/* * Copyright (c) 2013-2021 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include "tcp_includes.h" #include #include #include #include #include #include #include #include static int tcp_cubic_init(struct tcpcb *tp); static int tcp_cubic_cleanup(struct tcpcb *tp); static void tcp_cubic_cwnd_init_or_reset(struct tcpcb *tp); static void tcp_cubic_congestion_avd(struct tcpcb *tp, struct tcphdr *th); static void tcp_cubic_ack_rcvd(struct tcpcb *tp, struct tcphdr *th); static void tcp_cubic_pre_fr(struct tcpcb *tp); static void tcp_cubic_post_fr(struct tcpcb *tp, struct tcphdr *th); static void tcp_cubic_after_timeout(struct tcpcb *tp); static int tcp_cubic_delay_ack(struct tcpcb *tp, struct tcphdr *th); static void tcp_cubic_switch_cc(struct tcpcb *tp); static uint32_t tcp_cubic_update(struct tcpcb *tp, uint32_t rtt); static inline void tcp_cubic_clear_state(struct tcpcb *tp); extern float cbrtf(float x); struct tcp_cc_algo tcp_cc_cubic = { .name = "cubic", .init = tcp_cubic_init, .cleanup = tcp_cubic_cleanup, .cwnd_init = tcp_cubic_cwnd_init_or_reset, .congestion_avd = tcp_cubic_congestion_avd, .ack_rcvd = tcp_cubic_ack_rcvd, .pre_fr = tcp_cubic_pre_fr, .post_fr = tcp_cubic_post_fr, .after_idle = tcp_cubic_cwnd_init_or_reset, .after_timeout = tcp_cubic_after_timeout, .delay_ack = tcp_cubic_delay_ack, .switch_to = tcp_cubic_switch_cc }; static float tcp_cubic_backoff = 0.2f; /* multiplicative decrease factor */ static float tcp_cubic_coeff = 0.4f; static float tcp_cubic_fast_convergence_factor = 0.875f; static float tcp_cubic_beta = 0.8f; static int tcp_cubic_init(struct tcpcb *tp) { os_atomic_inc(&tcp_cc_cubic.num_sockets, relaxed); if (tcp_cubic_rfc_compliant) { tcp_cubic_backoff = 0.3f; /* multiplicative decrease factor */ tcp_cubic_fast_convergence_factor = 0.85f; tcp_cubic_beta = 0.7f; } else { tcp_cubic_backoff = 0.2f; /* multiplicative decrease factor */ tcp_cubic_fast_convergence_factor = 0.875f; tcp_cubic_beta = 0.8f; } VERIFY(tp->t_ccstate != NULL); tcp_cubic_clear_state(tp); return 0; } static int tcp_cubic_cleanup(struct tcpcb *tp) { #pragma unused(tp) os_atomic_dec(&tcp_cc_cubic.num_sockets, relaxed); return 0; } /* * Initialize the congestion window at the beginning of a connection or * after idle time */ static void tcp_cubic_cwnd_init_or_reset(struct tcpcb *tp) { VERIFY(tp->t_ccstate != NULL); tcp_cubic_clear_state(tp); tcp_cc_cwnd_init_or_reset(tp); tp->t_pipeack = 0; tcp_clear_pipeack_state(tp); /* Start counting bytes for RFC 3465 again */ tp->t_bytes_acked = 0; /* * slow start threshold could get initialized to a lower value * when there is a cached value in the route metrics. In this case, * the connection can enter congestion avoidance without any packet * loss and Cubic will enter steady-state too early. It is better * to always probe to find the initial slow-start threshold. */ if (tp->t_inpcb->inp_stat->txbytes <= tcp_initial_cwnd(tp) && tp->snd_ssthresh < (TCP_MAXWIN << TCP_MAX_WINSHIFT)) { tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; } /* Initialize cubic last max to be same as ssthresh */ tp->t_ccstate->cub_last_max = tp->snd_ssthresh; } /* * Compute the target congestion window for the next RTT according to * cubic equation when an ack is received. * * W(t) = C(t-K)^3 + W(last_max) */ static