th->th_seq) + pd->p_len; int len = 0; struct ip *h4; struct ip6_hdr *h6; switch (pd->af) { case AF_INET: h4 = pbuf->pb_data; len = ntohs(h4->ip_len) - off; break; case AF_INET6: h6 = pbuf->pb_data; len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); break; } if (pf_check_proto_cksum(pbuf, off, len, IPPROTO_TCP, pd->af)) { REASON_SET(&reason, PFRES_PROTCKSUM); } else { if (th->th_flags & TH_SYN) { ack++; } if (th->th_flags & TH_FIN) { ack++; } pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, ntohl(th->th_ack), ack, TH_RST | TH_ACK, 0, 0, r->return_ttl, 1, 0, pd->eh, kif->pfik_ifp); } } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && pd->proto != IPPROTO_ESP && pd->proto != IPPROTO_AH && r->return_icmp) { pf_send_icmp(pbuf, r->return_icmp >> 8, r->return_icmp & 255, pd->af, r); } else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && pd->proto != IPPROTO_ESP && pd->proto != IPPROTO_AH && r->return_icmp6) { pf_send_icmp(pbuf, r->return_icmp6 >> 8, r->return_icmp6 & 255, pd->af, r); } } if (r->action == PF_DROP) { #if SKYWALK netns_release(&nstoken); #endif return PF_DROP; } /* prepare state key, for flowhash and/or the state (if created) */ bzero(&psk, sizeof(psk)); psk.proto = pd->proto; psk.direction = direction; if (pd->proto == IPPROTO_UDP) { if (ntohs(pd->hdr.udp->uh_sport) == PF_IKE_PORT && ntohs(pd->hdr.udp->uh_dport) == PF_IKE_PORT) { psk.proto_variant = PF_EXTFILTER_APD; } else { psk.proto_variant = nr ? nr->extfilter : r->extfilter; if (psk.proto_variant < PF_EXTFILTER_APD) { psk.proto_variant = PF_EXTFILTER_APD; } } } else if (pd->proto == IPPROTO_GRE) { psk.proto_variant = pd->proto_variant; } if (direction == PF_OUT) { psk.af_gwy = af; PF_ACPY(&psk.gwy.addr, saddr, af); PF_ACPY(&psk.ext_gwy.addr, daddr, af); switch (pd->proto) { case IPPROTO_ESP: psk.gwy.xport.spi = 0; psk.ext_gwy.xport.spi = pd->hdr.esp->spi; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: /* * NAT64 requires protocol translation between ICMPv4 * and ICMPv6. TCP and UDP do not require protocol * translation. To avoid adding complexity just to * handle ICMP(v4addr/v6addr), we always lookup for * proto = IPPROTO_ICMP on both LAN and WAN side */ psk.proto = IPPROTO_ICMP; psk.gwy.xport.port = nxport.port; psk.ext_gwy.xport.spi = 0; break; default: psk.gwy.xport = sxport; psk.ext_gwy.xport = dxport; break; } psk.af_lan = af; if (nr != NULL) { PF_ACPY(&psk.lan.addr, &pd->baddr, af); psk.lan.xport = bxport; PF_ACPY(&psk.ext_lan.addr, &pd->bdaddr, af); psk.ext_lan.xport = bdxport; } else { PF_ACPY(&psk.lan.addr, &psk.gwy.addr, af); psk.lan.xport = psk.gwy.xport; PF_ACPY(&psk.ext_lan.addr, &psk.ext_gwy.addr, af); psk.ext_lan.xport = psk.ext_gwy.xport; } } else { psk.af_lan = af; if (nr && nr->action == PF_NAT64) { PF_ACPY(&psk.lan.addr, &pd->baddr, af); PF_ACPY(&psk.ext_lan.addr, &pd->bdaddr, af); } else { PF_ACPY(&psk.lan.addr, daddr, af); PF_ACPY(&psk.ext_lan.addr, saddr, af); } switch (pd->proto) { case IPPROTO_ICMP: case IPPROTO_ICMPV6: /* * NAT64 requires protocol translation between ICMPv4 * and ICMPv6. TCP and UDP do not require protocol * translation. To avoid adding complexity just to * handle ICMP(v4addr/v6addr), we always lookup for * proto = IPPROTO_ICMP on both LAN and WAN side */ psk.proto = IPPROTO_ICMP; if (nr && nr->action == PF_NAT64) { psk.lan.xport = bxport; psk.ext_lan.xport = bxport; } else { psk.lan.xport = nxport; psk.ext_lan.xport.spi = 0; } break; case IPPROTO_ESP: psk.ext_lan.xport.spi = 0; psk.lan.xport.spi = pd->hdr.esp->spi; break; default: if (nr != NULL) { if (nr->action == PF_NAT64) { psk.lan.xport = bxport; psk.ext_lan.xport = bdxport; } else { psk.lan.xport = dxport; psk.ext_lan.xport = sxport; } } else { psk.lan.xport = dxport; psk.ext_lan.xport = sxport; } break; } psk.af_gwy = pd->naf; if (nr != NULL) { if (nr->action == PF_NAT64) { PF_ACPY(&psk.gwy.addr, &pd->naddr, pd->naf); PF_ACPY(&psk.ext_gwy.addr, &pd->ndaddr, pd->naf); if ((pd->proto == IPPROTO_ICMPV6) || (pd->proto == IPPROTO_ICMP)) { psk.gwy.xport = nxport; psk.ext_gwy.xport = nxport; } else { psk.gwy.xport = sxport; psk.ext_gwy.xport = dxport; } } else { PF_ACPY(&psk.gwy.addr, &pd->bdaddr, af); psk.gwy.xport = bdxport; PF_ACPY(&psk.ext_gwy.addr, saddr, af); psk.ext_gwy.xport = sxport; } } else { PF_ACPY(&psk.gwy.addr, &psk.lan.addr, af); psk.gwy.xport = psk.lan.xport; PF_ACPY(&psk.ext_gwy.addr, &psk.ext_lan.addr, af); psk.ext_gwy.xport = psk.ext_lan.xport; } } if (pd->pktflags & PKTF_FLOW_ID) { /* flow hash was already computed outside of PF */ psk.flowsrc = pd->flowsrc; psk.flowhash = pd->flowhash; } else { /* * Allocation of flow identifier is deferred until a PF state * creation is needed for this flow. */ pd->pktflags &= ~PKTF_FLOW_ADV; pd->flowhash = 0; } if (__improbable(pf_tag_packet(pbuf, pd->pf_mtag, tag, rtableid, pd))) { REASON_SET(&reason, PFRES_MEMORY); #if SKYWALK netns_release(&nstoken); #endif return PF_DROP; } if (!state_icmp && (r->keep_state || nr != NULL || (pd->flags & PFDESC_TCP_NORM))) { /* create new state */ struct pf_state *s = NULL; struct pf_state_key *sk = NULL; struct pf_src_node *sn = NULL; struct pf_ike_hdr ike; if (pd->proto == IPPROTO_UDP) { size_t plen = pbuf->pb_packet_len - off - sizeof(*uh); if (ntohs(uh->uh_sport) == PF_IKE_PORT && ntohs(uh->uh_dport) == PF_IKE_PORT && plen >= PF_IKE_PACKET_MINSIZE) { if (plen > PF_IKE_PACKET_MINSIZE) { plen = PF_IKE_PACKET_MINSIZE; } pbuf_copy_data(pbuf, off + sizeof(*uh), plen, &ike); } } if (nr != NULL && pd->proto == IPPROTO_ESP && direction == PF_OUT) { struct pf_state_key_cmp sk0; struct pf_state *s0; /* * * This squelches state creation if the external * address matches an existing incomplete state with a * different internal address. Only one 'blocking' * partial state is allowed for each external address. */ #if SKYWALK /* * XXXSCW: * * It's not clear how this impacts netns. The original * state will hold the port reservation token but what * happens to other "Cone NAT" states when the first is * torn down? */ #endif memset(&sk0, 0, sizeof(sk0)); sk0.af_gwy = pd->af; sk0.proto = IPPROTO_ESP; PF_ACPY(&sk0.gwy.addr, saddr, sk0.af_gwy); PF_ACPY(&sk0.ext_gwy.addr, daddr, sk0.af_gwy); s0 = pf_find_state(kif, &sk0, PF_IN); if (s0 && PF_ANEQ(&s0->state_key->lan.addr, pd->src, pd->af)) { nsn = 0; goto cleanup; } } /* check maximums */ if (r->max_states && (r->states >= r->max_states)) { pf_status.lcounters[LCNT_STATES]++; REASON_SET(&reason, PFRES_MAXSTATES); goto cleanup; } /* src node for filter rule */ if ((r->rule_flag & PFRULE_SRCTRACK || r->rpool.opts & PF_POOL_STICKYADDR) && pf_insert_src_node(&sn, r, saddr, af) != 0) { REASON_SET(&reason, PFRES_SRCLIMIT); goto cleanup; } /* src node for translation rule */ if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && ((direction == PF_OUT && nr->action != PF_RDR && pf_insert_src_node(&nsn, nr, &pd->baddr, af) != 0) || (pf_insert_src_node(&nsn, nr, saddr, af) != 0))) { REASON_SET(&reason, PFRES_SRCLIMIT); goto cleanup; } s = pool_get(&pf_state_pl, PR_WAITOK); if (s == NULL) { REASON_SET(&reason, PFRES_MEMORY); cleanup: if (sn != NULL && sn->states == 0 && sn->expire == 0) { RB_REMOVE(pf_src_tree, &tree_src_tracking, sn); pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; pf_status.src_nodes--; pool_put(&pf_src_tree_pl, sn); } if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) { RB_REMOVE(pf_src_tree, &tree_src_tracking, nsn); pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; pf_status.src_nodes--; pool_put(&pf_src_tree_pl, nsn); } if (s != NULL) { pf_detach_state(s, 0); } else if (sk != NULL) { if (sk->app_state) { pool_put(&pf_app_state_pl, sk->app_state); } pf_state_key_release_flowid(sk); pool_put(&pf_state_key_pl, sk); } #if SKYWALK netns_release(&nstoken); #endif return PF_DROP; } bzero(s, sizeof(*s)); TAILQ_INIT(&s->unlink_hooks); s->rule.ptr = r; s->nat_rule.ptr = nr; s->anchor.ptr = a; STATE_INC_COUNTERS(s); s->allow_opts = r->allow_opts; s->log = r->log & PF_LOG_ALL; if (nr != NULL) { s->log |= nr->log & PF_LOG_ALL; } switch (pd->proto) { case IPPROTO_TCP: s->src.seqlo = ntohl(th->th_seq); s->src.seqhi = s->src.seqlo + pd->p_len + 1; if ((th->th_flags & (TH_SYN | TH_ACK)) == TH_SYN && r->keep_state == PF_STATE_MODULATE) { /* Generate sequence number modulator */ if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 0) { s->src.seqdiff = 1; } pf_change_a(&th->th_seq, &th->th_sum, htonl(s->src.seqlo + s->src.seqdiff), 0); rewrite = off + sizeof(*th); } else { s->src.seqdiff = 0; } if (th->th_flags & TH_SYN) { s->src.seqhi++; s->src.wscale = pf_get_wscale(pbuf, off, th->th_off, af); } s->src.max_win = MAX(ntohs(th->th_win), 1); if (s->src.wscale & PF_WSCALE_MASK) { /* Remove scale factor from initial window */ int win = s->src.max_win; win += 1 << (s->src.wscale & PF_WSCALE_MASK); s->src.max_win = (win - 1) >> (s->src.wscale & PF_WSCALE_MASK); } if (th->th_flags & TH_FIN) { s->src.seqhi++; } s->dst.seqhi = 1; s->dst.max_win = 1; s->src.state = TCPS_SYN_SENT; s->dst.state = TCPS_CLOSED; s->timeout = PFTM_TCP_FIRST_PACKET; break; case IPPROTO_UDP: s->src.state = PFUDPS_SINGLE; s->dst.state = PFUDPS_NO_TRAFFIC; s->timeout = PFTM_UDP_FIRST_PACKET; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: s->timeout = PFTM_ICMP_FIRST_PACKET; break; case IPPROTO_GRE: s->src.state = PFGRE1S_INITIATING; s->dst.state = PFGRE1S_NO_TRAFFIC; s->timeout = PFTM_GREv1_INITIATING; break; case IPPROTO_ESP: s->src.state = PFESPS_INITIATING; s->dst.state = PFESPS_NO_TRAFFIC; s->timeout = PFTM_ESP_FIRST_PACKET; break; default: s->src.state = PFOTHERS_SINGLE; s->dst.state = PFOTHERS_NO_TRAFFIC; s->timeout = PFTM_OTHER_FIRST_PACKET; } s->creation = pf_time_second(); s->expire = pf_time_second(); if (sn != NULL) { s->src_node = sn; s->src_node->states++; VERIFY(s->src_node->states != 0); } if (nsn != NULL) { PF_ACPY(&nsn->raddr, &pd->naddr, af); s->nat_src_node = nsn; s->nat_src_node->states++; VERIFY(s->nat_src_node->states != 0); } if (pd->proto == IPPROTO_TCP) { if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(pbuf, off, pd, th, &s->src, &s->dst)) { REASON_SET(&reason, PFRES_MEMORY); pf_src_tree_remove_state(s); STATE_DEC_COUNTERS(s); #if SKYWALK netns_release(&nstoken); #endif pool_put(&pf_state_pl, s); return PF_DROP; } if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && pf_normalize_tcp_stateful(pbuf, off, pd, &reason, th, s, &s->src, &s->dst, &rewrite)) { /* This really shouldn't happen!!! */ DPFPRINTF(PF_DEBUG_URGENT, ("pf_normalize_tcp_stateful failed on " "first pkt")); #if SKYWALK netns_release(&nstoken); #endif pf_normalize_tcp_cleanup(s); pf_src_tree_remove_state(s); STATE_DEC_COUNTERS(s); pool_put(&pf_state_pl, s); return PF_DROP; } } /* allocate state key and import values from psk */ if (__improbable((sk = pf_alloc_state_key(s, &psk)) == NULL)) { REASON_SET(&reason, PFRES_MEMORY); /* * XXXSCW: This will leak the freshly-allocated * state structure 's'. Although it should * eventually be aged-out and removed. */ goto cleanup; } if (pd->flowhash == 0) { ASSERT(sk->flowhash != 0); ASSERT(sk->flowsrc != 0); pd->flowsrc = sk->flowsrc; pd->flowhash = sk->flowhash; pd->pktflags |= PKTF_FLOW_ID; pd->pktflags &= ~PKTF_FLOW_ADV; if (__improbable(pf_tag_packet(pbuf, pd->pf_mtag, tag, rtableid, pd))) { /* * this shouldn't fail as the packet tag has * already been allocated. */ panic_plain("pf_tag_packet failed"); } } pf_set_rt_ifp(s, saddr, af); /* needs s->state_key set */ pbuf = pd->mp; // XXXSCW: Why? if (sk->app_state == 0) { switch (pd->proto) { case IPPROTO_TCP: { u_int16_t dport = (direction == PF_OUT) ? sk->ext_gwy.xport.port : sk->gwy.xport.port; if (nr != NULL && ntohs(dport) == PF_PPTP_PORT) { struct pf_app_state *as; as = pool_get(&pf_app_state_pl, PR_WAITOK); if (!as) { REASON_SET(&reason, PFRES_MEMORY); goto cleanup; } bzero(as, sizeof(*as)); as->handler = pf_pptp_handler; as->compare_lan_ext = 0; as->compare_ext_gwy = 0; as->u.pptp.grev1_state = 0; sk->app_state = as; (void) hook_establish(&s->unlink_hooks, 0, (hook_fn_t) pf_pptp_unlink, s); } break; } case IPPROTO_UDP: { if (nr != NULL && ntohs(uh->uh_sport) == PF_IKE_PORT && ntohs(uh->uh_dport) == PF_IKE_PORT) { struct pf_app_state *as; as = pool_get(&pf_app_state_pl, PR_WAITOK); if (!as) { REASON_SET(&reason, PFRES_MEMORY); goto cleanup; } bzero(as, sizeof(*as)); as->compare_lan_ext = pf_ike_compare; as->compare_ext_gwy = pf_ike_compare; as->u.ike.cookie = ike.initiator_cookie; sk->app_state = as; } break; } default: break; } } if (__improbable(pf_insert_state(BOUND_IFACE(r, kif), s))) { if (pd->proto == IPPROTO_TCP) { pf_normalize_tcp_cleanup(s); } REASON_SET(&reason, PFRES_STATEINS); pf_src_tree_remove_state(s); STATE_DEC_COUNTERS(s); #if SKYWALK netns_release(&nstoken); #endif pool_put(&pf_state_pl, s); return PF_DROP; } else { #if SKYWALK s->nstoken = nstoken; nstoken = NULL; #endif *sm = s; } if (tag > 0) { pf_tag_ref(tag); s->tag = tag; } if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN | TH_ACK)) == TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { int ua = (sk->af_lan == sk->af_gwy) ? 1 : 0; s->src.state = PF_TCPS_PROXY_SRC; if (nr != NULL) { if (direction == PF_OUT) { pf_change_ap(direction, pd->mp, saddr, &th->th_sport, pd->ip_sum, &th->th_sum, &pd->baddr, bxport.port, 0, af, pd->af, ua); sxport.port = th->th_sport; } else { pf_change_ap(direction, pd->mp, daddr, &th->th_dport, pd->ip_sum, &th->th_sum, &pd->baddr, bxport.port, 0, af, pd->af, ua); sxport.port = th->th_dport; } } s->src.seqhi = htonl(random()); /* Find mss option */ mss = pf_get_mss(pbuf, off, th->th_off, af); mss = pf_calc_mss(saddr, af, mss); mss = pf_calc_mss(daddr, af, mss); s->src.mss = mss; pf_send_tcp(r, af, daddr, saddr, th->th_dport, th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, TH_SYN | TH_ACK, 0, s->src.mss, 0, 1, 0, NULL, NULL); REASON_SET(&reason, PFRES_SYNPROXY); return PF_SYNPROXY_DROP; } if (sk->app_state && sk->app_state->handler) { int offx = off; switch (pd->proto) { case IPPROTO_TCP: offx += th->th_off << 2; break; case IPPROTO_UDP: offx += pd->hdr.udp->uh_ulen << 2; break; default: /* ALG handlers only apply to TCP and UDP rules */ break; } if (offx > off) { sk->app_state->handler(s, direction, offx, pd, kif); if (pd->lmw < 0) { REASON_SET(&reason, PFRES_MEMORY); return PF_DROP; } pbuf = pd->mp; // XXXSCW: Why? } } } #if SKYWALK else { netns_release(&nstoken); } #endif /* copy back packet headers if we performed NAT operations */ if (rewrite) { if (rewrite < off + hdrlen) { rewrite = off + hdrlen; } if (pf_lazy_makewritable(pd, pd->mp, rewrite) == NULL) { REASON_SET(&reason, PFRES_MEMORY); return PF_DROP; } pbuf_copy_back(pbuf, off, hdrlen, pd->hdr.any); if (af == AF_INET6 && pd->naf == AF_INET) { return pf_nat64_ipv6(pbuf, off, pd); } else if (af == AF_INET && pd->naf == AF_INET6) { return pf_nat64_ipv4(pbuf, off, pd); } } return PF_PASS; } boolean_t is_nlc_enabled_glb = FALSE; static inline boolean_t pf_is_dummynet_enabled(void) { #if DUMMYNET if (__probable(!PF_IS_ENABLED)) { return FALSE; } if (__probable(!DUMMYNET_LOADED)) { return FALSE; } if (__probable(TAILQ_EMPTY(pf_main_ruleset. rules[PF_RULESET_DUMMYNET].active.ptr))) { return FALSE; } return TRUE; #else return FALSE; #endif /* DUMMYNET */ } #if DUMMYNET /* * When pf_test_dummynet() returns PF_PASS, the rule matching parameter "rm" * remains unchanged, meaning the packet did not match a dummynet rule. * when the packet does match a dummynet rule, pf_test_dummynet() returns * PF_PASS and zero out the mbuf rule as the packet is effectively siphoned * out by dummynet. */ static __attribute__((noinline)) int pf_test_dummynet(struct pf_rule **rm, int direction, struct pfi_kif *kif, pbuf_t **pbuf0, struct pf_pdesc *pd, struct ip_fw_args *fwa) { pbuf_t *pbuf = *pbuf0; struct pf_rule *am = NULL; struct pf_ruleset *rsm = NULL; struct pf_addr *saddr = pd->src, *daddr = pd->dst; sa_family_t af = pd->af; struct pf_rule *r, *a = NULL; struct pf_ruleset *ruleset = NULL; struct tcphdr *th = pd->hdr.tcp; u_short reason; int hdrlen = 0; int tag = -1; unsigned int rtableid = IFSCOPE_NONE; int asd = 0; int match = 0; u_int8_t icmptype = 0, icmpcode = 0; struct ip_fw_args dnflow; struct pf_rule *prev_matching_rule = fwa ? fwa->fwa_pf_rule : NULL; int found_prev_rule = (prev_matching_rule) ? 