/* * Copyright (c) 2000-2013 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 1988, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)radix.c 8.4 (Berkeley) 11/2/94 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $ */ /* * Routines to build and maintain radix trees for routing lookups. */ #ifndef _RADIX_H_ #include #include #include #include #include #include #include #include #endif static int rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f, void *w); static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *); static struct radix_node *rn_insert(void *, struct radix_node_head *, int *, struct radix_node[2]); static struct radix_node *rn_newpair(void *, int, struct radix_node[2]); static struct radix_node *rn_search(void *, struct radix_node *); static struct radix_node *rn_search_m(void *, struct radix_node *, void *); static int max_keylen; static struct radix_mask *rn_mkfreelist; static struct radix_node_head *mask_rnhead; static char *addmask_key; static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1}; static char *rn_zeros, *rn_ones; static zone_t radix_node_zone; KALLOC_TYPE_DEFINE(radix_node_head_zone, struct radix_node_head, KT_DEFAULT); #define rn_masktop (mask_rnhead->rnh_treetop) #undef Bcmp #define Bcmp(a, b, l) \ (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (uint32_t)l)) static int rn_lexobetter(void *m_arg, void *n_arg); static struct radix_mask * rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next); static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip, rn_matchf_t *f, void *w); #define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg)) /* * The data structure for the keys is a radix tree with one way * branching removed. The index rn_bit at an internal node n represents a bit * position to be tested. The tree is arranged so that all descendants * of a node n have keys whose bits all agree up to position rn_bit - 1. * (We say the index of n is rn_bit.) * * There is at least one descendant which has a one bit at position rn_bit, * and at least one with a zero there. * * A route is determined by a pair of key and mask. We require that the * bit-wise logical and of the key and mask to be the key. * We define the index of a route to associated with the mask to be * the first bit number in the mask where 0 occurs (with bit number 0 * representing the highest order bit). * * We say a mask is normal if every bit is 0, past the index of the mask. * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, * and m is a normal mask, then the route applies to every descendant of n. * If the index(m) < rn_bit, this implies the trailing last few bits of k * before bit b are all 0, (and hence consequently true of every descendant * of n), so the route applies to all descendants of the node as well. * * Similar logic shows that a non-normal mask m such that * index(m) <= index(n) could potentially apply to many children of n. * Thus, for each non-host route, we attach its mask to a list at an internal * node as high in the tree as we can go. * * The present version of the code makes use of normal routes in short- * circuiting an explict mask and compare operation when testing whether * a key satisfies a normal route, and also in remembering the unique leaf * that governs a subtree. */ static struct radix_node * rn_search(void *v_arg, struct radix_node *head) { struct radix_node *x; caddr_t v; for (x = head, v = v_arg; x->rn_bit >= 0;) { if (x->rn_bmask & v[x->rn_offset]) { x = x->rn_right; } else { x = x->rn_left; } } return x; } static struct radix_node * rn_search_m(void *v_arg, struct radix_node *head, void *m_arg) { struct radix_node *x; caddr_t v = v_arg, m = m_arg; for (x = head; x->rn_bit >= 0;) { if ((x->rn_bmask & m[x->rn_offset]) && (x->rn_bmask & v[x->rn_offset])) { x = x->rn_right; } else { x = x->rn_left; } } return x; } int rn_refines(void *m_arg, void *n_arg) { caddr_t m = m_arg, n = n_arg; caddr_t lim, lim2 = lim = n + *(u_char *)n; int longer = (*(u_char *)n++) - (int)(*(u_char *)m++); int masks_are_equal = 1; if (longer > 0) { lim -= longer; } while (n < lim) { if (*n & ~(*m)) { return 0; } if (*n++ != *m++) { masks_are_equal = 0; } } while (n < lim2) { if (*n++) { return 0; } } if (masks_are_equal && (longer < 0)) { for (lim2 = m - longer; m < lim2;) { if (*m++) { return 1; } } } return !masks_are_equal; } struct radix_node * rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head) { return rn_lookup_args(v_arg, m_arg, head, NULL, NULL); } struct radix_node * rn_lookup_args(void *v_arg, void *m_arg, struct radix_node_head *head, rn_matchf_t *f, void *w) { struct radix_node *x; caddr_t netmask = NULL; if (m_arg) { x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset); if (x == 0) { return NULL; } /* * Note: the auxillary mask is stored as a "key". */ netmask = rn_get_key(x); } x = rn_match_args(v_arg, head, f, w); if (x && netmask) { while (x && rn_get_mask(x) != netmask) { x = x->rn_dupedkey; } } return x; } /* * Returns true if address 'trial' has no bits differing from the * leaf's key when compared under the leaf's mask. In other words, * returns true when 'trial' matches leaf. If a leaf-matching * routine is passed in, it is also used to find a match on the * conditions defined by the caller of rn_match. */ static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip, rn_matchf_t *f, void *w) { char *cp = trial; char *cp2 = rn_get_key(leaf); char *cp3 = rn_get_mask(leaf); char *cplim; int length = min(*(u_char *)cp, *(u_char *)cp2); if (cp3 == 0) { cp3 = rn_ones; } else { length = min(length, *(u_char *)cp3); } cplim = cp + length; cp3 += skip; cp2 += skip; for (cp += skip; cp < cplim; cp++, cp2++, cp3++) { if ((*cp ^ *cp2) & *cp3) { return 0; } } return RN_MATCHF(leaf, f, w); } struct radix_node * rn_match(void *v_arg, struct radix_node_head *head) { return rn_match_args(v_arg, head, NULL, NULL); } struct radix_node * rn_match_args(void *v_arg, struct radix_node_head *head, rn_matchf_t *f, void *w) { caddr_t v = v_arg; struct radix_node *t = head->rnh_treetop, *x; caddr_t cp = v, cp2; caddr_t cplim; struct radix_node *saved_t, *top = t; int off = t->rn_offset, vlen = *(u_char *)cp, matched_off; int test, b, rn_bit; /* * Open code rn_search(v, top) to avoid overhead of extra * subroutine call. */ for (; t->rn_bit >= 0;) { if (t->rn_bmask & cp[t->rn_offset]) { t = t->rn_right; } else { t = t->rn_left; } } /* * See if we match exactly as a host destination * or at least learn how many bits match, for normal mask finesse. * * It doesn't hurt us to limit how many bytes to check * to the length of the mask, since if it matches we had a genuine * match and the leaf we have is the most specific one anyway; * if it didn't match with a shorter length it would fail * with a long one. This wins big for class B&C netmasks which * are probably the most common case... */ if (rn_get_mask(t)) { vlen = *(u_char *)rn_get_mask(t); } cp += off; cp2 = rn_get_key(t) + off; cplim = v + vlen; for (; cp < cplim; cp++, cp2++) { if (*cp != *cp2) { goto on1; } } /* * This extra grot is in case we are explicitly asked * to look up the default. Ugh! * * Never return the root node itself, it seems to cause a * lot of confusion. */ if (t->rn_flags & RNF_ROOT) { t = t->rn_dupedkey; } if (t == NULL || RN_MATCHF(t, f, w)) { return t; } else { /* * Although we found an exact match on the key, * f() is looking for some other criteria as well. * Continue looking as if the exact match failed. */ if (t->rn_parent->rn_flags & RNF_ROOT) { /* Hit the top; have to give up */ return NULL; } b = 0; goto keeplooking; } on1: test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ for (b = 7; (test >>= 1) > 0;) { b--; } keeplooking: matched_off = (int)(cp - v); b += matched_off << 3; rn_bit = -1 - b; /* * If there is a host route in a duped-key chain, it will be first. */ saved_t = t; if (rn_get_mask(t) == 0) { t = t->rn_dupedkey; } for (; t; t = t->rn_dupedkey) { /* * Even if