/* * Copyright (c) 2000-2021 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NECP #include #endif #include #include #include #include #if SKYWALK #include #endif /* SKYWALK */ #include #include extern const char *proc_name_address(struct proc *); static LCK_GRP_DECLARE(inpcb_lock_grp, "inpcb"); static LCK_ATTR_DECLARE(inpcb_lock_attr, 0, 0); static LCK_MTX_DECLARE_ATTR(inpcb_lock, &inpcb_lock_grp, &inpcb_lock_attr); static LCK_MTX_DECLARE_ATTR(inpcb_timeout_lock, &inpcb_lock_grp, &inpcb_lock_attr); static TAILQ_HEAD(, inpcbinfo) inpcb_head = TAILQ_HEAD_INITIALIZER(inpcb_head); static u_int16_t inpcb_timeout_run = 0; /* INPCB timer is scheduled to run */ static boolean_t inpcb_garbage_collecting = FALSE; /* gc timer is scheduled */ static boolean_t inpcb_ticking = FALSE; /* "slow" timer is scheduled */ static boolean_t inpcb_fast_timer_on = FALSE; #define INPCB_GCREQ_THRESHOLD 50000 static thread_call_t inpcb_thread_call, inpcb_fast_thread_call; static void inpcb_sched_timeout(void); static void inpcb_sched_lazy_timeout(void); static void _inpcb_sched_timeout(unsigned int); static void inpcb_timeout(void *, void *); const int inpcb_timeout_lazy = 10; /* 10 seconds leeway for lazy timers */ extern int tvtohz(struct timeval *); #if CONFIG_PROC_UUID_POLICY static void inp_update_cellular_policy(struct inpcb *, boolean_t); #if NECP static void inp_update_necp_want_app_policy(struct inpcb *, boolean_t); #endif /* NECP */ #endif /* !CONFIG_PROC_UUID_POLICY */ #define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8)) #define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1)) int allow_udp_port_exhaustion = 0; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */ int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } static int sysctl_net_ipport_check SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error; int new_value = *(int *)oidp->oid_arg1; #if (DEBUG | DEVELOPMENT) int old_value = *(int *)oidp->oid_arg1; /* * For unit testing allow a non-superuser process with the * proper entitlement to modify the variables */ if (req->newptr) { if (proc_suser(current_proc()) != 0 && (error = priv_check_cred(kauth_cred_get(), PRIV_NETINET_RESERVEDPORT, 0))) { return EPERM; } } #endif /* (DEBUG | DEVELOPMENT) */ error = sysctl_handle_int(oidp, &new_value, 0, req); if (!error) { if (oidp->oid_arg1 == &ipport_lowfirstauto || oidp->oid_arg1 == &ipport_lowlastauto) { RANGECHK(new_value, 1, IPPORT_RESERVED - 1); } else { RANGECHK(new_value, IPPORT_RESERVED, USHRT_MAX); } *(int *)oidp->oid_arg1 = new_value; } #if (DEBUG | DEVELOPMENT) os_log(OS_LOG_DEFAULT, "%s:%u sysctl net.restricted_port.verbose: %d -> %d)", proc_best_name(current_proc()), proc_selfpid(), old_value, *(int *)oidp->oid_arg1); #endif /* (DEBUG | DEVELOPMENT) */ return error; } #undef RANGECHK SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IP Ports"); #if (DEBUG | DEVELOPMENT) #define CTLFAGS_IP_PORTRANGE (CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY) #else #define CTLFAGS_IP_PORTRANGE (CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED) #endif /* (DEBUG | DEVELOPMENT) */ SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLFAGS_IP_PORTRANGE, &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLFAGS_IP_PORTRANGE, &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLFAGS_IP_PORTRANGE, &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLFAGS_IP_PORTRANGE, &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLFAGS_IP_PORTRANGE, &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLFAGS_IP_PORTRANGE, &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, ipport_allow_udp_port_exhaustion, CTLFLAG_LOCKED | CTLFLAG_RW, &allow_udp_port_exhaustion, 0, ""); static uint32_t apn_fallbk_debug = 0; #define apn_fallbk_log(x) do { if (apn_fallbk_debug >= 1) log x; } while (0) #if !XNU_TARGET_OS_OSX static boolean_t apn_fallbk_enabled = TRUE; SYSCTL_DECL(_net_inet); SYSCTL_NODE(_net_inet, OID_AUTO, apn_fallback, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "APN Fallback"); SYSCTL_UINT(_net_inet_apn_fallback, OID_AUTO, enable, CTLFLAG_RW | CTLFLAG_LOCKED, &apn_fallbk_enabled, 0, "APN fallback enable"); SYSCTL_UINT(_net_inet_apn_fallback, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &apn_fallbk_debug, 0, "APN fallback debug enable"); #else /* XNU_TARGET_OS_OSX */ static boolean_t apn_fallbk_enabled = FALSE; #endif /* XNU_TARGET_OS_OSX */ extern int udp_use_randomport; extern int tcp_use_randomport; /* Structs used for flowhash computation */ struct inp_flowhash_key_addr { union { struct in_addr v4; struct in6_addr v6; u_int8_t addr8[16]; u_int16_t addr16[8]; u_int32_t addr32[4]; } infha; }; struct inp_flowhash_key { struct inp_flowhash_key_addr infh_laddr; struct inp_flowhash_key_addr infh_faddr; u_int32_t infh_lport; u_int32_t infh_fport; u_int32_t infh_af; u_int32_t infh_proto; u_int32_t infh_rand1; u_int32_t infh_rand2; }; #if !SKYWALK static u_int32_t inp_hash_seed = 0; #endif /* !SKYWALK */ static int infc_cmp(const struct inpcb *, const struct inpcb *); /* Flags used by inp_fc_getinp */ #define INPFC_SOLOCKED 0x1 #define INPFC_REMOVE 0x2 static struct inpcb *inp_fc_getinp(u_int32_t, u_int32_t); static void inp_fc_feedback(struct inpcb *); extern void tcp_remove_from_time_wait(struct inpcb *inp); static LCK_MTX_DECLARE_ATTR(inp_fc_lck, &inpcb_lock_grp, &inpcb_lock_attr); RB_HEAD(inp_fc_tree, inpcb) inp_fc_tree; RB_PROTOTYPE(inp_fc_tree, inpcb, infc_link, infc_cmp); RB_GENERATE(inp_fc_tree, inpcb, infc_link, infc_cmp); /* * Use this inp as a key to find an inp in the flowhash tree. * Accesses to it are protected by inp_fc_lck. */ struct inpcb key_inp; /* * in_pcb.c: manage the Protocol Control Blocks. */ void in_pcbinit(void) { static int inpcb_initialized = 0; uint32_t logging_config; VERIFY(!inpcb_initialized); inpcb_initialized = 1; logging_config = atm_get_diagnostic_config(); if (logging_config & 0x80000000) { inp_log_privacy = 1; } inpcb_thread_call = thread_call_allocate_with_priority(inpcb_timeout, NULL, THREAD_CALL_PRIORITY_KERNEL); /* Give it an arg so that we know that this is the fast timer */ inpcb_fast_thread_call = thread_call_allocate_with_priority( inpcb_timeout, &inpcb_timeout, THREAD_CALL_PRIORITY_KERNEL); if (inpcb_thread_call == NULL || inpcb_fast_thread_call == NULL) { panic("unable to alloc the inpcb thread call"); } /* * Initialize data structures required to deliver * flow advisories. */ lck_mtx_lock(&inp_fc_lck); RB_INIT(&inp_fc_tree); bzero(&key_inp, sizeof(key_inp)); lck_mtx_unlock(&inp_fc_lck); } #define INPCB_HAVE_TIMER_REQ(req) (((req).intimer_lazy > 0) || \ ((req).intimer_fast > 0) || ((req).intimer_nodelay > 0)) static void inpcb_timeout(void *arg0, void *arg1) { #pragma unused(arg1) struct inpcbinfo *ipi; boolean_t t, gc; struct intimercount gccnt, tmcnt; /* * Update coarse-grained networking timestamp (in sec.); the idea * is to piggy-back on the timeout callout to update the counter * returnable via net_uptime(). */ net_update_uptime(); bzero(&gccnt, sizeof(gccnt)); bzero(&tmcnt, sizeof(tmcnt)); lck_mtx_lock_spin(&inpcb_timeout_lock); gc = inpcb_garbage_collecting; inpcb_garbage_collecting = FALSE; t = inpcb_ticking; inpcb_ticking = FALSE; if (gc || t) { lck_mtx_unlock(&inpcb_timeout_lock); lck_mtx_lock(&inpcb_lock); TAILQ_FOREACH(ipi, &inpcb_head, ipi_entry) { if (INPCB_HAVE_TIMER_REQ(ipi->ipi_gc_req)) { bzero(&ipi->ipi_gc_req, sizeof(ipi->ipi_gc_req)); if (gc && ipi->ipi_gc != NULL) { ipi->ipi_gc(ipi); gccnt.intimer_lazy += ipi->ipi_gc_req.intimer_lazy; gccnt.intimer_fast += ipi->ipi_gc_req.intimer_fast; gccnt.intimer_nodelay += ipi->ipi_gc_req.intimer_nodelay; } } if (INPCB_HAVE_TIMER_REQ(ipi->ipi_timer_req)) { bzero(&ipi->ipi_timer_req, sizeof(ipi->ipi_timer_req)); if (t && ipi->ipi_timer != NULL) { ipi->ipi_timer(ipi); tmcnt.intimer_lazy += ipi->ipi_timer_req.intimer_lazy; tmcnt.intimer_fast += ipi->ipi_timer_req.intimer_fast; tmcnt.intimer_nodelay += ipi->ipi_timer_req.intimer_nodelay; } } } lck_mtx_unlock(&inpcb_lock); lck_mtx_lock_spin(&inpcb_timeout_lock); } /* lock was dropped above, so check first before overriding */ if (!inpcb_garbage_collecting) { inpcb_garbage_collecting = INPCB_HAVE_TIMER_REQ(gccnt); } if (!inpcb_ticking) { inpcb_ticking = INPCB_HAVE_TIMER_REQ(tmcnt); } /* arg0 will be set if we are the fast timer */ if (arg0 != NULL) { inpcb_fast_timer_on = FALSE; } inpcb_timeout_run--; VERIFY(inpcb_timeout_run >= 0 && inpcb_timeout_run < 2); /* re-arm the timer if there's work to do */ if (gccnt.intimer_nodelay > 0 || tmcnt.intimer_nodelay > 0) { inpcb_sched_timeout(); } else if ((gccnt.intimer_fast + tmcnt.intimer_fast) <= 5) { /* be lazy when idle with little activity */ inpcb_sched_lazy_timeout(); } else { inpcb_sched_timeout(); } lck_mtx_unlock(&inpcb_timeout_lock); } static void inpcb_sched_timeout(void) { _inpcb_sched_timeout(0); } static void inpcb_sched_lazy_timeout(void) { _inpcb_sched_timeout(inpcb_timeout_lazy); } static void _inpcb_sched_timeout(unsigned int offset) { uint64_t deadline, leeway; clock_interval_to_deadline(1, NSEC_PER_SEC, &deadline); LCK_MTX_ASSERT(&inpcb_timeout_lock, LCK_MTX_ASSERT_OWNED); if (inpcb_timeout_run == 0 && (inpcb_garbage_collecting || inpcb_ticking)) { lck_mtx_convert_spin(&inpcb_timeout_lock); inpcb_timeout_run++; if (offset == 0) { inpcb_fast_timer_on = TRUE; thread_call_enter_delayed(inpcb_fast_thread_call, deadline); } else { inpcb_fast_timer_on = FALSE; clock_interval_to_absolutetime_interval(offset, NSEC_PER_SEC, &leeway); thread_call_enter_delayed_with_leeway( inpcb_thread_call, NULL, deadline, leeway, THREAD_CALL_DELAY_LEEWAY); } } else if (inpcb_timeout_run == 1 && offset == 0 && !inpcb_fast_timer_on) { /* * Since the request was for a fast timer but the * scheduled timer is a lazy timer, try to schedule * another instance of fast timer also. */ lck_mtx_convert_spin(&inpcb_timeout_lock); inpcb_timeout_run++; inpcb_fast_timer_on = TRUE; thread_call_enter_delayed(inpcb_fast_thread_call, deadline); } } void inpcb_gc_sched(struct inpcbinfo *ipi, u_int32_t type) { u_int32_t gccnt; lck_mtx_lock_spin(&inpcb_timeout_lock); inpcb_garbage_collecting = TRUE; gccnt = ipi->ipi_gc_req.intimer_nodelay + ipi->ipi_gc_req.intimer_fast; if (gccnt > INPCB_GCREQ_THRESHOLD) { type = INPCB_TIMER_FAST; } switch (type) { case INPCB_TIMER_NODELAY: os_atomic_inc(&ipi->ipi_gc_req.intimer_nodelay, relaxed); inpcb_sched_timeout(); break; case INPCB_TIMER_FAST: os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed); inpcb_sched_timeout(); break; default: os_atomic_inc(&ipi->ipi_gc_req.intimer_lazy, relaxed); inpcb_sched_lazy_timeout(); break; } lck_mtx_unlock(&inpcb_timeout_lock); } void inpcb_timer_sched(struct inpcbinfo *ipi, u_int32_t type) { lck_mtx_lock_spin(&inpcb_timeout_lock); inpcb_ticking = TRUE; switch (type) { case INPCB_TIMER_NODELAY: os_atomic_inc(&ipi->ipi_timer_req.intimer_nodelay, relaxed); inpcb_sched_timeout(); break; case INPCB_TIMER_FAST: os_atomic_inc(&ipi->ipi_timer_req.intimer_fast, relaxed); inpcb_sched_timeout(); break; default: os_atomic_inc(&ipi->ipi_timer_req.intimer_lazy, relaxed); inpcb_sched_lazy_timeout(); break; } lck_mtx_unlock(&inpcb_timeout_lock); } void in_pcbinfo_attach(struct inpcbinfo *ipi) { struct inpcbinfo *ipi0; lck_mtx_lock(&inpcb_lock); TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) { if (ipi0 == ipi) { panic("%s: ipi %p already in the list", __func__, ipi); /* NOTREACHED */ } } TAILQ_INSERT_TAIL(&inpcb_head, ipi, ipi_entry); lck_mtx_unlock(&inpcb_lock); } int in_pcbinfo_detach(struct inpcbinfo *ipi) { struct inpcbinfo *ipi0; int error = 0; lck_mtx_lock(&inpcb_lock); TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) { if (ipi0 == ipi) { break; } } if (ipi0 != NULL) { TAILQ_REMOVE(&inpcb_head, ipi0, ipi_entry); } else { error = ENXIO; } lck_mtx_unlock(&inpcb_lock); return error; } __attribute__((noinline)) char * inp_snprintf_tuple(struct inpcb *inp, char *buf, size_t buflen) { char laddrstr[MAX_IPv6_STR_LEN]; char faddrstr[MAX_IPv6_STR_LEN]; uint16_t lport = 0; uint16_t fport = 0; uint16_t proto = IPPROTO_IP; if (inp->inp_socket != NULL) { proto = SOCK_PROTO(inp->inp_socket); if (proto == IPPROTO_TCP || proto == IPPROTO_UDP) { lport = inp->inp_lport; fport = inp->inp_fport; } } if (inp->inp_vflag & INP_IPV4) { inet_ntop(AF_INET, (void *)&inp->inp_laddr.s_addr, laddrstr, sizeof(laddrstr)); inet_ntop(AF_INET, (void *)&inp->inp_faddr.s_addr, faddrstr, sizeof(faddrstr)); } else