uint32_t tcp_cubic_update(struct tcpcb *tp, uint32_t rtt) { struct tcp_globals *globals = tcp_get_globals(tp); float K, var; uint32_t elapsed_time, win; win = min(tp->snd_cwnd, tp->snd_wnd); if (tp->t_ccstate->cub_last_max == 0) { tp->t_ccstate->cub_last_max = tp->snd_ssthresh; } if (tp->t_ccstate->cub_epoch_start == 0) { /* * This is the beginning of a new epoch, initialize some of * the variables that we need to use for computing the * congestion window later. */ tp->t_ccstate->cub_epoch_start = tcp_globals_now(globals); if (tp->t_ccstate->cub_epoch_start == 0) { tp->t_ccstate->cub_epoch_start = 1; } if (win < tp->t_ccstate->cub_last_max) { /* * Compute cubic epoch period, this is the time * period that the window will take to increase to * last_max again after backoff due to loss. */ if (tcp_cubic_minor_fixes) { K = ((float)tp->t_ccstate->cub_last_max - win) / tp->t_maxseg / tcp_cubic_coeff; } else { K = (tp->t_ccstate->cub_last_max - win) / tp->t_maxseg / tcp_cubic_coeff; } K = cbrtf(K); tp->t_ccstate->cub_epoch_period = K * TCP_RETRANSHZ; /* Origin point */ tp->t_ccstate->cub_origin_point = tp->t_ccstate->cub_last_max; } else { tp->t_ccstate->cub_epoch_period = 0; tp->t_ccstate->cub_origin_point = win; } } VERIFY(tp->t_ccstate->cub_origin_point > 0); /* * Compute the target window for the next RTT using smoothed RTT * as an estimate for next RTT. */ elapsed_time = timer_diff(tcp_globals_now(globals), 0, tp->t_ccstate->cub_epoch_start, 0); if (tcp_cubic_use_minrtt) { elapsed_time += max(tcp_cubic_use_minrtt, rtt); } else { elapsed_time += rtt; } var = (elapsed_time - tp->t_ccstate->cub_epoch_period) / TCP_RETRANSHZ; var = var * var * var * (tcp_cubic_coeff * tp->t_maxseg); return (uint32_t)(tp->t_ccstate->cub_origin_point + var); } /* * Standard TCP utilizes bandwidth well in low RTT and low BDP connections * even when there is some packet loss. Enabling TCP mode will help Cubic * to achieve this kind of utilization. * * But if there is a bottleneck link in the path with a fixed size queue * and fixed bandwidth, TCP Cubic will help to reduce packet loss at this * link because of the steady-state behavior. Using average and mean * absolute deviation of W(lastmax), we try to detect if the congestion * window is close to the bottleneck bandwidth. In that case, disabling * TCP mode will help to minimize packet loss at this link. * * Disable TCP mode if the W(lastmax) (the window where previous packet * loss happened) is within a small range from the average last max * calculated. */ #define TCP_CUBIC_ENABLE_TCPMODE(_tp_) \ ((!soissrcrealtime((_tp_)->t_inpcb->inp_socket) && \ (_tp_)->t_ccstate->cub_mean_dev > (tp->t_maxseg << 1)) ? 1 : 0) /* * Compute the window growth if standard TCP (AIMD) was used with * a backoff of 0.5 and additive increase of 1 packet per RTT. * * TCP window at time t can be calculated using the following equation * with tcp_beta_cubic * * W(t) <- Wmax * tcp_beta_cubic + 3 * ((1 - tcp_beta_cubic)/(1 + tcp_beta_cubic)) * t/RTT * */ static uint32_t tcp_cubic_tcpwin(struct tcpcb *tp, struct tcphdr *th) { if (tp->t_ccstate->cub_tcp_win == 0) { /* Start of the epoch, we set the tcp_win to whatever Cubic decided * at the beginning of the epoch. */ tp->t_ccstate->cub_tcp_win = min(tp->snd_cwnd, tp->snd_wnd); if (tcp_cubic_minor_fixes) { tp->t_ccstate->cub_tcp_bytes_acked = BYTES_ACKED(th, tp); } else { tp->t_ccstate->cub_tcp_bytes_acked = 0; } } else { tp->t_ccstate->cub_tcp_bytes_acked += BYTES_ACKED(th, tp); if (tcp_cubic_minor_fixes) { /* * Increase by ai_factor * MSS, once per RTT. Counting bytes_acked * against the snd_cwnd represents exactly one RTT at full rate. */ while (tp->t_ccstate->cub_tcp_bytes_acked >= tp->snd_cwnd) { /* Enough bytes have been ACK'd for TCP to do AIMD*/ tp->t_ccstate->cub_tcp_bytes_acked -= tp->snd_cwnd; if (tp->snd_cwnd >= tp->t_ccstate->cub_last_max || !tcp_cubic_rfc_compliant) { tp->t_ccstate->cub_tcp_win += tp->t_maxseg; } else { /* Increase-rate from Section 4.2, RFC 8312 */ float ai_factor = (float)3 * (1 - tcp_cubic_beta) / (1 + tcp_cubic_beta); tp->t_ccstate->cub_tcp_win += (uint32_t)(tp->t_maxseg * ai_factor); } } } else { if (tp->t_ccstate->cub_tcp_bytes_acked >= tp->t_ccstate->cub_tcp_win) { tp->t_ccstate->cub_tcp_bytes_acked -= tp->t_ccstate->cub_tcp_win; tp->t_ccstate->cub_tcp_win += tp->t_maxseg; } } } return tp->t_ccstate->cub_tcp_win; } /* * Handle an in-sequence ack during congestion avoidance phase. */ static void tcp_cubic_congestion_avd(struct tcpcb *tp, struct tcphdr *th) { uint32_t cubic_target_win, tcp_win, rtt; uint64_t incr_win = UINT32_MAX; /* Do not increase congestion window in non-validated phase */ if (tcp_cc_is_cwnd_nonvalidated(tp) != 0) { return; } tp->t_bytes_acked += BYTES_ACKED(th, tp); rtt = get_base_rtt(tp); /* * First compute cubic window. If cubic variables are not * initialized (after coming out of recovery), this call will * initialize them. */ cubic_target_win = tcp_cubic_update(tp, rtt); /* Compute TCP window if a multiplicative decrease of 0.2 is used */ tcp_win = tcp_cubic_tcpwin(tp, th); if (tp->snd_cwnd < tcp_win && tcp_cubic_minor_fixes == 0 && TCP_CUBIC_ENABLE_TCPMODE(tp)) { /* this connection is in TCP-friendly region */ if (tp->t_bytes_acked >= tp->snd_cwnd) { tp->t_bytes_acked -= tp->snd_cwnd; tp->snd_cwnd = min(tcp_win, TCP_MAXWIN << tp->snd_scale); } } else { if (cubic_target_win > tp->snd_cwnd) { /* * The target win is computed for the next RTT. * To reach this value, cwnd will have to be updated * one segment at a time. Compute how many bytes * need to be acknowledged before we can increase * the cwnd by one segment. */ incr_win = (uint64_t)tp->snd_cwnd * tp->t_maxseg; incr_win /= (cubic_target_win - tp->snd_cwnd); if (!tcp_cubic_minor_fixes) { if (incr_win > 0 && tp->t_bytes_acked >= incr_win) { tp->t_bytes_acked -= incr_win; tp->snd_cwnd = min((tp->snd_cwnd + tp->t_maxseg), TCP_MAXWIN << tp->snd_scale); } } } } if (tcp_cubic_minor_fixes) { tcp_win = tcp_round_to(tcp_win, tp->t_maxseg); if (tp->snd_cwnd < tcp_win) { uint64_t tcp_incr_win; tcp_incr_win = (uint64_t)tp->snd_cwnd * tp->t_maxseg; tcp_incr_win /= (tcp_win - tp->snd_cwnd); if (tcp_incr_win < incr_win) { /* this connection is in TCP-friendly region */ incr_win = tcp_incr_win; } } if (incr_win > 0 && tp->t_bytes_acked >= incr_win) { tp->t_bytes_acked -= incr_win; tp->snd_cwnd = min(tp->snd_cwnd + tp->t_maxseg, TCP_MAXWIN << tp->snd_scale); } } } static void tcp_cubic_ack_rcvd(struct tcpcb *tp, struct tcphdr *th) { /* Do not increase the congestion window in non-validated phase */ if (tcp_cc_is_cwnd_nonvalidated(tp) != 