0 : 1; LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); if (!pf_is_dummynet_enabled()) { return PF_PASS; } if (kif->pfik_ifp->if_xflags & IFXF_NO_TRAFFIC_SHAPING) { return PF_PASS; } bzero(&dnflow, sizeof(dnflow)); hdrlen = 0; /* Fragments don't gave protocol headers */ if (!(pd->flags & PFDESC_IP_FRAG)) { switch (pd->proto) { case IPPROTO_TCP: dnflow.fwa_id.flags = pd->hdr.tcp->th_flags; dnflow.fwa_id.dst_port = ntohs(pd->hdr.tcp->th_dport); dnflow.fwa_id.src_port = ntohs(pd->hdr.tcp->th_sport); hdrlen = sizeof(*th); break; case IPPROTO_UDP: dnflow.fwa_id.dst_port = ntohs(pd->hdr.udp->uh_dport); dnflow.fwa_id.src_port = ntohs(pd->hdr.udp->uh_sport); hdrlen = sizeof(*pd->hdr.udp); break; #if INET case IPPROTO_ICMP: if (af != AF_INET) { break; } hdrlen = ICMP_MINLEN; icmptype = pd->hdr.icmp->icmp_type; icmpcode = pd->hdr.icmp->icmp_code; break; #endif /* INET */ case IPPROTO_ICMPV6: if (af != AF_INET6) { break; } hdrlen = sizeof(*pd->hdr.icmp6); icmptype = pd->hdr.icmp6->icmp6_type; icmpcode = pd->hdr.icmp6->icmp6_code; break; case IPPROTO_GRE: if (pd->proto_variant == PF_GRE_PPTP_VARIANT) { hdrlen = sizeof(*pd->hdr.grev1); } break; case IPPROTO_ESP: hdrlen = sizeof(*pd->hdr.esp); break; } } r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_DUMMYNET].active.ptr); while (r != NULL) { r->evaluations++; if (pfi_kif_match(r->kif, kif) == r->ifnot) { r = r->skip[PF_SKIP_IFP].ptr; } else if (r->direction && r->direction != direction) { r = r->skip[PF_SKIP_DIR].ptr; } else if (r->af && r->af != af) { r = r->skip[PF_SKIP_AF].ptr; } else if (r->proto && r->proto != pd->proto) { r = r->skip[PF_SKIP_PROTO].ptr; } else if (PF_MISMATCHAW(&r->src.addr, saddr, af, r->src.neg, kif)) { r = r->skip[PF_SKIP_SRC_ADDR].ptr; } /* tcp/udp only. port_op always 0 in other cases */ else if (r->proto == pd->proto && (r->proto == IPPROTO_TCP || r->proto == IPPROTO_UDP) && ((pd->flags & PFDESC_IP_FRAG) || ((r->src.xport.range.op && !pf_match_port(r->src.xport.range.op, r->src.xport.range.port[0], r->src.xport.range.port[1], th->th_sport))))) { r = r->skip[PF_SKIP_SRC_PORT].ptr; } else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, r->dst.neg, NULL)) { r = r->skip[PF_SKIP_DST_ADDR].ptr; } /* tcp/udp only. port_op always 0 in other cases */ else if (r->proto == pd->proto && (r->proto == IPPROTO_TCP || r->proto == IPPROTO_UDP) && r->dst.xport.range.op && ((pd->flags & PFDESC_IP_FRAG) || !pf_match_port(r->dst.xport.range.op, r->dst.xport.range.port[0], r->dst.xport.range.port[1], th->th_dport))) { r = r->skip[PF_SKIP_DST_PORT].ptr; } /* icmp only. type always 0 in other cases */ else if (r->type && ((pd->flags & PFDESC_IP_FRAG) || r->type != icmptype + 1)) { r = TAILQ_NEXT(r, entries); } /* icmp only. type always 0 in other cases */ else if (r->code && ((pd->flags & PFDESC_IP_FRAG) || r->code != icmpcode + 1)) { r = TAILQ_NEXT(r, entries); } else if (r->tos && !(r->tos == pd->tos)) { r = TAILQ_NEXT(r, entries); } else if (r->rule_flag & PFRULE_FRAGMENT) { r = TAILQ_NEXT(r, entries); } else if (pd->proto == IPPROTO_TCP && ((pd->flags & PFDESC_IP_FRAG) || (r->flagset & th->th_flags) != r->flags)) { r = TAILQ_NEXT(r, entries); } else if (r->prob && r->prob <= (RandomULong() % (UINT_MAX - 1) + 1)) { r = TAILQ_NEXT(r, entries); } else if (r->match_tag && !pf_match_tag(r, pd->pf_mtag, &tag)) { r = TAILQ_NEXT(r, entries); } else { /* * Need to go past the previous dummynet matching rule */ if (r->anchor == NULL) { if (found_prev_rule) { if (r->tag) { tag = r->tag; } if (PF_RTABLEID_IS_VALID(r->rtableid)) { rtableid = r->rtableid; } match = 1; *rm = r; am = a; rsm = ruleset; if ((*rm)->quick) { break; } } else if (r == prev_matching_rule) { found_prev_rule = 1; } r = TAILQ_NEXT(r, entries); } else { pf_step_into_anchor(&asd, &ruleset, PF_RULESET_DUMMYNET, &r, &a, &match); } } if (r == NULL && pf_step_out_of_anchor(&asd, &ruleset, PF_RULESET_DUMMYNET, &r, &a, &match)) { break; } } r = *rm; a = am; ruleset = rsm; if (!match) { return PF_PASS; } REASON_SET(&reason, PFRES_DUMMYNET); if (r->log) { PFLOG_PACKET(kif, h, pbuf, af, direction, reason, r, a, ruleset, pd); } if (r->action == PF_NODUMMYNET) { int dirndx = (direction == PF_OUT); r->packets[dirndx]++; r->bytes[dirndx] += pd->tot_len; return PF_PASS; } if (pf_tag_packet(pbuf, pd->pf_mtag, tag, rtableid, pd)) { REASON_SET(&reason, PFRES_MEMORY); return PF_DROP; } if (r->dnpipe && ip_dn_io_ptr != NULL) { struct mbuf *m; int dirndx = (direction == PF_OUT); r->packets[dirndx]++; r->bytes[dirndx] += pd->tot_len; dnflow.fwa_cookie = r->dnpipe; dnflow.fwa_pf_rule = r; dnflow.fwa_id.proto = pd->proto; dnflow.fwa_flags = r->dntype; switch (af) { case AF_INET: dnflow.fwa_id.addr_type = 4; dnflow.fwa_id.src_ip = ntohl(saddr->v4addr.s_addr); dnflow.fwa_id.dst_ip = ntohl(daddr->v4addr.s_addr); break; case AF_INET6: dnflow.fwa_id.addr_type = 6; dnflow.fwa_id.src_ip6 = saddr->v6addr; dnflow.fwa_id.dst_ip6 = saddr->v6addr; break; } if (fwa != NULL) { dnflow.fwa_oif = fwa->fwa_oif; dnflow.fwa_oflags = fwa->fwa_oflags; /* * Note that fwa_ro, fwa_dst and fwa_ipoa are * actually in a union so the following does work * for both IPv4 and IPv6 */ dnflow.fwa_ro = fwa->fwa_ro; dnflow.fwa_dst = fwa->fwa_dst; dnflow.fwa_ipoa = fwa->fwa_ipoa; dnflow.fwa_ro6_pmtu = fwa->fwa_ro6_pmtu; dnflow.fwa_origifp = fwa->fwa_origifp; dnflow.fwa_mtu = fwa->fwa_mtu; dnflow.fwa_unfragpartlen = fwa->fwa_unfragpartlen; dnflow.fwa_exthdrs = fwa->fwa_exthdrs; } if (af == AF_INET) { struct ip *iphdr = pbuf->pb_data; NTOHS(iphdr->ip_len); NTOHS(iphdr->ip_off); } /* * Don't need to unlock pf_lock as NET_THREAD_HELD_PF * allows for recursive behavior */ m = pbuf_to_mbuf(pbuf, TRUE); if (m != NULL) { ip_dn_io_ptr(m, dnflow.fwa_cookie, (af == AF_INET) ? ((direction == PF_IN) ? DN_TO_IP_IN : DN_TO_IP_OUT) : ((direction == PF_IN) ? DN_TO_IP6_IN : DN_TO_IP6_OUT), &dnflow); } /* * The packet is siphoned out by dummynet so return a NULL * pbuf so the caller can still return success. */ *pbuf0 = NULL; return PF_PASS; } return PF_PASS; } #endif /* DUMMYNET */ static __attribute__((noinline)) int pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, pbuf_t *pbuf, void *h, struct pf_pdesc *pd, struct pf_rule **am, struct pf_ruleset **rsm) { #pragma unused(h) struct pf_rule *r, *a = NULL; struct pf_ruleset *ruleset = NULL; sa_family_t af = pd->af; u_short reason; int tag = -1; int asd = 0; int match = 0; r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); while (r != NULL) { r->evaluations++; if (pfi_kif_match(r->kif, kif) == r->ifnot) { r = r->skip[PF_SKIP_IFP].ptr; } else if (r->direction && r->direction != direction) { r = r->skip[PF_SKIP_DIR].ptr; } else if (r->af && r->af != af) { r = r->skip[PF_SKIP_AF].ptr; } else if (r->proto && r->proto != pd->proto) { r = r->skip[PF_SKIP_PROTO].ptr; } else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, r->src.neg, kif)) { r = r->skip[PF_SKIP_SRC_ADDR].ptr; } else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, r->dst.neg, NULL)) { r = r->skip[PF_SKIP_DST_ADDR].ptr; } else if ((r->rule_flag & PFRULE_TOS) && r->tos && !(r->tos & pd->tos)) { r = TAILQ_NEXT(r, entries); } else if ((r->rule_flag & PFRULE_DSCP) && r->tos && !(r->tos & (pd->tos & DSCP_MASK))) { r = TAILQ_NEXT(r, entries); } else if ((r->rule_flag & PFRULE_SC) && r->tos && ((r->tos & SCIDX_MASK) != pd->sc)) { r = TAILQ_NEXT(r, entries); } else if (r->os_fingerprint != PF_OSFP_ANY) { r = TAILQ_NEXT(r, entries); } else if (pd->proto == IPPROTO_UDP && (r->src.xport.range.op || r->dst.xport.range.op)) { r = TAILQ_NEXT(r, entries); } else if (pd->proto == IPPROTO_TCP && (r->src.xport.range.op || r->dst.xport.range.op || r->flagset)) { r = TAILQ_NEXT(r, entries); } else if ((pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) && (r->type || r->code)) { r = TAILQ_NEXT(r, entries); } else if (r->prob && r->prob <= (RandomULong() % (UINT_MAX - 1) + 1)) { r = TAILQ_NEXT(r, entries); } else if (r->match_tag && !pf_match_tag(r, pd->pf_mtag, &tag)) { r = TAILQ_NEXT(r, entries); } else { if (r->anchor == NULL) { match = 1; *rm = r; *am = a; *rsm = ruleset; if ((*rm)->quick) { break; } r = TAILQ_NEXT(r, entries); } else { pf_step_into_anchor(&asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match); } } if (r == NULL && pf_step_out_of_anchor(&asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match)) { break; } } r = *rm; a = *am; ruleset = *rsm; REASON_SET(&reason, PFRES_MATCH); if (r->log) { PFLOG_PACKET(kif, h, pbuf, af, direction, reason, r, a, ruleset, pd); } if (r->action != PF_PASS) { return PF_DROP; } if (pf_tag_packet(pbuf, pd->pf_mtag, tag, -1, NULL)) { REASON_SET(&reason, PFRES_MEMORY); return PF_DROP; } return PF_PASS; } static __attribute__((noinline)) void pf_pptp_handler(struct pf_state *s, int direction, int off, struct pf_pdesc *pd, struct pfi_kif *kif) { #pragma unused(direction) struct tcphdr *th; struct pf_pptp_state *pptps; struct pf_pptp_ctrl_msg cm; size_t plen, tlen; struct pf_state *gs; u_int16_t ct; u_int16_t *pac_call_id; u_int16_t *pns_call_id; u_int16_t *spoof_call_id; u_int8_t *pac_state; u_int8_t *pns_state; enum { PF_PPTP_PASS, PF_PPTP_INSERT_GRE, PF_PPTP_REMOVE_GRE } op; pbuf_t *pbuf; struct pf_state_key *sk; struct pf_state_key *gsk; struct pf_app_state *gas; sk = s->state_key; pptps = &sk->app_state->u.pptp; gs = pptps->grev1_state; if (gs) { gs->expire = pf_time_second(); } pbuf = pd->mp; plen = min(sizeof(cm), pbuf->pb_packet_len - off); if (plen < PF_PPTP_CTRL_MSG_MINSIZE) { return; } tlen = plen - PF_PPTP_CTRL_MSG_MINSIZE; pbuf_copy_data(pbuf, off, plen, &cm); if (ntohl(cm.hdr.magic) != PF_PPTP_MAGIC_NUMBER) { return; } if (ntohs(cm.hdr.type) != 1) { return; } #define TYPE_LEN_CHECK(_type, _name) \ case PF_PPTP_CTRL_TYPE_##_type: \ if (tlen < sizeof(struct pf_pptp_ctrl_##_name)) \ return; \ break; switch (cm.ctrl.type) { TYPE_LEN_CHECK(START_REQ, start_req); TYPE_LEN_CHECK(START_RPY, start_rpy); TYPE_LEN_CHECK(STOP_REQ, stop_req); TYPE_LEN_CHECK(STOP_RPY, stop_rpy); TYPE_LEN_CHECK(ECHO_REQ, echo_req); TYPE_LEN_CHECK(ECHO_RPY, echo_rpy); TYPE_LEN_CHECK(CALL_OUT_REQ, call_out_req); TYPE_LEN_CHECK(CALL_OUT_RPY, call_out_rpy); TYPE_LEN_CHECK(CALL_IN_1ST, call_in_1st); TYPE_LEN_CHECK(CALL_IN_2ND, call_in_2nd); TYPE_LEN_CHECK(CALL_IN_3RD, call_in_3rd); TYPE_LEN_CHECK(CALL_CLR, call_clr); TYPE_LEN_CHECK(CALL_DISC, call_disc); TYPE_LEN_CHECK(ERROR, error); TYPE_LEN_CHECK(SET_LINKINFO, set_linkinfo); default: return; } #undef TYPE_LEN_CHECK if (!gs) { gs = pool_get(&pf_state_pl, PR_WAITOK); if (!gs) { return; } memcpy(gs, s, sizeof(*gs)); memset(&gs->entry_id, 0, sizeof(gs->entry_id)); memset(&gs->entry_list, 0, sizeof(gs->entry_list)); TAILQ_INIT(&gs->unlink_hooks); gs->rt_kif = NULL; gs->creation = 0; gs->pfsync_time = 0; gs->packets[0] = gs->packets[1] = 0; gs->bytes[0] = gs->bytes[1] = 0; gs->timeout = PFTM_UNLINKED; gs->id = gs->creatorid = 0; gs->src.state = gs->dst.state = PFGRE1S_NO_TRAFFIC; gs->src.scrub = gs->dst.scrub = 0; gas = pool_get(&pf_app_state_pl, PR_NOWAIT); if (!gas) { pool_put(&pf_state_pl, gs); return; } gsk = pf_alloc_state_key(gs, NULL); if (!gsk) { pool_put(&pf_app_state_pl, gas); pool_put(&pf_state_pl, gs); return; } memcpy(&gsk->lan, &sk->lan, sizeof(gsk->lan)); memcpy(&gsk->gwy, &sk->gwy, sizeof(gsk->gwy)); memcpy(&gsk->ext_lan, &sk->ext_lan, sizeof(gsk->ext_lan)); memcpy(&gsk->ext_gwy, &sk->ext_gwy, sizeof(gsk->ext_gwy)); gsk->af_lan = sk->af_lan; gsk->af_gwy = sk->af_gwy; gsk->proto = IPPROTO_GRE; gsk->proto_variant = PF_GRE_PPTP_VARIANT; gsk->app_state = gas; gsk->lan.xport.call_id = 0; gsk->gwy.xport.call_id = 0; gsk->ext_lan.xport.call_id = 0; gsk->ext_gwy.xport.call_id = 0; ASSERT(gsk->flowsrc == FLOWSRC_PF); ASSERT(gsk->flowhash != 0); memset(gas, 0, sizeof(*gas)); gas->u.grev1.pptp_state = s; STATE_INC_COUNTERS(gs); pptps->grev1_state = gs; (void) hook_establish(&gs->unlink_hooks, 0, (hook_fn_t) pf_grev1_unlink, gs); } else { gsk = gs->state_key; } switch (sk->direction) { case PF_IN: pns_call_id = &gsk->ext_lan.xport.call_id; pns_state = &gs->dst.state; pac_call_id = &gsk->lan.xport.call_id; pac_state = &gs->src.state; break; case PF_OUT: pns_call_id = &gsk->lan.xport.call_id; pns_state = &gs->src.state; pac_call_id = &gsk->ext_lan.xport.call_id; pac_state = &gs->dst.state; break; default: DPFPRINTF(PF_DEBUG_URGENT, ("pf_pptp_handler: bad directional!