if (inp->inp_vflag & INP_IPV6) { inet_ntop(AF_INET6, (void *)&inp->in6p_faddr, laddrstr, sizeof(laddrstr)); inet_ntop(AF_INET6, (void *)&inp->in6p_faddr, faddrstr, sizeof(faddrstr)); } snprintf(buf, buflen, "[%u %s:%u %s:%u]", proto, laddrstr, ntohs(lport), faddrstr, ntohs(fport)); return buf; } __attribute__((noinline)) void in_pcb_check_management_entitled(struct inpcb *inp) { if (inp->inp_flags2 & INP2_MANAGEMENT_CHECKED) { return; } if (management_data_unrestricted) { inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; } else if (if_management_interface_check_needed == true) { inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; /* * Note that soopt_cred_check check both intcoproc entitlements * We check MANAGEMENT_DATA_ENTITLEMENT as there is no corresponding PRIV value */ if (soopt_cred_check(inp->inp_socket, PRIV_NET_RESTRICTED_INTCOPROC, false, false) == 0 || IOCurrentTaskHasEntitlement(MANAGEMENT_DATA_ENTITLEMENT) == true #if DEBUG || DEVELOPMENT || IOCurrentTaskHasEntitlement(MANAGEMENT_DATA_ENTITLEMENT_DEVELOPMENT) == true #endif /* DEBUG || DEVELOPMENT */ ) { inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; } else { if (__improbable(if_management_verbose > 1)) { char buf[128]; os_log(OS_LOG_DEFAULT, "in_pcb_check_management_entitled %s:%d not management entitled %s", proc_best_name(current_proc()), proc_selfpid(), inp_snprintf_tuple(inp, buf, sizeof(buf))); } } } } /* * Allocate a PCB and associate it with the socket. * * Returns: 0 Success * ENOBUFS * ENOMEM */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo, struct proc *p) { #pragma unused(p) struct inpcb *inp; caddr_t temp; if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) { inp = zalloc_flags(pcbinfo->ipi_zone, Z_WAITOK | Z_ZERO | Z_NOFAIL); } else { inp = (struct inpcb *)(void *)so->so_saved_pcb; temp = inp->inp_saved_ppcb; bzero((caddr_t)inp, sizeof(*inp)); inp->inp_saved_ppcb = temp; } inp->inp_gencnt = ++pcbinfo->ipi_gencnt; inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; /* make sure inp_stat is always 64-bit aligned */ inp->inp_stat = (struct inp_stat *)P2ROUNDUP(inp->inp_stat_store, sizeof(u_int64_t)); if (((uintptr_t)inp->inp_stat - (uintptr_t)inp->inp_stat_store) + sizeof(*inp->inp_stat) > sizeof(inp->inp_stat_store)) { panic("%s: insufficient space to align inp_stat", __func__); /* NOTREACHED */ } /* make sure inp_cstat is always 64-bit aligned */ inp->inp_cstat = (struct inp_stat *)P2ROUNDUP(inp->inp_cstat_store, sizeof(u_int64_t)); if (((uintptr_t)inp->inp_cstat - (uintptr_t)inp->inp_cstat_store) + sizeof(*inp->inp_cstat) > sizeof(inp->inp_cstat_store)) { panic("%s: insufficient space to align inp_cstat", __func__); /* NOTREACHED */ } /* make sure inp_wstat is always 64-bit aligned */ inp->inp_wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_wstat_store, sizeof(u_int64_t)); if (((uintptr_t)inp->inp_wstat - (uintptr_t)inp->inp_wstat_store) + sizeof(*inp->inp_wstat) > sizeof(inp->inp_wstat_store)) { panic("%s: insufficient space to align inp_wstat", __func__); /* NOTREACHED */ } /* make sure inp_Wstat is always 64-bit aligned */ inp->inp_Wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_Wstat_store, sizeof(u_int64_t)); if (((uintptr_t)inp->inp_Wstat - (uintptr_t)inp->inp_Wstat_store) + sizeof(*inp->inp_Wstat) > sizeof(inp->inp_Wstat_store)) { panic("%s: insufficient space to align inp_Wstat", __func__); /* NOTREACHED */ } so->so_pcb = (caddr_t)inp; if (so->so_proto->pr_flags & PR_PCBLOCK) { lck_mtx_init(&inp->inpcb_mtx, pcbinfo->ipi_lock_grp, &pcbinfo->ipi_lock_attr); } if (SOCK_DOM(so) == PF_INET6 && !ip6_mapped_addr_on) { inp->inp_flags |= IN6P_IPV6_V6ONLY; } if (ip6_auto_flowlabel) { inp->inp_flags |= IN6P_AUTOFLOWLABEL; } if (intcoproc_unrestricted) { inp->inp_flags2 |= INP2_INTCOPROC_ALLOWED; } (void) inp_update_policy(inp); lck_rw_lock_exclusive(&pcbinfo->ipi_lock); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); pcbinfo->ipi_count++; lck_rw_done(&pcbinfo->ipi_lock); return 0; } /* * in_pcblookup_local_and_cleanup does everything * in_pcblookup_local does but it checks for a socket * that's going away. Since we know that the lock is * held read+write when this function is called, we * can safely dispose of this socket like the slow * timer would usually do and return NULL. This is * great for bind. */ struct inpcb * in_pcblookup_local_and_cleanup(struct inpcbinfo *pcbinfo, struct in_addr laddr, u_int lport_arg, int wild_okay) { struct inpcb *inp; /* Perform normal lookup */ inp = in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay); /* Check if we found a match but it's waiting to be disposed */ if (inp != NULL && inp->inp_wantcnt == WNT_STOPUSING) { struct socket *so = inp->inp_socket; socket_lock(so, 0); if (so->so_usecount == 0) { if (inp->inp_state != INPCB_STATE_DEAD) { in_pcbdetach(inp); } in_pcbdispose(inp); /* will unlock & destroy */ inp = NULL; } else { socket_unlock(so, 0); } } return inp; } static void in_pcb_conflict_post_msg(u_int16_t port) { /* * Radar 5523020 send a kernel event notification if a * non-participating socket tries to bind the port a socket * who has set SOF_NOTIFYCONFLICT owns. */ struct kev_msg ev_msg; struct kev_in_portinuse in_portinuse; bzero(&in_portinuse, sizeof(struct kev_in_portinuse)); bzero(&ev_msg, sizeof(struct kev_msg)); in_portinuse.port = ntohs(port); /* port in host order */ in_portinuse.req_pid = proc_selfpid(); ev_msg.vendor_code = KEV_VENDOR_APPLE; ev_msg.kev_class = KEV_NETWORK_CLASS; ev_msg.kev_subclass = KEV_INET_SUBCLASS; ev_msg.event_code = KEV_INET_PORTINUSE; ev_msg.dv[0].data_ptr = &in_portinuse; ev_msg.dv[0].data_length = sizeof(struct kev_in_portinuse); ev_msg.dv[1].data_length = 0; dlil_post_complete_msg(NULL, &ev_msg); } /* * Bind an INPCB to an address and/or port. This routine should not alter * the caller-supplied local address "nam". * * Returns: 0 Success * EADDRNOTAVAIL Address not available. * EINVAL Invalid argument * EAFNOSUPPORT Address family not supported [notdef] * EACCES Permission denied * EADDRINUSE Address in use * EAGAIN Resource unavailable, try again * priv_check_cred:EPERM Operation not permitted */ int in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct proc *p) { struct socket *so = inp->inp_socket; unsigned short *lastport; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; u_short lport = 0, rand_port = 0; int wild = 0; int reuseport = (so->so_options & SO_REUSEPORT); int error = 0; int randomport; int conflict = 0; boolean_t anonport = FALSE; kauth_cred_t cred; struct in_addr laddr; struct ifnet *outif = NULL; if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) { return EINVAL; } inp->inp_flags2 |= INP2_BIND_IN_PROGRESS; if (TAILQ_EMPTY(&in_ifaddrhead)) { /* XXX broken! */ error = EADDRNOTAVAIL; goto done; } if (!(so->so_options & (SO_REUSEADDR | SO_REUSEPORT))) { wild = 1; } bzero(&laddr, sizeof(laddr)); socket_unlock(so, 0); /* keep reference on socket */ lck_rw_lock_exclusive(&pcbinfo->ipi_lock); if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) { /* another thread completed the bind */ lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EINVAL; goto done; } if (nam != NULL) { if (nam->sa_len != sizeof(struct sockaddr_in)) { lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EINVAL; goto done; } #if 0 /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (nam->sa_family != AF_INET) { lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EAFNOSUPPORT; goto done; } #endif /* 0 */ lport = SIN(nam)->sin_port; if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & SO_REUSEADDR) { reuseport = SO_REUSEADDR | SO_REUSEPORT; } } else if (SIN(nam)->sin_addr.s_addr != INADDR_ANY) { struct sockaddr_in sin; struct ifaddr *ifa; /* Sanitized for interface address searches */ SOCKADDR_ZERO(&sin, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof(struct sockaddr_in); sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr; ifa = ifa_ifwithaddr(SA(&sin)); if (ifa == NULL) { lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EADDRNOTAVAIL; goto done; } else { /* * Opportunistically determine the outbound * interface that may be used; this may not * hold true if we end up using a route * going over a different interface, e.g. * when sending to a local address. This * will get updated again after sending. */ IFA_LOCK(ifa); outif = ifa->ifa_ifp; IFA_UNLOCK(ifa); ifa_remref(ifa); } } #if SKYWALK if (inp->inp_flags2 & INP2_EXTERNAL_PORT) { // Extract the external flow info struct ns_flow_info nfi = {}; error = necp_client_get_netns_flow_info(inp->necp_client_uuid, &nfi); if (error != 0) { lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); goto done; } // Extract the reserved port u_int16_t reserved_lport = 0; if (nfi.nfi_laddr.sa.sa_family == AF_INET) { reserved_lport = nfi.nfi_laddr.sin.sin_port; } else if (nfi.nfi_laddr.sa.sa_family == AF_INET6) { reserved_lport = nfi.nfi_laddr.sin6.sin6_port; } else { lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EINVAL; goto done; } // Validate or use the reserved port if (lport == 0) { lport = reserved_lport; } else if (lport != reserved_lport) { lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EINVAL; goto done; } } /* Do not allow reserving a UDP port if remaining UDP port count is below 4096 */ if (SOCK_PROTO(so) == IPPROTO_UDP && !allow_udp_port_exhaustion) { uint32_t current_reservations = 0; if (inp->inp_vflag & INP_IPV6) { current_reservations = netns_lookup_reservations_count_in6(inp->in6p_laddr, IPPROTO_UDP); } else { current_reservations = netns_lookup_reservations_count_in(inp->inp_laddr, IPPROTO_UDP); } if (USHRT_MAX - UDP_RANDOM_PORT_RESERVE < current_reservations) { log(LOG_ERR, "UDP port not available, less than 4096 UDP ports left"); lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EADDRNOTAVAIL; goto done; } } #endif /* SKYWALK */ if (lport != 0) { struct inpcb *t; uid_t u; #if XNU_TARGET_OS_OSX if (ntohs(lport) < IPPORT_RESERVED && SIN(nam)->sin_addr.s_addr != 0 && !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { cred = kauth_cred_proc_ref(p); error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); kauth_cred_unref(&cred); if (error != 0) { lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EACCES; goto done; } } #endif /* XNU_TARGET_OS_OSX */ /* * Check wether the process is allowed to bind to a restricted port */ if (!current_task_can_use_restricted_in_port(lport, (uint8_t)SOCK_PROTO(so), PORT_FLAGS_BSD)) { lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EADDRINUSE; goto done; } if (!IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) && (u = kauth_cred_getuid(so->so_cred)) != 0 && (t = in_pcblookup_local_and_cleanup( inp->inp_pcbinfo, SIN(nam)->sin_addr, lport, INPLOOKUP_WILDCARD)) != NULL && (SIN(nam)->sin_addr.s_addr != INADDR_ANY || t->inp_laddr.s_addr != INADDR_ANY || !(t->inp_socket->so_options & SO_REUSEPORT)) && (u != kauth_cred_getuid(t->inp_socket->so_cred)) && !(t->inp_socket->so_flags & SOF_REUSESHAREUID) && (SIN(nam)->sin_addr.s_addr != INADDR_ANY || t->inp_laddr.s_addr != INADDR_ANY) && (!(t->inp_flags2 & INP2_EXTERNAL_PORT) || !(inp->inp_flags2 & INP2_EXTERNAL_PORT) || uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) { if ((t->inp_socket->so_flags & SOF_NOTIFYCONFLICT) && !(so->so_flags & SOF_NOTIFYCONFLICT)) { conflict = 1; } lck_rw_done(&pcbinfo->ipi_lock); if (conflict) { in_pcb_conflict_post_msg(lport); } socket_lock(so, 0); error = EADDRINUSE; goto done; } t = in_pcblookup_local_and_cleanup(pcbinfo, SIN(nam)->sin_addr, lport, wild); if (t != NULL && (reuseport & t->inp_socket->so_options) == 0 && (!(t->inp_flags2 & INP2_EXTERNAL_PORT) || !(inp->inp_flags2 & INP2_EXTERNAL_PORT) || uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) { if (SIN(nam)->sin_addr.s_addr != INADDR_ANY || t->inp_laddr.s_addr != INADDR_ANY || SOCK_DOM(so) != PF_INET6 || SOCK_DOM(t->inp_socket) != PF_INET6) { if ((t->inp_socket->so_flags & SOF_NOTIFYCONFLICT) && !(so->so_flags & SOF_NOTIFYCONFLICT)) { conflict = 1; } lck_rw_done(&pcbinfo->ipi_lock); if (conflict) { in_pcb_conflict_post_msg(lport); } socket_lock(so, 0); error = EADDRINUSE; goto done; } } #if SKYWALK if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) && !