we don't match exactly as a host, * we may match if the leaf we wound up at is * a route to a net. */ if (t->rn_flags & RNF_NORMAL) { if ((rn_bit <= t->rn_bit) && RN_MATCHF(t, f, w)) { return t; } } else if (rn_satisfies_leaf(v, t, matched_off, f, w)) { return t; } } t = saved_t; /* start searching up the tree */ do { struct radix_mask *m; t = t->rn_parent; m = t->rn_mklist; /* * If non-contiguous masks ever become important * we can restore the masking and open coding of * the search and satisfaction test and put the * calculation of "off" back before the "do". */ while (m) { if (m->rm_flags & RNF_NORMAL) { if ((rn_bit <= m->rm_bit) && RN_MATCHF(m->rm_leaf, f, w)) { return m->rm_leaf; } } else { off = min(t->rn_offset, matched_off); x = rn_search_m(v, t, rm_get_mask(m)); while (x && rn_get_mask(x) != rm_get_mask(m)) { x = x->rn_dupedkey; } if (x && rn_satisfies_leaf(v, x, off, f, w)) { return x; } } m = m->rm_mklist; } } while (t != top); return NULL; } #ifdef RN_DEBUG int rn_nodenum; struct radix_node *rn_clist; int rn_saveinfo; int rn_debug = 1; #endif static struct radix_node * rn_newpair(void *v, int b, struct radix_node nodes[2]) { struct radix_node *tt = nodes, *t = tt + 1; t->rn_bit = (short)b; t->rn_bmask = 0x80 >> (b & 7); t->rn_left = tt; t->rn_offset = b >> 3; tt->rn_bit = -1; tt->rn_key = (caddr_t)v; tt->rn_parent = t; tt->rn_flags = t->rn_flags = RNF_ACTIVE; tt->rn_mklist = t->rn_mklist = NULL; #ifdef RN_DEBUG tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; #endif return t; } static struct radix_node * rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry, struct radix_node nodes[2]) { caddr_t v = v_arg; struct radix_node *top = head->rnh_treetop; int head_off = top->rn_offset, vlen = (int)*((u_char *)v); struct radix_node *t = rn_search(v_arg, top); caddr_t cp = v + head_off; int b; struct radix_node *tt; /* * Find first bit at which v and t->rn_key differ */ { caddr_t cp2 = rn_get_key(t) + head_off; int cmp_res; caddr_t cplim = v + vlen; while (cp < cplim) { if (*cp2++ != *cp++) { goto on1; } } *dupentry = 1; return t; on1: *dupentry = 0; cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; for (b = (int)(cp - v) << 3; cmp_res; b--) { cmp_res >>= 1; } } { struct radix_node *p, *x = top; cp = v; do { p = x; if (cp[x->rn_offset] & x->rn_bmask) { x = x->rn_right; } else { x = x->rn_left; } } while (b > (unsigned) x->rn_bit); /* x->rn_bit < b && x->rn_bit >= 0 */ #ifdef RN_DEBUG if (rn_debug) { log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); } #endif t = rn_newpair(v_arg, b, nodes); tt = t->rn_left; if ((cp[p->rn_offset] & p->rn_bmask) == 0) { p->rn_left = t; } else { p->rn_right = t; } x->rn_parent = t; t->rn_parent = p; /* frees x, p as temp vars below */ if ((cp[t->rn_offset] & t->rn_bmask) == 0) { t->rn_right = x; } else { t->rn_right = tt; t->rn_left = x; } #ifdef RN_DEBUG if (rn_debug) { log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); } #endif } return tt; } struct radix_node * rn_addmask(void *n_arg, int search, int skip) { caddr_t netmask = (caddr_t)n_arg; struct radix_node *x; caddr_t cp, cplim; int b = 0, mlen, j; int maskduplicated, m0, isnormal; struct radix_node *saved_x; static int last_zeroed = 0; if ((mlen = *(u_char *)netmask) > max_keylen) { mlen = max_keylen; } if (skip == 0) { skip = 1; } if (mlen <= skip) { return mask_rnhead->rnh_nodes; } if (skip > 1) { Bcopy(rn_ones + 1, addmask_key + 1, skip - 1); } if ((m0 = mlen) > skip) { Bcopy(netmask + skip, addmask_key + skip, mlen - skip); } /* * Trim trailing zeroes. */ for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) { cp--; } mlen = (int)(cp - addmask_key); if (mlen <= skip) { if (m0 >= last_zeroed) { last_zeroed = mlen; } return mask_rnhead->rnh_nodes; } if (m0 < last_zeroed) { Bzero(addmask_key + m0, last_zeroed - m0); } *addmask_key = last_zeroed = (char)mlen; x = rn_search(addmask_key, rn_masktop); if (Bcmp(addmask_key, rn_get_key(x), mlen) != 0) { x = NULL; } if (x || search) { return