\n")); return; } spoof_call_id = 0; op = PF_PPTP_PASS; ct = ntohs(cm.ctrl.type); switch (ct) { case PF_PPTP_CTRL_TYPE_CALL_OUT_REQ: *pns_call_id = cm.msg.call_out_req.call_id; *pns_state = PFGRE1S_INITIATING; if (s->nat_rule.ptr && pns_call_id == &gsk->lan.xport.call_id) { spoof_call_id = &cm.msg.call_out_req.call_id; } break; case PF_PPTP_CTRL_TYPE_CALL_OUT_RPY: *pac_call_id = cm.msg.call_out_rpy.call_id; if (s->nat_rule.ptr) { spoof_call_id = (pac_call_id == &gsk->lan.xport.call_id) ? &cm.msg.call_out_rpy.call_id : &cm.msg.call_out_rpy.peer_call_id; } if (gs->timeout == PFTM_UNLINKED) { *pac_state = PFGRE1S_INITIATING; op = PF_PPTP_INSERT_GRE; } break; case PF_PPTP_CTRL_TYPE_CALL_IN_1ST: *pns_call_id = cm.msg.call_in_1st.call_id; *pns_state = PFGRE1S_INITIATING; if (s->nat_rule.ptr && pns_call_id == &gsk->lan.xport.call_id) { spoof_call_id = &cm.msg.call_in_1st.call_id; } break; case PF_PPTP_CTRL_TYPE_CALL_IN_2ND: *pac_call_id = cm.msg.call_in_2nd.call_id; *pac_state = PFGRE1S_INITIATING; if (s->nat_rule.ptr) { spoof_call_id = (pac_call_id == &gsk->lan.xport.call_id) ? &cm.msg.call_in_2nd.call_id : &cm.msg.call_in_2nd.peer_call_id; } break; case PF_PPTP_CTRL_TYPE_CALL_IN_3RD: if (s->nat_rule.ptr && pns_call_id == &gsk->lan.xport.call_id) { spoof_call_id = &cm.msg.call_in_3rd.call_id; } if (cm.msg.call_in_3rd.call_id != *pns_call_id) { break; } if (gs->timeout == PFTM_UNLINKED) { op = PF_PPTP_INSERT_GRE; } break; case PF_PPTP_CTRL_TYPE_CALL_CLR: if (cm.msg.call_clr.call_id != *pns_call_id) { op = PF_PPTP_REMOVE_GRE; } break; case PF_PPTP_CTRL_TYPE_CALL_DISC: if (cm.msg.call_clr.call_id != *pac_call_id) { op = PF_PPTP_REMOVE_GRE; } break; case PF_PPTP_CTRL_TYPE_ERROR: if (s->nat_rule.ptr && pns_call_id == &gsk->lan.xport.call_id) { spoof_call_id = &cm.msg.error.peer_call_id; } break; case PF_PPTP_CTRL_TYPE_SET_LINKINFO: if (s->nat_rule.ptr && pac_call_id == &gsk->lan.xport.call_id) { spoof_call_id = &cm.msg.set_linkinfo.peer_call_id; } break; default: op = PF_PPTP_PASS; break; } if (!gsk->gwy.xport.call_id && gsk->lan.xport.call_id) { gsk->gwy.xport.call_id = gsk->lan.xport.call_id; if (spoof_call_id) { u_int16_t call_id = 0; int n = 0; struct pf_state_key_cmp key; key.af_gwy = gsk->af_gwy; key.proto = IPPROTO_GRE; key.proto_variant = PF_GRE_PPTP_VARIANT; PF_ACPY(&key.gwy.addr, &gsk->gwy.addr, key.af_gwy); PF_ACPY(&key.ext_gwy.addr, &gsk->ext_gwy.addr, key.af_gwy); key.gwy.xport.call_id = gsk->gwy.xport.call_id; key.ext_gwy.xport.call_id = gsk->ext_gwy.xport.call_id; do { call_id = htonl(random()); } while (!call_id); while (pf_find_state_all(&key, PF_IN, 0)) { call_id = ntohs(call_id); --call_id; if (--call_id == 0) { call_id = 0xffff; } call_id = htons(call_id); key.gwy.xport.call_id = call_id; if (++n > 65535) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_pptp_handler: failed to spoof " "call id\n")); key.gwy.xport.call_id = 0; break; } } gsk->gwy.xport.call_id = call_id; } } th = pd->hdr.tcp; if (spoof_call_id && gsk->lan.xport.call_id != gsk->gwy.xport.call_id) { if (*spoof_call_id == gsk->gwy.xport.call_id) { *spoof_call_id = gsk->lan.xport.call_id; th->th_sum = pf_cksum_fixup(th->th_sum, gsk->gwy.xport.call_id, gsk->lan.xport.call_id, 0); } else { *spoof_call_id = gsk->gwy.xport.call_id; th->th_sum = pf_cksum_fixup(th->th_sum, gsk->lan.xport.call_id, gsk->gwy.xport.call_id, 0); } if (pf_lazy_makewritable(pd, pbuf, off + plen) == NULL) { pptps->grev1_state = NULL; STATE_DEC_COUNTERS(gs); pool_put(&pf_state_pl, gs); return; } pbuf_copy_back(pbuf, off, plen, &cm); } switch (op) { case PF_PPTP_REMOVE_GRE: gs->timeout = PFTM_PURGE; gs->src.state = gs->dst.state = PFGRE1S_NO_TRAFFIC; gsk->lan.xport.call_id = 0; gsk->gwy.xport.call_id = 0; gsk->ext_lan.xport.call_id = 0; gsk->ext_gwy.xport.call_id = 0; gs->id = gs->creatorid = 0; break; case PF_PPTP_INSERT_GRE: gs->creation = pf_time_second(); gs->expire = pf_time_second(); gs->timeout = PFTM_TCP_ESTABLISHED; if (gs->src_node != NULL) { ++gs->src_node->states; VERIFY(gs->src_node->states != 0); } if (gs->nat_src_node != NULL) { ++gs->nat_src_node->states; VERIFY(gs->nat_src_node->states != 0); } pf_set_rt_ifp(gs, &sk->lan.addr, sk->af_lan); if (pf_insert_state(BOUND_IFACE(s->rule.ptr, kif), gs)) { /* * * FIX ME: insertion can fail when multiple PNS * behind the same NAT open calls to the same PAC * simultaneously because spoofed call ID numbers * are chosen before states are inserted. This is * hard to fix and happens infrequently enough that * users will normally try again and this ALG will * succeed. Failures are expected to be rare enough * that fixing this is a low priority. */ pptps->grev1_state = NULL; pd->lmw = -1; /* Force PF_DROP on PFRES_MEMORY */ pf_src_tree_remove_state(gs); STATE_DEC_COUNTERS(gs); pool_put(&pf_state_pl, gs); DPFPRINTF(PF_DEBUG_URGENT, ("pf_pptp_handler: error " "inserting GREv1 state.\n")); } break; default: break; } } static __attribute__((noinline)) void pf_pptp_unlink(struct pf_state *s) { struct pf_app_state *as = s->state_key->app_state; struct pf_state *grev1s = as->u.pptp.grev1_state; if (grev1s) { struct pf_app_state *gas = grev1s->state_key->app_state; if (grev1s->timeout < PFTM_MAX) { grev1s->timeout = PFTM_PURGE; } gas->u.grev1.pptp_state = NULL; as->u.pptp.grev1_state = NULL; } } static __attribute__((noinline)) void pf_grev1_unlink(struct pf_state *s) { struct pf_app_state *as = s->state_key->app_state; struct pf_state *pptps = as->u.grev1.pptp_state; if (pptps) { struct pf_app_state *pas = pptps->state_key->app_state; pas->u.pptp.grev1_state = NULL; as->u.grev1.pptp_state = NULL; } } static int pf_ike_compare(struct pf_app_state *a, struct pf_app_state *b) { int64_t d = a->u.ike.cookie - b->u.ike.cookie; return (d > 0) ? 1 : ((d < 0) ? -1 : 0); } static int pf_do_nat64(struct pf_state_key *sk, struct pf_pdesc *pd, pbuf_t *pbuf, int off) { if (pd->af == AF_INET) { if (pd->af != sk->af_lan) { pd->ndaddr = sk->lan.addr; pd->naddr = sk->ext_lan.addr; } else { pd->naddr = sk->gwy.addr; pd->ndaddr = sk->ext_gwy.addr; } return pf_nat64_ipv4(pbuf, off, pd); } else if (pd->af == AF_INET6) { if (pd->af != sk->af_lan) { pd->ndaddr = sk->lan.addr; pd->naddr = sk->ext_lan.addr; } else { pd->naddr = sk->gwy.addr; pd->ndaddr = sk->ext_gwy.addr; } return pf_nat64_ipv6(pbuf, off, pd); } return PF_DROP; } static __attribute__((noinline)) int pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, pbuf_t *pbuf, int off, void *h, struct pf_pdesc *pd, u_short *reason) { #pragma unused(h) struct pf_state_key_cmp key; struct tcphdr *th = pd->hdr.tcp; u_int16_t win = ntohs(th->th_win); u_int32_t ack, end, seq, orig_seq; u_int8_t sws, dws; int ackskew; int copyback = 0; struct pf_state_peer *src, *dst; struct pf_state_key *sk; key.app_state = 0; key.proto = IPPROTO_TCP; key.af_lan = key.af_gwy = pd->af; /* * For NAT64 the first time rule search and state creation * is done on the incoming side only. * Once the state gets created, NAT64's LAN side (ipv6) will * not be able to find the state in ext-gwy tree as that normally * is intended to be looked up for incoming traffic from the * WAN side. * Therefore to handle NAT64 case we init keys here for both * lan-ext as well as ext-gwy trees. * In the state lookup we attempt a lookup on both trees if * first one does not return any result and return a match if * the match state's was created by NAT64 rule. */ PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy); PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy); key.ext_gwy.xport.port = th->th_sport; key.gwy.xport.port = th->th_dport; PF_ACPY(&key.lan.addr, pd->src, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan); key.lan.xport.port = th->th_sport; key.ext_lan.xport.port = th->th_dport; STATE_LOOKUP(); sk = (*state)->state_key; /* * In case of NAT64 the translation is first applied on the LAN * side. Therefore for stack's address family comparison * we use sk->af_lan. */ if ((direction == sk->direction) && (pd->af == sk->af_lan)) { src = &(*state)->src; dst = &(*state)->dst; } else { src = &(*state)->dst; dst = &(*state)->src; } if (src->state == PF_TCPS_PROXY_SRC) { if (direction != sk->direction) { REASON_SET(reason, PFRES_SYNPROXY); return PF_SYNPROXY_DROP; } if (th->th_flags & TH_SYN) { if (ntohl(th->th_seq) != src->seqlo) { REASON_SET(reason, PFRES_SYNPROXY); return PF_DROP; } pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, src->seqhi, ntohl(th->th_seq) + 1, TH_SYN | TH_ACK, 0, src->mss, 0, 1, 0, NULL, NULL); REASON_SET(reason, PFRES_SYNPROXY); return PF_SYNPROXY_DROP; } else if (!(th->th_flags & TH_ACK) || (ntohl(th->th_ack) != src->seqhi + 1) || (ntohl(th->th_seq) != src->seqlo + 1)) { REASON_SET(reason, PFRES_SYNPROXY); return PF_DROP; } else if ((*state)->src_node != NULL && pf_src_connlimit(state)) { REASON_SET(reason, PFRES_SRCLIMIT); return PF_DROP; } else { src->state = PF_TCPS_PROXY_DST; } } if (src->state == PF_TCPS_PROXY_DST) { struct pf_state_host *psrc, *pdst; if (direction == PF_OUT) { psrc = &sk->gwy; pdst = &sk->ext_gwy; } else { psrc = &sk->ext_lan; pdst = &sk->lan; } if (direction == sk->direction) { if (((th->th_flags & (TH_SYN | TH_ACK)) != TH_ACK) || (ntohl(th->th_ack) != src->seqhi + 1) || (ntohl(th->th_seq) != src->seqlo + 1)) { REASON_SET(reason, PFRES_SYNPROXY); return PF_DROP; } src->max_win = MAX(ntohs(th->th_win), 1); if (dst->seqhi == 1) { dst->seqhi = htonl(random()); } pf_send_tcp((*state)->rule.ptr, pd->af, &psrc->addr, &pdst->addr, psrc->xport.port, pdst->xport.port, dst->seqhi, 0, TH_SYN, 0, src->mss, 0, 0, (*state)->tag, NULL, NULL); REASON_SET(reason, PFRES_SYNPROXY); return PF_SYNPROXY_DROP; } else if (((th->th_flags & (TH_SYN | TH_ACK)) != (TH_SYN | TH_ACK)) || (ntohl(th->th_ack) != dst->seqhi + 1)) { REASON_SET(reason, PFRES_SYNPROXY); return PF_DROP; } else { dst->max_win = MAX(ntohs(th->th_win), 1); dst->seqlo = ntohl(th->th_seq); pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, ntohl(th->th_ack), ntohl(th->th_seq) + 1, TH_ACK, src->max_win, 0, 0, 0, (*state)->tag, NULL, NULL); pf_send_tcp((*state)->rule.ptr, pd->af, &psrc->addr, &pdst->addr, psrc->xport.port, pdst->xport.port, src->seqhi + 1, src->seqlo + 1, TH_ACK, dst->max_win, 0, 0, 1, 0, NULL, NULL); src->seqdiff = dst->seqhi - src->seqlo; dst->seqdiff = src->seqhi - dst->seqlo; src->seqhi = src->seqlo + dst->max_win; dst->seqhi = dst->seqlo + src->max_win; src->wscale = dst->wscale = 0; src->state = dst->state = TCPS_ESTABLISHED; REASON_SET(reason, PFRES_SYNPROXY); return PF_SYNPROXY_DROP; } } if (((th->th_flags & (TH_SYN | TH_ACK)) == TH_SYN) && dst->state >= TCPS_FIN_WAIT_2 && src->state >= TCPS_FIN_WAIT_2) { if (pf_status.debug >= PF_DEBUG_MISC) { printf("pf: state reuse "); pf_print_state(*state); pf_print_flags(th->th_flags); printf("\n"); } /* XXX make sure it's the same direction ?? */ src->state = dst->state = TCPS_CLOSED; pf_unlink_state(*state); *state = NULL; return PF_DROP; } if ((th->th_flags & TH_SYN) == 0) { sws = (src->wscale & PF_WSCALE_FLAG) ? (src->wscale & PF_WSCALE_MASK) : TCP_MAX_WINSHIFT; dws = (dst->wscale & PF_WSCALE_FLAG) ? (dst->wscale & PF_WSCALE_MASK) : TCP_MAX_WINSHIFT; } else { sws = dws = 0; } /* * Sequence tracking algorithm from Guido van Rooij's paper: * http://www.madison-gurkha.com/publications/tcp_filtering/ * tcp_filtering.ps */ orig_seq = seq = ntohl(th->th_seq); if (src->seqlo == 0) { /* First packet from this end. Set its state */ if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && src->scrub == NULL) { if (pf_normalize_tcp_init(pbuf, off, pd, th, src, dst)) { REASON_SET(reason, PFRES_MEMORY); return PF_DROP; } } /* Deferred generation of sequence number modulator */ if (dst->seqdiff && !src->seqdiff) { /* use random iss for the TCP server */ while ((src->seqdiff = random() - seq) == 0) { ; } ack = ntohl(th->th_ack) - dst->seqdiff; pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + src->seqdiff), 0); pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); copyback = off + sizeof(*th); } else { ack = ntohl(th->th_ack); } end = seq + pd->p_len; if (th->th_flags & TH_SYN) { end++; if (dst->wscale & PF_WSCALE_FLAG) { src->wscale = pf_get_wscale(pbuf, off, th->th_off, pd->af); if (src->wscale & PF_WSCALE_FLAG) { /* * Remove scale factor from initial * window */ sws = src->wscale & PF_WSCALE_MASK; win = ((u_int32_t)win + (1 << sws) - 1) >> sws; dws = dst->wscale & PF_WSCALE_MASK; } else { /* * Window scale negotiation has failed, * therefore we must restore the window * scale in the state record that we * optimistically removed in * pf_test_rule(). Care is required to * prevent arithmetic overflow from * zeroing the window when it's * truncated down to 16-bits. */ u_int32_t max_win = dst->max_win; max_win <<= dst->wscale & PF_WSCALE_MASK; dst->max_win = MIN(0xffff, max_win); /* in case of a retrans SYN|ACK */ dst->wscale = 0; } } } if (th->th_flags & TH_FIN) { end++; } src->seqlo = seq; if (src->state < TCPS_SYN_SENT) { src->state = TCPS_SYN_SENT; } /* * May need to slide the window (seqhi may have been set by * the crappy stack check or if we picked up the connection * after establishment) */ if (src->seqhi == 1 || SEQ_GEQ(end + MAX(1, (u_int32_t)dst->max_win << dws), src->seqhi)) { src->seqhi = end + MAX(1, (u_int32_t)dst->max_win << dws); } if (win > src->max_win) { src->max_win = win; } } else { ack = ntohl(th->th_ack) - dst->seqdiff; if (src->seqdiff) { /* Modulate sequence numbers */ pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + src->seqdiff), 0); pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); copyback = off + sizeof(*th); } end = seq + pd->p_len; if (th->th_flags & TH_SYN) { end++; } if (th->th_flags & TH_FIN) { end++; } } if ((th->th_flags & TH_ACK) == 0) { /* Let it pass through the ack skew check */ ack = dst->seqlo; } else if ((ack == 0 && (th->th_flags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) || /* broken tcp stacks do not set ack */ (dst->state < TCPS_SYN_SENT)) { /* * Many stacks (ours included) will set the ACK number in an * FIN|ACK if the SYN times out -- no sequence to ACK. */ ack = dst->seqlo; } if (seq == end) { /* Ease sequencing restrictions on no data packets */ seq = src->seqlo; end = seq; } ackskew = dst->seqlo - ack; /* * Need to demodulate the sequence numbers in any TCP SACK options * (Selective ACK). We could optionally validate the SACK values * against the current ACK window, either forwards or backwards, but * I'm not confident that SACK has been implemented properly * everywhere. It wouldn't surprise me if several stacks accidently * SACK too far backwards of previously ACKed data. There really aren't * any security implications of bad SACKing unless the target stack * doesn't validate the option length correctly. Someone trying to * spoof into a TCP connection won't bother blindly sending SACK * options anyway. */ if (dst->seqdiff && (th->th_off << 2) > (int)sizeof(struct tcphdr)) { copyback = pf_modulate_sack(pbuf, off, pd, th, dst); if (copyback == -1) { REASON_SET(reason, PFRES_MEMORY); return PF_DROP; } pbuf = pd->mp; // XXXSCW: Why? } #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ if (SEQ_GEQ(src->seqhi, end) && /* Last octet inside other's window space */ SEQ_GEQ(seq, src->seqlo - ((u_int32_t)dst->max_win << dws)) && /* Retrans: not more than one window back */ (ackskew >= -MAXACKWINDOW) && /* Acking not more than one reassembled fragment backwards */ (ackskew <= (MAXACKWINDOW << sws)) && /* Acking not more than one window forward */ ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || (pd->flags & PFDESC_IP_REAS) == 0)) { /* Require an exact/+1 sequence match on resets when possible */ if (dst->scrub || src->scrub) { if (pf_normalize_tcp_stateful(pbuf, off, pd, reason, th, *state, src, dst, ©back)) { return PF_DROP; } pbuf = pd->mp; // XXXSCW: Why? } /* update max window */ if (src->max_win < win) { src->max_win = win; } /* synchronize sequencing */ if (SEQ_GT(end, src->seqlo)) { src->seqlo = end; } /* slide the window of what the other end can send */ if (SEQ_GEQ(ack + ((u_int32_t)win << sws), dst->seqhi)) { dst->seqhi = ack + MAX(((u_int32_t)win << sws), 1); } /* update states */ if (th->th_flags & TH_SYN) { if (src->state < TCPS_SYN_SENT) { src->state = TCPS_SYN_SENT; } } if (th->th_flags & TH_FIN) { if (src->state < TCPS_CLOSING) { src->state = TCPS_CLOSING; } } if (th->th_flags & TH_ACK) { if (dst->state == TCPS_SYN_SENT) { dst->state = TCPS_ESTABLISHED; if (src->state == TCPS_ESTABLISHED && (*state)->src_node != NULL && pf_src_connlimit(state)) { REASON_SET(reason, PFRES_SRCLIMIT); return PF_DROP; } } else if (dst->state == TCPS_CLOSING) { dst->state = TCPS_FIN_WAIT_2; } } if (th->th_flags & TH_RST) { src->state = dst->state = TCPS_TIME_WAIT; } /* update expire time */ (*state)->expire = pf_time_second(); if (src->state >= TCPS_FIN_WAIT_2 && dst->state >= TCPS_FIN_WAIT_2) { (*state)->timeout = PFTM_TCP_CLOSED; } else if (src->state >= TCPS_CLOSING && dst->state >= TCPS_CLOSING) { (*state)->timeout = PFTM_TCP_FIN_WAIT; } else if (src->state < TCPS_ESTABLISHED || dst->state < TCPS_ESTABLISHED) { (*state)->timeout = PFTM_TCP_OPENING; } else if (src->state >= TCPS_CLOSING || dst->state >= TCPS_CLOSING) { (*state)->timeout = PFTM_TCP_CLOSING; } else { (*state)->timeout = PFTM_TCP_ESTABLISHED; } /* Fall through to PASS packet */ } else if ((dst->state < TCPS_SYN_SENT || dst->state >= TCPS_FIN_WAIT_2 || src->state >= TCPS_FIN_WAIT_2) && SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && /* Within a window forward of the originating packet */ SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { /* Within a window backward of the originating packet */ /* * This currently handles three situations: * 1) Stupid stacks will shotgun SYNs before their peer * replies. * 2) When PF catches an already established stream (the * firewall rebooted, the state table was flushed, routes * changed...) * 3) Packets get funky immediately after the connection * closes (this should catch Solaris spurious ACK|FINs * that web servers like to spew after a close) * * This must be a little more careful than the above code * since packet floods will also be caught here. We don't * update the TTL here to mitigate the damage of a packet * flood and so the same code can handle awkward establishment * and a loosened connection close. * In the establishment case, a correct peer response will * validate the connection, go through the normal state code * and keep updating the state TTL. */ if (pf_status.debug >= PF_DEBUG_MISC) { printf("pf: loose state match: "); pf_print_state(*state); pf_print_flags(th->th_flags); printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, pd->p_len, ackskew, (*state)->packets[0], (*state)->packets[1], direction == PF_IN ? "in" : "out", direction == sk->direction ? "fwd" : "rev"); } if (dst->scrub || src->scrub) { if (pf_normalize_tcp_stateful(pbuf, off, pd, reason, th, *state, src, dst, ©back)) { return PF_DROP; } pbuf = pd->mp; // XXXSCW: Why? } /* update max window */ if (src->max_win < win) { src->max_win = win; } /* synchronize sequencing */ if (SEQ_GT(end, src->seqlo)) { src->seqlo = end; } /* slide the window of what the other end can send */ if (SEQ_GEQ(ack + ((u_int32_t)win << sws), dst->seqhi)) { dst->seqhi = ack + MAX(((u_int32_t)win << sws), 1); } /* * Cannot set dst->seqhi here since this could be a shotgunned * SYN and not an already established connection. */ if (th->th_flags & TH_FIN) { if (src->state < TCPS_CLOSING) { src->state = TCPS_CLOSING; } } if (th->th_flags & TH_RST) { src->state = dst->state = TCPS_TIME_WAIT; } /* Fall through to PASS packet */ } else { if (dst->state == TCPS_SYN_SENT && src->state == TCPS_SYN_SENT) { /* Send RST for state mismatches during handshake */ if (!