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { int res_err = 0; if (inp->inp_vflag & INP_IPV6) { res_err = netns_reserve_in6( &inp->inp_netns_token, SIN6(nam)->sin6_addr, (uint8_t)SOCK_PROTO(so), lport, NETNS_BSD, NULL); } else { res_err = netns_reserve_in( &inp->inp_netns_token, SIN(nam)->sin_addr, (uint8_t)SOCK_PROTO(so), lport, NETNS_BSD, NULL); } if (res_err != 0) { lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EADDRINUSE; goto done; } } #endif /* SKYWALK */ } laddr = SIN(nam)->sin_addr; } if (lport == 0) { u_short first, last; int count; bool found; /* * Override wild = 1 for implicit bind (mainly used by connect) * For implicit bind (lport == 0), we always use an unused port, * so REUSEADDR|REUSEPORT don't apply */ wild = 1; randomport = (so->so_flags & SOF_BINDRANDOMPORT) || (so->so_type == SOCK_STREAM ? tcp_use_randomport : udp_use_randomport); /* * Even though this looks similar to the code in * in6_pcbsetport, the v6 vs v4 checks are different. */ anonport = TRUE; if (inp->inp_flags & INP_HIGHPORT) { first = (u_short)ipport_hifirstauto; /* sysctl */ last = (u_short)ipport_hilastauto; lastport = &pcbinfo->ipi_lasthi; } else if (inp->inp_flags & INP_LOWPORT) { cred = kauth_cred_proc_ref(p); error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); kauth_cred_unref(&cred); if (error != 0) { lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); goto done; } first = (u_short)ipport_lowfirstauto; /* 1023 */ last = (u_short)ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->ipi_lastlow; } else { first = (u_short)ipport_firstauto; /* sysctl */ last = (u_short)ipport_lastauto; lastport = &pcbinfo->ipi_lastport; } /* No point in randomizing if only one port is available */ if (first == last) { randomport = 0; } /* * Simple check to ensure all ports are not used up causing * a deadlock here. * * We split the two cases (up and down) so that the direction * is not being tested on each round of the loop. */ if (first > last) { struct in_addr lookup_addr; /* * counting down */ if (randomport) { read_frandom(&rand_port, sizeof(rand_port)); *lastport = first - (rand_port % (first - last)); } count = first - last; lookup_addr = (laddr.s_addr != INADDR_ANY) ? laddr : inp->inp_laddr; found = false; do { if (count-- < 0) { /* completely used? */ lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EADDRNOTAVAIL; goto done; } --*lastport; if (*lastport > first || *lastport < last) { *lastport = first; } lport = htons(*lastport); /* * Skip if this is a restricted port as we do not want to * restricted ports as ephemeral */ if (IS_RESTRICTED_IN_PORT(lport)) { continue; } found = in_pcblookup_local_and_cleanup(pcbinfo, lookup_addr, lport, wild) == NULL; #if SKYWALK if (found && (SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) && !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { int res_err; if (inp->inp_vflag & INP_IPV6) { res_err = netns_reserve_in6( &inp->inp_netns_token, inp->in6p_laddr, (uint8_t)SOCK_PROTO(so), lport, NETNS_BSD, NULL); } else { res_err = netns_reserve_in( &inp->inp_netns_token, lookup_addr, (uint8_t)SOCK_PROTO(so), lport, NETNS_BSD, NULL); } found = res_err == 0; } #endif /* SKYWALK */ } while (!found); } else { struct in_addr lookup_addr; /* * counting up */ if (randomport) { read_frandom(&rand_port, sizeof(rand_port)); *lastport = first + (rand_port % (first - last)); } count = last - first; lookup_addr = (laddr.s_addr != INADDR_ANY) ? laddr : inp->inp_laddr; found = false; do { if (count-- < 0) { /* completely used? */ lck_rw_done(&pcbinfo->ipi_lock); socket_lock(so, 0); error = EADDRNOTAVAIL; goto done; } ++*lastport; if (*lastport < first || *lastport > last) { *lastport = first; } lport = htons(*lastport); /* * Skip if this is a restricted port as we do not want to * restricted ports as ephemeral */ if (IS_RESTRICTED_IN_PORT(lport)) { continue; } found = in_pcblookup_local_and_cleanup(pcbinfo, lookup_addr, lport, wild) == NULL; #if SKYWALK if (found && (SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) && !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { int res_err; if (inp->inp_vflag & INP_IPV6) { res_err = netns_reserve_in6( &inp->inp_netns_token, inp->in6p_laddr, (uint8_t)SOCK_PROTO(so), lport, NETNS_BSD, NULL); } else { res_err = netns_reserve_in( &inp->inp_netns_token, lookup_addr, (uint8_t)SOCK_PROTO(so), lport, NETNS_BSD, NULL); } found = res_err == 0; } #endif /* SKYWALK */ } while (!found); } } socket_lock(so, 0); /* * We unlocked socket's protocol lock for a long time. * The socket might have been dropped/defuncted. * Checking if world has changed since. */ if (inp->inp_state == INPCB_STATE_DEAD) { #if SKYWALK netns_release(&inp->inp_netns_token); #endif /* SKYWALK */ lck_rw_done(&pcbinfo->ipi_lock); error = ECONNABORTED; goto done; } if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) { #if SKYWALK netns_release(&inp->inp_netns_token); #endif /* SKYWALK */ lck_rw_done(&pcbinfo->ipi_lock); error = EINVAL; goto done; } if (laddr.s_addr != INADDR_ANY) { inp->inp_laddr = laddr; inp->inp_last_outifp = outif; #if SKYWALK if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { netns_set_ifnet(&inp->inp_netns_token, outif); } #endif /* SKYWALK */ } inp->inp_lport = lport; if (anonport) { inp->inp_flags |= INP_ANONPORT; } if (in_pcbinshash(inp, 1) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_last_outifp = NULL; #if SKYWALK netns_release(&inp->inp_netns_token); #endif /* SKYWALK */ inp->inp_lport = 0; if (anonport) { inp->inp_flags &= ~INP_ANONPORT; } lck_rw_done(&pcbinfo->ipi_lock); error = EAGAIN; goto done; } lck_rw_done(&pcbinfo->ipi_lock); sflt_notify(so, sock_evt_bound, NULL); in_pcb_check_management_entitled(inp); done: inp->inp_flags2 &= ~INP2_BIND_IN_PROGRESS; return error; } #define APN_FALLBACK_IP_FILTER(a) \ (IN_LINKLOCAL(ntohl((a)->sin_addr.s_addr)) || \ IN_LOOPBACK(ntohl((a)->sin_addr.s_addr)) || \ IN_ZERONET(ntohl((a)->sin_addr.s_addr)) || \ IN_MULTICAST(ntohl((a)->sin_addr.s_addr)) || \ IN_PRIVATE(ntohl((a)->sin_addr.s_addr))) #define APN_FALLBACK_NOTIF_INTERVAL 2 /* Magic Number */ static uint64_t last_apn_fallback = 0; static boolean_t apn_fallback_required(proc_t proc, struct socket *so, struct sockaddr_in *p_dstv4) { uint64_t timenow; struct sockaddr_storage lookup_default_addr; struct rtentry *rt = NULL; VERIFY(proc != NULL); if (apn_fallbk_enabled == FALSE) { return FALSE; } if (proc == kernproc) { return FALSE; } if (so && (so->so_options & SO_NOAPNFALLBK)) { return FALSE; } timenow = net_uptime(); if ((timenow - last_apn_fallback) < APN_FALLBACK_NOTIF_INTERVAL) { apn_fallbk_log((LOG_INFO, "APN fallback notification throttled.\n")); return FALSE; } if (p_dstv4 && APN_FALLBACK_IP_FILTER(p_dstv4)) { return FALSE; } /* Check if we have unscoped IPv6 default route through cellular */ bzero(&lookup_default_addr, sizeof(lookup_default_addr)); lookup_default_addr.ss_family = AF_INET6; lookup_default_addr.ss_len = sizeof(struct sockaddr_in6); rt = rtalloc1(SA(&lookup_default_addr), 0, 0); if (NULL == rt) { apn_fallbk_log((LOG_INFO, "APN fallback notification could not find " "unscoped default IPv6 route.\n")); return FALSE; } if (!IFNET_IS_CELLULAR(rt->rt_ifp)) { rtfree(rt); apn_fallbk_log((LOG_INFO, "APN fallback notification could not find " "unscoped default IPv6 route through cellular interface.\n")); return FALSE; } /* * We have a default IPv6 route, ensure that * we do not have IPv4 default route before triggering * the event */ rtfree(rt); rt = NULL; bzero(&lookup_default_addr, sizeof(lookup_default_addr)); lookup_default_addr.ss_family = AF_INET; lookup_default_addr.ss_len = sizeof(struct sockaddr_in); rt = rtalloc1(SA(&lookup_default_addr), 0, 0); if (rt) { rtfree(rt); rt = NULL; apn_fallbk_log((LOG_INFO, "APN fallback notification found unscoped " "IPv4 default route!\n")); return FALSE; } { /* * We disable APN fallback if the binary is not a third-party app. * Note that platform daemons use their process name as a * bundle ID so we filter out bundle IDs without dots. */ const char *bundle_id = cs_identity_get(proc); if (bundle_id == NULL || bundle_id[0] == '\0' || strchr(bundle_id, '.') == NULL || strncmp(bundle_id, "com.apple.", sizeof("com.apple.") - 1) == 0) { apn_fallbk_log((LOG_INFO, "Abort: APN fallback notification found first-" "party bundle ID \"%s\"!\n", (bundle_id ? bundle_id : "NULL"))); return FALSE; } } { /* * The Apple App Store IPv6 requirement started on * June 1st, 2016 at 12:00:00 AM PDT. * We disable APN fallback if the binary is more recent than that. * We check both atime and birthtime since birthtime is not always supported. */ static const long ipv6_start_date = 1464764400L; vfs_context_t context; struct stat64 sb; int vn_stat_error; bzero(&sb, sizeof(struct stat64)); context = vfs_context_create(NULL); vn_stat_error = vn_stat(proc->p_textvp, &sb, NULL, 1, 0, context); (void)vfs_context_rele(context); if (vn_stat_error != 0 || sb.st_atimespec.tv_sec >= ipv6_start_date || sb.st_birthtimespec.tv_sec >= ipv6_start_date) { apn_fallbk_log((LOG_INFO, "Abort: APN fallback notification found binary " "too recent! (err %d atime %ld mtime %ld ctime %ld birthtime %ld)\n", vn_stat_error, sb.st_atimespec.tv_sec, sb.st_mtimespec.tv_sec, sb.st_ctimespec.tv_sec, sb.st_birthtimespec.tv_sec)); return FALSE; } } return TRUE; } static void apn_fallback_trigger(proc_t proc, struct socket *so) { pid_t pid = 0; struct kev_msg ev_msg; struct kev_netevent_apnfallbk_data apnfallbk_data; last_apn_fallback = net_uptime(); pid = proc_pid(proc); uuid_t application_uuid; uuid_clear(application_uuid); proc_getexecutableuuid(proc, application_uuid, sizeof(application_uuid)); bzero(&ev_msg, sizeof(struct kev_msg)); ev_msg.vendor_code = KEV_VENDOR_APPLE; ev_msg.kev_class = KEV_NETWORK_CLASS; ev_msg.kev_subclass = KEV_NETEVENT_SUBCLASS; ev_msg.event_code = KEV_NETEVENT_APNFALLBACK; bzero(&apnfallbk_data, sizeof(apnfallbk_data)); if (so->so_flags & SOF_DELEGATED) { apnfallbk_data.epid = so->e_pid; uuid_copy(apnfallbk_data.euuid, so->e_uuid); } else { apnfallbk_data.epid = so->last_pid; uuid_copy(apnfallbk_data.euuid, so->last_uuid); } ev_msg.dv[0].data_ptr = &apnfallbk_data; ev_msg.dv[0].data_length = sizeof(apnfallbk_data); kev_post_msg(&ev_msg); apn_fallbk_log((LOG_INFO, "APN fallback notification issued.\n")); } /* * Transform old in_pcbconnect() into an inner subroutine for new * in_pcbconnect(); do some validity-checking on the remote address * (in "nam") and then determine local host address (i.e., which * interface) to use to access that remote host. * * This routine may alter the caller-supplied remote address "nam". * * The caller may override the bound-to-interface setting of the socket * by specifying the ifscope parameter (e.g. from IP_PKTINFO.) * * This routine might return an ifp with a reference held if the caller * provides a non-NULL outif, even in the error case. The caller is * responsible for releasing its reference. * * Returns: 0 Success * EINVAL Invalid argument * EAFNOSUPPORT Address family not supported * EADDRNOTAVAIL Address not available */ int in_pcbladdr(struct inpcb *inp, struct sockaddr *nam, struct in_addr *laddr, unsigned int ifscope, struct ifnet **outif, int raw) { struct route *ro = &inp->inp_route; struct in_ifaddr *ia = NULL; struct sockaddr_in sin; int error = 0; boolean_t restricted = FALSE; if (outif != NULL) { *outif = NULL; } if (nam->sa_len != sizeof(struct sockaddr_in)) { return EINVAL; } if (SIN(nam)->sin_family != AF_INET) { return EAFNOSUPPORT; } if (raw == 0 && SIN(nam)->sin_port == 0) { return EADDRNOTAVAIL; } in_pcb_check_management_entitled(inp); /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (raw == 0 && (SIN(nam)->sin_addr.s_addr == INADDR_ANY || SIN(nam)->sin_addr.s_addr == (u_int32_t)INADDR_BROADCAST)) { lck_rw_lock_shared(&in_ifaddr_rwlock); if (!TAILQ_EMPTY(&in_ifaddrhead)) { ia = TAILQ_FIRST(&in_ifaddrhead); IFA_LOCK_SPIN(&ia->ia_ifa); if (SIN(nam)->sin_addr.s_addr == INADDR_ANY) { SIN(nam)->sin_addr = IA_SIN(ia)->sin_addr; } else if (ia->ia_ifp->if_flags & IFF_BROADCAST) { SIN(nam)->sin_addr = SIN(&ia->ia_broadaddr)->sin_addr; } IFA_UNLOCK(&ia->ia_ifa); ia = NULL; } lck_rw_done(&in_ifaddr_rwlock); } /* * Otherwise, if the socket has already bound the source, just use it. */ if (inp->inp_laddr.s_addr != INADDR_ANY) { VERIFY(ia == NULL); *laddr = inp->inp_laddr; return 0; } /* * If the ifscope is specified by the caller (e.g. IP_PKTINFO) * then it overrides the sticky ifscope set for the socket. */ if (ifscope == IFSCOPE_NONE && (inp->inp_flags & INP_BOUND_IF)) { ifscope = inp->inp_boundifp->if_index; } /* * If route is known or can be allocated now, * our src addr is taken from the i/f, else punt. * Note that we should check the address family of the cached * destination, in case of sharing the cache with IPv6. */ if (ro->ro_rt != NULL) { RT_LOCK_SPIN(ro->ro_rt); } if (ROUTE_UNUSABLE(ro) || ro->ro_dst.sa_family != AF_INET || SIN(&ro->ro_dst)->sin_addr.s_addr != SIN(nam)->sin_addr.s_addr || (inp->inp_socket->so_options & SO_DONTROUTE)) { if (ro->ro_rt != NULL) { RT_UNLOCK(ro->ro_rt); } ROUTE_RELEASE(ro); } if (!