x; } x = saved_x = zalloc_flags(radix_node_zone, Z_WAITOK_ZERO_NOFAIL); netmask = cp = (caddr_t)(x + 2); Bcopy(addmask_key, cp, mlen); x = rn_insert(cp, mask_rnhead, &maskduplicated, x); if (maskduplicated) { log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); zfree(radix_node_zone, saved_x); return x; } mask_rnhead->rnh_cnt++; /* * Calculate index of mask, and check for normalcy. */ cplim = netmask + mlen; isnormal = 1; for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) { cp++; } if (cp != cplim) { for (j = 0x80; (j & *cp) != 0; j >>= 1) { b++; } if (*cp != normal_chars[b] || cp != (cplim - 1)) { isnormal = 0; } } b += (cp - netmask) << 3; x->rn_bit = (short)(-1 - b); if (isnormal) { x->rn_flags |= RNF_NORMAL; } return x; } static int /* XXX: arbitrary ordering for non-contiguous masks */ rn_lexobetter(void *m_arg, void *n_arg) { u_char *mp = m_arg, *np = n_arg, *lim; if (*mp > *np) { return 1; /* not really, but need to check longer one first */ } if (*mp == *np) { for (lim = mp + *mp; mp < lim;) { if (*mp++ > *np++) { return 1; } } } return 0; } static struct radix_mask * rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) { struct radix_mask *m; MKGet(m); m->rm_bit = tt->rn_bit; m->rm_flags = tt->rn_flags; if (tt->rn_flags & RNF_NORMAL) { m->rm_leaf = tt; } else { m->rm_mask = rn_get_mask(tt); } m->rm_mklist = next; tt->rn_mklist = m; return m; } struct radix_node * rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head, struct radix_node treenodes[2]) { caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; struct radix_node *t, *x = NULL, *tt; struct radix_node *saved_tt, *top = head->rnh_treetop; short b = 0, b_leaf = 0; int keyduplicated; caddr_t mmask; struct radix_mask *m, **mp; /* * In dealing with non-contiguous masks, there may be * many different routes which have the same mask. * We will find it useful to have a unique pointer to * the mask to speed avoiding duplicate references at * nodes and possibly save time in calculating indices. */ if (netmask) { if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0) { return NULL; } b_leaf = x->rn_bit; b = -1 - x->rn_bit; /* * Note: the auxillary mask is stored as a "key". */ netmask = rn_get_key(x); } /* * Deal with duplicated keys: attach node to previous instance */ saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); if (keyduplicated) { for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { if (rn_get_mask(tt) == netmask) { return NULL; } if (netmask == 0 || (rn_get_mask(tt) != NULL && ((b_leaf < tt->rn_bit) /* index(netmask) > node */ || rn_refines(netmask, rn_get_mask(tt)) || rn_lexobetter(netmask, rn_get_mask(tt))))) { break; } } /* * If the mask is not duplicated, we wouldn't * find it among possible duplicate key entries * anyway, so the above test doesn't hurt. * * We sort the masks for a duplicated key the same way as * in a masklist -- most specific to least specific. * This may require the unfortunate nuisance of relocating * the head of the list. */ if (tt == saved_tt) { struct radix_node *xx = x; /* link in at head of list */ (tt = treenodes)->rn_dupedkey = t; tt->rn_flags = t->rn_flags; tt->rn_parent = x = t->rn_parent; t->rn_parent = tt; /* parent */ if (x->rn_left == t) { x->rn_left = tt; } else { x->rn_right = tt; } saved_tt = tt; x = xx; } else { (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; t->rn_dupedkey = tt; tt->rn_parent = t; /* parent */ if (tt->rn_dupedkey) { /* parent */ tt->rn_dupedkey->rn_parent = tt; /* parent */ } } #ifdef RN_DEBUG t = tt + 1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; #endif tt->rn_key = (caddr_t) v; tt->rn_bit = -1; tt->rn_flags = RNF_ACTIVE; } head->rnh_cnt++; /* * Put mask in tree. */ if (netmask) { tt->rn_mask = netmask; tt->rn_bit = x->rn_bit; tt->rn_flags |= x->rn_flags & RNF_NORMAL; } t = saved_tt->rn_parent; if (keyduplicated) { goto on2; } b_leaf = -1 - t->rn_bit; if (t->rn_right == saved_tt) { x = t->rn_left; } else { x = t->rn_right; } /* Promote