(th->th_flags & TH_RST)) { pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, ntohl(th->th_ack), 0, TH_RST, 0, 0, (*state)->rule.ptr->return_ttl, 1, 0, pd->eh, kif->pfik_ifp); } src->seqlo = 0; src->seqhi = 1; src->max_win = 1; } else if (pf_status.debug >= PF_DEBUG_MISC) { printf("pf: BAD state: "); pf_print_state(*state); pf_print_flags(th->th_flags); printf("\n seq=%u (%u) ack=%u len=%u ackskew=%d " "sws=%u dws=%u pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, pd->p_len, ackskew, (unsigned int)sws, (unsigned int)dws, (*state)->packets[0], (*state)->packets[1], direction == PF_IN ? "in" : "out", direction == sk->direction ? "fwd" : "rev"); printf("pf: State failure on: %c %c %c %c | %c %c\n", SEQ_GEQ(src->seqhi, end) ? ' ' : '1', SEQ_GEQ(seq, src->seqlo - ((u_int32_t)dst->max_win << dws)) ? ' ': '2', (ackskew >= -MAXACKWINDOW) ? ' ' : '3', (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); } REASON_SET(reason, PFRES_BADSTATE); return PF_DROP; } /* Any packets which have gotten here are to be passed */ if (sk->app_state && sk->app_state->handler) { sk->app_state->handler(*state, direction, off + (th->th_off << 2), pd, kif); if (pd->lmw < 0) { REASON_SET(reason, PFRES_MEMORY); return PF_DROP; } pbuf = pd->mp; // XXXSCW: Why? } /* translate source/destination address, if necessary */ if (STATE_TRANSLATE(sk)) { pd->naf = (pd->af == sk->af_lan) ? sk->af_gwy : sk->af_lan; if (direction == PF_OUT) { pf_change_ap(direction, pd->mp, pd->src, &th->th_sport, pd->ip_sum, &th->th_sum, &sk->gwy.addr, sk->gwy.xport.port, 0, pd->af, pd->naf, 1); } else { if (pd->af != pd->naf) { if (pd->af == sk->af_gwy) { pf_change_ap(direction, pd->mp, pd->dst, &th->th_dport, pd->ip_sum, &th->th_sum, &sk->lan.addr, sk->lan.xport.port, 0, pd->af, pd->naf, 0); pf_change_ap(direction, pd->mp, pd->src, &th->th_sport, pd->ip_sum, &th->th_sum, &sk->ext_lan.addr, th->th_sport, 0, pd->af, pd->naf, 0); } else { pf_change_ap(direction, pd->mp, pd->dst, &th->th_dport, pd->ip_sum, &th->th_sum, &sk->ext_gwy.addr, th->th_dport, 0, pd->af, pd->naf, 0); pf_change_ap(direction, pd->mp, pd->src, &th->th_sport, pd->ip_sum, &th->th_sum, &sk->gwy.addr, sk->gwy.xport.port, 0, pd->af, pd->naf, 0); } } else { pf_change_ap(direction, pd->mp, pd->dst, &th->th_dport, pd->ip_sum, &th->th_sum, &sk->lan.addr, sk->lan.xport.port, 0, pd->af, pd->naf, 1); } } copyback = off + sizeof(*th); } if (copyback) { if (pf_lazy_makewritable(pd, pbuf, copyback) == NULL) { REASON_SET(reason, PFRES_MEMORY); return PF_DROP; } /* Copyback sequence modulation or stateful scrub changes */ pbuf_copy_back(pbuf, off, sizeof(*th), th); if (sk->af_lan != sk->af_gwy) { return pf_do_nat64(sk, pd, pbuf, off); } } return PF_PASS; } static __attribute__((noinline)) int pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, pbuf_t *pbuf, int off, void *h, struct pf_pdesc *pd, u_short *reason) { #pragma unused(h) struct pf_state_peer *src, *dst; struct pf_state_key_cmp key; struct pf_state_key *sk; struct udphdr *uh = pd->hdr.udp; struct pf_app_state as; int action, extfilter; key.app_state = 0; key.proto_variant = PF_EXTFILTER_APD; key.proto = IPPROTO_UDP; key.af_lan = key.af_gwy = pd->af; /* * For NAT64 the first time rule search and state creation * is done on the incoming side only. * Once the state gets created, NAT64's LAN side (ipv6) will * not be able to find the state in ext-gwy tree as that normally * is intended to be looked up for incoming traffic from the * WAN side. * Therefore to handle NAT64 case we init keys here for both * lan-ext as well as ext-gwy trees. * In the state lookup we attempt a lookup on both trees if * first one does not return any result and return a match if * the match state's was created by NAT64 rule. */ PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy); PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy); key.ext_gwy.xport.port = uh->uh_sport; key.gwy.xport.port = uh->uh_dport; PF_ACPY(&key.lan.addr, pd->src, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan); key.lan.xport.port = uh->uh_sport; key.ext_lan.xport.port = uh->uh_dport; if (ntohs(uh->uh_sport) == PF_IKE_PORT && ntohs(uh->uh_dport) == PF_IKE_PORT) { struct pf_ike_hdr ike; size_t plen = pbuf->pb_packet_len - off - sizeof(*uh); if (plen < PF_IKE_PACKET_MINSIZE) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IKE message too small.\n")); return PF_DROP; } if (plen > sizeof(ike)) { plen = sizeof(ike); } pbuf_copy_data(pbuf, off + sizeof(*uh), plen, &ike); if (ike.initiator_cookie) { key.app_state = &as; as.compare_lan_ext = pf_ike_compare; as.compare_ext_gwy = pf_ike_compare; as.u.ike.cookie = ike.initiator_cookie; } else { /* * * Support non-standard NAT-T implementations that * push the ESP packet over the top of the IKE packet. * Do not drop packet. */ DPFPRINTF(PF_DEBUG_MISC, ("pf: IKE initiator cookie = 0.\n")); } } *state = pf_find_state(kif, &key, direction); if (!key.app_state && *state == 0) { key.proto_variant = PF_EXTFILTER_AD; *state = pf_find_state(kif, &key, direction); } if (!key.app_state && *state == 0) { key.proto_variant = PF_EXTFILTER_EI; *state = pf_find_state(kif, &key, direction); } /* similar to STATE_LOOKUP() */ if (*state != NULL && pd != NULL && !(pd->pktflags & PKTF_FLOW_ID)) { pd->flowsrc = (*state)->state_key->flowsrc; pd->flowhash = (*state)->state_key->flowhash; if (pd->flowhash != 0) { pd->pktflags |= PKTF_FLOW_ID; pd->pktflags &= ~PKTF_FLOW_ADV; } } if (pf_state_lookup_aux(state, kif, direction, &action)) { return action; } sk = (*state)->state_key; /* * In case of NAT64 the translation is first applied on the LAN * side. Therefore for stack's address family comparison * we use sk->af_lan. */ if ((direction == sk->direction) && (pd->af == sk->af_lan)) { src = &(*state)->src; dst = &(*state)->dst; } else { src = &(*state)->dst; dst = &(*state)->src; } /* update states */ if (src->state < PFUDPS_SINGLE) { src->state = PFUDPS_SINGLE; } if (dst->state == PFUDPS_SINGLE) { dst->state = PFUDPS_MULTIPLE; } /* update expire time */ (*state)->expire = pf_time_second(); if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) { (*state)->timeout = PFTM_UDP_MULTIPLE; } else { (*state)->timeout = PFTM_UDP_SINGLE; } extfilter = sk->proto_variant; if (extfilter > PF_EXTFILTER_APD) { if (direction == PF_OUT) { sk->ext_lan.xport.port = key.ext_lan.xport.port; if (extfilter > PF_EXTFILTER_AD) { PF_ACPY(&sk->ext_lan.addr, &key.ext_lan.addr, key.af_lan); } } else { sk->ext_gwy.xport.port = key.ext_gwy.xport.port; if (extfilter > PF_EXTFILTER_AD) { PF_ACPY(&sk->ext_gwy.addr, &key.ext_gwy.addr, key.af_gwy); } } } if (sk->app_state && sk->app_state->handler) { sk->app_state->handler(*state, direction, off + uh->uh_ulen, pd, kif); if (pd->lmw < 0) { REASON_SET(reason, PFRES_MEMORY); return PF_DROP; } pbuf = pd->mp; // XXXSCW: Why? } /* translate source/destination address, if necessary */ if (STATE_TRANSLATE(sk)) { if (pf_lazy_makewritable(pd, pbuf, off + sizeof(*uh)) == NULL) { REASON_SET(reason, PFRES_MEMORY); return PF_DROP; } pd->naf = (pd->af == sk->af_lan) ? sk->af_gwy : sk->af_lan; if (direction == PF_OUT) { pf_change_ap(direction, pd->mp, pd->src, &uh->uh_sport, pd->ip_sum, &uh->uh_sum, &sk->gwy.addr, sk->gwy.xport.port, 1, pd->af, pd->naf, 1); } else { if (pd->af != pd->naf) { if (pd->af == sk->af_gwy) { pf_change_ap(direction, pd->mp, pd->dst, &uh->uh_dport, pd->ip_sum, &uh->uh_sum, &sk->lan.addr, sk->lan.xport.port, 1, pd->af, pd->naf, 0); pf_change_ap(direction, pd->mp, pd->src, &uh->uh_sport, pd->ip_sum, &uh->uh_sum, &sk->ext_lan.addr, uh->uh_sport, 1, pd->af, pd->naf, 0); } else { pf_change_ap(direction, pd->mp, pd->dst, &uh->uh_dport, pd->ip_sum, &uh->uh_sum, &sk->ext_gwy.addr, uh->uh_dport, 1, pd->af, pd->naf, 0); pf_change_ap(direction, pd->mp, pd->src, &uh->uh_sport, pd->ip_sum, &uh->uh_sum, &sk->gwy.addr, sk->gwy.xport.port, 1, pd->af, pd->naf, 0); } } else { pf_change_ap(direction, pd->mp, pd->dst, &uh->uh_dport, pd->ip_sum, &uh->uh_sum, &sk->lan.addr, sk->lan.xport.port, 1, pd->af, pd->naf, 1); } } pbuf_copy_back(pbuf, off, sizeof(*uh), uh); if (sk->af_lan != sk->af_gwy) { return pf_do_nat64(sk, pd, pbuf, off); } } return PF_PASS; } static u_int32_t pf_compute_packet_icmp_gencnt(uint32_t af, u_int32_t type, u_int32_t code) { if (af == PF_INET) { if (type != ICMP_UNREACH && type != ICMP_TIMXCEED) { return 0; } } else { if (type != ICMP6_DST_UNREACH && type != ICMP6_PARAM_PROB && type != ICMP6_TIME_EXCEEDED) { return 0; } } return (af << 24) | (type << 16) | (code << 8); } static __attribute__((noinline)) int pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, pbuf_t *pbuf, int off, void *h, struct pf_pdesc *pd, u_short *reason) { #pragma unused(h) struct pf_addr *saddr = pd->src, *daddr = pd->dst; struct in_addr srcv4_inaddr = saddr->v4addr; u_int16_t icmpid = 0, *icmpsum = NULL; u_int8_t icmptype = 0; u_int32_t icmpcode = 0; int state_icmp = 0; struct pf_state_key_cmp key; struct pf_state_key *sk; struct pf_app_state as; key.app_state = 0; pd->off = off; switch (pd->proto) { #if INET case IPPROTO_ICMP: icmptype = pd->hdr.icmp->icmp_type; icmpid = pd->hdr.icmp->icmp_id; icmpsum = &pd->hdr.icmp->icmp_cksum; icmpcode = pd->hdr.icmp->icmp_code; if (ICMP_ERRORTYPE(icmptype)) { state_icmp++; } break; #endif /* INET */ case IPPROTO_ICMPV6: icmptype = pd->hdr.icmp6->icmp6_type; icmpid = pd->hdr.icmp6->icmp6_id; icmpsum = &pd->hdr.icmp6->icmp6_cksum; icmpcode = pd->hdr.icmp6->icmp6_code; if (ICMP6_ERRORTYPE(icmptype)) { state_icmp++; } break; } if (pbuf != NULL && pbuf->pb_flow_gencnt != NULL && *pbuf->pb_flow_gencnt == 0) { u_int32_t af = pd->proto == IPPROTO_ICMP ? PF_INET : PF_INET6; *pbuf->pb_flow_gencnt = pf_compute_packet_icmp_gencnt(af, icmptype, icmpcode); } if (!state_icmp) { /* * ICMP query/reply message not related to a TCP/UDP packet. * Search for an ICMP state. */ /* * NAT64 requires protocol translation between ICMPv4 * and ICMPv6. TCP and UDP do not require protocol * translation. To avoid adding complexity just to * handle ICMP(v4addr/v6addr), we always lookup for * proto = IPPROTO_ICMP on both LAN and WAN side */ key.proto = IPPROTO_ICMP; key.af_lan = key.af_gwy = pd->af; PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy); PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy); key.ext_gwy.xport.port = 0; key.gwy.xport.port = icmpid; PF_ACPY(&key.lan.addr, pd->src, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan); key.lan.xport.port = icmpid; key.ext_lan.xport.port = 0; STATE_LOOKUP(); sk = (*state)->state_key; (*state)->expire = pf_time_second(); (*state)->timeout = PFTM_ICMP_ERROR_REPLY; /* translate source/destination address, if necessary */ if (STATE_TRANSLATE(sk)) { pd->naf = (pd->af == sk->af_lan) ? sk->af_gwy : sk->af_lan; if (direction == PF_OUT) { switch (pd->af) { #if INET case AF_INET: pf_change_a(&saddr->v4addr.s_addr, pd->ip_sum, sk->gwy.addr.v4addr.s_addr, 0); pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( pd->hdr.icmp->icmp_cksum, icmpid, sk->gwy.xport.port, 0); pd->hdr.icmp->icmp_id = sk->gwy.xport.port; if (pf_lazy_makewritable(pd, pbuf, off + ICMP_MINLEN) == NULL) { return PF_DROP; } pbuf_copy_back(pbuf, off, ICMP_MINLEN, pd->hdr.icmp); break; #endif /* INET */ case AF_INET6: pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, &sk->gwy.addr, 0); if (pf_lazy_makewritable(pd, pbuf, off + sizeof(struct icmp6_hdr)) == NULL) { return PF_DROP; } pbuf_copy_back(pbuf, off, sizeof(struct icmp6_hdr), pd->hdr.icmp6); break; } } else { switch (pd->af) { #if INET case AF_INET: if (pd->naf != AF_INET) { if (pf_translate_icmp_af( AF_INET6, pd->hdr.icmp)) { return PF_DROP; } pd->proto = IPPROTO_ICMPV6; } else { pf_change_a(&daddr->v4addr.s_addr, pd->ip_sum, sk->lan.addr.v4addr.s_addr, 0); pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( pd->hdr.icmp->icmp_cksum, icmpid, sk->lan.xport.port, 0); pd->hdr.icmp->icmp_id = sk->lan.xport.port; } if (pf_lazy_makewritable(pd, pbuf, off + ICMP_MINLEN) == NULL) { return PF_DROP; } pbuf_copy_back(pbuf, off, ICMP_MINLEN, pd->hdr.icmp); if (sk->af_lan != sk->af_gwy) { return pf_do_nat64(sk, pd, pbuf, off); } break; #endif /* INET */ case AF_INET6: if (pd->naf != AF_INET6) { if (pf_translate_icmp_af( AF_INET, pd->hdr.icmp6)) { return PF_DROP; } pd->proto = IPPROTO_ICMP; } else { pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, &sk->lan.addr, 0); } if (pf_lazy_makewritable(pd, pbuf, off + sizeof(struct icmp6_hdr)) == NULL) { return PF_DROP; } pbuf_copy_back(pbuf, off, sizeof(struct icmp6_hdr), pd->hdr.icmp6); if (sk->af_lan != sk->af_gwy) { return pf_do_nat64(sk, pd, pbuf, off); } break; } } } return PF_PASS; } else { /* * ICMP error message in response to a TCP/UDP packet. * Extract the inner TCP/UDP header and search for that state. */ struct pf_pdesc pd2; /* For inner (original) header */ #if INET struct ip h2; #endif /* INET */ struct ip6_hdr h2_6; int terminal = 0; int ipoff2 = 0; int off2 = 0; memset(&pd2, 0, sizeof(pd2)); pd2.af = pd->af; switch (pd->af) { #if INET case AF_INET: /* offset of h2 in mbuf chain */ ipoff2 = off + ICMP_MINLEN; if (!pf_pull_hdr(pbuf, ipoff2, &h2, sizeof(h2), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(ip)\n")); return PF_DROP; } /* * ICMP error messages don't refer to non-first * fragments */ if (h2.ip_off & htons(IP_OFFMASK)) { REASON_SET(reason, PFRES_FRAG); return PF_DROP; } /* offset