(inp->inp_socket->so_options & SO_DONTROUTE) && (ro->ro_rt == NULL || ro->ro_rt->rt_ifp == NULL)) { if (ro->ro_rt != NULL) { RT_UNLOCK(ro->ro_rt); } ROUTE_RELEASE(ro); /* No route yet, so try to acquire one */ SOCKADDR_ZERO(&ro->ro_dst, sizeof(struct sockaddr_in)); ro->ro_dst.sa_family = AF_INET; ro->ro_dst.sa_len = sizeof(struct sockaddr_in); SIN(&ro->ro_dst)->sin_addr = SIN(nam)->sin_addr; rtalloc_scoped(ro, ifscope); if (ro->ro_rt != NULL) { RT_LOCK_SPIN(ro->ro_rt); } } /* Sanitized local copy for interface address searches */ SOCKADDR_ZERO(&sin, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof(struct sockaddr_in); sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr; /* * If we did not find (or use) a route, assume dest is reachable * on a directly connected network and try to find a corresponding * interface to take the source address from. */ if (ro->ro_rt == NULL) { proc_t proc = current_proc(); VERIFY(ia == NULL); ia = ifatoia(ifa_ifwithdstaddr(SA(&sin))); if (ia == NULL) { ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope)); } error = ((ia == NULL) ? ENETUNREACH : 0); if (apn_fallback_required(proc, inp->inp_socket, (void *)nam)) { apn_fallback_trigger(proc, inp->inp_socket); } goto done; } RT_LOCK_ASSERT_HELD(ro->ro_rt); /* * If the outgoing interface on the route found is not * a loopback interface, use the address from that interface. */ if (!(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) { VERIFY(ia == NULL); /* * If the route points to a cellular interface and the * caller forbids our using interfaces of such type, * pretend that there is no route. * Apply the same logic for expensive interfaces. */ if (inp_restricted_send(inp, ro->ro_rt->rt_ifp)) { RT_UNLOCK(ro->ro_rt); ROUTE_RELEASE(ro); error = EHOSTUNREACH; restricted = TRUE; } else { /* Become a regular mutex */ RT_CONVERT_LOCK(ro->ro_rt); ia = ifatoia(ro->ro_rt->rt_ifa); ifa_addref(&ia->ia_ifa); /* * Mark the control block for notification of * a possible flow that might undergo clat46 * translation. * * We defer the decision to a later point when * inpcb is being disposed off. * The reason is that we only want to send notification * if the flow was ever used to send data. */ if (IS_INTF_CLAT46(ro->ro_rt->rt_ifp)) { inp->inp_flags2 |= INP2_CLAT46_FLOW; } RT_UNLOCK(ro->ro_rt); error = 0; } goto done; } VERIFY(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK); RT_UNLOCK(ro->ro_rt); /* * The outgoing interface is marked with 'loopback net', so a route * to ourselves is here. * Try to find the interface of the destination address and then * take the address from there. That interface is not necessarily * a loopback interface. */ VERIFY(ia == NULL); ia = ifatoia(ifa_ifwithdstaddr(SA(&sin))); if (ia == NULL) { ia = ifatoia(ifa_ifwithaddr_scoped(SA(&sin), ifscope)); } if (ia == NULL) { ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope)); } if (ia == NULL) { RT_LOCK(ro->ro_rt); ia = ifatoia(ro->ro_rt->rt_ifa); if (ia != NULL) { ifa_addref(&ia->ia_ifa); } RT_UNLOCK(ro->ro_rt); } error = ((ia == NULL) ? ENETUNREACH : 0); done: /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, use the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; IMO_LOCK(imo); if (imo->imo_multicast_ifp != NULL && (ia == NULL || ia->ia_ifp != imo->imo_multicast_ifp)) { ifp = imo->imo_multicast_ifp; if (ia != NULL) { ifa_remref(&ia->ia_ifa); } lck_rw_lock_shared(&in_ifaddr_rwlock); TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) { if (ia->ia_ifp == ifp) { break; } } if (ia != NULL) { ifa_addref(&ia->ia_ifa); } lck_rw_done(&in_ifaddr_rwlock); if (ia == NULL) { error = EADDRNOTAVAIL; } else { error = 0; } } IMO_UNLOCK(imo); } /* * Don't do pcblookup call here; return interface in laddr * and exit to caller, that will do the lookup. */ if (ia != NULL) { /* * If the source address belongs to a cellular interface * and the socket forbids our using interfaces of such * type, pretend that there is no source address. * Apply the same logic for expensive interfaces. */ IFA_LOCK_SPIN(&ia->ia_ifa); if (inp_restricted_send(inp, ia->ia_ifa.ifa_ifp)) { IFA_UNLOCK(&ia->ia_ifa); error = EHOSTUNREACH; restricted = TRUE; } else if (error == 0) { *laddr = ia->ia_addr.sin_addr; if (outif != NULL) { struct ifnet *ifp; if (ro->ro_rt != NULL) { ifp = ro->ro_rt->rt_ifp; } else { ifp = ia->ia_ifp; } VERIFY(ifp != NULL); IFA_CONVERT_LOCK(&ia->ia_ifa); ifnet_reference(ifp); /* for caller */ if (*outif != NULL) { ifnet_release(*outif); } *outif = ifp; } IFA_UNLOCK(&ia->ia_ifa); } else { IFA_UNLOCK(&ia->ia_ifa); } ifa_remref(&ia->ia_ifa); ia = NULL; } if (restricted && error == EHOSTUNREACH) { soevent(inp->inp_socket, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED)); } return error; } /* * Outer subroutine: * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. * * The caller may override the bound-to-interface setting of the socket * by specifying the ifscope parameter (e.g. from IP_PKTINFO.) */ int in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct proc *p, unsigned int ifscope, struct ifnet **outif) { struct in_addr laddr; struct sockaddr_in *sin = SIN(nam); struct inpcb *pcb; int error; struct socket *so = inp->inp_socket; #if CONTENT_FILTER if (so) { so->so_state_change_cnt++; } #endif /* * Call inner routine, to assign local interface address. */ if ((error = in_pcbladdr(inp, nam, &laddr, ifscope, outif, 0)) != 0) { return error; } socket_unlock(so, 0); pcb = in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, inp->inp_laddr.s_addr ? inp->inp_laddr : laddr, inp->inp_lport, 0, NULL); socket_lock(so, 0); /* * Check if the socket is still in a valid state. When we unlock this * embryonic socket, it can get aborted if another thread is closing * the listener (radar 7947600). */ if ((so->so_flags & SOF_ABORTED) != 0) { return ECONNREFUSED; } if (pcb != NULL) { in_pcb_checkstate(pcb, WNT_RELEASE, pcb == inp ? 1 : 0); return EADDRINUSE; } if (inp->inp_laddr.s_addr == INADDR_ANY) { if (inp->inp_lport == 0) { error = in_pcbbind(inp, NULL, p); if (error) { return error; } } if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) { /* * Lock inversion issue, mostly with udp * multicast packets. */ socket_unlock(so, 0); lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock); socket_lock(so, 0); } inp->inp_laddr = laddr; /* no reference needed */ inp->inp_last_outifp = (outif != NULL) ? *outif : NULL; #if SKYWALK if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { netns_set_ifnet(&inp->inp_netns_token, inp->inp_last_outifp); } #endif /* SKYWALK */ inp->inp_flags |= INP_INADDR_ANY; } else { /* * Usage of IP_PKTINFO, without local port already * speficified will cause kernel to panic, * see rdar://problem/18508185. * For now returning error to avoid a kernel panic * This routines can be refactored and handle this better * in future. */ if (inp->inp_lport == 0) { return EINVAL; } if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) { /* * Lock inversion issue, mostly with udp * multicast packets. */ socket_unlock(so, 0); lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock); socket_lock(so, 0); } } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) { nstat_pcb_invalidate_cache(inp); } in_pcbrehash(inp); lck_rw_done(&inp->inp_pcbinfo->ipi_lock); return 0; } void in_pcbdisconnect(struct inpcb *inp) { struct socket *so = inp->inp_socket; if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) { nstat_pcb_cache(inp); } inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; #if CONTENT_FILTER if (so) { so->so_state_change_cnt++; } #endif if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) { /* lock inversion issue, mostly with udp multicast packets */ socket_unlock(so, 0); lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock); socket_lock(so, 0); } in_pcbrehash(inp); lck_rw_done(&inp->inp_pcbinfo->ipi_lock); /* * A multipath subflow socket would have its SS_NOFDREF set by default, * so check for SOF_MP_SUBFLOW socket flag before detaching the PCB; * when the socket is closed for real, SOF_MP_SUBFLOW would be cleared. */ if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF)) { in_pcbdetach(inp); } } void in_pcbdetach(struct inpcb *inp) { struct socket *so = inp->inp_socket; if (so->so_pcb == NULL) { /* PCB has been disposed */ panic("%s: inp=%p so=%p proto=%d so_pcb is null!", __func__, inp, so, SOCK_PROTO(so)); /* NOTREACHED */ } #if IPSEC if (inp->inp_sp != NULL) { (void) ipsec4_delete_pcbpolicy(inp); } #endif /* IPSEC */ if (inp->inp_stat != NULL && SOCK_PROTO(so) == IPPROTO_UDP) { if (inp->inp_stat->rxpackets == 0 && inp->inp_stat->txpackets == 0) { INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_no_data); } } /* * Let NetworkStatistics know this PCB is going away * before we detach it. */ if (nstat_collect && (SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP)) { nstat_pcb_detach(inp); } /* Free memory buffer held for generating keep alives */ if (inp->inp_keepalive_data != NULL) { kfree_data(inp->inp_keepalive_data, inp->inp_keepalive_datalen); inp->inp_keepalive_data = NULL; } /* mark socket state as dead */ if (in_pcb_checkstate(inp, WNT_STOPUSING, 1) != WNT_STOPUSING) { panic("%s: so=%p proto=%d couldn't set to STOPUSING", __func__, so, SOCK_PROTO(so)); /* NOTREACHED */ } #if SKYWALK /* Free up the port in the namespace registrar if not in TIME_WAIT */ if (!(inp->inp_flags2 & INP2_TIMEWAIT)) { netns_release(&inp->inp_netns_token); netns_release(&inp->inp_wildcard_netns_token); } #endif /* SKYWALK */ if (!(so->so_flags & SOF_PCBCLEARING)) { struct ip_moptions *imo; inp->inp_vflag = 0; if (inp->inp_options != NULL) { (void) m_free(inp->inp_options); inp->inp_options = NULL; } ROUTE_RELEASE(&inp->inp_route); imo = inp->inp_moptions; if (imo != NULL) { IMO_REMREF(imo); } inp->inp_moptions = NULL; sofreelastref(so, 0); inp->inp_state = INPCB_STATE_DEAD; /* * Enqueue an event to send kernel event notification * if the flow has to CLAT46 for data packets */ if (inp->inp_flags2 & INP2_CLAT46_FLOW) { /* * If there has been any exchange of data bytes * over this flow. * Schedule a notification to report that flow is * using client side translation. */ if (inp->inp_stat != NULL && (inp->inp_stat->txbytes != 0 || inp->inp_stat->rxbytes != 0)) { if (so->so_flags & SOF_DELEGATED) { in6_clat46_event_enqueue_nwk_wq_entry( IN6_CLAT46_EVENT_V4_FLOW, so->e_pid, so->e_uuid); } else { in6_clat46_event_enqueue_nwk_wq_entry( IN6_CLAT46_EVENT_V4_FLOW, so->last_pid, so->last_uuid); } } } /* makes sure we're not called twice from so_close */ so->so_flags |= SOF_PCBCLEARING; inpcb_gc_sched(inp->inp_pcbinfo, INPCB_TIMER_FAST); } } void in_pcbdispose(struct inpcb *inp) { struct socket *so = inp->inp_socket; struct inpcbinfo *ipi = inp->inp_pcbinfo; if (so != NULL && so->so_usecount != 0) { panic("%s: so %p [%d,%d] usecount %d lockhistory %s", __func__, so, SOCK_DOM(so), SOCK_TYPE(so), so->so_usecount, solockhistory_nr(so)); /* NOTREACHED */ } else if (inp->inp_wantcnt != WNT_STOPUSING) { if (so != NULL) { panic_plain("%s: inp %p invalid wantcnt %d, so %p " "[%d,%d] usecount %d retaincnt %d state 0x%x " "flags 0x%x lockhistory %s\n", __func__, inp, inp->inp_wantcnt, so, SOCK_DOM(so), SOCK_TYPE(so), so->so_usecount, so->so_retaincnt, so->so_state, so->so_flags, solockhistory_nr(so)); /* NOTREACHED */ } else { panic("%s: inp %p invalid wantcnt %d no socket", __func__, inp, inp->inp_wantcnt); /* NOTREACHED */ } } LCK_RW_ASSERT(&ipi->ipi_lock, LCK_RW_ASSERT_EXCLUSIVE); inp->inp_gencnt = ++ipi->ipi_gencnt; /* access ipi in in_pcbremlists */ in_pcbremlists(inp); if (so != NULL) { if (so->so_proto->pr_flags & PR_PCBLOCK) { sofreelastref(so, 0); if (so->so_rcv.sb_cc > 0 || so->so_snd.sb_cc > 0) { /* * selthreadclear() already called * during sofreelastref() above. */ sbrelease(&so->so_rcv); sbrelease(&so->so_snd); } if (so->so_head != NULL) { panic("%s: so=%p head still exist", __func__, so); /* NOTREACHED */ } lck_mtx_unlock(&inp->inpcb_mtx); #if NECP