/* * Copyright (c) 2010-2022 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 2009 Bruce Simpson. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * IPv6 multicast socket, group, and socket option processing module. * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void im6f_commit(struct in6_mfilter *); static int im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, struct in6_msource **); static struct in6_msource * im6f_graft(struct in6_mfilter *, const uint8_t, const struct sockaddr_in6 *); static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); static void im6f_rollback(struct in6_mfilter *); static void im6f_reap(struct in6_mfilter *); static int im6o_grow(struct ip6_moptions *); static size_t im6o_match_group(const struct ip6_moptions *, const struct ifnet *, const struct sockaddr_in6 *); static struct in6_msource * im6o_match_source(const struct ip6_moptions *, const size_t, const struct sockaddr_in6 *); static void im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, const int rollback); static int in6_mc_get(struct ifnet *, const struct in6_addr *, struct in6_multi **); static int in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, const int noalloc, struct ip6_msource **pims); static int in6m_is_ifp_detached(const struct in6_multi *); static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); static void in6m_reap(struct in6_multi *); static struct ip6_moptions * in6p_findmoptions(struct inpcb *); static int in6p_get_source_filters(struct inpcb *, struct sockopt *); static int in6p_lookup_v4addr(struct ipv6_mreq *, struct ip_mreq *); static int in6p_join_group(struct inpcb *, struct sockopt *); static int in6p_leave_group(struct inpcb *, struct sockopt *); static struct ifnet * in6p_lookup_mcast_ifp(const struct inpcb *, const struct sockaddr_in6 *); static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); static int in6p_set_source_filters(struct inpcb *, struct sockopt *); static int sysctl_ip6_mcast_filters SYSCTL_HANDLER_ARGS; static __inline__ int ip6_msource_cmp(const struct ip6_msource *, const struct ip6_msource *); SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPv6 multicast"); static unsigned long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; SYSCTL_LONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, CTLFLAG_RW | CTLFLAG_LOCKED, &in6_mcast_maxgrpsrc, "Max source filters per group"); static unsigned long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; SYSCTL_LONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, CTLFLAG_RW | CTLFLAG_LOCKED, &in6_mcast_maxsocksrc, "Max source filters per socket"); int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_LOCKED, &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_ip6_mcast_filters, "Per-interface stack-wide source filters"); RB_GENERATE_PREV(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); #define IN6M_TRACE_HIST_SIZE 32 /* size of trace history */ /* For gdb */ __private_extern__ unsigned int in6m_trace_hist_size = IN6M_TRACE_HIST_SIZE; struct in6_multi_dbg { struct in6_multi in6m; /* in6_multi */ u_int16_t in6m_refhold_cnt; /* # of ref */ u_int16_t in6m_refrele_cnt; /* # of rele */ /* * Circular lists of in6m_addref and in6m_remref callers. */ ctrace_t in6m_refhold[IN6M_TRACE_HIST_SIZE]; ctrace_t in6m_refrele[IN6M_TRACE_HIST_SIZE]; /* * Trash list linkage */ TAILQ_ENTRY(in6_multi_dbg) in6m_trash_link; }; /* Lock group and attribute for in6_multihead_lock lock */ static LCK_ATTR_DECLARE(in6_multihead_lock_attr, 0, 0); static LCK_GRP_DECLARE(in6_multihead_lock_grp, "in6_multihead"); /* List of trash in6_multi entries protected by in6m_trash_lock */ static TAILQ_HEAD(, in6_multi_dbg) in6m_trash_head = TAILQ_HEAD_INITIALIZER(in6m_trash_head); static LCK_MTX_DECLARE_ATTR(in6m_trash_lock, &in6_multihead_lock_grp, &in6_multihead_lock_attr); #if DEBUG static TUNABLE(bool, in6m_debug, "ifa_debug", true); /* debugging (enabled) */ #else static TUNABLE(bool, in6m_debug, "ifa_debug", false); /* debugging (disabled) */ #endif /* !DEBUG */ static KALLOC_TYPE_DEFINE(imm_zone, struct in6_multi_mship, NET_KT_DEFAULT); static KALLOC_TYPE_DEFINE(ip6ms_zone, struct ip6_msource, NET_KT_DEFAULT); static KALLOC_TYPE_DEFINE(in6ms_zone, struct in6_msource, NET_KT_DEFAULT); static