of protocol header that follows h2 */ off2 = ipoff2 + (h2.ip_hl << 2); /* TODO */ pd2.off = ipoff2 + (h2.ip_hl << 2); pd2.proto = h2.ip_p; pd2.src = (struct pf_addr *)&h2.ip_src; pd2.dst = (struct pf_addr *)&h2.ip_dst; pd2.ip_sum = &h2.ip_sum; break; #endif /* INET */ case AF_INET6: ipoff2 = off + sizeof(struct icmp6_hdr); if (!pf_pull_hdr(pbuf, ipoff2, &h2_6, sizeof(h2_6), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(ip6)\n")); return PF_DROP; } pd2.proto = h2_6.ip6_nxt; pd2.src = (struct pf_addr *)(uintptr_t)&h2_6.ip6_src; pd2.dst = (struct pf_addr *)(uintptr_t)&h2_6.ip6_dst; pd2.ip_sum = NULL; off2 = ipoff2 + sizeof(h2_6); do { switch (pd2.proto) { case IPPROTO_FRAGMENT: /* * ICMPv6 error messages for * non-first fragments */ REASON_SET(reason, PFRES_FRAG); return PF_DROP; case IPPROTO_AH: case IPPROTO_HOPOPTS: case IPPROTO_ROUTING: case IPPROTO_DSTOPTS: { /* get next header and header length */ struct ip6_ext opt6; if (!pf_pull_hdr(pbuf, off2, &opt6, sizeof(opt6), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMPv6 short opt\n")); return PF_DROP; } if (pd2.proto == IPPROTO_AH) { off2 += (opt6.ip6e_len + 2) * 4; } else { off2 += (opt6.ip6e_len + 1) * 8; } pd2.proto = opt6.ip6e_nxt; /* goto the next header */ break; } default: terminal++; break; } } while (!terminal); /* TODO */ pd2.off = ipoff2; break; } switch (pd2.proto) { case IPPROTO_TCP: { struct tcphdr th; u_int32_t seq; struct pf_state_peer *src, *dst; u_int8_t dws; int copyback = 0; /* * Only the first 8 bytes of the TCP header can be * expected. Don't access any TCP header fields after * th_seq, an ackskew test is not possible. */ if (!pf_pull_hdr(pbuf, off2, &th, 8, NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(tcp)\n")); return PF_DROP; } key.proto = IPPROTO_TCP; key.af_gwy = pd2.af; PF_ACPY(&key.ext_gwy.addr, pd2.dst, key.af_gwy); PF_ACPY(&key.gwy.addr, pd2.src, key.af_gwy); key.ext_gwy.xport.port = th.th_dport; key.gwy.xport.port = th.th_sport; key.af_lan = pd2.af; PF_ACPY(&key.lan.addr, pd2.dst, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd2.src, key.af_lan); key.lan.xport.port = th.th_dport; key.ext_lan.xport.port = th.th_sport; STATE_LOOKUP(); sk = (*state)->state_key; if ((direction == sk->direction) && ((sk->af_lan == sk->af_gwy) || (pd2.af == sk->af_lan))) { src = &(*state)->dst; dst = &(*state)->src; } else { src = &(*state)->src; dst = &(*state)->dst; } if (src->wscale && (dst->wscale & PF_WSCALE_FLAG)) { dws = dst->wscale & PF_WSCALE_MASK; } else { dws = TCP_MAX_WINSHIFT; } /* Demodulate sequence number */ seq = ntohl(th.th_seq) - src->seqdiff; if (src->seqdiff) { pf_change_a(&th.th_seq, icmpsum, htonl(seq), 0); copyback = 1; } if (!SEQ_GEQ(src->seqhi, seq) || !SEQ_GEQ(seq, src->seqlo - ((u_int32_t)dst->max_win << dws))) { if (pf_status.debug >= PF_DEBUG_MISC) { printf("pf: BAD ICMP %d:%d ", icmptype, pd->hdr.icmp->icmp_code); pf_print_host(pd->src, 0, pd->af); printf(" -> "); pf_print_host(pd->dst, 0, pd->af); printf(" state: "); pf_print_state(*state); printf(" seq=%u\n", seq); } REASON_SET(reason, PFRES_BADSTATE); return PF_DROP; } pd->naf = pd2.naf = (pd2.af == sk->af_lan) ? sk->af_gwy : sk->af_lan; if (STATE_TRANSLATE(sk)) { /* NAT64 case */ if (sk->af_lan != sk->af_gwy) { struct pf_state_host *saddr2, *daddr2; if (pd2.naf == sk->af_lan) { saddr2 = &sk->lan; daddr2 = &sk->ext_lan; } else { saddr2 = &sk->ext_gwy; daddr2 = &sk->gwy; } /* translate ICMP message types and codes */ if (pf_translate_icmp_af(pd->naf, pd->hdr.icmp)) { return PF_DROP; } if (pf_lazy_makewritable(pd, pbuf, off2 + 8) == NULL) { return PF_DROP; } pbuf_copy_back(pbuf, pd->off, sizeof(struct icmp6_hdr), pd->hdr.icmp6); /* * translate inner ip header within the * ICMP message */ if (pf_change_icmp_af(pbuf, ipoff2, pd, &pd2, &saddr2->addr, &daddr2->addr, pd->af, pd->naf)) { return PF_DROP; } if (pd->naf == AF_INET) { pd->proto = IPPROTO_ICMP; } else { pd->proto = IPPROTO_ICMPV6; } /* * translate inner tcp header within * the ICMP message */ pf_change_ap(direction, NULL, pd2.src, &th.th_sport, pd2.ip_sum, &th.th_sum, &daddr2->addr, saddr2->xport.port, 0, pd2.af, pd2.naf, 0); pf_change_ap(direction, NULL, pd2.dst, &th.th_dport, pd2.ip_sum, &th.th_sum, &saddr2->addr, daddr2->xport.port, 0, pd2.af, pd2.naf, 0); pbuf_copy_back(pbuf, pd2.off, 8, &th); /* translate outer ip header */ PF_ACPY(&pd->naddr, &daddr2->addr, pd->naf); PF_ACPY(&pd->ndaddr, &saddr2->addr, pd->naf); if (pd->af == AF_INET) { memcpy(&pd->naddr.addr32[3], &srcv4_inaddr, sizeof(pd->naddr.addr32[3])); return pf_nat64_ipv4(pbuf, off, pd); } else { return pf_nat64_ipv6(pbuf, off, pd); } } if (direction == PF_IN) { pf_change_icmp(pd2.src, &th.th_sport, daddr, &sk->lan.addr, sk->lan.xport.port, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); } else { pf_change_icmp(pd2.dst, &th.th_dport, saddr, &sk->gwy.addr, sk->gwy.xport.port, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); } copyback = 1; } if (copyback) { if (pf_lazy_makewritable(pd, pbuf, off2 + 8) == NULL) { return PF_DROP; } switch (pd2.af) { #if INET case AF_INET: pbuf_copy_back(pbuf, off, ICMP_MINLEN, pd->hdr.icmp); pbuf_copy_back(pbuf, ipoff2, sizeof(h2), &h2); break; #endif /* INET */ case AF_INET6: pbuf_copy_back(pbuf, off, sizeof(struct icmp6_hdr), pd->hdr.icmp6); pbuf_copy_back(pbuf, ipoff2, sizeof(h2_6), &h2_6); break; } pbuf_copy_back(pbuf, off2, 8, &th); } return PF_PASS; } case IPPROTO_UDP: { struct udphdr uh; int dx, action; if (!pf_pull_hdr(pbuf, off2, &uh, sizeof(uh), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(udp)\n")); return PF_DROP; } key.af_gwy = pd2.af; PF_ACPY(&key.ext_gwy.addr, pd2.dst, key.af_gwy); PF_ACPY(&key.gwy.addr, pd2.src, key.af_gwy); key.ext_gwy.xport.port = uh.uh_dport; key.gwy.xport.port = uh.uh_sport; key.af_lan = pd2.af; PF_ACPY(&key.lan.addr, pd2.dst, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd2.src, key.af_lan); key.lan.xport.port = uh.uh_dport; key.ext_lan.xport.port = uh.uh_sport; key.proto = IPPROTO_UDP; key.proto_variant = PF_EXTFILTER_APD; dx = direction; if (ntohs(uh.uh_sport) == PF_IKE_PORT && ntohs(uh.uh_dport) == PF_IKE_PORT) { struct pf_ike_hdr ike; size_t plen = pbuf->pb_packet_len - off2 - sizeof(uh); if (direction == PF_IN && plen < 8 /* PF_IKE_PACKET_MINSIZE */) { DPFPRINTF(PF_DEBUG_MISC, ("pf: " "ICMP error, embedded IKE message " "too small.\n")); return PF_DROP; } if (plen > sizeof(ike)) { plen = sizeof(ike); } pbuf_copy_data(pbuf, off + sizeof(uh), plen, &ike); key.app_state = &as; as.compare_lan_ext = pf_ike_compare; as.compare_ext_gwy = pf_ike_compare; as.u.ike.cookie = ike.initiator_cookie; } *state = pf_find_state(kif, &key, dx); if (key.app_state && *state == 0) { key.app_state = 0; *state = pf_find_state(kif, &key, dx); } if (*state == 0) { key.proto_variant = PF_EXTFILTER_AD; *state = pf_find_state(kif, &key, dx); } if (*state == 0) { key.proto_variant = PF_EXTFILTER_EI; *state = pf_find_state(kif, &key, dx); } /* similar to STATE_LOOKUP() */ if (*state != NULL && pd != NULL && !(pd->pktflags & PKTF_FLOW_ID)) { pd->flowsrc = (*state)->state_key->flowsrc; pd->flowhash = (*state)->state_key->flowhash; if (pd->flowhash != 0) { pd->pktflags |= PKTF_FLOW_ID; pd->pktflags &= ~PKTF_FLOW_ADV; } } if (pf_state_lookup_aux(state, kif, direction, &action)) { return action; } sk = (*state)->state_key; pd->naf = pd2.naf = (pd2.af == sk->af_lan) ? sk->af_gwy : sk->af_lan; if (STATE_TRANSLATE(sk)) { /* NAT64 case */ if (sk->af_lan != sk->af_gwy) { struct pf_state_host *saddr2, *daddr2; if (pd2.naf == sk->af_lan) { saddr2 = &sk->lan; daddr2 = &sk->ext_lan; } else { saddr2 = &sk->ext_gwy; daddr2 = &sk->gwy; } /* translate ICMP message */ if (pf_translate_icmp_af(pd->naf, pd->hdr.icmp)) { return PF_DROP; } if (pf_lazy_makewritable(pd, pbuf, off2 + 8) == NULL) { return PF_DROP; } pbuf_copy_back(pbuf, pd->off, sizeof(struct icmp6_hdr), pd->hdr.icmp6); /* * translate inner ip header within the * ICMP message */ if (pf_change_icmp_af(pbuf, ipoff2, pd, &pd2, &saddr2->addr, &daddr2->addr, pd->af, pd->naf)) { return PF_DROP; } if (pd->naf == AF_INET) { pd->proto = IPPROTO_ICMP; } else { pd->proto = IPPROTO_ICMPV6; } /* * translate inner udp header within * the ICMP message */ pf_change_ap(direction, NULL, pd2.src, &uh.uh_sport, pd2.ip_sum, &uh.uh_sum, &daddr2->addr, saddr2->xport.port, 0, pd2.af, pd2.naf, 0); pf_change_ap(direction, NULL, pd2.dst, &uh.uh_dport, pd2.ip_sum, &uh.uh_sum, &saddr2->addr, daddr2->xport.port, 0, pd2.af, pd2.naf, 0); pbuf_copy_back(pbuf, pd2.off, sizeof(uh), &uh); /* translate outer ip header */ PF_ACPY(&pd->naddr, &daddr2->addr, pd->naf); PF_ACPY(&pd->ndaddr, &saddr2->addr, pd->naf); if (pd->af == AF_INET) { memcpy(&pd->naddr.addr32[3], &srcv4_inaddr, sizeof(pd->naddr.addr32[3])); return pf_nat64_ipv4(pbuf, off, pd); } else { return pf_nat64_ipv6(pbuf, off, pd); } } if (direction == PF_IN) { pf_change_icmp(pd2.src, &uh.uh_sport, daddr, &sk->lan.addr, sk->lan.xport.port, &uh.uh_sum, pd2.ip_sum, icmpsum, pd->ip_sum, 1, pd2.af); } else { pf_change_icmp(pd2.dst, &uh.uh_dport, saddr, &sk->gwy.addr, sk->gwy.xport.port, &uh.uh_sum, pd2.ip_sum, icmpsum, pd->ip_sum, 1, pd2.af); } if (pf_lazy_makewritable(pd, pbuf, off2 + sizeof(uh)) == NULL) { return PF_DROP; } switch (pd2.af) { #if INET case AF_INET: pbuf_copy_back(pbuf, off, ICMP_MINLEN, pd->hdr.icmp); pbuf_copy_back(pbuf, ipoff2, sizeof(h2), &h2); break; #endif /* INET */ case AF_INET6: pbuf_copy_back(pbuf, off, sizeof(struct icmp6_hdr), pd->hdr.icmp6); pbuf_copy_back(pbuf, ipoff2, sizeof(h2_6), &h2_6); break; } pbuf_copy_back(pbuf, off2, sizeof(uh), &uh); } return PF_PASS; } #if INET case IPPROTO_ICMP: { struct icmp iih; if (!pf_pull_hdr(pbuf, off2, &iih, ICMP_MINLEN, NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short i" "(icmp)\n")); return PF_DROP; } key.proto = IPPROTO_ICMP; if (direction == PF_IN) { key.af_gwy = pd2.af; PF_ACPY(&key.ext_gwy.addr, pd2.dst, key.af_gwy); PF_ACPY(&key.gwy.addr, pd2.src, key.af_gwy); key.ext_gwy.xport.port = 0; key.gwy.xport.port = iih.icmp_id; } else { key.af_lan = pd2.af; PF_ACPY(&key.lan.addr, pd2.dst, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd2.src, key.af_lan); key.lan.xport.port = iih.icmp_id; key.ext_lan.xport.port = 0; } STATE_LOOKUP(); sk = (*state)->state_key; if (STATE_TRANSLATE(sk)) { if (direction == PF_IN) { pf_change_icmp(pd2.src, &iih.icmp_id, daddr, &sk->lan.addr, sk->lan.xport.port, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET); } else { pf_change_icmp(pd2.dst, &iih.icmp_id, saddr, &sk->gwy.addr, sk->gwy.xport.port, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET); } if (pf_lazy_makewritable(pd, pbuf, off2 + ICMP_MINLEN) == NULL) { return PF_DROP; } pbuf_copy_back(pbuf, off, ICMP_MINLEN, pd->hdr.icmp); pbuf_copy_back(pbuf, ipoff2, sizeof(h2), &h2); pbuf_copy_back(pbuf, off2, ICMP_MINLEN, &iih); } return PF_PASS; } #endif /* INET */ case IPPROTO_ICMPV6: { struct icmp6_hdr iih; if (!pf_pull_hdr(pbuf, off2, &iih, sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(icmp6)\n")); return PF_DROP; } key.proto = IPPROTO_ICMPV6; if (direction == PF_IN) { key.af_gwy = pd2.af; PF_ACPY(&key.ext_gwy.addr, pd2.dst, key.af_gwy); PF_ACPY(&key.gwy.addr, pd2.src, key.af_gwy); key.ext_gwy.xport.port = 0; key.gwy.xport.port = iih.icmp6_id; } else { key.af_lan = pd2.af; PF_ACPY(&key.lan.addr, pd2.dst, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd2.src, key.af_lan); key.lan.xport.port = iih.icmp6_id; key.ext_lan.xport.port = 0; } STATE_LOOKUP(); sk = (*state)->state_key; if (STATE_TRANSLATE(sk)) { if (direction == PF_IN) { pf_change_icmp(pd2.src, &iih.icmp6_id, daddr, &sk->lan.addr, sk->lan.xport.port, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET6); } else { pf_change_icmp(pd2.dst, &iih.icmp6_id, saddr, &sk->gwy.addr, sk->gwy.xport.port, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET6); } if (pf_lazy_makewritable(pd, pbuf, off2 + sizeof(struct icmp6_hdr)) == NULL) { return PF_DROP; } pbuf_copy_back(pbuf, off, sizeof(struct icmp6_hdr), pd->hdr.icmp6); pbuf_copy_back(pbuf, ipoff2, sizeof(h2_6), &h2_6); pbuf_copy_back(pbuf, off2, sizeof(struct icmp6_hdr), &iih); } return PF_PASS; } default: { key.proto = pd2.proto; if (direction == PF_IN) { key.af_gwy = pd2.af; PF_ACPY(&key.ext_gwy.addr, pd2.dst, key.af_gwy); PF_ACPY(&key.gwy.addr, pd2.src, key.af_gwy); key.ext_gwy.xport.port = 0; key.gwy.xport.port = 0; } else { key.af_lan = pd2.af; PF_ACPY(&key.lan.addr, pd2.dst, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd2.src, key.af_lan); key.lan.xport.port = 0; key.ext_lan.xport.port = 0; } STATE_LOOKUP(); sk = (*state)->state_key; if (STATE_TRANSLATE(sk)) { if (direction == PF_IN) { pf_change_icmp(pd2.src, NULL, daddr, &sk->lan.addr, 0, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); } else { pf_change_icmp(pd2.dst, NULL, saddr, &sk->gwy.addr, 0, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); } switch (pd2.af) { #if INET case AF_INET: if (pf_lazy_makewritable(pd, pbuf, ipoff2 + sizeof(h2)) == NULL) { return PF_DROP; } /* * * Xnu was missing the following... */ pbuf_copy_back(pbuf, off, ICMP_MINLEN, pd->hdr.icmp); pbuf_copy_back(pbuf, ipoff2, sizeof(h2), &h2); break; /* * */ #endif /* INET */ case AF_INET6: if (pf_lazy_makewritable(pd, pbuf, ipoff2 + sizeof(h2_6)) == NULL) { return PF_DROP; } pbuf_copy_back(pbuf, off, sizeof(struct icmp6_hdr), pd->hdr.icmp6); pbuf_copy_back(pbuf, ipoff2, sizeof(h2_6), &h2_6); break; } } return PF_PASS; } } } } static __attribute__((noinline)) int pf_test_state_grev1(struct pf_state **state, int direction, struct pfi_kif *kif, int off, struct pf_pdesc *pd) { struct pf_state_peer *src; struct pf_state_peer *dst; struct pf_state_key_cmp key = {}; struct pf_grev1_hdr *grev1 = pd->hdr.grev1; key.app_state = 0; key.proto = IPPROTO_GRE; key.proto_variant = PF_GRE_PPTP_VARIANT; if (direction == PF_IN) { key.af_gwy = pd->af; PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy); PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy); key.gwy.xport.call_id = grev1->call_id; } else { key.af_lan = pd->af; PF_ACPY(&key.lan.addr, pd->src, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan); key.ext_lan.xport.call_id = grev1->call_id; } STATE_LOOKUP(); if (direction == (*state)->state_key->direction) { src = &(*state)->src; dst = &(*state)->dst; } else { src = &(*state)->dst; dst = &(*state)->src; } /* update states */ if (src->state < PFGRE1S_INITIATING) { src->state = PFGRE1S_INITIATING; } /* update expire time */ (*state)->expire = pf_time_second(); if (src->state >= PFGRE1S_INITIATING && dst->state >= PFGRE1S_INITIATING) { if ((*state)->timeout != PFTM_TCP_ESTABLISHED) { (*state)->timeout = PFTM_GREv1_ESTABLISHED; } src->state = PFGRE1S_ESTABLISHED; dst->state = PFGRE1S_ESTABLISHED; } else { (*state)->timeout = PFTM_GREv1_INITIATING; } if ((*state)->state_key->app_state) { (*state)->state_key->app_state->u.grev1.pptp_state->expire = pf_time_second(); } /* translate source/destination address, if necessary */ if (STATE_GRE_TRANSLATE((*state)->state_key)) { if (direction == PF_OUT) { switch (pd->af) { #if INET case AF_INET: pf_change_a(&pd->src->v4addr.s_addr, pd->ip_sum, (*state)->state_key->gwy.addr.v4addr.s_addr, 0); break; #endif /* INET */ case AF_INET6: PF_ACPY(pd->src, &(*state)->state_key->gwy.addr, pd->af); break; } } else { grev1->call_id = (*state)->state_key->lan.xport.call_id; switch (pd->af) { #if INET case AF_INET: pf_change_a(&pd->dst->v4addr.s_addr, pd->ip_sum, (*state)->state_key->lan.addr.v4addr.s_addr, 0); break; #endif /* INET */ case AF_INET6: PF_ACPY(pd->dst, &(*state)->state_key->lan.addr, pd->af); break; } } if (pf_lazy_makewritable(pd, pd->mp, off + sizeof(*grev1)) == NULL) { return PF_DROP; } pbuf_copy_back(pd->mp, off, sizeof(*grev1), grev1); } return PF_PASS; } static __attribute__((noinline)) int pf_test_state_esp(struct pf_state **state, int direction, struct pfi_kif *kif, int off, struct pf_pdesc *pd) { #pragma unused(off) struct pf_state_peer *src; struct pf_state_peer *dst; struct pf_state_key_cmp key; struct pf_esp_hdr *esp = pd->hdr.esp; int action; memset(&key, 0, sizeof(key)); key.proto = IPPROTO_ESP; if (direction == PF_IN) { key.af_gwy = pd->af; PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy); PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy); key.gwy.xport.spi = esp->spi; } else { key.af_lan = pd->af; PF_ACPY(&key.lan.addr, pd->src, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan); key.ext_lan.xport.spi = esp->spi; } *state = pf_find_state(kif, &key, direction); if (*state == 0) { struct pf_state *s; /* * * No matching state. Look for a blocking state. If we find * one, then use that state and move it so that it's keyed to * the SPI in the current packet. */ if (direction == PF_IN) { key.gwy.xport.spi = 0; s = pf_find_state(kif, &key, direction); if (s) { struct pf_state_key *sk = s->state_key; pf_remove_state_key_ext_gwy(sk); sk->lan.xport.spi = sk->gwy.xport.spi = esp->spi; if (pf_insert_state_key_ext_gwy(sk)) { pf_detach_state(s, PF_DT_SKIP_EXTGWY); } else { *state = s; } } } else { key.ext_lan.xport.spi = 0; s = pf_find_state(kif, &key, direction); if (s) { struct pf_state_key *sk = s->state_key; RB_REMOVE(pf_state_tree_lan_ext, &pf_statetbl_lan_ext, sk); sk->ext_lan.xport.spi = esp->spi; if (RB_INSERT(pf_state_tree_lan_ext, &pf_statetbl_lan_ext, sk)) { pf_detach_state(s, PF_DT_SKIP_LANEXT); } else { *state = s; } } } if (s) { if (*state == 0) { #if NPFSYNC if (s->creatorid == pf_status.hostid) { pfsync_delete_state(s); } #endif s->timeout = PFTM_UNLINKED; hook_runloop(&s->unlink_hooks, HOOK_REMOVE | HOOK_FREE); pf_src_tree_remove_state(s); pf_free_state(s); return PF_DROP; } } } /* similar to STATE_LOOKUP() */ if (*state != NULL && pd != NULL && !