necp_inpcb_remove_cb(inp); #endif /* NECP */ lck_mtx_destroy(&inp->inpcb_mtx, ipi->ipi_lock_grp); } /* makes sure we're not called twice from so_close */ so->so_flags |= SOF_PCBCLEARING; so->so_saved_pcb = (caddr_t)inp; so->so_pcb = NULL; inp->inp_socket = NULL; #if NECP necp_inpcb_dispose(inp); #endif /* NECP */ /* * In case there a route cached after a detach (possible * in the tcp case), make sure that it is freed before * we deallocate the structure. */ ROUTE_RELEASE(&inp->inp_route); if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) { zfree(ipi->ipi_zone, inp); } sodealloc(so); } } /* * The calling convention of in_getsockaddr() and in_getpeeraddr() was * modified to match the pru_sockaddr() and pru_peeraddr() entry points * in struct pr_usrreqs, so that protocols can just reference then directly * without the need for a wrapper function. */ int in_getsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct sockaddr_in *sin; /* * Do the malloc first in case it blocks. */ sin = SIN(alloc_sockaddr(sizeof(*sin), Z_WAITOK | Z_NOFAIL)); sin->sin_family = AF_INET; if ((inp = sotoinpcb(so)) == NULL) { free_sockaddr(sin); return EINVAL; } sin->sin_port = inp->inp_lport; sin->sin_addr = inp->inp_laddr; *nam = SA(sin); return 0; } int in_getsockaddr_s(struct socket *so, struct sockaddr_in *ss) { struct sockaddr_in *sin = ss; struct inpcb *inp; VERIFY(ss != NULL); SOCKADDR_ZERO(ss, sizeof(*ss)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); if ((inp = sotoinpcb(so)) == NULL) { return EINVAL; } sin->sin_port = inp->inp_lport; sin->sin_addr = inp->inp_laddr; return 0; } int in_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct sockaddr_in *sin; /* * Do the malloc first in case it blocks. */ sin = SIN(alloc_sockaddr(sizeof(*sin), Z_WAITOK | Z_NOFAIL)); sin->sin_family = AF_INET; if ((inp = sotoinpcb(so)) == NULL) { free_sockaddr(sin); return EINVAL; } sin->sin_port = inp->inp_fport; sin->sin_addr = inp->inp_faddr; *nam = SA(sin); return 0; } void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, void (*notify)(struct inpcb *, int)) { struct inpcb *inp; lck_rw_lock_shared(&pcbinfo->ipi_lock); LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { if (!(inp->inp_vflag & INP_IPV4)) { continue; } if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) { continue; } if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) { continue; } socket_lock(inp->inp_socket, 1); (*notify)(inp, errno); (void) in_pcb_checkstate(inp, WNT_RELEASE, 1); socket_unlock(inp->inp_socket, 1); } lck_rw_done(&pcbinfo->ipi_lock); } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { boolean_t release = FALSE; struct rtentry *rt; if ((rt = inp->inp_route.ro_rt) != NULL) { struct in_ifaddr *ia = NULL; RT_LOCK(rt); if (rt->rt_flags & RTF_DYNAMIC) { /* * Prevent another thread from modifying rt_key, * rt_gateway via rt_setgate() after rt_lock is * dropped by marking the route as defunct. */ rt->rt_flags |= RTF_CONDEMNED; RT_UNLOCK(rt); (void) rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); } else { RT_UNLOCK(rt); } /* if the address is gone keep the old route in the pcb */ if (inp->inp_laddr.s_addr != INADDR_ANY && (ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) { /* * Address is around; ditch the route. A new route * can be allocated the next time output is attempted. */ release = TRUE; } if (ia != NULL) { ifa_remref(&ia->ia_ifa); } } if (rt == NULL || release) { ROUTE_RELEASE(&inp->inp_route); } } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ void in_rtchange(struct inpcb *inp, int errno) { #pragma unused(errno) boolean_t release = FALSE; struct rtentry *rt; if ((rt = inp->inp_route.ro_rt) != NULL) { struct in_ifaddr *ia = NULL; /* if address is gone, keep the old route */ if (inp->inp_laddr.s_addr != INADDR_ANY && (ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) { /* * Address is around; ditch the route. A new route * can be allocated the next time output is attempted. */ release = TRUE; } if (ia != NULL) { ifa_remref(&ia->ia_ifa); } } if (rt == NULL || release) { ROUTE_RELEASE(&inp->inp_route); } } /* * Lookup a PCB based on the local address and port. */ struct inpcb * in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, unsigned int lport_arg, int wild_okay) { struct inpcb *inp; int matchwild = 3, wildcard; u_short lport = (u_short)lport_arg; KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_START, 0, 0, 0, 0, 0); if (!wild_okay) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { if (!(inp->inp_vflag & INP_IPV4)) { continue; } if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found. */ return inp; } } /* * Not found. */ KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, 0, 0, 0, 0, 0); return NULL; } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) { break; } } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if (!(inp->inp_vflag & INP_IPV4)) { continue; } if (inp->inp_faddr.s_addr != INADDR_ANY) { wildcard++; } if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) { wildcard++; } else if (inp->inp_laddr.s_addr != laddr.s_addr) { continue; } } else { if (laddr.s_addr != INADDR_ANY) { wildcard++; } } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) { break; } } } } KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, match, 0, 0, 0, 0); return match; } } /* * Check if PCB exists in hash list. */ int in_pcblookup_hash_exists(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, uid_t *uid, gid_t *gid, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp; u_short fport = (u_short)fport_arg, lport = (u_short)lport_arg; int found = 0; struct inpcb *local_wild = NULL; struct inpcb *local_wild_mapped = NULL; *uid = UID_MAX; *gid = GID_MAX; /* * We may have found the pcb in the last lookup - check this first. */ lck_rw_lock_shared(&pcbinfo->ipi_lock); /* * First look for an exact match. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { if (!(inp->inp_vflag & INP_IPV4)) { continue; } if (inp_restricted_recv(inp, ifp)) { continue; } #if NECP if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) { continue; } #endif /* NECP */ if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { if ((found = (inp->inp_socket != NULL))) { /* * Found. */ *uid = kauth_cred_getuid( inp->inp_socket->so_cred); *gid = kauth_cred_getgid( inp->inp_socket->so_cred); } lck_rw_done(&pcbinfo->ipi_lock); return found; } } if (!wildcard) { /* * Not found. */ lck_rw_done(&pcbinfo->ipi_lock); return 0; } head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { if (!(inp->inp_vflag & INP_IPV4)) { continue; } if (inp_restricted_recv(inp, ifp)) { continue; } #if NECP if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) { continue; } #endif /* NECP */ if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_lport == lport) { if (inp->inp_laddr.s_addr == laddr.s_addr) { if ((found = (inp->inp_socket != NULL))) { *uid = kauth_cred_getuid( inp->inp_socket->so_cred); *gid = kauth_cred_getgid( inp->inp_socket->so_cred); } lck_rw_done(&pcbinfo->ipi_lock); return found; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { if (inp->inp_socket && SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) { local_wild_mapped = inp; } else { local_wild = inp; } } } } if (local_wild == NULL) { if (local_wild_mapped != NULL) { if ((found = (local_wild_mapped->inp_socket != NULL))) { *uid = kauth_cred_getuid( local_wild_mapped->inp_socket->so_cred); *gid = kauth_cred_getgid( local_wild_mapped->inp_socket->so_cred); } lck_rw_done(&pcbinfo->ipi_lock); return found; } lck_rw_done(&pcbinfo->ipi_lock); return 0; } if ((found = (local_wild->inp_socket != NULL))) { *uid = kauth_cred_getuid( local_wild->inp_socket->so_cred); *gid = kauth_cred_getgid( local_wild->inp_socket->so_cred); } lck_rw_done(&pcbinfo->ipi_lock); return found; } /* * Lookup PCB in hash list. */ struct inpcb * in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp; u_short fport = (u_short)fport_arg, lport = (u_short)lport_arg; struct inpcb *local_wild = NULL; struct inpcb *local_wild_mapped = NULL; /* * We may have found the pcb in the last lookup - check this first. */ lck_rw_lock_shared(&pcbinfo->ipi_lock); /* * First look for an exact match. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { if (!(inp->inp_vflag & INP_IPV4)) { continue; } if (inp_restricted_recv(inp, ifp)) { continue; } #if NECP if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) { continue; } #endif /* NECP */ if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * Found. */ if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) { lck_rw_done(&pcbinfo->ipi_lock); return inp; } else { /* it's there but dead, say it isn't found */ lck_rw_done(&pcbinfo->ipi_lock); return NULL; } } } if (!wildcard) { /* * Not found. */ lck_rw_done(&pcbinfo->ipi_lock); return NULL; } head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { if (!(inp->inp_vflag & INP_IPV4)) { continue; } if (inp_restricted_recv(inp, ifp)) { continue; } #if NECP if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) { continue; } #endif /* NECP */ if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_lport == lport) { if (inp->inp_laddr.s_addr == laddr.s_addr) { if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) { lck_rw_done(&pcbinfo->ipi_lock); return inp; } else { /* it's dead; say it isn't found */ lck_rw_done(&pcbinfo->ipi_lock); return NULL; } } else if (inp->inp_laddr.s_addr == INADDR_ANY) { if (SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) { local_wild_mapped = inp; } else { local_wild = inp; } } } } if (local_wild == NULL) { if (local_wild_mapped != NULL) { if (in_pcb_checkstate(local_wild_mapped, WNT_ACQUIRE, 0) != WNT_STOPUSING) { lck_rw_done(&pcbinfo->ipi_lock); return local_wild_mapped; } else { /* it's dead; say it isn't found */ lck_rw_done(&pcbinfo->ipi_lock); return NULL; } } lck_rw_done(&pcbinfo->ipi_lock); return NULL; } if (in_pcb_checkstate(local_wild, WNT_ACQUIRE, 0) != WNT_STOPUSING) { lck_rw_done(&pcbinfo->ipi_lock); return local_wild; } /* * It's either not found or is already dead. */ lck_rw_done(&pcbinfo->ipi_lock); return NULL; } /* * @brief Insert PCB onto various hash lists. * * @param inp Pointer to internet protocol control block * @param locked Implies if ipi_lock (protecting pcb list) * is already locked or not. * * @return int error on failure and 0 on success */ int in_pcbinshash(struct inpcb *inp, int locked) { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; u_int32_t hashkey_faddr; if (!locked) { if (!lck_rw_try_lock_exclusive(&pcbinfo->ipi_lock)) { /* * Lock inversion issue, mostly with udp * multicast packets */ socket_unlock(inp->inp_socket, 0); lck_rw_lock_exclusive(&pcbinfo->ipi_lock); socket_lock(inp->inp_socket, 0); } } /* * This routine or its caller may have given up * socket's protocol lock briefly. * During that time the socket may have been dropped. * Safe-guarding against that. */ if (inp->inp_state == INPCB_STATE_DEAD) { if (!locked) { lck_rw_done(&pcbinfo->ipi_lock); } return ECONNABORTED; } if (inp->inp_vflag & INP_IPV6) { hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; } else { hashkey_faddr = inp->inp_faddr.s_addr; } inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask); pcbhash = &pcbinfo->ipi_hashbase[inp->inp_hash_element]; pcbporthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; /* * Go through port list and look for a head for this lport. */ LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) { break; } } /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { phd = kalloc_type(struct inpcbport, Z_WAITOK | Z_NOFAIL); phd->phd_port = inp->inp_lport; LIST_INIT(&phd->phd_pcblist); LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST)); #if SKYWALK int err; struct socket *so = inp->inp_socket; if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) && !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { if (inp->inp_vflag & INP_IPV6) { err = netns_reserve_in6(&inp->inp_netns_token, inp->in6p_laddr, (uint8_t)SOCK_PROTO(so), inp->inp_lport, NETNS_BSD | NETNS_PRERESERVED, NULL); } else { err = netns_reserve_in(&inp->inp_netns_token, inp->inp_laddr, (uint8_t)SOCK_PROTO(so), inp->inp_lport, NETNS_BSD | NETNS_PRERESERVED, NULL); } if (err) { if (!locked) { lck_rw_done(&pcbinfo->ipi_lock); } return err; } netns_set_ifnet(&inp->inp_netns_token, inp->inp_last_outifp); inp_update_netns_flags(so); } #endif /* SKYWALK */ inp->inp_phd = phd; LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); LIST_INSERT_HEAD(pcbhash, inp, inp_hash); inp->inp_flags2 |= INP2_INHASHLIST; if (!locked) { lck_rw_done(&pcbinfo->ipi_lock); } #if NECP // This call catches the original setting of the local address inp_update_necp_policy(inp, NULL, NULL, 0); #endif /* NECP */ return 0; } /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. */ void in_pcbrehash(struct inpcb *inp) { struct inpcbhead *head; u_int32_t hashkey_faddr; #if SKYWALK struct socket *so = inp->inp_socket; if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) && !