LCK_RW_DECLARE_ATTR(in6_multihead_lock, &in6_multihead_lock_grp, &in6_multihead_lock_attr); struct in6_multihead in6_multihead; static struct in6_multi *in6_multi_alloc(zalloc_flags_t); static void in6_multi_free(struct in6_multi *); static void in6_multi_attach(struct in6_multi *); static struct in6_multi_mship *in6_multi_mship_alloc(zalloc_flags_t); static void in6_multi_mship_free(struct in6_multi_mship *); static void in6m_trace(struct in6_multi *, int); static struct ip6_msource *ip6ms_alloc(zalloc_flags_t); static void ip6ms_free(struct ip6_msource *); static struct in6_msource *in6ms_alloc(zalloc_flags_t); static void in6ms_free(struct in6_msource *); /* * IPv6 source tree comparison function. * * An ordered predicate is necessary; bcmp() is not documented to return * an indication of order, memcmp() is, and is an ISO C99 requirement. */ static __inline int ip6_msource_cmp(const struct ip6_msource *a, const struct ip6_msource *b) { return memcmp(&a->im6s_addr, &b->im6s_addr, sizeof(struct in6_addr)); } /* * Inline function which wraps assertions for a valid ifp. */ static __inline__ int in6m_is_ifp_detached(const struct in6_multi *inm) { VERIFY(inm->in6m_ifma != NULL); VERIFY(inm->in6m_ifp == inm->in6m_ifma->ifma_ifp); return !ifnet_is_attached(inm->in6m_ifp, 0); } /* * Initialize an in6_mfilter structure to a known state at t0, t1 * with an empty source filter list. */ static __inline__ void im6f_init(struct in6_mfilter *imf, const uint8_t st0, const uint8_t st1) { memset(imf, 0, sizeof(struct in6_mfilter)); RB_INIT(&imf->im6f_sources); imf->im6f_st[0] = st0; imf->im6f_st[1] = st1; } /* * Resize the ip6_moptions vector to the next power-of-two minus 1. */ static int im6o_grow(struct ip6_moptions *imo) { struct in6_multi **nmships; struct in6_multi **omships; struct in6_mfilter *nmfilters; struct in6_mfilter *omfilters; int err; size_t idx; uint16_t oldmax; uint16_t newmax; IM6O_LOCK_ASSERT_HELD(imo); nmships = NULL; nmfilters = NULL; err = 0; omships = imo->im6o_membership; omfilters = imo->im6o_mfilters; oldmax = imo->im6o_max_memberships; newmax = ((oldmax + 1) * 2) - 1; if (newmax > IPV6_MAX_MEMBERSHIPS) { return ETOOMANYREFS; } if ((nmships = kalloc_type(struct in6_multi *, newmax, Z_WAITOK | Z_ZERO)) == NULL) { err = ENOMEM; goto cleanup; } if ((nmfilters = kalloc_type(struct in6_mfilter, newmax, Z_WAITOK | Z_ZERO)) == NULL) { err = ENOMEM; goto cleanup; } /* Copy the existing memberships and release the memory. */ if (omships != NULL) { VERIFY(oldmax <= newmax); memcpy(nmships, omships, oldmax * sizeof(struct in6_multi *)); kfree_type(struct in6_multi *, oldmax, omships); } /* Copy the existing filters and release the memory. */ if (omfilters != NULL) { VERIFY(oldmax <= newmax); memcpy(nmfilters, omfilters, oldmax * sizeof(struct in6_mfilter)); kfree_type(struct in6_mfilter, oldmax, omfilters); } /* Initialize newly allocated source filter heads. */ for (idx = oldmax; idx < newmax; idx++) { im6f_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); } imo->im6o_membership = nmships; nmships = NULL; imo->im6o_mfilters = nmfilters; nmfilters = NULL; imo->im6o_max_memberships = newmax; return 0; cleanup: if (nmfilters != NULL) { kfree_type(struct in6_mfilter, newmax, nmfilters); } if (nmships != NULL) { kfree_type(struct in6_multi *, newmax, nmships); } return err; } /* * Find an IPv6 multicast group entry for this ip6_moptions instance * which matches the specified group, and optionally an interface. * Return its index into the array, or -1 if not found. */ static size_t im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, const struct sockaddr_in6 *group) { const struct sockaddr_in6 *gsin6; struct in6_multi *pinm; int idx; int nmships; IM6O_LOCK_ASSERT_HELD(__DECONST(struct ip6_moptions *, imo)); gsin6 = group; /* The im6o_membership array may be lazy allocated. */ if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) { return -1; } nmships = imo->im6o_num_memberships; for (idx = 0; idx < nmships; idx++) { pinm = imo->im6o_membership[idx]; if (pinm == NULL) { continue; } IN6M_LOCK(pinm); if ((ifp == NULL || (pinm->in6m_ifp == ifp)) && in6_are_addr_equal_scoped(&pinm->in6m_addr, &gsin6->sin6_addr, pinm->ifscope, gsin6->sin6_scope_id)) { IN6M_UNLOCK(pinm); break; } IN6M_UNLOCK(pinm); } if (idx >= nmships) { idx = -1; } return idx; } /* * Find an IPv6 multicast source entry for this imo which matches * the given group index for this socket, and source address. * * XXX TODO: The scope ID, if present in src, is stripped before * any comparison. We SHOULD enforce scope/zone checks where the source * filter entry has a link scope. * * NOTE: This does not check if the entry is in-mode, merely if * it exists, which may not be the desired behaviour. */ static struct in6_msource * im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, const struct sockaddr_in6 *src) { struct ip6_msource find; struct in6_mfilter *imf; struct ip6_msource *ims; const struct sockaddr_in6 *psa; IM6O_LOCK_ASSERT_HELD(__DECONST(struct ip6_moptions *, imo)); VERIFY(src->sin6_family == AF_INET6); VERIFY(gidx != (size_t)-1 && gidx < imo->im6o_num_memberships); /* The im6o_mfilters array may be lazy allocated. */ if (imo->im6o_mfilters == NULL) { return NULL; } imf = &imo->im6o_mfilters[gidx]; psa = src; find.im6s_addr = psa->sin6_addr; in6_clearscope(&find.im6s_addr); /* XXX */ ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); return (struct in6_msource *)ims; } /* * Perform filtering for multicast datagrams on a socket by group and source. * * Returns 0 if a datagram should be allowed through, or various error codes * if the socket was not a member of the group, or the source was muted, etc. */ int im6o_mc_filter(const struct ip6_moptions *imo, struct ifnet *ifp, const struct sockaddr_in6 *group, const struct sockaddr_in6 *src) { size_t gidx; struct in6_msource *ims; int mode; IM6O_LOCK_ASSERT_HELD(__DECONST(struct ip6_moptions *, imo)); VERIFY(ifp != NULL); struct sockaddr_in6 group_tmp = *group; if (!in6_embedded_scope) { group_tmp.sin6_scope_id = in6_addr2scopeid(ifp, &group_tmp.sin6_addr); } gidx = im6o_match_group(imo, ifp, &group_tmp); if (gidx == (size_t)-1) { return MCAST_NOTGMEMBER; } /* * Check if the source was included in an (S,G) join. * Allow reception on exclusive memberships by default, * reject reception on inclusive memberships by default. * Exclude source only if an in-mode exclude filter exists. * Include source only if an in-mode include filter exists. * NOTE: We are comparing group state here at MLD t1 (now) * with socket-layer t0 (since last downcall). */ mode = imo->im6o_mfilters[gidx].im6f_st[1]; ims = im6o_match_source(imo, gidx, src); if ((ims == NULL && mode == MCAST_INCLUDE) || (ims != NULL && ims->im6sl_st[0] != mode)) { return MCAST_NOTSMEMBER; } return MCAST_PASS; } /* * Find and return a reference to an in6_multi record for (ifp, group), * and bump its reference count. * If one does not exist, try to allocate it, and update link-layer multicast * filters on ifp to listen for group. * Assumes the IN6_MULTI lock is held across the call. * Return 0 if successful, otherwise return an appropriate error code. */ static int in6_mc_get(struct ifnet *ifp, const struct in6_addr *group, struct in6_multi **pinm) { struct sockaddr_in6 gsin6; struct ifmultiaddr *__single ifma; struct in6_multi *__single inm; int error; *pinm = NULL; in6_multihead_lock_shared(); IN6_LOOKUP_MULTI(group, ifp, inm); if (inm != NULL) { IN6M_LOCK(inm); VERIFY(inm->in6m_reqcnt >= 1); inm->in6m_reqcnt++; VERIFY(inm->in6m_reqcnt != 0); *pinm = inm; IN6M_UNLOCK(inm); in6_multihead_lock_done(); /* * We already joined this group; return the in6m * with a refcount held (via lookup) for caller. */ return 0; } in6_multihead_lock_done(); memset(&gsin6, 0, sizeof(gsin6)); gsin6.sin6_family = AF_INET6; gsin6.sin6_len = sizeof(struct sockaddr_in6); gsin6.sin6_addr = *group; /* * Check if a link-layer group is already associated * with this network-layer group on the given ifnet. */ error = if_addmulti(ifp, SA(&gsin6), &ifma); if (error != 0) { return error; } /* * See comments in in6m_remref() for access to ifma_protospec. */ in6_multihead_lock_exclusive(); IFMA_LOCK(ifma); if ((inm = ifma->ifma_protospec) != NULL) { VERIFY(ifma->ifma_addr != NULL); VERIFY(ifma->ifma_addr->sa_family == AF_INET6); IN6M_ADDREF(inm); /* for caller */ IFMA_UNLOCK(ifma); IN6M_LOCK(inm); VERIFY(inm->in6m_ifma == ifma); VERIFY(inm->in6m_ifp == ifp); VERIFY(in6_are_addr_equal_scoped(&inm->in6m_addr, group, inm->ifscope, ifp->if_index)); if (inm->in6m_debug & IFD_ATTACHED) { VERIFY(inm->in6m_reqcnt >= 1); inm->in6m_reqcnt++; VERIFY(inm->in6m_reqcnt != 0); *pinm = inm; IN6M_UNLOCK(inm); in6_multihead_lock_done(); IFMA_REMREF(ifma); /* * We lost the race with another thread doing * in6_mc_get(); since this group has already * been joined; return the inm with a refcount * held for caller. */ return 0; } /* * We lost the race with another thread doing in6_delmulti(); * the inm referring to the ifma has been detached, thus we * reattach it back to the in6_multihead list, and return the * inm with a refcount held for the caller. */ in6_multi_attach(inm); VERIFY((inm->in6m_debug & (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED); *pinm = inm; IN6M_UNLOCK(inm); in6_multihead_lock_done(); IFMA_REMREF(ifma); return 0; } IFMA_UNLOCK(ifma); /* * A new in6_multi record is needed; allocate and initialize it. * We DO NOT perform an MLD join as the in6_ layer may need to * push an initial source list down to MLD to support SSM. * * The initial source filter state is INCLUDE, {} as per the RFC. * Pending state-changes per group are subject to a bounds check. */ inm = in6_multi_alloc(Z_WAITOK); IN6M_LOCK(inm); inm->in6m_addr = *group; inm->ifscope = in6_addr2scopeid(ifp, &inm->in6m_addr); inm->in6m_ifp = ifp; inm->in6m_mli = MLD_IFINFO(ifp); VERIFY(inm->in6m_mli != NULL); MLI_ADDREF(inm->in6m_mli); inm->in6m_ifma = ifma; /* keep refcount from if_addmulti() */ inm->in6m_state = MLD_NOT_MEMBER; /* * Pending state-changes per group are subject to a bounds check. */ inm->in6m_scq.ifq_maxlen = MLD_MAX_STATE_CHANGES; inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; RB_INIT(&inm->in6m_srcs); *pinm = inm; in6_multi_attach(inm); VERIFY((inm->in6m_debug & (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED); IN6M_ADDREF_LOCKED(inm); /* for caller */ IN6M_UNLOCK(inm); IFMA_LOCK(ifma); VERIFY(ifma->ifma_protospec == NULL); ifma->ifma_protospec = inm; IFMA_UNLOCK(ifma); in6_multihead_lock_done(); return 0; } /* * Clear recorded source entries for a group. * Used by the MLD code. Caller must hold the IN6_MULTI lock. * FIXME: Should reap. */ void in6m_clear_recorded(struct in6_multi *inm) { struct ip6_msource *ims; IN6M_LOCK_ASSERT_HELD(inm); RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { if (ims->im6s_stp) { ims->im6s_stp = 0; --inm->in6m_st[1].iss_rec; } } VERIFY(inm->in6m_st[1].iss_rec == 0); } /* * Record a source as pending for a Source-Group MLDv2 query. * This lives here as it modifies the shared tree. * * inm is the group descriptor. * naddr is the address of the source to record in network-byte order. * * If the net.inet6.mld.sgalloc sysctl is non-zero, we will * lazy-allocate a source node in response to an SG query. * Otherwise, no allocation is performed. This saves some memory * with the trade-off that the source will not be reported to the * router if joined in the window between the query response and * the group actually being joined on the local host. * * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. * This turns off the allocation of a recorded source entry if * the group has not been joined. * * Return 0 if the source didn't exist or was already marked as recorded. * Return 1 if the source was marked as recorded by this function. * Return <0 if any error occured (negated errno code). */ int in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) { struct ip6_msource find; struct ip6_msource *ims, *nims; IN6M_LOCK_ASSERT_HELD(inm); find.im6s_addr = *addr; ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); if (ims && ims->im6s_stp) { return 0; } if (ims == NULL) { if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) { return -ENOSPC; } nims = ip6ms_alloc(Z_WAITOK); nims->im6s_addr = find.im6s_addr; RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); ++inm->in6m_nsrc; ims = nims; } /* * Mark the source as recorded and update the recorded * source count. */ ++ims->im6s_stp; ++inm->in6m_st[1].iss_rec; return 1; } /* * Return a pointer to an in6_msource owned by an in6_mfilter, * given its source address. * Lazy-allocate if needed. If this is a new entry its filter state is * undefined at t0. * * imf is the filter set being modified. * addr is the source address. * * Caller is expected to be holding im6o_lock. */ static int