0) { return; } if (tp->snd_cwnd >= tp->snd_ssthresh) { /* Congestion avoidance phase */ tcp_cubic_congestion_avd(tp, th); } else { /* * Use 2*SMSS as limit on increment as suggested * by RFC 3465 section 2.3 */ uint32_t acked, abc_lim, incr; acked = BYTES_ACKED(th, tp); if (tcp_cubic_minor_fixes) { /* * Maximum burst-size is limited to the initial congestion-window. * We know that the network can survive this kind of burst. */ abc_lim = tcp_initial_cwnd(tp); } else { abc_lim = (tp->snd_nxt == tp->snd_max) ? 2 * tp->t_maxseg : tp->t_maxseg; } incr = min(acked, abc_lim); tp->snd_cwnd += incr; tp->snd_cwnd = min(tp->snd_cwnd, TCP_MAXWIN << tp->snd_scale); } } static void tcp_cubic_pre_fr(struct tcpcb *tp) { uint32_t win, avg; int32_t dev; tp->t_ccstate->cub_epoch_start = 0; tp->t_ccstate->cub_tcp_win = 0; tp->t_ccstate->cub_tcp_bytes_acked = 0; win = min(tp->snd_cwnd, tp->snd_wnd); if (tp->t_flagsext & TF_CWND_NONVALIDATED) { tp->t_lossflightsize = tp->snd_max - tp->snd_una; if (tcp_flow_control_response) { win = max(tp->t_pipeack, tp->t_lossflightsize); } else { win = (max(tp->t_pipeack, tp->t_lossflightsize)) >> 1; } } else { tp->t_lossflightsize = 0; } /* * Note the congestion window at which packet loss occurred as * cub_last_max. * * If the congestion window is less than the last max window when * loss occurred, it indicates that capacity available in the * network has gone down. This can happen if a new flow has started * and it is capturing some of the bandwidth. To reach convergence * quickly, backoff a little more. */ if (win < tp->t_ccstate->cub_last_max && tcp_cubic_minor_fixes) { tp->t_ccstate->cub_last_max = (uint32_t)((float)win * tcp_cubic_fast_convergence_factor); } else { tp->t_ccstate->cub_last_max = win; } if (tp->t_ccstate->cub_last_max == 0) { /* * If last_max is zero because snd_wnd is zero or for * any other reason, initialize it to the amount of data * in flight */ tp->t_ccstate->cub_last_max = tp->snd_max - tp->snd_una; } /* * Compute average and mean absolute deviation of the * window at which packet loss occurred. */ if (tp->t_ccstate->cub_avg_lastmax == 0) { tp->t_ccstate->cub_avg_lastmax = tp->t_ccstate->cub_last_max; } else { /* * Average is computed by taking 63 parts of * history and one part of the most recent value */ avg = tp->t_ccstate->cub_avg_lastmax; avg = (avg << 6) - avg; tp->t_ccstate->cub_avg_lastmax = (avg + tp->t_ccstate->cub_last_max) >> 6; } /* caluclate deviation from average */ dev = tp->t_ccstate->cub_avg_lastmax - tp->t_ccstate->cub_last_max; /* Take the absolute value */ if (dev < 0) { dev = -dev; } if (tp->t_ccstate->cub_mean_dev == 0) { tp->t_ccstate->cub_mean_dev = dev; } else { dev = dev + ((tp->t_ccstate->cub_mean_dev << 4) - tp->t_ccstate->cub_mean_dev); tp->t_ccstate->cub_mean_dev = dev >> 4; } /* Backoff congestion window by tcp_cubic_backoff factor */ win = (uint32_t)(win - (win * tcp_cubic_backoff)); win = tcp_round_to(win, tp->t_maxseg); if (win < 2 * tp->t_maxseg) { win = 2 * tp->t_maxseg; } tp->snd_ssthresh = win; tcp_cc_resize_sndbuf(tp); } static void tcp_cubic_post_fr(struct tcpcb *tp, struct tcphdr *th) { uint32_t flight_size = 0; uint32_t ack; if (th != NULL) { ack = th->th_ack; } else { ack = tp->snd_una; } if (SEQ_LEQ(ack, tp->snd_max) && (!tcp_cubic_minor_fixes || tcp_flow_control_response)) { flight_size = tp->snd_max - ack; } else if (tcp_cubic_minor_fixes) { /* * Cubic Minor Fixes: snd_max - th_ack is a very very bad estimate * of the flight size. Either the app is sending at full speed and * flight_size *is* snd_sshtresh, or the app is not sending at full * speed and congestion-window validation would have kicked in earlier. * * Except that for the latter, snd_ssthresh is way too high. * When we exit recovery we will burst a lot of data out... * * So, tcp_flow_control_response brings us back to the old behavior. * Too many feature-flags... */ flight_size = tp->snd_ssthresh; } /* * Cubic Minor Fixes: t_lossflightsize is always 0, because of * EXIT_FASTRECOVERY. This here is basically dead code... */ if (SACK_ENABLED(tp) && tp->t_lossflightsize > 0 && !tcp_cubic_minor_fixes) { uint32_t total_rxt_size = 0, ncwnd; /* * When SACK is enabled, the number of retransmitted bytes * can be counted more accurately. */ total_rxt_size = tcp_rxtseg_total_size(tp); ncwnd = max(tp->t_pipeack, tp->t_lossflightsize); if (total_rxt_size <= ncwnd) { ncwnd = ncwnd - total_rxt_size; } /* * To avoid sending a large burst at the end of recovery * set a max limit on ncwnd */ ncwnd = min(ncwnd, (tp->t_maxseg << 6)); ncwnd = ncwnd >> 1; flight_size = max(ncwnd, flight_size); } /* * Complete ack. The current window was inflated for fast recovery. * It has to be deflated post recovery. * * Window inflation should have left us with approx snd_ssthresh * outstanding data. If the flight size is zero or one segment, * make congestion window to be at least as big as 2 segments to * avoid delayed acknowledgements. This is according to RFC 6582. */ if (flight_size < tp->snd_ssthresh) { tp->snd_cwnd = max(flight_size, tp->t_maxseg) + tp->t_maxseg; } else { tp->snd_cwnd = tp->snd_ssthresh; } tp->t_ccstate->cub_tcp_win = 0; tp->t_ccstate->cub_tcp_bytes_acked = 0; } static void tcp_cubic_after_timeout(struct tcpcb *tp) { VERIFY(tp->t_ccstate != NULL); /* * Avoid adjusting congestion window due to SYN retransmissions. * If more than one byte (SYN) is outstanding then it is still * needed to adjust the window. */ if (tp->t_state < TCPS_ESTABLISHED && ((int)(tp->snd_max - tp->snd_una) <= 1)) { return; } if (!IN_FASTRECOVERY(tp)) { tcp_cubic_clear_state(tp); tcp_cubic_pre_fr(tp); } /* * Close the congestion window down to one segment as a retransmit * timeout might indicate severe congestion. */ tp->snd_cwnd = tp->t_maxseg; } static int tcp_cubic_delay_ack(struct tcpcb *tp, struct tcphdr *th) { return tcp_cc_delay_ack(tp, th); } /* * When switching from a different CC it is better for Cubic to start * fresh. The state required for Cubic calculation might be stale and it * might not represent the current state of the network. If it starts as * a new connection it will probe and learn the existing network conditions. */ static void tcp_cubic_switch_cc(struct tcpcb *tp) { tcp_cubic_cwnd_init_or_reset(tp); os_atomic_inc(&tcp_cc_cubic.num_sockets, relaxed); } static inline void tcp_cubic_clear_state(struct tcpcb *tp) { tp->t_ccstate->cub_last_max = 0; tp->t_ccstate->cub_epoch_start = 0; tp->t_ccstate->cub_origin_point = 0; tp->t_ccstate->cub_tcp_win = 0; tp->t_ccstate->cub_tcp_bytes_acked = 0; tp->t_ccstate->cub_epoch_period = 0; }