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { int err; if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { if (inp->inp_vflag & INP_IPV6) { err = netns_change_addr_in6( &inp->inp_netns_token, inp->in6p_laddr); } else { err = netns_change_addr_in( &inp->inp_netns_token, inp->inp_laddr); } } else { if (inp->inp_vflag & INP_IPV6) { err = netns_reserve_in6(&inp->inp_netns_token, inp->in6p_laddr, (uint8_t)SOCK_PROTO(so), inp->inp_lport, NETNS_BSD, NULL); } else { err = netns_reserve_in(&inp->inp_netns_token, inp->inp_laddr, (uint8_t)SOCK_PROTO(so), inp->inp_lport, NETNS_BSD, NULL); } } /* We are assuming that whatever code paths result in a rehash * did their due diligence and ensured that the given * tuple was free ahead of time. Just * reserving the lport on INADDR_ANY should be enough, since * that will block Skywalk from trying to reserve that same * port. Given this assumption, the above netns calls should * never fail*/ VERIFY(err == 0); netns_set_ifnet(&inp->inp_netns_token, inp->inp_last_outifp); inp_update_netns_flags(so); } #endif /* SKYWALK */ if (inp->inp_vflag & INP_IPV6) { hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; } else { hashkey_faddr = inp->inp_faddr.s_addr; } inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, inp->inp_pcbinfo->ipi_hashmask); head = &inp->inp_pcbinfo->ipi_hashbase[inp->inp_hash_element]; if (inp->inp_flags2 & INP2_INHASHLIST) { LIST_REMOVE(inp, inp_hash); inp->inp_flags2 &= ~INP2_INHASHLIST; } VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST)); LIST_INSERT_HEAD(head, inp, inp_hash); inp->inp_flags2 |= INP2_INHASHLIST; #if NECP // This call catches updates to the remote addresses inp_update_necp_policy(inp, NULL, NULL, 0); #endif /* NECP */ } /* * Remove PCB from various lists. * Must be called pcbinfo lock is held in exclusive mode. */ void in_pcbremlists(struct inpcb *inp) { inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt; /* * Check if it's in hashlist -- an inp is placed in hashlist when * it's local port gets assigned. So it should also be present * in the port list. */ if (inp->inp_flags2 & INP2_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; VERIFY(phd != NULL && inp->inp_lport > 0); LIST_REMOVE(inp, inp_hash); inp->inp_hash.le_next = NULL; inp->inp_hash.le_prev = NULL; LIST_REMOVE(inp, inp_portlist); inp->inp_portlist.le_next = NULL; inp->inp_portlist.le_prev = NULL; if (LIST_EMPTY(&phd->phd_pcblist)) { LIST_REMOVE(phd, phd_hash); kfree_type(struct inpcbport, phd); } inp->inp_phd = NULL; inp->inp_flags2 &= ~INP2_INHASHLIST; #if SKYWALK /* Free up the port in the namespace registrar */ netns_release(&inp->inp_netns_token); netns_release(&inp->inp_wildcard_netns_token); #endif /* SKYWALK */ } VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST)); if (inp->inp_flags2 & INP2_TIMEWAIT) { /* Remove from time-wait queue */ tcp_remove_from_time_wait(inp); inp->inp_flags2 &= ~INP2_TIMEWAIT; VERIFY(inp->inp_pcbinfo->ipi_twcount != 0); inp->inp_pcbinfo->ipi_twcount--; } else { /* Remove from global inp list if it is not time-wait */ LIST_REMOVE(inp, inp_list); } if (inp->inp_flags2 & INP2_IN_FCTREE) { inp_fc_getinp(inp->inp_flowhash, (INPFC_SOLOCKED | INPFC_REMOVE)); VERIFY(!(inp->inp_flags2 & INP2_IN_FCTREE)); } inp->inp_pcbinfo->ipi_count--; } /* * Mechanism used to defer the memory release of PCBs * The pcb list will contain the pcb until the reaper can clean it up if * the following conditions are met: * 1) state "DEAD", * 2) wantcnt is STOPUSING * 3) usecount is 0 * This function will be called to either mark the pcb as */ int in_pcb_checkstate(struct inpcb *pcb, int mode, int locked) { volatile UInt32 *wantcnt = (volatile UInt32 *)&pcb->inp_wantcnt; UInt32 origwant; UInt32 newwant; switch (mode) { case WNT_STOPUSING: /* * Try to mark the pcb as ready for recycling. CAS with * STOPUSING, if success we're good, if it's in use, will * be marked later */ if (locked == 0) { socket_lock(pcb->inp_socket, 1); } pcb->inp_state = INPCB_STATE_DEAD; stopusing: if (pcb->inp_socket->so_usecount < 0) { panic("%s: pcb=%p so=%p usecount is negative", __func__, pcb, pcb->inp_socket); /* NOTREACHED */ } if (locked == 0) { socket_unlock(pcb->inp_socket, 1); } inpcb_gc_sched(pcb->inp_pcbinfo, INPCB_TIMER_FAST); origwant = *wantcnt; if ((UInt16) origwant == 0xffff) { /* should stop using */ return WNT_STOPUSING; } newwant = 0xffff; if ((UInt16) origwant == 0) { /* try to mark it as unsuable now */ OSCompareAndSwap(origwant, newwant, wantcnt); } return WNT_STOPUSING; case WNT_ACQUIRE: /* * Try to increase reference to pcb. If WNT_STOPUSING * should bail out. If socket state DEAD, try to set count * to STOPUSING, return failed otherwise increase cnt. */ do { origwant = *wantcnt; if ((UInt16) origwant == 0xffff) { /* should stop using */ return WNT_STOPUSING; } newwant = origwant + 1; } while (!OSCompareAndSwap(origwant, newwant, wantcnt)); return WNT_ACQUIRE; case WNT_RELEASE: /* * Release reference. If result is null and pcb state * is DEAD, set wanted bit to STOPUSING */ if (locked == 0) { socket_lock(pcb->inp_socket, 1); } do { origwant = *wantcnt; if ((UInt16) origwant == 0x0) { panic("%s: pcb=%p release with zero count", __func__, pcb); /* NOTREACHED */ } if ((UInt16) origwant == 0xffff) { /* should stop using */ if (locked == 0) { socket_unlock(pcb->inp_socket, 1); } return WNT_STOPUSING; } newwant = origwant - 1; } while (!OSCompareAndSwap(origwant, newwant, wantcnt)); if (pcb->inp_state == INPCB_STATE_DEAD) { goto stopusing; } if (pcb->inp_socket->so_usecount < 0) { panic("%s: RELEASE pcb=%p so=%p usecount is negative", __func__, pcb, pcb->inp_socket); /* NOTREACHED */ } if (locked == 0) { socket_unlock(pcb->inp_socket, 1); } return WNT_RELEASE; default: panic("%s: so=%p not a valid state =%x", __func__, pcb->inp_socket, mode); /* NOTREACHED */ } /* NOTREACHED */ return mode; } /* * inpcb_to_compat copies specific bits of an inpcb to a inpcb_compat. * The inpcb_compat data structure is passed to user space and must * not change. We intentionally avoid copying pointers. */ void inpcb_to_compat(struct inpcb *inp, struct inpcb_compat *inp_compat) { bzero(inp_compat, sizeof(*inp_compat)); inp_compat->inp_fport = inp->inp_fport; inp_compat->inp_lport = inp->inp_lport; inp_compat->nat_owner = 0; inp_compat->nat_cookie = 0; inp_compat->inp_gencnt = inp->inp_gencnt; inp_compat->inp_flags = inp->inp_flags; inp_compat->inp_flow = inp->inp_flow; inp_compat->inp_vflag = inp->inp_vflag; inp_compat->inp_ip_ttl = inp->inp_ip_ttl; inp_compat->inp_ip_p = inp->inp_ip_p; inp_compat->inp_dependfaddr.inp6_foreign = inp->inp_dependfaddr.inp6_foreign; inp_compat->inp_dependladdr.inp6_local = inp->inp_dependladdr.inp6_local; inp_compat->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos; inp_compat->inp_depend6.inp6_hlim = 0; inp_compat->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum; inp_compat->inp_depend6.inp6_ifindex = 0; inp_compat->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops; } #if XNU_TARGET_OS_OSX void inpcb_to_xinpcb64(struct inpcb *inp, struct xinpcb64 *xinp) { xinp->inp_fport = inp->inp_fport; xinp->inp_lport = inp->inp_lport; xinp->inp_gencnt = inp->inp_gencnt; xinp->inp_flags = inp->inp_flags; xinp->inp_flow = inp->inp_flow; xinp->inp_vflag = inp->inp_vflag; xinp->inp_ip_ttl = inp->inp_ip_ttl; xinp->inp_ip_p = inp->inp_ip_p; xinp->inp_dependfaddr.inp6_foreign = inp->inp_dependfaddr.inp6_foreign; xinp->inp_dependladdr.inp6_local = inp->inp_dependladdr.inp6_local; xinp->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos; xinp->inp_depend6.inp6_hlim = 0; xinp->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum; xinp->inp_depend6.inp6_ifindex = 0; xinp->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops; } #endif /* XNU_TARGET_OS_OSX */ /* * The following routines implement this scheme: * * Callers of ip_output() that intend to cache the route in the inpcb pass * a local copy of the struct route to ip_output(). Using a local copy of * the cached route significantly simplifies things as IP no longer has to * worry about having exclusive access to the passed in struct route, since * it's defined in the caller's stack; in essence, this allows for a lock- * less operation when updating the struct route at the IP level and below, * whenever necessary. The scheme works as follows: * * Prior to dropping the socket's lock and calling ip_output(), the caller * copies the struct route from the inpcb into its stack, and adds a reference * to the cached route entry, if there was any. The socket's lock is then * dropped and ip_output() is called with a pointer to the copy of struct * route defined on the stack (not to the one in the inpcb.) * * Upon returning from ip_output(), the caller then acquires the socket's * lock and synchronizes the cache; if there is no route cached in the inpcb, * it copies the local copy of struct route (which may or may not contain any * route) back into the cache; otherwise, if the inpcb has a route cached in * it, the one in the local copy will be freed, if there's any. Trashing the * cached route in the inpcb can be avoided because ip_output() is single- * threaded per-PCB (i.e. multiple transmits on a PCB are always serialized * by the socket/transport layer.) */ void inp_route_copyout(struct inpcb *inp, struct route *dst) { struct route *src = &inp->inp_route; socket_lock_assert_owned(inp->inp_socket); /* * If the route in the PCB is stale or not for IPv4, blow it away; * this is possible in the case of IPv4-mapped address case. */ if (ROUTE_UNUSABLE(src) || rt_key(src->ro_rt)->sa_family != AF_INET) { ROUTE_RELEASE(src); } route_copyout(dst, src, sizeof(*dst)); } void inp_route_copyin(struct inpcb *inp, struct route *src) { struct route *dst = &inp->inp_route; socket_lock_assert_owned(inp->inp_socket); /* Minor sanity check */ if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) { panic("%s: wrong or corrupted route: %p", __func__, src); } route_copyin(src, dst, sizeof(*src)); } /* * Handler for setting IP_BOUND_IF/IPV6_BOUND_IF socket option. */ int inp_bindif(struct inpcb *inp, unsigned int ifscope, struct ifnet **pifp) { struct ifnet *ifp = NULL; ifnet_head_lock_shared(); if ((ifscope > (unsigned)if_index) || (ifscope != IFSCOPE_NONE && (ifp = ifindex2ifnet[ifscope]) == NULL)) { ifnet_head_done(); return ENXIO; } ifnet_head_done(); VERIFY(ifp != NULL || ifscope == IFSCOPE_NONE); /* * A zero interface scope value indicates an "unbind". * Otherwise, take in whatever value the app desires; * the app may already know the scope (or force itself * to such a scope) ahead of time before the interface * gets attached. It doesn't matter either way; any * route lookup from this point on will require an * exact match for the embedded interface scope. */ inp->inp_boundifp = ifp; if (inp->inp_boundifp == NULL) { inp->inp_flags &= ~INP_BOUND_IF; } else { inp->inp_flags |= INP_BOUND_IF; } /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); if (pifp != NULL) { *pifp = ifp; } return 0; } /* * Handler for setting IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option, * as well as for setting PROC_UUID_NO_CELLULAR policy. */ void inp_set_nocellular(struct inpcb *inp) { inp->inp_flags |= INP_NO_IFT_CELLULAR; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } /* * Handler for clearing IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option, * as well as for clearing PROC_UUID_NO_CELLULAR policy. */ void inp_clear_nocellular(struct inpcb *inp) { struct socket *so = inp->inp_socket; /* * SO_RESTRICT_DENY_CELLULAR socket restriction issued on the socket * has a higher precendence than INP_NO_IFT_CELLULAR. Clear the flag * if and only if the socket is unrestricted. */ if (so != NULL && !