im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, struct in6_msource **plims) { struct ip6_msource find; struct ip6_msource *ims; struct in6_msource *lims; int error; error = 0; ims = NULL; lims = NULL; find.im6s_addr = psin->sin6_addr; ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); lims = (struct in6_msource *)ims; if (lims == NULL) { if (imf->im6f_nsrc == in6_mcast_maxsocksrc) { return ENOSPC; } lims = in6ms_alloc(Z_WAITOK); lims->im6s_addr = find.im6s_addr; lims->im6sl_st[0] = MCAST_UNDEFINED; RB_INSERT(ip6_msource_tree, &imf->im6f_sources, (struct ip6_msource *)lims); ++imf->im6f_nsrc; } *plims = lims; return error; } /* * Graft a source entry into an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being in the new filter mode at t1. * * Return the pointer to the new node, otherwise return NULL. * * Caller is expected to be holding im6o_lock. */ static struct in6_msource * im6f_graft(struct in6_mfilter *imf, const uint8_t st1, const struct sockaddr_in6 *psin) { struct in6_msource *lims; lims = in6ms_alloc(Z_WAITOK); lims->im6s_addr = psin->sin6_addr; lims->im6sl_st[0] = MCAST_UNDEFINED; lims->im6sl_st[1] = st1; RB_INSERT(ip6_msource_tree, &imf->im6f_sources, (struct ip6_msource *)lims); ++imf->im6f_nsrc; return lims; } /* * Prune a source entry from an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being left at t1, it is not freed. * * Return 0 if no error occurred, otherwise return an errno value. * * Caller is expected to be holding im6o_lock. */ static int im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) { struct ip6_msource find; struct ip6_msource *ims; struct in6_msource *lims; find.im6s_addr = psin->sin6_addr; ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); if (ims == NULL) { return ENOENT; } lims = (struct in6_msource *)ims; lims->im6sl_st[1] = MCAST_UNDEFINED; return 0; } /* * Revert socket-layer filter set deltas at t1 to t0 state. * * Caller is expected to be holding im6o_lock. */ static void im6f_rollback(struct in6_mfilter *imf) { struct ip6_msource *ims, *tims; struct in6_msource *lims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == lims->im6sl_st[1]) { /* no change at t1 */ continue; } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { /* revert change to existing source at t1 */ lims->im6sl_st[1] = lims->im6sl_st[0]; } else { /* revert source added t1 */ MLD_PRINTF(("%s: free in6ms 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(lims))); RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); in6ms_free(lims); imf->im6f_nsrc--; } } imf->im6f_st[1] = imf->im6f_st[0]; } /* * Mark socket-layer filter set as INCLUDE {} at t1. * * Caller is expected to be holding im6o_lock. */ void im6f_leave(struct in6_mfilter *imf) { struct ip6_msource *ims; struct in6_msource *lims; RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; lims->im6sl_st[1] = MCAST_UNDEFINED; } imf->im6f_st[1] = MCAST_INCLUDE; } /* * Mark socket-layer filter set deltas as committed. * * Caller is expected to be holding im6o_lock. */ static void im6f_commit(struct in6_mfilter *imf) { struct ip6_msource *ims; struct in6_msource *lims; RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; lims->im6sl_st[0] = lims->im6sl_st[1]; } imf->im6f_st[0] = imf->im6f_st[1]; } /* * Reap unreferenced sources from socket-layer filter set. * * Caller is expected to be holding im6o_lock. */ static void im6f_reap(struct in6_mfilter *imf) { struct ip6_msource *ims, *tims; struct in6_msource *lims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { lims = (struct in6_msource *)ims; if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && (lims->im6sl_st[1] == MCAST_UNDEFINED)) { MLD_PRINTF(("%s: free in6ms 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(lims))); RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); in6ms_free(lims); imf->im6f_nsrc--; } } } /* * Purge socket-layer filter set. * * Caller is expected to be holding im6o_lock. */ void im6f_purge(struct in6_mfilter *imf) { struct ip6_msource *ims, *tims; struct in6_msource *lims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { lims = (struct in6_msource *)ims; MLD_PRINTF(("%s: free in6ms 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(lims))); RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); in6ms_free(lims); imf->im6f_nsrc--; } imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; VERIFY(RB_EMPTY(&imf->im6f_sources)); } /* * Look