general routes from below */ if (x->rn_bit < 0) { for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) { if (rn_get_mask(x) != NULL && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { *mp = m = rn_new_radix_mask(x, NULL); if (m) { mp = &m->rm_mklist; } } } } else if (x->rn_mklist) { /* * Skip over masks whose index is > that of new node */ for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { if (m->rm_bit >= b_leaf) { break; } } t->rn_mklist = m; *mp = NULL; } on2: /* Add new route to highest possible ancestor's list */ if ((netmask == 0) || (b > t->rn_bit)) { return tt; /* can't lift at all */ } b_leaf = tt->rn_bit; do { x = t; t = t->rn_parent; } while (b <= t->rn_bit && x != top); /* * Search through routes associated with node to * insert new route according to index. * Need same criteria as when sorting dupedkeys to avoid * double loop on deletion. */ for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { if (m->rm_bit < b_leaf) { continue; } if (m->rm_bit > b_leaf) { break; } if (m->rm_flags & RNF_NORMAL) { mmask = rn_get_mask(m->rm_leaf); if (tt->rn_flags & RNF_NORMAL) { log(LOG_ERR, "Non-unique normal route, mask not entered"); return tt; } } else { mmask = rm_get_mask(m); } if (mmask == netmask) { m->rm_refs++; tt->rn_mklist = m; return tt; } if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) { break; } } *mp = rn_new_radix_mask(tt, *mp); return tt; } struct radix_node * rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head) { struct radix_node *t, *p, *x, *tt; struct radix_mask *m, *saved_m, **mp; struct radix_node *dupedkey, *saved_tt, *top; caddr_t v, netmask; int b, head_off, vlen; v = v_arg; netmask = netmask_arg; x = head->rnh_treetop; tt = rn_search(v, x); head_off = x->rn_offset; vlen = *(u_char *)v; saved_tt = tt; top = x; if (tt == 0 || Bcmp(v + head_off, rn_get_key(tt) + head_off, vlen - head_off)) { return NULL; } /* * Delete our route from mask lists. */ if (netmask) { if ((x = rn_addmask(netmask, 1, head_off)) == 0) { return NULL; } netmask = rn_get_key(x); while (rn_get_mask(tt) != netmask) { if ((tt = tt->rn_dupedkey) == 0) { return NULL; } } } if (rn_get_mask(tt) == 0 || (saved_m = m = tt->rn_mklist) == 0) { goto on1; } if (tt->rn_flags & RNF_NORMAL) { if (m->rm_leaf != tt || m->rm_refs > 0) { log(LOG_ERR, "rn_delete: inconsistent annotation\n"); return NULL; /* dangling ref could cause disaster */ } } else { if (rm_get_mask(m) != rn_get_mask(tt)) { log(LOG_ERR, "rn_delete: inconsistent annotation\n"); goto on1; } if (--m->rm_refs >= 0) { goto on1; } } b = -1 - tt->rn_bit; t = saved_tt->rn_parent; if (b > t->rn_bit) { goto on1; /* Wasn't lifted at all */ } do { x = t; t = t->rn_parent; } while (b <= t->rn_bit && x != top); for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { if (m == saved_m) { *mp = m->rm_mklist; if (tt->rn_mklist == m) { tt->rn_mklist = *mp; } MKFree(m); break; } } if (m == 0) { log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); if (tt->rn_flags & RNF_NORMAL) { return NULL; /* Dangling ref to us */ } } on1: /* * Eliminate us from tree */ if (tt->rn_flags & RNF_ROOT) { return NULL; } head->rnh_cnt--; #ifdef RN_DEBUG /* Get us out of the creation list */ for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) { } if (t) { t->rn_ybro = tt->rn_ybro; } #endif t = tt->rn_parent; dupedkey = saved_tt->rn_dupedkey; if (dupedkey) { /* * at this point, tt is the deletion target and saved_tt * is the head of the dupekey chain */ if (tt == saved_tt) { /* remove from head of chain */ x = dupedkey; x->rn_parent = t; if (t->rn_left == tt) { t->rn_left = x; } else { t->rn_right = x; } } else { /* find node in front of tt on the chain */ for (x = p = saved_tt; p && p->rn_dupedkey != tt;) { p = p->rn_dupedkey; } if (p) { p->rn_dupedkey = tt->rn_dupedkey; if (tt->rn_dupedkey) { /* parent */ tt->rn_dupedkey->rn_parent = p; } /* parent */ } else { log(LOG_ERR, "rn_delete: couldn't find us\n"); } } t = tt + 1; if (t->rn_flags & RNF_ACTIVE) { #ifndef RN_DEBUG *++x = *t; p = t->rn_parent; #else b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_parent; #endif if (p->rn_left == t) { p->rn_left = x; } else { p->rn_right = x; } x->rn_left->rn_parent = x; x->rn_right->rn_parent = x; } goto out; } if (t->rn_left == tt) { x = t->rn_right; } else { x = t->rn_left; } p = t->rn_parent; if (p->rn_right == t) { p->rn_right = x; } else { p->rn_left = x; } x->rn_parent = p; /* * Demote routes attached to us. */ if (t->rn_mklist) { if (x->rn_bit >= 0) { for (mp = &x->rn_mklist; (m = *mp);) { mp = &m->rm_mklist; } *mp = t->rn_mklist; } else { /* If there are any key,mask pairs in a sibling * duped-key chain, some subset will appear sorted * in the same order attached to our mklist */ for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) { if (m == x->rn_mklist) { struct radix_mask *mm = m->rm_mklist; x->rn_mklist = NULL; if (--(m->rm_refs) < 0) { MKFree(m); } m = mm; } } if (m) { log(LOG_ERR, "rn_delete: Orphaned Mask " "0x%llx at 0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(m), (uint64_t)VM_KERNEL_ADDRPERM(x)); } } } /* * We may be holding an active internal node in the tree. */ x = tt + 1; if (t != x) { #ifndef RN_DEBUG *t = *x; #else b = t->rn_info; *t = *x; t->rn_info = b; #endif t->rn_left->rn_parent = t; t->rn_right->rn_parent = t; p = x->rn_parent; if (p->rn_left == x) { p->rn_left = t; } else { p->rn_right = t; } } out: tt->rn_flags &= ~RNF_ACTIVE; tt[1].rn_flags &= ~RNF_ACTIVE; return tt; } /* * This is the same as rn_walktree() except for the parameters and the * exit. */ static int rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f, void *w) { int error; struct radix_node *base, *next; u_char *xa = (u_char *)a; u_char *xm = (u_char *)m; struct radix_node *rn, *last; int stopping; int lastb; int rnh_cnt; /* * This gets complicated because we may delete the node while * applying the function f to it; we cannot simply use the next * leaf as the successor node in advance, because that leaf may * be removed as well during deletion when it is a clone of the * current node. When that happens, we would end up referring * to an already-freed radix node as the successor node. To get * around this issue, if we detect that the radix tree has changed * in dimension (smaller than before), we simply restart the walk * from the top of tree. */ restart: last = NULL; stopping = 0; rnh_cnt = h->rnh_cnt; /* * rn_search_m is sort-of-open-coded here. */ for (rn = h->rnh_treetop; rn->rn_bit >= 0;) { last = rn; if (!(rn->rn_bmask & xm[rn->rn_offset])) { break; } if (rn->rn_bmask & xa[rn->rn_offset]) { rn = rn->rn_right; } else { rn = rn->rn_left; } } /* * Two cases: either we stepped off the end of our mask, * in which case last == rn, or we reached a leaf, in which * case we want to start from the last node we looked at. * Either way, last is the node we want to start from. */ rn = last; lastb = rn->rn_bit; /* First time through node, go left */ while (rn->rn_bit >= 0) { rn = rn->rn_left; } while (!stopping) { base = rn; /* If at right child go back up, otherwise, go right */ while (rn->rn_parent->rn_right == rn && !(rn->rn_flags & RNF_ROOT)) { rn = rn->rn_parent; /* if went up beyond last, stop */ if (rn->rn_bit <= lastb) { stopping = 1; /* * XXX we should jump to the 'Process leaves' * part, because the values of 'rn' and 'next' * we compute will not be used. Not a big deal * because this loop will terminate, but it is * inefficient and hard to understand! */ } } /* * The following code (bug fix) inherited from FreeBSD is * currently disabled, because our implementation uses the * RTF_PRCLONING scheme that has been abandoned in current * FreeBSD release. The scheme involves setting such a flag * for the default route entry, and therefore all off-link * destinations would become clones of that entry. Enabling * the following code would be problematic at this point, * because the removal of default route would cause only * the left-half of the tree