(pd->pktflags & PKTF_FLOW_ID)) { pd->flowsrc = (*state)->state_key->flowsrc; pd->flowhash = (*state)->state_key->flowhash; if (pd->flowhash != 0) { pd->pktflags |= PKTF_FLOW_ID; pd->pktflags &= ~PKTF_FLOW_ADV; } } if (pf_state_lookup_aux(state, kif, direction, &action)) { return action; } if (direction == (*state)->state_key->direction) { src = &(*state)->src; dst = &(*state)->dst; } else { src = &(*state)->dst; dst = &(*state)->src; } /* update states */ if (src->state < PFESPS_INITIATING) { src->state = PFESPS_INITIATING; } /* update expire time */ (*state)->expire = pf_time_second(); if (src->state >= PFESPS_INITIATING && dst->state >= PFESPS_INITIATING) { (*state)->timeout = PFTM_ESP_ESTABLISHED; src->state = PFESPS_ESTABLISHED; dst->state = PFESPS_ESTABLISHED; } else { (*state)->timeout = PFTM_ESP_INITIATING; } /* translate source/destination address, if necessary */ if (STATE_ADDR_TRANSLATE((*state)->state_key)) { if (direction == PF_OUT) { switch (pd->af) { #if INET case AF_INET: pf_change_a(&pd->src->v4addr.s_addr, pd->ip_sum, (*state)->state_key->gwy.addr.v4addr.s_addr, 0); break; #endif /* INET */ case AF_INET6: PF_ACPY(pd->src, &(*state)->state_key->gwy.addr, pd->af); break; } } else { switch (pd->af) { #if INET case AF_INET: pf_change_a(&pd->dst->v4addr.s_addr, pd->ip_sum, (*state)->state_key->lan.addr.v4addr.s_addr, 0); break; #endif /* INET */ case AF_INET6: PF_ACPY(pd->dst, &(*state)->state_key->lan.addr, pd->af); break; } } } return PF_PASS; } static __attribute__((noinline)) int pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, struct pf_pdesc *pd) { struct pf_state_peer *src, *dst; struct pf_state_key_cmp key = {}; key.app_state = 0; key.proto = pd->proto; if (direction == PF_IN) { key.af_gwy = pd->af; PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy); PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy); key.ext_gwy.xport.port = 0; key.gwy.xport.port = 0; } else { key.af_lan = pd->af; PF_ACPY(&key.lan.addr, pd->src, key.af_lan); PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan); key.lan.xport.port = 0; key.ext_lan.xport.port = 0; } STATE_LOOKUP(); if (direction == (*state)->state_key->direction) { src = &(*state)->src; dst = &(*state)->dst; } else { src = &(*state)->dst; dst = &(*state)->src; } /* update states */ if (src->state < PFOTHERS_SINGLE) { src->state = PFOTHERS_SINGLE; } if (dst->state == PFOTHERS_SINGLE) { dst->state = PFOTHERS_MULTIPLE; } /* update expire time */ (*state)->expire = pf_time_second(); if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) { (*state)->timeout = PFTM_OTHER_MULTIPLE; } else { (*state)->timeout = PFTM_OTHER_SINGLE; } /* translate source/destination address, if necessary */ if (STATE_ADDR_TRANSLATE((*state)->state_key)) { if (direction == PF_OUT) { switch (pd->af) { #if INET case AF_INET: pf_change_a(&pd->src->v4addr.s_addr, pd->ip_sum, (*state)->state_key->gwy.addr.v4addr.s_addr, 0); break; #endif /* INET */ case AF_INET6: PF_ACPY(pd->src, &(*state)->state_key->gwy.addr, pd->af); break; } } else { switch (pd->af) { #if INET case AF_INET: pf_change_a(&pd->dst->v4addr.s_addr, pd->ip_sum, (*state)->state_key->lan.addr.v4addr.s_addr, 0); break; #endif /* INET */ case AF_INET6: PF_ACPY(pd->dst, &(*state)->state_key->lan.addr, pd->af); break; } } } return PF_PASS; } /* * ipoff and off are measured from the start of the mbuf chain. * h must be at "ipoff" on the mbuf chain. */ void * pf_pull_hdr(pbuf_t *pbuf, int off, void *p, int len, u_short *actionp, u_short *reasonp, sa_family_t af) { switch (af) { #if INET case AF_INET: { struct ip *h = pbuf->pb_data; u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; if (fragoff) { if (fragoff >= len) { ACTION_SET(actionp, PF_PASS); } else { ACTION_SET(actionp, PF_DROP); REASON_SET(reasonp, PFRES_FRAG); } return NULL; } if (pbuf->pb_packet_len < (unsigned)(off + len) || ntohs(h->ip_len) < off + len) { ACTION_SET(actionp, PF_DROP); REASON_SET(reasonp, PFRES_SHORT); return NULL; } break; } #endif /* INET */ case AF_INET6: { struct ip6_hdr *h = pbuf->pb_data; if (pbuf->pb_packet_len < (unsigned)(off + len) || (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < (unsigned)(off + len)) { ACTION_SET(actionp, PF_DROP); REASON_SET(reasonp, PFRES_SHORT); return NULL; } break; } } pbuf_copy_data(pbuf, off, len, p); return p; } int pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif) { #pragma unused(kif) struct sockaddr_in *dst; int ret = 1; struct sockaddr_in6 *dst6; struct route_in6 ro; bzero(&ro, sizeof(ro)); switch (af) { case AF_INET: dst = satosin(&ro.ro_dst); dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = addr->v4addr; break; case AF_INET6: dst6 = (struct sockaddr_in6 *)&ro.ro_dst; dst6->sin6_family = AF_INET6; dst6->sin6_len = sizeof(*dst6); dst6->sin6_addr = addr->v6addr; break; default: return 0; } /* XXX: IFT_ENC is not currently used by anything*/ /* Skip checks for ipsec interfaces */ if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) { goto out; } /* XXX: what is the point of this? */ rtalloc((struct route *)&ro); out: ROUTE_RELEASE(&ro); return ret; } int pf_rtlabel_match(struct pf_addr *addr, sa_family_t af, struct pf_addr_wrap *aw) { #pragma unused(aw) struct sockaddr_in *dst; struct sockaddr_in6 *dst6; struct route_in6 ro; int ret = 0; bzero(&ro, sizeof(ro)); switch (af) { case AF_INET: dst = satosin(&ro.ro_dst); dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = addr->v4addr; break; case AF_INET6: dst6 = (struct sockaddr_in6 *)&ro.ro_dst; dst6->sin6_family = AF_INET6; dst6->sin6_len = sizeof(*dst6); dst6->sin6_addr = addr->v6addr; break; default: return 0; } /* XXX: what is the point of this? */ rtalloc((struct route *)&ro); ROUTE_RELEASE(&ro); return ret; } #if INET static __attribute__((noinline)) void pf_route(pbuf_t **pbufp, struct pf_rule *r, int dir, struct ifnet *oifp, struct pf_state *s, struct pf_pdesc *pd) { #pragma unused(pd) struct mbuf *m0, *m1; struct route iproute; struct route *ro = &iproute; struct sockaddr_in *dst; struct ip *ip; struct ifnet *ifp = NULL; struct pf_addr naddr; struct pf_src_node *sn = NULL; int error = 0; uint32_t sw_csum; int interface_mtu = 0; bzero(&iproute, sizeof(iproute)); if (pbufp == NULL || !pbuf_is_valid(*pbufp) || r == NULL || (dir != PF_IN && dir != PF_OUT) || oifp == NULL) { panic("pf_route: invalid parameters"); } if (pd->pf_mtag->pftag_routed++ > 3) { pbuf_destroy(*pbufp); *pbufp = NULL; m0 = NULL; goto bad; } /* * Since this is something of an edge case and may involve the * host stack (for routing, at least for now), we convert the * incoming pbuf into an mbuf. */ if (r->rt == PF_DUPTO) { m0 = pbuf_clone_to_mbuf(*pbufp); } else if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { return; } else { /* We're going to consume this packet */ m0 = pbuf_to_mbuf(*pbufp, TRUE); *pbufp = NULL; } if (m0 == NULL) { goto bad; } /* We now have the packet in an mbuf (m0) */ if (m0->m_len < (int)sizeof(struct ip)) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_route: packet length < sizeof (struct ip)\n")); goto bad; } ip = mtod(m0, struct ip *); dst = satosin((void *)&ro->ro_dst); dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = ip->ip_dst; if (r->rt == PF_FASTROUTE) { rtalloc(ro); if (ro->ro_rt == NULL) { ipstat.ips_noroute++; goto bad; } ifp = ro->ro_rt->rt_ifp; RT_LOCK(ro->ro_rt); ro->ro_rt->rt_use++; if (ro->ro_rt->rt_flags & RTF_GATEWAY) { dst = satosin((void *)ro->ro_rt->rt_gateway); } RT_UNLOCK(ro->ro_rt); } else { if (TAILQ_EMPTY(&r->rpool.list)) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_route: TAILQ_EMPTY(&r->rpool.list)\n")); goto bad; } if (s == NULL) { pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, &naddr, NULL, &sn); if (!PF_AZERO(&naddr, AF_INET)) { dst->sin_addr.s_addr = naddr.v4addr.s_addr; } ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; } else { if (!PF_AZERO(&s->rt_addr, AF_INET)) { dst->sin_addr.s_addr = s->rt_addr.v4addr.s_addr; } ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; } } if (ifp == NULL) { goto bad; } if (oifp != ifp) { if (pf_test_mbuf(PF_OUT, ifp, &m0, NULL, NULL) != PF_PASS) { goto bad; } else if (m0 == NULL) { goto done; } if (m0->m_len < (int)sizeof(struct ip)) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_route: packet length < sizeof (struct ip)\n")); goto bad; } ip = mtod(m0, struct ip *); } /* Catch routing changes wrt. hardware checksumming for TCP or UDP. */ ip_output_checksum(ifp, m0, ((ip->ip_hl) << 2), ntohs(ip->ip_len), &sw_csum); interface_mtu = ifp->if_mtu; if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) { interface_mtu = IN6_LINKMTU(ifp); /* Further adjust the size for CLAT46 expansion */ interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD; } if (ntohs(ip->ip_len) <= interface_mtu || TSO_IPV4_OK(ifp, m0) || (!(ip->ip_off & htons(IP_DF)) && (ifp->if_hwassist & CSUM_FRAGMENT))) { ip->ip_sum = 0; if (sw_csum & CSUM_DELAY_IP) { ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); sw_csum &= ~CSUM_DELAY_IP; m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; } error = ifnet_output(ifp, PF_INET, m0, ro->ro_rt, sintosa(dst)); goto done; } /* * Too large for interface; fragment if possible. * Must be able to put at least 8 bytes per fragment. * Balk when DF bit is set or the interface didn't support TSO. */ if ((ip->ip_off & htons(IP_DF)) || (m0->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) { ipstat.ips_cantfrag++; if (r->rt != PF_DUPTO) { icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, interface_mtu); goto done; } else { goto bad; } } m1 = m0; /* PR-8933605: send ip_len,ip_off to ip_fragment in host byte order */ #if BYTE_ORDER != BIG_ENDIAN NTOHS(ip->ip_off); NTOHS(ip->ip_len); #endif error = ip_fragment(m0, ifp, interface_mtu, sw_csum); if (error) { m0 = NULL; goto bad; } for (m0 = m1; m0; m0 = m1) { m1 = m0->m_nextpkt; m0->m_nextpkt = 0; if (error == 0) { error = ifnet_output(ifp, PF_INET, m0, ro->ro_rt, sintosa(dst)); } else { m_freem(m0); } } if (error == 0) { ipstat.ips_fragmented++; } done: ROUTE_RELEASE(&iproute); return; bad: if (m0) { m_freem(m0); } goto done; } #endif /* INET */ static __attribute__((noinline)) void pf_route6(pbuf_t **pbufp, struct pf_rule *r, int dir, struct ifnet *oifp, struct pf_state *s, struct pf_pdesc *pd) { #pragma unused(pd) struct mbuf *m0; struct route_in6 ip6route; struct route_in6 *ro; struct sockaddr_in6 *dst; struct ip6_hdr *ip6; struct ifnet *ifp = NULL; struct pf_addr naddr; struct pf_src_node *sn = NULL; int error = 0; struct pf_mtag *pf_mtag; if (pbufp == NULL || !pbuf_is_valid(*pbufp) || r == NULL || (dir != PF_IN && dir != PF_OUT) || oifp == NULL) { panic("pf_route6: invalid parameters"); } if (pd->pf_mtag->pftag_routed++ > 3) { pbuf_destroy(*pbufp); *pbufp = NULL; m0 = NULL; goto bad; } /* * Since this is something of an edge case and may involve the * host stack (for routing, at least for now), we convert the * incoming pbuf into an mbuf. */ if (r->rt == PF_DUPTO) { m0 = pbuf_clone_to_mbuf(*pbufp); } else if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { return; } else { /* We're about to consume this packet */ m0 = pbuf_to_mbuf(*pbufp, TRUE); *pbufp = NULL; } if (m0 == NULL) { goto bad; } if (m0->m_len < (int)sizeof(struct ip6_hdr)) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_route6: m0->m_len < sizeof (struct ip6_hdr)\n")); goto bad; } ip6 = mtod(m0, struct ip6_hdr *); ro = &ip6route; bzero((caddr_t)ro, sizeof(*ro)); dst = (struct sockaddr_in6 *)&ro->ro_dst; dst->sin6_family = AF_INET6; dst->sin6_len = sizeof(*dst); dst->sin6_addr = ip6->ip6_dst; /* Cheat. XXX why only in the v6addr case??? */ if (r->rt == PF_FASTROUTE) { pf_mtag = pf_get_mtag(m0); ASSERT(pf_mtag != NULL); pf_mtag->pftag_flags |= PF_TAG_GENERATED; ip6_output_setsrcifscope(m0, oifp->if_index, NULL); ip6_output_setdstifscope(m0, oifp->if_index, NULL); ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); return; } if (TAILQ_EMPTY(&r->rpool.list)) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_route6: TAILQ_EMPTY(&r->rpool.list)\n")); goto bad; } if (s == NULL) { pf_map_addr(AF_INET6, r, (struct pf_addr *)(uintptr_t)&ip6->ip6_src, &naddr, NULL, &sn); if (!PF_AZERO(&naddr, AF_INET6)) { PF_ACPY((struct pf_addr *)&dst->sin6_addr, &naddr, AF_INET6); } ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; } else { if (!PF_AZERO(&s->rt_addr, AF_INET6)) { PF_ACPY((struct pf_addr *)&dst->sin6_addr, &s->rt_addr, AF_INET6); } ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; } if (ifp == NULL) { goto bad; } if (oifp != ifp) { if (pf_test6_mbuf(PF_OUT, ifp, &m0, NULL, NULL) != PF_PASS) { goto bad; } else if (m0 == NULL) { goto done; } if (m0->m_len < (int)sizeof(struct ip6_hdr)) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_route6: m0->m_len " "< sizeof (struct ip6_hdr)\n")); goto bad; } pf_mtag = pf_get_mtag(m0); /* * send refragmented packets. */ if ((pf_mtag->pftag_flags & PF_TAG_REFRAGMENTED) != 0) { pf_mtag->pftag_flags &= ~PF_TAG_REFRAGMENTED; /* * nd6_output() frees packet chain in both success and * failure cases. */ error = nd6_output(ifp, ifp, m0, dst, NULL, NULL); m0 = NULL; if (error) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_route6:" "dropped refragmented packet\n")); } goto done; } ip6 = mtod(m0, struct ip6_hdr *); } /* * If the packet is too large for the outgoing interface, * send back an icmp6 error. */ if (in6_embedded_scope && IN6_IS_SCOPE_EMBED(&dst->sin6_addr)) { dst->sin6_addr.s6_addr16[1] = htons(ifp->if_index); } if ((unsigned)m0->m_pkthdr.len <= ifp->if_mtu) { error = nd6_output(ifp, ifp, m0, dst, NULL, NULL); } else { in6_ifstat_inc(ifp, ifs6_in_toobig); if (r->rt != PF_DUPTO) { icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); } else { goto bad; } } done: return; bad: if (m0) { m_freem(m0); m0 = NULL; } goto done; } /* * check protocol (tcp/udp/icmp/icmp6) checksum and set mbuf flag * off is the offset where the protocol header starts * len is the total length of protocol header plus payload * returns 0 when the checksum is valid, otherwise returns 1. */ static int pf_check_proto_cksum(pbuf_t *pbuf, int off, int len, u_int8_t p, sa_family_t af) { u_int16_t sum; switch (p) { case IPPROTO_TCP: case IPPROTO_UDP: /* * Optimize for the common case; if the hardware calculated * value doesn't include pseudo-header checksum, or if it * is partially-computed (only 16-bit summation), do it in * software below. */ if ((*pbuf->pb_csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) == (CSUM_DATA_VALID | CSUM_PSEUDO_HDR) && (*pbuf->pb_csum_data ^ 0xffff) == 0) { return 0; } break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: break; default: return 1; } if (off < (int)sizeof(struct ip) || len < (int)sizeof(struct udphdr)) { return 1; } if (pbuf->pb_packet_len < (unsigned)(off + len)) { return 1; } switch (af) { #if INET case AF_INET: if (p == IPPROTO_ICMP) { if (pbuf->pb_contig_len < (unsigned)off) { return 1; } sum = pbuf_inet_cksum(pbuf, 0, off, len); } else { if (pbuf->pb_contig_len < (int)sizeof(struct ip)) { return 1; } sum = pbuf_inet_cksum(pbuf, p, off, len); } break; #endif /* INET */ case AF_INET6: if (pbuf->pb_contig_len < (int)sizeof(struct ip6_hdr)) { return 1; } sum = pbuf_inet6_cksum(pbuf, p, off, len); break; default: return 1; } if (sum) { switch (p) { case IPPROTO_TCP: tcpstat.tcps_rcvbadsum++; break; case IPPROTO_UDP: udpstat.udps_badsum++; break; case IPPROTO_ICMP: icmpstat.icps_checksum++; break; case IPPROTO_ICMPV6: icmp6stat.icp6s_checksum++; break; } return 1; } return 0; } #if INET #define PF_APPLE_UPDATE_PDESC_IPv4() \ do { \ if (pbuf && pd.mp && pbuf != pd.mp) { \ pbuf = pd.mp; \ h = pbuf->pb_data; \ pd.pf_mtag = pf_get_mtag_pbuf(pbuf); \ } \ } while (0) int pf_test_mbuf(int dir, struct ifnet *ifp, struct mbuf **m0, struct ether_header *eh, struct ip_fw_args *fwa) { pbuf_t pbuf_store, *pbuf; int rv; pbuf_init_mbuf(&pbuf_store, *m0, (*m0)->m_pkthdr.rcvif); pbuf = &pbuf_store; rv = pf_test(dir, ifp, &pbuf, eh, fwa); if (pbuf_is_valid(pbuf)) { *m0 = pbuf->pb_mbuf; pbuf->pb_mbuf = NULL; pbuf_destroy(pbuf); } else { *m0 = NULL; } return rv; } static __attribute__((noinline)) int pf_test(int dir, struct ifnet *ifp, pbuf_t **pbufp, struct ether_header *eh, struct ip_fw_args *fwa) { #if !DUMMYNET #pragma unused(fwa) #endif struct pfi_kif *kif; u_short action = PF_PASS, reason = 0, log = 0; pbuf_t *pbuf = *pbufp; struct ip *h = 0; struct pf_rule *a = NULL, *r = &pf_default_rule, *tr, *nr; struct pf_state *s = NULL; struct pf_state_key *sk = NULL; struct pf_ruleset *ruleset = NULL; struct pf_pdesc pd; int off, dirndx, pqid = 0; LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); if (!pf_status.running) { return PF_PASS; } memset(&pd, 0, sizeof(pd)); if ((pd.pf_mtag = pf_get_mtag_pbuf(pbuf)) == NULL) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_test: pf_get_mtag_pbuf returned NULL\n")); return PF_DROP; } if (pd.pf_mtag->pftag_flags & PF_TAG_GENERATED) { return PF_PASS; } kif = (struct pfi_kif *)ifp->if_pf_kif; if (kif == NULL) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_test: kif == NULL, if_name %s\n", ifp->if_name)); return PF_DROP; } if (kif->pfik_flags & PFI_IFLAG_SKIP) { return PF_PASS; } if (pbuf->pb_packet_len < (int)sizeof(*h)) { REASON_SET(&reason, PFRES_SHORT); return PF_DROP; } /* initialize enough of pd for the done label */ h = pbuf->pb_data; pd.mp = pbuf; pd.lmw = 0; pd.pf_mtag = pf_get_mtag_pbuf(pbuf); pd.src = (struct pf_addr *)&h->ip_src; pd.dst = (struct pf_addr *)&h->ip_dst; PF_ACPY(&pd.baddr, pd.src, AF_INET); PF_ACPY(&pd.bdaddr, pd.dst, AF_INET); pd.ip_sum = &h->ip_sum; pd.proto = h->ip_p; pd.proto_variant = 0; pd.af = AF_INET; pd.tos = h->ip_tos; pd.ttl = h->ip_ttl; pd.tot_len = ntohs(h->ip_len); pd.eh = eh; #if DUMMYNET if (fwa != NULL && fwa->fwa_pf_rule != NULL) { goto nonormalize; } #endif /* DUMMYNET */ /* We do IP header normalization and packet reassembly here */ action = pf_normalize_ip(pbuf, dir, kif, &reason, &pd); if (action != PF_PASS || pd.lmw < 0) { action = PF_DROP; goto done; } #if DUMMYNET nonormalize: #endif /* DUMMYNET */ /* pf_normalize can mess with pb_data */ h = pbuf->pb_data; off = h->ip_hl << 2; if (off < (int)sizeof(*h)) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); log = 1; goto done; } pd.src = (struct pf_addr *)&h->ip_src; pd.dst = (struct pf_addr *)&h->ip_dst; PF_ACPY(&pd.baddr, pd.src, AF_INET); PF_ACPY(&pd.bdaddr, pd.dst, AF_INET); pd.ip_sum = &h->ip_sum; pd.proto = h->ip_p; pd.proto_variant = 0; pd.mp = pbuf; pd.lmw = 0; pd.pf_mtag = pf_get_mtag_pbuf(pbuf); pd.af = AF_INET; pd.tos = h->ip_tos; pd.ttl = h->ip_ttl; pd.sc = MBUF_SCIDX(pbuf_get_service_class(pbuf)); pd.tot_len = ntohs(h->ip_len); pd.eh = eh; if (*pbuf->pb_flags & PKTF_FLOW_ID) { pd.flowsrc = *pbuf->pb_flowsrc; pd.flowhash = *pbuf->pb_flowid; pd.pktflags = *pbuf->pb_flags & PKTF_FLOW_MASK; } /* handle fragments that didn't get reassembled by normalization */ if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { pd.flags |= PFDESC_IP_FRAG; #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_test_fragment(&r, dir, kif, pbuf, h, &pd, &a, &ruleset); goto done; } switch (h->ip_p) { case IPPROTO_TCP: { struct tcphdr th; pd.hdr.tcp = &th; if (!pf_pull_hdr(pbuf, off, &th, sizeof(th), &action, &reason, AF_INET)) { log = action != PF_PASS; goto done; } pd.p_len = pd.tot_len - off - (th.th_off << 2); if ((th.th_flags & TH_ACK) && pd.p_len == 0) { pqid = 1; } #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_normalize_tcp(dir, kif, pbuf, 0, off, h, &pd); if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv4(); if (action == PF_DROP) { goto done; } if (th.th_sport == 0 || th.th_dport == 0) { action = PF_DROP; REASON_SET(&reason, PFRES_INVPORT); goto done; } action = pf_test_state_tcp(&s, dir, kif, pbuf, off, h, &pd, &reason); if (action == PF_NAT64) { goto done; } if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv4(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); } break; } case IPPROTO_UDP: { struct udphdr uh; pd.hdr.udp = &uh; if (!pf_pull_hdr(pbuf, off, &uh, sizeof(uh), &action, &reason, AF_INET)) { log = action != PF_PASS; goto done; } if (uh.uh_sport == 0 || uh.uh_dport == 0) { action = PF_DROP; REASON_SET(&reason, PFRES_INVPORT); goto done; } if (ntohs(uh.uh_ulen) > pbuf->pb_packet_len - off || ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); goto done; } #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_test_state_udp(&s, dir, kif, pbuf, off, h, &pd, &reason); if (action == PF_NAT64) { goto done; } if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv4(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); } break; } case IPPROTO_ICMP: { struct icmp ih; pd.hdr.icmp = &ih; if (!pf_pull_hdr(pbuf, off, &ih, ICMP_MINLEN, &action, &reason, AF_INET)) { log = action != PF_PASS; goto done; } #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_test_state_icmp(&s, dir, kif, pbuf, off, h, &pd, &reason); if (action == PF_NAT64) { goto done; } if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv4(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); } break; } case IPPROTO_ESP: { struct pf_esp_hdr esp; pd.hdr.esp = &esp; if (!pf_pull_hdr(pbuf, off, &esp, sizeof(esp), &action, &reason, AF_INET)) { log = action != PF_PASS; goto done; } #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_test_state_esp(&s, dir, kif, off, &pd); if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv4(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); } break; } case IPPROTO_GRE: { struct pf_grev1_hdr grev1; pd.hdr.grev1 = &grev1; if (!pf_pull_hdr(pbuf, off, &grev1, sizeof(grev1), &action, &reason, AF_INET)) { log = (action != PF_PASS); goto done; } #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ if ((ntohs(grev1.flags) & PF_GRE_FLAG_VERSION_MASK) == 1 && ntohs(grev1.protocol_type) == PF_GRE_PPP_ETHERTYPE) { if (ntohs(grev1.payload_length) > pbuf->pb_packet_len - off) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); goto done; } pd.proto_variant = PF_GRE_PPTP_VARIANT; action = pf_test_state_grev1(&s, dir, kif, off, &pd); if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv4(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; break; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); if (action == PF_PASS) { break; } } } /* not GREv1/PPTP, so treat as ordinary GRE... */ OS_FALLTHROUGH; } default: #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_test_state_other(&s, dir, kif, &pd); if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv4(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); } break; } done: if (action == PF_NAT64) { *pbufp = NULL; return action; } *pbufp = pd.mp; PF_APPLE_UPDATE_PDESC_IPv4(); if (action != PF_DROP) { if (action == PF_PASS && h->ip_hl > 5 && !((s && s->allow_opts) || r->allow_opts)) { action = PF_DROP; REASON_SET(&reason, PFRES_IPOPTIONS); log = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: dropping packet with ip options [hlen=%u]\n", (unsigned int) h->ip_hl)); } if ((s && s->tag) || PF_RTABLEID_IS_VALID(r->rtableid) || (pd.pktflags & PKTF_FLOW_ID)) { (void) pf_tag_packet(pbuf, pd.pf_mtag, s ? s->tag : 0, r->rtableid, &pd); } if (action == PF_PASS) { #if PF_ECN /* add hints for ecn */ pd.pf_mtag->pftag_hdr = h; /* record address family */ pd.pf_mtag->pftag_flags &= ~PF_TAG_HDR_INET6; pd.pf_mtag->pftag_flags |= PF_TAG_HDR_INET; #endif /* PF_ECN */ /* record protocol */ *pbuf->pb_proto = pd.proto; /* * connections redirected to loopback should not match sockets * bound specifically to loopback due to security implications, * see tcp_input() and in_pcblookup_listen(). */ if (dir == PF_IN && (pd.proto == IPPROTO_TCP || pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && (s->nat_rule.ptr->action == PF_RDR || s->nat_rule.ptr->action == PF_BINAT) && (ntohl(pd.dst->v4addr.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { pd.pf_mtag->pftag_flags |= PF_TAG_TRANSLATE_LOCALHOST; } } } if (log) { struct pf_rule *lr; if (s != NULL && s->nat_rule.ptr != NULL && s->nat_rule.ptr->log & PF_LOG_ALL) { lr = s->nat_rule.ptr; } else { lr = r; } PFLOG_PACKET(kif, h, pbuf, AF_INET, dir, reason, lr, a, ruleset, &pd); } kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; if (action == PF_PASS || r->action == PF_DROP) { dirndx = (dir == PF_OUT); r->packets[dirndx]++; r->bytes[dirndx] += pd.tot_len; if (a != NULL) { a->packets[dirndx]++; a->bytes[dirndx] += pd.tot_len; } if (s != NULL) { sk = s->state_key; if (s->nat_rule.ptr != NULL) { s->nat_rule.ptr->packets[dirndx]++; s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; } if (s->src_node != NULL) { s->src_node->packets[dirndx]++; s->src_node->bytes[dirndx] += pd.tot_len; } if (s->nat_src_node != NULL) { s->nat_src_node->packets[dirndx]++; s->nat_src_node->bytes[dirndx] += pd.tot_len; } dirndx = (dir == sk->direction) ? 0 : 1; s->packets[dirndx]++; s->bytes[dirndx] += pd.tot_len; } tr = r; nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; if (nr != NULL) { struct pf_addr *x; /* * XXX: we need to make sure that the addresses * passed to pfr_update_stats() are the same than * the addresses used during matching (pfr_match) */ if (r == &pf_default_rule) { tr = nr; x = (sk == NULL || sk->direction == dir) ? &pd.baddr : &pd.naddr; } else { x = (sk == NULL || sk->direction == dir) ? &pd.naddr : &pd.baddr; } if (x == &pd.baddr || s == NULL) { /* we need to change the address */ if (dir == PF_OUT) { pd.src = x; } else { pd.dst = x; } } } if (tr->src.addr.type == PF_ADDR_TABLE) { pfr_update_stats(tr->src.addr.p.tbl, (sk == NULL || sk->direction == dir) ? pd.src : pd.dst, pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->src.neg); } if (tr->dst.addr.type == PF_ADDR_TABLE) { pfr_update_stats(tr->dst.addr.p.tbl, (sk == NULL || sk->direction == dir) ? pd.dst : pd.src, pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->dst.neg); } } VERIFY(pbuf == NULL || pd.mp == NULL || pd.mp == pbuf); if (*pbufp) { if (pd.lmw < 0) { REASON_SET(&reason, PFRES_MEMORY); action = PF_DROP; } if (action == PF_DROP) { pbuf_destroy(*pbufp); *pbufp = NULL; return PF_DROP; } *pbufp = pbuf; } if (action == PF_SYNPROXY_DROP) { pbuf_destroy(*pbufp); *pbufp = NULL; action = PF_PASS; } else if (r->rt) { /* pf_route can free the pbuf causing *pbufp to become NULL */ pf_route(pbufp, r, dir, kif->pfik_ifp, s, &pd); } return action; } #endif /* INET */ #define PF_APPLE_UPDATE_PDESC_IPv6() \ do { \ if (pbuf && pd.mp && pbuf != pd.mp) { \ pbuf = pd.mp; \ } \ h = pbuf->pb_data; \ } while (0) int pf_test6_mbuf(int dir, struct ifnet *ifp, struct mbuf **m0, struct ether_header *eh, struct ip_fw_args *fwa) { pbuf_t pbuf_store, *pbuf; int rv; pbuf_init_mbuf(&pbuf_store, *m0, (*m0)->m_pkthdr.rcvif); pbuf = &pbuf_store; rv = pf_test6(dir, ifp, &pbuf, eh, fwa); if (pbuf_is_valid(pbuf)) { *m0 = pbuf->pb_mbuf; pbuf->pb_mbuf = NULL; pbuf_destroy(pbuf); } else { *m0 = NULL; } return rv; } static __attribute__((noinline)) int pf_test6(int dir, struct ifnet *ifp, pbuf_t **pbufp, struct ether_header *eh, struct ip_fw_args *fwa) { #if !DUMMYNET #pragma unused(fwa) #endif struct pfi_kif *kif; u_short action = PF_PASS, reason = 0, log = 0; pbuf_t *pbuf = *pbufp; struct ip6_hdr *h; struct pf_rule *a = NULL, *r = &pf_default_rule, *tr, *nr; struct pf_state *s = NULL; struct pf_state_key *sk = NULL; struct pf_ruleset *ruleset = NULL; struct pf_pdesc pd; int off, terminal = 0, dirndx, rh_cnt = 0; u_int8_t nxt; boolean_t fwd = FALSE; LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); ASSERT(ifp != NULL); if ((dir == PF_OUT) && (pbuf->pb_ifp) && (ifp != pbuf->pb_ifp)) { fwd = TRUE; } if (!pf_status.running) { return PF_PASS; } memset(&pd, 0, sizeof(pd)); if ((pd.pf_mtag = pf_get_mtag_pbuf(pbuf)) == NULL) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_test6: pf_get_mtag_pbuf returned NULL\n")); return PF_DROP; } if (pd.pf_mtag->pftag_flags & PF_TAG_GENERATED) { return PF_PASS; } kif = (struct pfi_kif *)ifp->if_pf_kif; if (kif == NULL) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_test6: kif == NULL, if_name %s\n", ifp->if_name)); return PF_DROP; } if (kif->pfik_flags & PFI_IFLAG_SKIP) { return PF_PASS; } if (pbuf->pb_packet_len < (int)sizeof(*h)) { REASON_SET(&reason, PFRES_SHORT); return PF_DROP; } h = pbuf->pb_data; nxt = h->ip6_nxt; off = ((caddr_t)h - (caddr_t)pbuf->pb_data) + sizeof(struct ip6_hdr); pd.mp = pbuf; pd.lmw = 0; pd.pf_mtag = pf_get_mtag_pbuf(pbuf); pd.src = (struct pf_addr *)(uintptr_t)&h->ip6_src; pd.dst = (struct pf_addr *)(uintptr_t)&h->ip6_dst; PF_ACPY(&pd.baddr, pd.src, AF_INET6); PF_ACPY(&pd.bdaddr, pd.dst, AF_INET6); pd.ip_sum = NULL; pd.af = AF_INET6; pd.proto = nxt; pd.proto_variant = 0; pd.tos = 0; pd.ttl = h->ip6_hlim; pd.sc = MBUF_SCIDX(pbuf_get_service_class(pbuf)); pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); pd.eh = eh; if (*pbuf->pb_flags & PKTF_FLOW_ID) { pd.flowsrc = *pbuf->pb_flowsrc; pd.flowhash = *pbuf->pb_flowid; pd.pktflags = (*pbuf->pb_flags & PKTF_FLOW_MASK); } #if DUMMYNET if (fwa != NULL && fwa->fwa_pf_rule != NULL) { goto nonormalize; } #endif /* DUMMYNET */ /* We do IP header normalization and packet reassembly here */ action = pf_normalize_ip6(pbuf, dir, kif, &reason, &pd); if (action != PF_PASS || pd.lmw < 0) { action = PF_DROP; goto done; } #if DUMMYNET nonormalize: #endif /* DUMMYNET */ h = pbuf->pb_data; /* * we do not support jumbogram yet. if we keep going, zero ip6_plen * will do something bad, so drop the packet for now. */ if (htons(h->ip6_plen) == 0) { action = PF_DROP; REASON_SET(&reason, PFRES_NORM); /*XXX*/ goto done; } pd.src = (struct pf_addr *)(uintptr_t)&h->ip6_src; pd.dst = (struct pf_addr *)(uintptr_t)&h->ip6_dst; PF_ACPY(&pd.baddr, pd.src, AF_INET6); PF_ACPY(&pd.bdaddr, pd.dst, AF_INET6); pd.ip_sum = NULL; pd.af = AF_INET6; pd.tos = 0; pd.ttl = h->ip6_hlim; pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); pd.eh = eh; off = ((caddr_t)h - (caddr_t)pbuf->pb_data) + sizeof(struct ip6_hdr); pd.proto = h->ip6_nxt; pd.proto_variant = 0; pd.mp = pbuf; pd.lmw = 0; pd.pf_mtag = pf_get_mtag_pbuf(pbuf); do { switch (pd.proto) { case IPPROTO_FRAGMENT: { struct ip6_frag ip6f; pd.flags |= PFDESC_IP_FRAG; if (!pf_pull_hdr(pbuf, off, &ip6f, sizeof ip6f, NULL, &reason, pd.