up a source filter entry for a multicast group. * * inm is the group descriptor to work with. * addr is the IPv6 address to look up. * noalloc may be non-zero to suppress allocation of sources. * *pims will be set to the address of the retrieved or allocated source. * * Return 0 if successful, otherwise return a non-zero error code. */ static int in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, const int noalloc, struct ip6_msource **pims) { struct ip6_msource find; struct ip6_msource *ims, *nims; IN6M_LOCK_ASSERT_HELD(inm); find.im6s_addr = *addr; ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); if (ims == NULL && !noalloc) { if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) { return ENOSPC; } nims = ip6ms_alloc(Z_WAITOK); nims->im6s_addr = *addr; RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); ++inm->in6m_nsrc; ims = nims; MLD_PRINTF(("%s: allocated %s as 0x%llx\n", __func__, ip6_sprintf(addr), (uint64_t)VM_KERNEL_ADDRPERM(ims))); } *pims = ims; return 0; } /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ uint8_t im6s_get_mode(const struct in6_multi *inm, const struct ip6_msource *ims, uint8_t t) { IN6M_LOCK_ASSERT_HELD(__DECONST(struct in6_multi *, inm)); t = !!t; if (inm->in6m_st[t].iss_ex > 0 && inm->in6m_st[t].iss_ex == ims->im6s_st[t].ex) { return MCAST_EXCLUDE; } else if (ims->im6s_st[t].in > 0 && ims->im6s_st[t].ex == 0) { return MCAST_INCLUDE; } return MCAST_UNDEFINED; } /* * Merge socket-layer source into MLD-layer source. * If rollback is non-zero, perform the inverse of the merge. */ static void im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, const int rollback) { int n = rollback ? -1 : 1; if (lims->im6sl_st[0] == MCAST_EXCLUDE) { MLD_PRINTF(("%s: t1 ex -= %d on %s\n", __func__, n, ip6_sprintf(&lims->im6s_addr))); ims->im6s_st[1].ex -= n; } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { MLD_PRINTF(("%s: t1 in -= %d on %s\n", __func__, n, ip6_sprintf(&lims->im6s_addr))); ims->im6s_st[1].in -= n; } if (lims->im6sl_st[1] == MCAST_EXCLUDE) { MLD_PRINTF(("%s: t1 ex += %d on %s\n", __func__, n, ip6_sprintf(&lims->im6s_addr))); ims->im6s_st[1].ex += n; } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { MLD_PRINTF(("%s: t1 in += %d on %s\n", __func__, n, ip6_sprintf(&lims->im6s_addr))); ims->im6s_st[1].in += n; } } /* * Atomically update the global in6_multi state, when a membership's * filter list is being updated in any way. * * imf is the per-inpcb-membership group filter pointer. * A fake imf may be passed for in-kernel consumers. * * XXX This is a candidate for a set-symmetric-difference style loop * which would eliminate the repeated lookup from root of ims nodes, * as they share the same key space. * * If any error occurred this function will back out of refcounts * and return a non-zero value. */ static int in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) { struct ip6_msource *ims, *__single nims = NULL; struct in6_msource *lims; int schanged, error; int nsrc0, nsrc1; IN6M_LOCK_ASSERT_HELD(inm); schanged = 0; error = 0; nsrc1 = nsrc0 = 0; /* * Update the source filters first, as this may fail. * Maintain count of in-mode filters at t0, t1. These are * used to work out if we transition into ASM mode or not. * Maintain a count of source filters whose state was * actually modified by this operation. */ RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == imf->im6f_st[0]) { nsrc0++; } if (lims->im6sl_st[1] == imf->im6f_st[1]) { nsrc1++; } if (lims->im6sl_st[0] == lims->im6sl_st[1]) { continue; } error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); ++schanged; if (error) { break; } im6s_merge(nims, lims, 0); } if (error) { struct ip6_msource *__single bims; RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == lims->im6sl_st[1]) { continue; } (void) in6m_get_source(inm, &lims->im6s_addr, 1, &bims); if (bims == NULL) { continue; } im6s_merge(bims, lims, 1); } goto out_reap; } MLD_PRINTF(("%s: imf filters in-mode: %d at t0, %d at t1\n", __func__, nsrc0, nsrc1)); /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ if (imf->im6f_st[0] == imf->im6f_st[1] && imf->im6f_st[1] == MCAST_INCLUDE) { if (nsrc1 == 