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) { inp->inp_flags &= ~INP_NO_IFT_CELLULAR; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } } void inp_set_noexpensive(struct inpcb *inp) { inp->inp_flags2 |= INP2_NO_IFF_EXPENSIVE; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } void inp_set_noconstrained(struct inpcb *inp) { inp->inp_flags2 |= INP2_NO_IFF_CONSTRAINED; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } void inp_set_awdl_unrestricted(struct inpcb *inp) { inp->inp_flags2 |= INP2_AWDL_UNRESTRICTED; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } boolean_t inp_get_awdl_unrestricted(struct inpcb *inp) { return (inp->inp_flags2 & INP2_AWDL_UNRESTRICTED) ? TRUE : FALSE; } void inp_clear_awdl_unrestricted(struct inpcb *inp) { inp->inp_flags2 &= ~INP2_AWDL_UNRESTRICTED; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } void inp_set_intcoproc_allowed(struct inpcb *inp) { inp->inp_flags2 |= INP2_INTCOPROC_ALLOWED; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } boolean_t inp_get_intcoproc_allowed(struct inpcb *inp) { return (inp->inp_flags2 & INP2_INTCOPROC_ALLOWED) ? TRUE : FALSE; } void inp_clear_intcoproc_allowed(struct inpcb *inp) { inp->inp_flags2 &= ~INP2_INTCOPROC_ALLOWED; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } void inp_set_management_allowed(struct inpcb *inp) { inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } boolean_t inp_get_management_allowed(struct inpcb *inp) { return (inp->inp_flags2 & INP2_MANAGEMENT_ALLOWED) ? TRUE : FALSE; } void inp_clear_management_allowed(struct inpcb *inp) { inp->inp_flags2 &= ~INP2_MANAGEMENT_ALLOWED; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } #if NECP /* * Called when PROC_UUID_NECP_APP_POLICY is set. */ void inp_set_want_app_policy(struct inpcb *inp) { inp->inp_flags2 |= INP2_WANT_APP_POLICY; } /* * Called when PROC_UUID_NECP_APP_POLICY is cleared. */ void inp_clear_want_app_policy(struct inpcb *inp) { inp->inp_flags2 &= ~INP2_WANT_APP_POLICY; } #endif /* NECP */ /* * Calculate flow hash for an inp, used by an interface to identify a * flow. When an interface provides flow control advisory, this flow * hash is used as an identifier. */ u_int32_t inp_calc_flowhash(struct inpcb *inp) { #if SKYWALK uint32_t flowid; struct flowidns_flow_key fk; bzero(&fk, sizeof(fk)); if (inp->inp_vflag & INP_IPV4) { fk.ffk_af = AF_INET; fk.ffk_laddr_v4 = inp->inp_laddr; fk.ffk_raddr_v4 = inp->inp_faddr; } else { fk.ffk_af = AF_INET6; fk.ffk_laddr_v6 = inp->in6p_laddr; fk.ffk_raddr_v6 = inp->in6p_faddr; /* clear embedded scope ID */ if (IN6_IS_SCOPE_EMBED(&fk.ffk_laddr_v6)) { fk.ffk_laddr_v6.s6_addr16[1] = 0; } if (IN6_IS_SCOPE_EMBED(&fk.ffk_raddr_v6)) { fk.ffk_raddr_v6.s6_addr16[1] = 0; } } fk.ffk_lport = inp->inp_lport; fk.ffk_rport = inp->inp_fport; fk.ffk_proto = (inp->inp_ip_p != 0) ? inp->inp_ip_p : (uint8_t)SOCK_PROTO(inp->inp_socket); flowidns_allocate_flowid(FLOWIDNS_DOMAIN_INPCB, &fk, &flowid); /* Insert the inp into inp_fc_tree */ lck_mtx_lock_spin(&inp_fc_lck); ASSERT(inp->inp_flowhash == 0); ASSERT((inp->inp_flags2 & INP2_IN_FCTREE) == 0); inp->inp_flowhash = flowid; VERIFY(RB_INSERT(inp_fc_tree, &inp_fc_tree, inp) == NULL); inp->inp_flags2 |= INP2_IN_FCTREE; lck_mtx_unlock(&inp_fc_lck); return flowid; #else /* !SKYWALK */ struct inp_flowhash_key fh __attribute__((aligned(8))); u_int32_t flowhash = 0; struct inpcb *tmp_inp = NULL; if (inp_hash_seed == 0) { inp_hash_seed = RandomULong(); } bzero(&fh, sizeof(fh)); bcopy(&inp->inp_dependladdr, &fh.infh_laddr, sizeof(fh.infh_laddr)); bcopy(&inp->inp_dependfaddr, &fh.infh_faddr, sizeof(fh.infh_faddr)); fh.infh_lport = inp->inp_lport; fh.infh_fport = inp->inp_fport; fh.infh_af = (inp->inp_vflag & INP_IPV6) ? AF_INET6 : AF_INET; fh.infh_proto = inp->inp_ip_p; fh.infh_rand1 = RandomULong(); fh.infh_rand2 = RandomULong(); try_again: flowhash = net_flowhash(&fh, sizeof(fh), inp_hash_seed); if (flowhash == 0) { /* try to get a non-zero flowhash */ inp_hash_seed = RandomULong(); goto try_again; } inp->inp_flowhash = flowhash; /* Insert the inp into inp_fc_tree */ lck_mtx_lock_spin(&inp_fc_lck); tmp_inp = RB_FIND(inp_fc_tree, &inp_fc_tree, inp); if (tmp_inp != NULL) { /* * There is a different inp with the same flowhash. * There can be a collision on flow hash but the * probability is low. Let's recompute the * flowhash. */ lck_mtx_unlock(&inp_fc_lck); /* recompute hash seed */ inp_hash_seed = RandomULong(); goto try_again; } RB_INSERT(inp_fc_tree, &inp_fc_tree, inp); inp->inp_flags2 |= INP2_IN_FCTREE; lck_mtx_unlock(&inp_fc_lck); return flowhash; #endif /* !SKYWALK */ } void inp_flowadv(uint32_t flowhash) { struct inpcb *inp; inp = inp_fc_getinp(flowhash, 0); if (inp == NULL) { return; } inp_fc_feedback(inp); } /* * Function to compare inp_fc_entries in inp flow control tree */ static inline int infc_cmp(const struct inpcb *inp1, const struct inpcb *inp2) { return memcmp(&(inp1->inp_flowhash), &(inp2->inp_flowhash), sizeof(inp1->inp_flowhash)); } static struct inpcb * inp_fc_getinp(u_int32_t flowhash, u_int32_t flags) { struct inpcb *inp = NULL; int locked = (flags & INPFC_SOLOCKED) ? 1 : 0; lck_mtx_lock_spin(&inp_fc_lck); key_inp.inp_flowhash = flowhash; inp = RB_FIND(inp_fc_tree, &inp_fc_tree, &key_inp); if (inp == NULL) { /* inp is not present, return */ lck_mtx_unlock(&inp_fc_lck); return NULL; } if (flags & INPFC_REMOVE) { ASSERT((inp->inp_flags2 & INP2_IN_FCTREE) != 0); lck_mtx_convert_spin(&inp_fc_lck); RB_REMOVE(inp_fc_tree, &inp_fc_tree, inp); bzero(&(inp->infc_link), sizeof(inp->infc_link)); #if SKYWALK VERIFY(inp->inp_flowhash != 0); flowidns_release_flowid(inp->inp_flowhash); inp->inp_flowhash = 0; #endif /* !SKYWALK */ inp->inp_flags2 &= ~INP2_IN_FCTREE; lck_mtx_unlock(&inp_fc_lck); return NULL; } if (in_pcb_checkstate(inp, WNT_ACQUIRE, locked) == WNT_STOPUSING) { inp = NULL; } lck_mtx_unlock(&inp_fc_lck); return inp; } static void inp_fc_feedback(struct inpcb *inp) { struct socket *so = inp->inp_socket; /* we already hold a want_cnt on this inp, socket can't be null */ VERIFY(so != NULL); socket_lock(so, 1); if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { socket_unlock(so, 1); return; } if (inp->inp_sndinprog_cnt > 0) { inp->inp_flags |= INP_FC_FEEDBACK; } /* * Return if the connection is not in flow-controlled state. * This can happen if the connection experienced * loss while it was in flow controlled state */ if (!INP_WAIT_FOR_IF_FEEDBACK(inp)) { socket_unlock(so, 1); return; } inp_reset_fc_state(inp); if (SOCK_TYPE(so) == SOCK_STREAM) { inp_fc_unthrottle_tcp(inp); } socket_unlock(so, 1); } static void inp_reset_fc_timerstat(struct inpcb *inp) { uint64_t now; if (inp->inp_fadv_start_time == 0) { return; } now = net_uptime_us(); ASSERT(now >= inp->inp_fadv_start_time); inp->inp_fadv_total_time += (now - inp->inp_fadv_start_time); inp->inp_fadv_cnt++; inp->inp_fadv_start_time = 0; } static void inp_set_fc_timerstat(struct inpcb *inp) { if (inp->inp_fadv_start_time != 0) { return; } inp->inp_fadv_start_time = net_uptime_us(); } void inp_reset_fc_state(struct inpcb *inp) { struct socket *so = inp->inp_socket; int suspended = (INP_IS_FLOW_SUSPENDED(inp)) ? 1 : 0; int needwakeup = (INP_WAIT_FOR_IF_FEEDBACK(inp)) ? 1 : 0; inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED); inp_reset_fc_timerstat(inp); if (suspended) { so->so_flags &= ~(SOF_SUSPENDED); soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_RESUME)); } /* Give a write wakeup to unblock the socket */ if (needwakeup) { sowwakeup(so); } } int inp_set_fc_state(struct inpcb *inp, int advcode) { boolean_t is_flow_controlled = INP_WAIT_FOR_IF_FEEDBACK(inp); struct inpcb *tmp_inp = NULL; /* * If there was a feedback from the interface when * send operation was in progress, we should ignore * this flow advisory to avoid a race between setting * flow controlled state and receiving feedback from * the interface */ if (inp->inp_flags & INP_FC_FEEDBACK) { return 0; } inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED); if ((tmp_inp = inp_fc_getinp(inp->inp_flowhash, INPFC_SOLOCKED)) != NULL) { if (in_pcb_checkstate(tmp_inp, WNT_RELEASE, 1) == WNT_STOPUSING) { goto exit_reset; } VERIFY(tmp_inp == inp); switch (advcode) { case FADV_FLOW_CONTROLLED: inp->inp_flags |= INP_FLOW_CONTROLLED; inp_set_fc_timerstat(inp); break; case FADV_SUSPENDED: inp->inp_flags |= INP_FLOW_SUSPENDED; inp_set_fc_timerstat(inp); soevent(inp->inp_socket, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_SUSPEND)); /* Record the fact that suspend event was sent */ inp->inp_socket->so_flags |= SOF_SUSPENDED; break; } if (!is_flow_controlled && SOCK_TYPE(inp->inp_socket) == SOCK_STREAM) { inp_fc_throttle_tcp(inp); } return 1; } exit_reset: inp_reset_fc_timerstat(inp); return 0; } /* * Handler for SO_FLUSH socket option. */ int inp_flush(struct inpcb *inp, int optval) { u_int32_t flowhash = inp->inp_flowhash; struct ifnet *rtifp, *oifp; /* Either all classes or one of the valid ones */ if (optval != SO_TC_ALL && !SO_VALID_TC(optval)) { return EINVAL; } /* We need a flow hash for identification */ if (flowhash == 0) { return 0; } /* Grab the interfaces from the route and pcb */ rtifp = ((inp->inp_route.ro_rt != NULL) ? inp->inp_route.ro_rt->rt_ifp : NULL); oifp = inp->inp_last_outifp; if (rtifp != NULL) { if_qflush_sc(rtifp, so_tc2msc(optval), flowhash, NULL, NULL, 0); } if (oifp != NULL && oifp != rtifp) { if_qflush_sc(oifp, so_tc2msc(optval), flowhash, NULL, NULL, 0); } return 0; } /* * Clear the INP_INADDR_ANY flag (special case for PPP only) */ void inp_clear_INP_INADDR_ANY(struct socket *so) { struct inpcb *inp = NULL; socket_lock(so, 1); inp = sotoinpcb(so); if (inp) { inp->inp_flags &= ~INP_INADDR_ANY; } socket_unlock(so, 1); } void inp_get_soprocinfo(struct inpcb *inp, struct so_procinfo *soprocinfo) { struct socket *so = inp->inp_socket; soprocinfo->spi_pid = so->last_pid; strlcpy(&soprocinfo->spi_proc_name[0], &inp->inp_last_proc_name[0], sizeof(soprocinfo->spi_proc_name)); if (so->last_pid != 0) { uuid_copy(soprocinfo->spi_uuid, so->last_uuid); } /* * When not delegated, the effective pid is the same as the real pid */ if (so->so_flags & SOF_DELEGATED) { soprocinfo->spi_delegated = 1; soprocinfo->spi_epid = so->e_pid; uuid_copy(soprocinfo->spi_euuid, so->e_uuid); } else { soprocinfo->spi_delegated = 0; soprocinfo->spi_epid = so->last_pid; } strlcpy(&soprocinfo->spi_e_proc_name[0], &inp->inp_e_proc_name[0], sizeof(soprocinfo->spi_e_proc_name)); } int inp_findinpcb_procinfo(struct inpcbinfo *pcbinfo, uint32_t flowhash, struct so_procinfo *soprocinfo) { struct inpcb *inp = NULL; int found = 0; bzero(soprocinfo, sizeof(struct so_procinfo)); if (!flowhash) { return -1; } lck_rw_lock_shared(&pcbinfo->ipi_lock); LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { if (inp->inp_state != INPCB_STATE_DEAD && inp->inp_socket != NULL && inp->inp_flowhash == flowhash) { found = 1; inp_get_soprocinfo(inp, soprocinfo); break; } } lck_rw_done(&pcbinfo->ipi_lock); return found; } #if CONFIG_PROC_UUID_POLICY static void inp_update_cellular_policy(struct inpcb *inp, boolean_t set) { struct socket *so = inp->inp_socket; int before, after; VERIFY(so != NULL); VERIFY(inp->inp_state != INPCB_STATE_DEAD); before = INP_NO_CELLULAR(inp); if (set) { inp_set_nocellular(inp); } else { inp_clear_nocellular(inp); } after = INP_NO_CELLULAR(inp); if (net_io_policy_log && (before != after)) { static const char *ok = "OK"; static const char *nok = "NOACCESS"; uuid_string_t euuid_buf; pid_t epid; if (so->so_flags & SOF_DELEGATED) { uuid_unparse(so->e_uuid, euuid_buf); epid = so->e_pid; } else { uuid_unparse(so->last_uuid, euuid_buf); epid = so->last_pid; } /* allow this socket to generate another notification event */ so->so_ifdenied_notifies = 0; log(LOG_DEBUG, "%s: so 0x%llx [%d,%d] epid %d " "euuid %s%s %s->%s\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so), SOCK_TYPE(so), epid, euuid_buf, (so->so_flags & SOF_DELEGATED) ? " [delegated]" : "", ((before < after) ? ok : nok), ((before < after) ? nok : ok)); } } #if NECP static void inp_update_necp_want_app_policy(struct inpcb *inp, boolean_t set) { struct socket *so = inp->inp_socket; int before, after; VERIFY(so != NULL); VERIFY(inp->inp_state != INPCB_STATE_DEAD); before = (inp->inp_flags2 & INP2_WANT_APP_POLICY); if (set) { inp_set_want_app_policy(inp); } else { inp_clear_want_app_policy(inp); } after = (inp->inp_flags2 & INP2_WANT_APP_POLICY); if (net_io_policy_log && (before != after)) { static const char *wanted = "WANTED"; static const char *unwanted = "UNWANTED"; uuid_string_t euuid_buf; pid_t epid; if (so->so_flags & SOF_DELEGATED) { uuid_unparse(so->e_uuid, euuid_buf); epid = so->e_pid; } else { uuid_unparse(so->last_uuid, euuid_buf); epid = so->last_pid; } log(LOG_DEBUG, "%s: so 0x%llx [%d,%d] epid %d " "euuid %s%s %s->%s\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so), SOCK_TYPE(so), epid, euuid_buf, (so->so_flags & SOF_DELEGATED) ? " [delegated]" : "", ((before < after) ? unwanted : wanted), ((before < after) ? wanted : unwanted)); } } #endif /* NECP */ #endif /* !CONFIG_PROC_UUID_POLICY */ #if NECP void inp_update_necp_policy(struct inpcb *inp, struct sockaddr *override_local_addr, struct sockaddr *override_remote_addr, u_int override_bound_interface) { necp_socket_find_policy_match(inp, override_local_addr, override_remote_addr, override_bound_interface); if (necp_socket_should_rescope(inp) && inp->inp_lport == 0 && inp->inp_laddr.s_addr == INADDR_ANY && IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { // If we should rescope, and the socket is not yet bound inp_bindif(inp, necp_socket_get_rescope_if_index(inp), NULL); inp->inp_flags2 |= INP2_SCOPED_BY_NECP; } } #endif /* NECP */ int inp_update_policy(struct inpcb *inp) { #if CONFIG_PROC_UUID_POLICY struct socket *so = inp->inp_socket; uint32_t pflags = 0; int32_t ogencnt; int err = 0; uint8_t *lookup_uuid = NULL; if (!net_io_policy_uuid || so == NULL || inp->inp_state == INPCB_STATE_DEAD) { return 0; } /* * Kernel-created sockets that aren't delegating other sockets * are currently exempted from UUID policy checks. */ if (so->last_pid == 0 && !