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IPv6 short fragment header\n")); action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); log = 1; goto done; } pd.proto = ip6f.ip6f_nxt; #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_test_fragment(&r, dir, kif, pbuf, h, &pd, &a, &ruleset); if (action == PF_DROP) { REASON_SET(&reason, PFRES_FRAG); log = 1; } goto done; } case IPPROTO_ROUTING: ++rh_cnt; OS_FALLTHROUGH; case IPPROTO_AH: case IPPROTO_HOPOPTS: case IPPROTO_DSTOPTS: { /* get next header and header length */ struct ip6_ext opt6; if (!pf_pull_hdr(pbuf, off, &opt6, sizeof(opt6), NULL, &reason, pd.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IPv6 short opt\n")); action = PF_DROP; log = 1; goto done; } if (pd.proto == IPPROTO_AH) { off += (opt6.ip6e_len + 2) * 4; } else { off += (opt6.ip6e_len + 1) * 8; } pd.proto = opt6.ip6e_nxt; /* goto the next header */ break; } default: terminal++; break; } } while (!terminal); switch (pd.proto) { case IPPROTO_TCP: { struct tcphdr th; pd.hdr.tcp = &th; if (!pf_pull_hdr(pbuf, off, &th, sizeof(th), &action, &reason, AF_INET6)) { log = action != PF_PASS; goto done; } pd.p_len = pd.tot_len - off - (th.th_off << 2); #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_normalize_tcp(dir, kif, pbuf, 0, off, h, &pd); if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv6(); if (action == PF_DROP) { goto done; } if (th.th_sport == 0 || th.th_dport == 0) { action = PF_DROP; REASON_SET(&reason, PFRES_INVPORT); goto done; } action = pf_test_state_tcp(&s, dir, kif, pbuf, off, h, &pd, &reason); if (action == PF_NAT64) { goto done; } if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv6(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); } break; } case IPPROTO_UDP: { struct udphdr uh; pd.hdr.udp = &uh; if (!pf_pull_hdr(pbuf, off, &uh, sizeof(uh), &action, &reason, AF_INET6)) { log = action != PF_PASS; goto done; } if (uh.uh_sport == 0 || uh.uh_dport == 0) { action = PF_DROP; REASON_SET(&reason, PFRES_INVPORT); goto done; } if (ntohs(uh.uh_ulen) > pbuf->pb_packet_len - off || ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); goto done; } #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_test_state_udp(&s, dir, kif, pbuf, off, h, &pd, &reason); if (action == PF_NAT64) { goto done; } if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv6(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); } break; } case IPPROTO_ICMPV6: { struct icmp6_hdr ih; pd.hdr.icmp6 = &ih; if (!pf_pull_hdr(pbuf, off, &ih, sizeof(ih), &action, &reason, AF_INET6)) { log = action != PF_PASS; goto done; } #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_test_state_icmp(&s, dir, kif, pbuf, off, h, &pd, &reason); if (action == PF_NAT64) { goto done; } if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv6(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); } break; } case IPPROTO_ESP: { struct pf_esp_hdr esp; pd.hdr.esp = &esp; if (!pf_pull_hdr(pbuf, off, &esp, sizeof(esp), &action, &reason, AF_INET6)) { log = action != PF_PASS; goto done; } #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_test_state_esp(&s, dir, kif, off, &pd); if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv6(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); } break; } case IPPROTO_GRE: { struct pf_grev1_hdr grev1; pd.hdr.grev1 = &grev1; if (!pf_pull_hdr(pbuf, off, &grev1, sizeof(grev1), &action, &reason, AF_INET6)) { log = (action != PF_PASS); goto done; } #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ if ((ntohs(grev1.flags) & PF_GRE_FLAG_VERSION_MASK) == 1 && ntohs(grev1.protocol_type) == PF_GRE_PPP_ETHERTYPE) { if (ntohs(grev1.payload_length) > pbuf->pb_packet_len - off) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); goto done; } action = pf_test_state_grev1(&s, dir, kif, off, &pd); if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv6(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; break; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); if (action == PF_PASS) { break; } } } /* not GREv1/PPTP, so treat as ordinary GRE... */ OS_FALLTHROUGH; /* XXX is this correct? */ } default: #if DUMMYNET /* Traffic goes through dummynet first */ action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa); if (action == PF_DROP || pbuf == NULL) { *pbufp = NULL; return action; } #endif /* DUMMYNET */ action = pf_test_state_other(&s, dir, kif, &pd); if (pd.lmw < 0) { goto done; } PF_APPLE_UPDATE_PDESC_IPv6(); if (action == PF_PASS) { #if NPFSYNC pfsync_update_state(s); #endif /* NPFSYNC */ r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h, &pd, &a, &ruleset, NULL); } break; } done: if (action == PF_NAT64) { *pbufp = NULL; return action; } *pbufp = pd.mp; PF_APPLE_UPDATE_PDESC_IPv6(); /* handle dangerous IPv6 extension headers. */ if (action != PF_DROP) { if (action == PF_PASS && rh_cnt && !((s && s->allow_opts) || r->allow_opts)) { action = PF_DROP; REASON_SET(&reason, PFRES_IPOPTIONS); log = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: dropping packet with dangerous v6addr headers\n")); } if ((s && s->tag) || PF_RTABLEID_IS_VALID(r->rtableid) || (pd.pktflags & PKTF_FLOW_ID)) { (void) pf_tag_packet(pbuf, pd.pf_mtag, s ? s->tag : 0, r->rtableid, &pd); } if (action == PF_PASS) { #if PF_ECN /* add hints for ecn */ pd.pf_mtag->pftag_hdr = h; /* record address family */ pd.pf_mtag->pftag_flags &= ~PF_TAG_HDR_INET; pd.pf_mtag->pftag_flags |= PF_TAG_HDR_INET6; #endif /* PF_ECN */ /* record protocol */ *pbuf->pb_proto = pd.proto; if (dir == PF_IN && (pd.proto == IPPROTO_TCP || pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && (s->nat_rule.ptr->action == PF_RDR || s->nat_rule.ptr->action == PF_BINAT) && IN6_IS_ADDR_LOOPBACK(&pd.dst->v6addr)) { pd.pf_mtag->pftag_flags |= PF_TAG_TRANSLATE_LOCALHOST; } } } if (log) { struct pf_rule *lr; if (s != NULL && s->nat_rule.ptr != NULL && s->nat_rule.ptr->log & PF_LOG_ALL) { lr = s->nat_rule.ptr; } else { lr = r; } PFLOG_PACKET(kif, h, pbuf, AF_INET6, dir, reason, lr, a, ruleset, &pd); } kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; if (action == PF_PASS || r->action == PF_DROP) { dirndx = (dir == PF_OUT); r->packets[dirndx]++; r->bytes[dirndx] += pd.tot_len; if (a != NULL) { a->packets[dirndx]++; a->bytes[dirndx] += pd.tot_len; } if (s != NULL) { sk = s->state_key; if (s->nat_rule.ptr != NULL) { s->nat_rule.ptr->packets[dirndx]++; s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; } if (s->src_node != NULL) { s->src_node->packets[dirndx]++; s->src_node->bytes[dirndx] += pd.tot_len; } if (s->nat_src_node != NULL) { s->nat_src_node->packets[dirndx]++; s->nat_src_node->bytes[dirndx] += pd.tot_len; } dirndx = (dir == sk->direction) ? 0 : 1; s->packets[dirndx]++; s->bytes[dirndx] += pd.tot_len; } tr = r; nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; if (nr != NULL) { struct pf_addr *x; /* * XXX: we need to make sure that the addresses * passed to pfr_update_stats() are the same than * the addresses used during matching (pfr_match) */ if (r == &pf_default_rule) { tr = nr; x = (s == NULL || sk->direction == dir) ? &pd.baddr : &pd.naddr; } else { x = (s == NULL || sk->direction == dir) ? &pd.naddr : &pd.baddr; } if (x == &pd.baddr || s == NULL) { if (dir == PF_OUT) { pd.src = x; } else { pd.dst = x; } } } if (tr->src.addr.type == PF_ADDR_TABLE) { pfr_update_stats(tr->src.addr.p.tbl, (sk == NULL || sk->direction == dir) ? pd.src : pd.dst, pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->src.neg); } if (tr->dst.addr.type == PF_ADDR_TABLE) { pfr_update_stats(tr->dst.addr.p.tbl, (sk == NULL || sk->direction == dir) ? pd.dst : pd.src, pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->dst.neg); } } VERIFY(pbuf == NULL || pd.mp == NULL || pd.mp == pbuf); if (*pbufp) { if (pd.lmw < 0) { REASON_SET(&reason, PFRES_MEMORY); action = PF_DROP; } if (action == PF_DROP) { pbuf_destroy(*pbufp); *pbufp = NULL; return PF_DROP; } *pbufp = pbuf; } if (action == PF_SYNPROXY_DROP) { pbuf_destroy(*pbufp); *pbufp = NULL; action = PF_PASS; } else if (r->rt) { /* pf_route6 can free the mbuf causing *pbufp to become NULL */ pf_route6(pbufp, r, dir, kif->pfik_ifp, s, &pd); } /* if reassembled packet passed, create new fragments */ struct pf_fragment_tag *ftag = NULL; if ((action == PF_PASS) && (*pbufp != NULL) && (fwd) && ((ftag = pf_find_fragment_tag_pbuf(*pbufp)) != NULL)) { action = pf_refragment6(ifp, pbufp, ftag); } return action; } static int pf_check_congestion(struct ifqueue *ifq) { #pragma unused(ifq) return 0; } void pool_init(struct pool *pp, size_t size, unsigned int align, unsigned int ioff, int flags, const char *wchan, void *palloc) { #pragma unused(align, ioff, flags, palloc) bzero(pp, sizeof(*pp)); pp->pool_zone = zone_create(wchan, size, ZC_PGZ_USE_GUARDS | ZC_ZFREE_CLEARMEM); pp->pool_hiwat = pp->pool_limit = (unsigned int)-1; pp->pool_name = wchan; } /* Zones cannot be currently destroyed */ void pool_destroy(struct pool *pp) { #pragma unused(pp) } void pool_sethiwat(struct pool *pp, int n) { pp->pool_hiwat = n; /* Currently unused */ } void pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) { #pragma unused(warnmess, ratecap) pp->pool_limit = n; } void * pool_get(struct pool *pp, int flags) { void *buf; LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); if (pp->pool_count > pp->pool_limit) { DPFPRINTF(PF_DEBUG_NOISY, ("pf: pool %s hard limit reached (%d)\n", pp->pool_name != NULL ? pp->pool_name : "unknown", pp->pool_limit)); pp->pool_fails++; return NULL; } buf = zalloc_flags(pp->pool_zone, (flags & PR_WAITOK) ? Z_WAITOK : Z_NOWAIT); if (buf != NULL) { pp->pool_count++; VERIFY(pp->pool_count != 0); } return buf; } void pool_put(struct pool *pp, void *v) { LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); zfree(pp->pool_zone, v); VERIFY(pp->pool_count != 0); pp->pool_count--; } struct pf_mtag * pf_find_mtag_pbuf(pbuf_t *pbuf) { return pbuf->pb_pftag; } struct pf_mtag * pf_find_mtag(struct mbuf *m) { return m_pftag(m); } struct pf_mtag * pf_get_mtag(struct mbuf *m) { return pf_find_mtag(m); } struct pf_mtag * pf_get_mtag_pbuf(pbuf_t *pbuf) { return pf_find_mtag_pbuf(pbuf); } struct pf_fragment_tag * pf_copy_fragment_tag(struct mbuf *m, struct pf_fragment_tag *ftag, int how) { struct m_tag *tag; struct pf_mtag *pftag = pf_find_mtag(m); tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_PF_REASS, sizeof(*ftag), how, m); if (tag == NULL) { return NULL; } m_tag_prepend(m, tag); bcopy(ftag, tag->m_tag_data, sizeof(*ftag)); pftag->pftag_flags |= PF_TAG_REASSEMBLED; return (struct pf_fragment_tag *)tag->m_tag_data; } struct pf_fragment_tag * pf_find_fragment_tag(struct mbuf *m) { struct m_tag *tag; struct pf_fragment_tag *ftag = NULL; struct pf_mtag *pftag = pf_find_mtag(m); tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_PF_REASS); VERIFY((tag == NULL) || (pftag->pftag_flags & PF_TAG_REASSEMBLED)); if (tag != NULL) { ftag = (struct pf_fragment_tag *)tag->m_tag_data; } return ftag; } struct pf_fragment_tag * pf_find_fragment_tag_pbuf(pbuf_t *pbuf) { struct pf_mtag *mtag = pf_find_mtag_pbuf(pbuf); return (mtag->pftag_flags & PF_TAG_REASSEMBLED) ? pbuf->pb_pf_fragtag : NULL; } uint64_t pf_time_second(void) { struct timeval t; microuptime(&t); return t.tv_sec; } uint64_t pf_calendar_time_second(void) { struct timeval t; getmicrotime(&t); return t.tv_sec; } static void * hook_establish(struct hook_desc_head *head, int tail, hook_fn_t fn, void *arg) { struct hook_desc *hd; hd = kalloc_type(struct hook_desc, Z_WAITOK | Z_NOFAIL); hd->hd_fn = fn; hd->hd_arg = arg; if (tail) { TAILQ_INSERT_TAIL(head, hd, hd_list); } else { TAILQ_INSERT_HEAD(head, hd, hd_list); } return hd; } static void hook_runloop(struct hook_desc_head *head, int flags) { struct hook_desc *hd; if (!(flags & HOOK_REMOVE)) { if (!(flags & HOOK_ABORT)) { TAILQ_FOREACH(hd, head, hd_list) hd->hd_fn(hd->hd_arg); } } else { while (!!(hd = TAILQ_FIRST(head))) { TAILQ_REMOVE(head, hd, hd_list); if (!(flags & HOOK_ABORT)) { hd->hd_fn(hd->hd_arg); } if (flags & HOOK_FREE) { kfree_type(struct hook_desc, hd); } } } } #if SKYWALK && defined(XNU_TARGET_OS_OSX) static uint32_t pf_check_compatible_anchor(struct pf_anchor const * a) { const char *anchor_path = a->path; uint32_t result = 0; if (strncmp(anchor_path, PF_RESERVED_ANCHOR, MAXPATHLEN) == 0) { goto done; } if (strncmp(anchor_path, "com.apple", MAXPATHLEN) == 0) { goto done; } for (int i = 0; i < sizeof(compatible_anchors) / sizeof(compatible_anchors[0]); i++) { const char *ptr = strnstr(anchor_path, compatible_anchors[i], MAXPATHLEN); if (ptr != NULL && ptr == anchor_path) { goto done; } } result |= PF_COMPATIBLE_FLAGS_CUSTOM_ANCHORS_PRESENT; for (int i = PF_RULESET_SCRUB; i < PF_RULESET_MAX; ++i) { if (a->ruleset.rules[i].active.rcount != 0) { result |= PF_COMPATIBLE_FLAGS_CUSTOM_RULES_PRESENT; } } done: return result; } uint32_t pf_check_compatible_rules(void) { LCK_RW_ASSERT(&pf_perim_lock, LCK_RW_ASSERT_HELD); LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED); struct pf_anchor *anchor = NULL; struct pf_rule *rule = NULL; uint32_t compat_bitmap = 0; if (PF_IS_ENABLED) { compat_bitmap |= PF_COMPATIBLE_FLAGS_PF_ENABLED; } RB_FOREACH(anchor, pf_anchor_global, &pf_anchors) { compat_bitmap |= pf_check_compatible_anchor(anchor); #define _CHECK_FLAGS (PF_COMPATIBLE_FLAGS_CUSTOM_ANCHORS_PRESENT | PF_COMPATIBLE_FLAGS_CUSTOM_RULES_PRESENT) if ((compat_bitmap & _CHECK_FLAGS) == _CHECK_FLAGS) { goto done; } #undef _CHECK_FLAGS } for (int i = PF_RULESET_SCRUB; i < PF_RULESET_MAX; i++) { TAILQ_FOREACH(rule, pf_main_ruleset.rules[i].active.ptr, entries) { if (rule->anchor == NULL) { compat_bitmap |= PF_COMPATIBLE_FLAGS_CUSTOM_RULES_PRESENT; goto done; } } } done: return compat_bitmap; } #endif // SKYWALK && defined(XNU_TARGET_OS_OSX)