to be traversed, leaving the * right-half untouched. If there are clones of the entry * that reside in that right-half, they would not be deleted * and would linger around until they expire or explicitly * deleted, which is a very bad thing. * * This code should be uncommented only after we get rid * of the RTF_PRCLONING scheme. */ #if 0 /* * At the top of the tree, no need to traverse the right * half, prevent the traversal of the entire tree in the * case of default route. */ if (rn->rn_parent->rn_flags & RNF_ROOT) { stopping = 1; } #endif /* Find the next *leaf* to start from */ for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) { rn = rn->rn_left; } next = rn; /* Process leaves */ while ((rn = base) != 0) { base = rn->rn_dupedkey; if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) { return error; } } /* If one or more nodes got deleted, restart from top */ if (h->rnh_cnt < rnh_cnt) { goto restart; } rn = next; if (rn->rn_flags & RNF_ROOT) { stopping = 1; } } return 0; } static int rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w) { int error; struct radix_node *base, *next; struct radix_node *rn; int rnh_cnt; /* * This gets complicated because we may delete the node while * applying the function f to it; we cannot simply use the next * leaf as the successor node in advance, because that leaf may * be removed as well during deletion when it is a clone of the * current node. When that happens, we would end up referring * to an already-freed radix node as the successor node. To get * around this issue, if we detect that the radix tree has changed * in dimension (smaller than before), we simply restart the walk * from the top of tree. */ restart: rn = h->rnh_treetop; rnh_cnt = h->rnh_cnt; /* First time through node, go left */ while (rn->rn_bit >= 0) { rn = rn->rn_left; } for (;;) { base = rn; /* If at right child go back up, otherwise, go right */ while (rn->rn_parent->rn_right == rn && (rn->rn_flags & RNF_ROOT) == 0) { rn = rn->rn_parent; } /* Find the next *leaf* to start from */ for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) { rn = rn->rn_left; } next = rn; /* Process leaves */ while ((rn = base) != NULL) { base = rn->rn_dupedkey; if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) { return error; } } /* If one or more nodes got deleted, restart from top */ if (h->rnh_cnt < rnh_cnt) { goto restart; } rn = next; if (rn->rn_flags & RNF_ROOT) { return 0; } } /* NOTREACHED */ } int rn_inithead(void **head, int off) { struct radix_node_head *rnh; struct radix_node *t, *tt, *ttt; if (off > INT8_MAX) { return 0; } if (*head) { return 1; } rnh = zalloc_flags(radix_node_head_zone, Z_WAITOK_ZERO_NOFAIL); *head = rnh; t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); ttt = rnh->rnh_nodes + 2; t->rn_right = ttt; t->rn_parent = t; tt = t->rn_left; tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; tt->rn_bit = (short)(-1 - off); *ttt = *tt; ttt->rn_key = rn_ones; rnh->rnh_addaddr = rn_addroute; rnh->rnh_deladdr = rn_delete; rnh->rnh_matchaddr = rn_match; rnh->rnh_matchaddr_args = rn_match_args; rnh->rnh_lookup = rn_lookup; rnh->rnh_lookup_args = rn_lookup_args; rnh->rnh_walktree = rn_walktree; rnh->rnh_walktree_from = rn_walktree_from; rnh->rnh_treetop = t; rnh->rnh_cnt = 3; return 1; } void rn_init(void) { char *cp, *cplim; struct domain *dom; /* lock already held when rn_init is called */ TAILQ_FOREACH(dom, &domains, dom_entry) { if (dom->dom_maxrtkey > max_keylen) { max_keylen = dom->dom_maxrtkey; } } if (max_keylen == 0) { log(LOG_ERR, "rn_init: radix functions require max_keylen be set\n"); return; } rn_zeros = zalloc_permanent(3 * max_keylen, ZALIGN_NONE); rn_ones = cp = rn_zeros + max_keylen; addmask_key = cplim = rn_ones + max_keylen; while (cp < cplim) { *cp++ = -1; } if (rn_inithead((void **)&mask_rnhead, 0) == 0) { panic("rn_init 2"); } radix_node_zone = zone_create("radix_node", sizeof(struct radix_node) * 2 + max_keylen, ZC_PGZ_USE_GUARDS | ZC_ZFREE_CLEARMEM); }