(so->so_flags & SOF_DELEGATED)) { return 0; } #if defined(XNU_TARGET_OS_OSX) if (so->so_rpid > 0) { lookup_uuid = so->so_ruuid; ogencnt = so->so_policy_gencnt; err = proc_uuid_policy_lookup(lookup_uuid, &pflags, &so->so_policy_gencnt); } #endif if (lookup_uuid == NULL || err == ENOENT) { lookup_uuid = ((so->so_flags & SOF_DELEGATED) ? so->e_uuid : so->last_uuid); ogencnt = so->so_policy_gencnt; err = proc_uuid_policy_lookup(lookup_uuid, &pflags, &so->so_policy_gencnt); } /* * Discard cached generation count if the entry is gone (ENOENT), * so that we go thru the checks below. */ if (err == ENOENT && ogencnt != 0) { so->so_policy_gencnt = 0; } /* * If the generation count has changed, inspect the policy flags * and act accordingly. If a policy flag was previously set and * the UUID is no longer present in the table (ENOENT), treat it * as if the flag has been cleared. */ if ((err == 0 || err == ENOENT) && ogencnt != so->so_policy_gencnt) { /* update cellular policy for this socket */ if (err == 0 && (pflags & PROC_UUID_NO_CELLULAR)) { inp_update_cellular_policy(inp, TRUE); } else if (!(pflags & PROC_UUID_NO_CELLULAR)) { inp_update_cellular_policy(inp, FALSE); } #if NECP /* update necp want app policy for this socket */ if (err == 0 && (pflags & PROC_UUID_NECP_APP_POLICY)) { inp_update_necp_want_app_policy(inp, TRUE); } else if (!(pflags & PROC_UUID_NECP_APP_POLICY)) { inp_update_necp_want_app_policy(inp, FALSE); } #endif /* NECP */ } return (err == ENOENT) ? 0 : err; #else /* !CONFIG_PROC_UUID_POLICY */ #pragma unused(inp) return 0; #endif /* !CONFIG_PROC_UUID_POLICY */ } unsigned int log_restricted; SYSCTL_DECL(_net_inet); SYSCTL_INT(_net_inet, OID_AUTO, log_restricted, CTLFLAG_RW | CTLFLAG_LOCKED, &log_restricted, 0, "Log network restrictions"); /* * Called when we need to enforce policy restrictions in the input path. * * Returns TRUE if we're not allowed to receive data, otherwise FALSE. */ static boolean_t _inp_restricted_recv(struct inpcb *inp, struct ifnet *ifp) { VERIFY(inp != NULL); /* * Inbound restrictions. */ if (!sorestrictrecv) { return FALSE; } if (ifp == NULL) { return FALSE; } if (IFNET_IS_CELLULAR(ifp) && INP_NO_CELLULAR(inp)) { return TRUE; } if (IFNET_IS_EXPENSIVE(ifp) && INP_NO_EXPENSIVE(inp)) { return TRUE; } if (IFNET_IS_CONSTRAINED(ifp) && INP_NO_CONSTRAINED(inp)) { return TRUE; } if (IFNET_IS_AWDL_RESTRICTED(ifp) && !INP_AWDL_UNRESTRICTED(inp)) { return TRUE; } if (!(ifp->if_eflags & IFEF_RESTRICTED_RECV)) { return FALSE; } if (inp->inp_flags & INP_RECV_ANYIF) { return FALSE; } /* * An entitled process can use the management interface without being bound * to the interface */ if (IFNET_IS_MANAGEMENT(ifp)) { if (INP_MANAGEMENT_ALLOWED(inp)) { return FALSE; } if (if_management_verbose > 1) { os_log(OS_LOG_DEFAULT, "_inp_restricted_recv %s:%d not allowed on management interface %s", proc_best_name(current_proc()), proc_getpid(current_proc()), ifp->if_xname); } return TRUE; } if ((inp->inp_flags & INP_BOUND_IF) && inp->inp_boundifp == ifp) { return FALSE; } if (IFNET_IS_INTCOPROC(ifp) && !INP_INTCOPROC_ALLOWED(inp)) { return TRUE; } return TRUE; } boolean_t inp_restricted_recv(struct inpcb *inp, struct ifnet *ifp) { boolean_t ret; ret = _inp_restricted_recv(inp, ifp); if (ret == TRUE && log_restricted) { printf("pid %d (%s) is unable to receive packets on %s\n", proc_getpid(current_proc()), proc_best_name(current_proc()), ifp->if_xname); } return ret; } /* * Called when we need to enforce policy restrictions in the output path. * * Returns TRUE if we're not allowed to send data out, otherwise FALSE. */ static boolean_t _inp_restricted_send(struct inpcb *inp, struct ifnet *ifp) { VERIFY(inp != NULL); /* * Outbound restrictions. */ if (!sorestrictsend) { return FALSE; } if (ifp == NULL) { return FALSE; } if (IFNET_IS_CELLULAR(ifp) && INP_NO_CELLULAR(inp)) { return TRUE; } if (IFNET_IS_EXPENSIVE(ifp) && INP_NO_EXPENSIVE(inp)) { return TRUE; } if (IFNET_IS_CONSTRAINED(ifp) && INP_NO_CONSTRAINED(inp)) { return TRUE; } if (IFNET_IS_AWDL_RESTRICTED(ifp) && !INP_AWDL_UNRESTRICTED(inp)) { return TRUE; } if (IFNET_IS_MANAGEMENT(ifp)) { if (!INP_MANAGEMENT_ALLOWED(inp)) { if (if_management_verbose > 1) { os_log(OS_LOG_DEFAULT, "_inp_restricted_send %s:%d not allowed on management interface %s", proc_best_name(current_proc()), proc_getpid(current_proc()), ifp->if_xname); } return TRUE; } } if (IFNET_IS_INTCOPROC(ifp) && !INP_INTCOPROC_ALLOWED(inp)) { return TRUE; } return FALSE; } boolean_t inp_restricted_send(struct inpcb *inp, struct ifnet *ifp) { boolean_t ret; ret = _inp_restricted_send(inp, ifp); if (ret == TRUE && log_restricted) { printf("pid %d (%s) is unable to transmit packets on %s\n", proc_getpid(current_proc()), proc_best_name(current_proc()), ifp->if_xname); } return ret; } inline void inp_count_sndbytes(struct inpcb *inp, u_int32_t th_ack) { struct ifnet *ifp = inp->inp_last_outifp; struct socket *so = inp->inp_socket; if (ifp != NULL && !(so->so_flags & SOF_MP_SUBFLOW) && (ifp->if_type == IFT_CELLULAR || IFNET_IS_WIFI(ifp))) { int32_t unsent; so->so_snd.sb_flags |= SB_SNDBYTE_CNT; /* * There can be data outstanding before the connection * becomes established -- TFO case */ if (so->so_snd.sb_cc > 0) { inp_incr_sndbytes_total(so, so->so_snd.sb_cc); } unsent = inp_get_sndbytes_allunsent(so, th_ack); if (unsent > 0) { inp_incr_sndbytes_unsent(so, unsent); } } } inline void inp_incr_sndbytes_total(struct socket *so, int32_t len) { struct inpcb *inp = (struct inpcb *)so->so_pcb; struct ifnet *ifp = inp->inp_last_outifp; if (ifp != NULL) { VERIFY(ifp->if_sndbyte_total >= 0); OSAddAtomic64(len, &ifp->if_sndbyte_total); } } inline void inp_decr_sndbytes_total(struct socket *so, int32_t len) { struct inpcb *inp = (struct inpcb *)so->so_pcb; struct ifnet *ifp = inp->inp_last_outifp; if (ifp != NULL) { if (ifp->if_sndbyte_total >= len) { OSAddAtomic64(-len, &ifp->if_sndbyte_total); } else { ifp->if_sndbyte_total = 0; } } } inline void inp_incr_sndbytes_unsent(struct socket *so, int32_t len) { struct inpcb *inp = (struct inpcb *)so->so_pcb; struct ifnet *ifp = inp->inp_last_outifp; if (ifp != NULL) { VERIFY(ifp->if_sndbyte_unsent >= 0); OSAddAtomic64(len, &ifp->if_sndbyte_unsent); } } inline void inp_decr_sndbytes_unsent(struct socket *so, int32_t len) { if (so == NULL || !(so->so_snd.sb_flags & SB_SNDBYTE_CNT)) { return; } struct inpcb *inp = (struct inpcb *)so->so_pcb; struct ifnet *ifp = inp->inp_last_outifp; if (ifp != NULL) { if (ifp->if_sndbyte_unsent >= len) { OSAddAtomic64(-len, &ifp->if_sndbyte_unsent); } else { ifp->if_sndbyte_unsent = 0; } } } inline void inp_decr_sndbytes_allunsent(struct socket *so, u_int32_t th_ack) { int32_t len; if (so == NULL || !(so->so_snd.sb_flags & SB_SNDBYTE_CNT)) { return; } len = inp_get_sndbytes_allunsent(so, th_ack); inp_decr_sndbytes_unsent(so, len); } #if SKYWALK inline void inp_update_netns_flags(struct socket *so) { struct inpcb *inp; uint32_t set_flags = 0; uint32_t clear_flags = 0; if (!(SOCK_CHECK_DOM(so, AF_INET) || SOCK_CHECK_DOM(so, AF_INET6))) { return; } inp = sotoinpcb(so); if (inp == NULL) { return; } if (!NETNS_TOKEN_VALID(&inp->inp_netns_token)) { return; } if (so->so_options & SO_NOWAKEFROMSLEEP) { set_flags |= NETNS_NOWAKEFROMSLEEP; } else { clear_flags |= NETNS_NOWAKEFROMSLEEP; } if (inp->inp_flags & INP_RECV_ANYIF) { set_flags |= NETNS_RECVANYIF; } else { clear_flags |= NETNS_RECVANYIF; } if (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) { set_flags |= NETNS_EXTBGIDLE; } else { clear_flags |= NETNS_EXTBGIDLE; } netns_change_flags(&inp->inp_netns_token, set_flags, clear_flags); } #endif /* SKYWALK */ inline void inp_set_activity_bitmap(struct inpcb *inp) { in_stat_set_activity_bitmap(&inp->inp_nw_activity, net_uptime()); } inline void inp_get_activity_bitmap(struct inpcb *inp, activity_bitmap_t *ab) { bcopy(&inp->inp_nw_activity, ab, sizeof(*ab)); } inline void inp_clear_activity_bitmap(struct inpcb *inp) { in_stat_clear_activity_bitmap(&inp->inp_nw_activity); } void inp_update_last_owner(struct socket *so, struct proc *p, struct proc *ep) { struct inpcb *inp = (struct inpcb *)so->so_pcb; if (inp == NULL) { return; } if (p != NULL) { strlcpy(&inp->inp_last_proc_name[0], proc_name_address(p), sizeof(inp->inp_last_proc_name)); } if (so->so_flags & SOF_DELEGATED) { if (ep != NULL) { strlcpy(&inp->inp_e_proc_name[0], proc_name_address(ep), sizeof(inp->inp_e_proc_name)); } else { inp->inp_e_proc_name[0] = 0; } } else { inp->inp_e_proc_name[0] = 0; } } void inp_copy_last_owner(struct socket *so, struct socket *head) { struct inpcb *inp = (struct inpcb *)so->so_pcb; struct inpcb *head_inp = (struct inpcb *)head->so_pcb; if (inp == NULL || head_inp == NULL) { return; } strlcpy(&inp->inp_last_proc_name[0], &head_inp->inp_last_proc_name[0], sizeof(inp->inp_last_proc_name)); strlcpy(&inp->inp_e_proc_name[0], &head_inp->inp_e_proc_name[0], sizeof(inp->inp_e_proc_name)); } static int in_check_management_interface_proc_callout(proc_t proc, void *arg __unused) { struct fileproc *fp = NULL; task_t task = proc_task(proc); bool allowed = false; if (IOTaskHasEntitlement(task, INTCOPROC_RESTRICTED_ENTITLEMENT) == true || IOTaskHasEntitlement(task, MANAGEMENT_DATA_ENTITLEMENT) == true #if DEBUG || DEVELOPMENT || IOTaskHasEntitlement(task, INTCOPROC_RESTRICTED_ENTITLEMENT_DEVELOPMENT) == true || IOTaskHasEntitlement(task, MANAGEMENT_DATA_ENTITLEMENT_DEVELOPMENT) == true #endif /* DEBUG || DEVELOPMENT */ ) { allowed = true; } if (allowed == false && management_data_unrestricted == false) { return PROC_RETURNED; } proc_fdlock(proc); fdt_foreach(fp, proc) { struct fileglob *fg = fp->fp_glob; struct socket *so; struct inpcb *inp; if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET) { continue; } so = (struct socket *)fp_get_data(fp); if (SOCK_DOM(so) != PF_INET && SOCK_DOM(so) != PF_INET6) { continue; } inp = (struct inpcb *)so->so_pcb; if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) { continue; } socket_lock(so, 1); if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { socket_unlock(so, 1); continue; } inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; socket_unlock(so, 1); } proc_fdunlock(proc); return PROC_RETURNED; } static bool in_management_interface_checked = false; static void in_management_interface_event_callback(struct nwk_wq_entry *nwk_item) { kfree_type(struct nwk_wq_entry, nwk_item); if (in_management_interface_checked == true) { return; } in_management_interface_checked = true; proc_iterate(PROC_ALLPROCLIST, in_check_management_interface_proc_callout, NULL, NULL, NULL); } void in_management_interface_check(void) { struct nwk_wq_entry *nwk_item; if (if_management_interface_check_needed == false || in_management_interface_checked == true) { return; } nwk_item = kalloc_type(struct nwk_wq_entry, Z_WAITOK | Z_ZERO | Z_NOFAIL); nwk_item->func = in_management_interface_event_callback; nwk_wq_enqueue(nwk_item); }