0) { MLD_PRINTF(("%s: --in on inm at t1\n", __func__)); --inm->in6m_st[1].iss_in; } } /* Handle filter mode transition on socket. */ if (imf->im6f_st[0] != imf->im6f_st[1]) { MLD_PRINTF(("%s: imf transition %d to %d\n", __func__, imf->im6f_st[0], imf->im6f_st[1])); if (imf->im6f_st[0] == MCAST_EXCLUDE) { MLD_PRINTF(("%s: --ex on inm at t1\n", __func__)); --inm->in6m_st[1].iss_ex; } else if (imf->im6f_st[0] == MCAST_INCLUDE) { MLD_PRINTF(("%s: --in on inm at t1\n", __func__)); --inm->in6m_st[1].iss_in; } if (imf->im6f_st[1] == MCAST_EXCLUDE) { MLD_PRINTF(("%s: ex++ on inm at t1\n", __func__)); inm->in6m_st[1].iss_ex++; } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { MLD_PRINTF(("%s: in++ on inm at t1\n", __func__)); inm->in6m_st[1].iss_in++; } } /* * Track inm filter state in terms of listener counts. * If there are any exclusive listeners, stack-wide * membership is exclusive. * Otherwise, if only inclusive listeners, stack-wide is inclusive. * If no listeners remain, state is undefined at t1, * and the MLD lifecycle for this group should finish. */ if (inm->in6m_st[1].iss_ex > 0) { MLD_PRINTF(("%s: transition to EX\n", __func__)); inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; } else if (inm->in6m_st[1].iss_in > 0) { MLD_PRINTF(("%s: transition to IN\n", __func__)); inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; } else { MLD_PRINTF(("%s: transition to UNDEF\n", __func__)); inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; } /* Decrement ASM listener count on transition out of ASM mode. */ if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { if ((imf->im6f_st[1] != MCAST_EXCLUDE) || (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { MLD_PRINTF(("%s: --asm on inm at t1\n", __func__)); --inm->in6m_st[1].iss_asm; } } /* Increment ASM listener count on transition to ASM mode. */ if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { MLD_PRINTF(("%s: asm++ on inm at t1\n", __func__)); inm->in6m_st[1].iss_asm++; } MLD_PRINTF(("%s: merged imf 0x%llx to inm 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(imf), (uint64_t)VM_KERNEL_ADDRPERM(inm))); in6m_print(inm); out_reap: if (schanged > 0) { MLD_PRINTF(("%s: sources changed; reaping\n", __func__)); in6m_reap(inm); } return error; } /* * Mark an in6_multi's filter set deltas as committed. * Called by MLD after a state change has been enqueued. */ void in6m_commit(struct in6_multi *inm) { struct ip6_msource *ims; IN6M_LOCK_ASSERT_HELD(inm); MLD_PRINTF(("%s: commit inm 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm))); MLD_PRINTF(("%s: pre commit:\n", __func__)); in6m_print(inm); RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { ims->im6s_st[0] = ims->im6s_st[1]; } inm->in6m_st[0] = inm->in6m_st[1]; } /* * Reap unreferenced nodes from an in6_multi's filter set. */ static void in6m_reap(struct in6_multi *inm) { struct ip6_msource *ims, *tims; IN6M_LOCK_ASSERT_HELD(inm); RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || ims->im6s_stp != 0) { continue; } MLD_PRINTF(("%s: free ims 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(ims))); RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); ip6ms_free(ims); inm->in6m_nsrc--; } } /* * Purge all source nodes from an in6_multi's filter set. */ void in6m_purge(struct in6_multi *inm) { struct ip6_msource *ims, *tims; IN6M_LOCK_ASSERT_HELD(inm); RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { MLD_PRINTF(("%s: free ims 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(ims))); RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); ip6ms_free(ims); inm->in6m_nsrc--; } } /* * Join a multicast address w/o sources. * KAME compatibility entry point. * */ struct in6_multi_mship * in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr, int *errorp, int delay) { struct in6_multi_mship *imm; int error; *errorp = 0; imm = in6_multi_mship_alloc(Z_WAITOK); error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); if (error) { *errorp = error; in6_multi_mship_free(imm); return NULL; } return imm; } /* * Leave a multicast address w/o sources. * KAME compatibility entry point. */ int in6_leavegroup(struct in6_multi_mship *imm) { if (imm->i6mm_maddr != NULL) { in6_mc_leave(imm->i6mm_maddr, NULL); IN6M_REMREF(imm->i6mm_maddr); imm->i6mm_maddr = NULL; } in6_multi_mship_free(imm); return 0; } /* * Join a multicast group; real entry point. * * Only preserves atomicity at inm level. * NOTE: imf argument cannot be const due to sys/tree.h limitations. * * If the MLD downcall fails, the group is not joined, and an error * code is returned. */ int in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr, /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, const int delay) { struct in6_mfilter timf; struct in6_multi *__single inm = NULL; int error = 0; struct mld_tparams mtp; /* * Sanity: Check scope zone ID was set for ifp, if and * only if group is scoped to an interface. */ VERIFY(IN6_IS_ADDR_MULTICAST(mcaddr)); if (in6_embedded_scope && (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr))) { VERIFY(mcaddr->s6_addr16[1] != 0); } MLD_PRINTF(("%s: join %s on 0x%llx(%s))\n", __func__, ip6_sprintf(mcaddr), (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp))); bzero(&mtp, sizeof(mtp)); *pinm = NULL; /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); imf = &timf; } error = in6_mc_get(ifp, mcaddr, &inm); if (error) { MLD_PRINTF(("%s: in6_mc_get() failure\n", __func__)); return error; } MLD_PRINTF(("%s: merge inm state\n", __func__)); IN6M_LOCK(inm); error = in6m_merge(inm, imf); if (error) { MLD_PRINTF(("%s: failed to merge inm state\n", __func__)); goto out_in6m_release; } MLD_PRINTF(("%s: doing mld downcall\n", __func__)); error = mld_change_state(inm, &mtp, delay); if (error) { MLD_PRINTF(("%s: failed to update source\n", __func__)); im6f_rollback(imf); goto out_in6m_release; } out_in6m_release: if (error) { MLD_PRINTF(("%s: dropping ref on 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm))); IN6M_UNLOCK(inm); IN6M_REMREF(inm); } else { IN6M_UNLOCK(inm); *pinm = inm; /* keep refcount from in6_mc_get() */ } /* schedule timer now that we've dropped the lock(s) */ mld_set_fast_timeout(&mtp); return error; } /* * Leave a multicast group; real entry point. * All source filters will be expunged. * * Only preserves atomicity at inm level. * * Holding the write lock for the INP which contains imf * is highly advisable. We can't assert for it as imf does not * contain a back-pointer to the owning inp. * * Note: This is not the same as in6m_release(*) as this function also * makes a state change downcall into MLD. */ int in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) { struct in6_mfilter timf; int error, lastref; struct mld_tparams mtp; bzero(&mtp, sizeof(mtp)); error = 0; IN6M_LOCK_ASSERT_NOTHELD(inm); in6_multihead_lock_exclusive(); IN6M_LOCK(inm); MLD_PRINTF(("%s: leave inm 0x%llx, %s/%s%d, imf 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm), ip6_sprintf(&inm->in6m_addr), (in6m_is_ifp_detached(inm) ? "null" : inm->in6m_ifp->if_name), inm->in6m_ifp->if_unit, (uint64_t)VM_KERNEL_ADDRPERM(imf))); /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); imf = &timf; } /* * Begin state merge transaction at MLD layer. * * As this particular invocation should not cause any memory * to be allocated, and there is no opportunity to roll back * the transaction, it MUST NOT fail. */ MLD_PRINTF(("%s: merge inm state\n", __func__)); error = in6m_merge(inm, imf); KASSERT(error == 0, ("%s: failed to merge inm state\n", __func__)); MLD_PRINTF(("%s: doing mld downcall\n", __func__)); error = mld_change_state(inm, &mtp, 0); #if MLD_DEBUG if (error) { MLD_PRINTF(("%s: failed mld downcall\n", __func__)); } #endif lastref = in6_multi_detach(inm); VERIFY(!lastref || (!(inm->in6m_debug & IFD_ATTACHED) && inm->in6m_reqcnt == 0)); IN6M_UNLOCK(inm); in6_multihead_lock_done(); if (lastref) { IN6M_REMREF(inm); /* for in6_multihead list */ } /* schedule timer now that we've dropped the lock(s) */ mld_set_fast_timeout(&mtp); return error; } /* * Block or unblock an ASM multicast source on an inpcb. * This implements the delta-based API described in RFC 3678. * * The delta-based API applies only to exclusive-mode memberships. * An MLD downcall will be performed. * * Return 0 if successful, otherwise return an appropriate error code. */ static int in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct sockaddr_in6 *gsa, *ssa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_msource *ims; struct in6_multi *inm; size_t idx; uint8_t fmode; int error, doblock; struct mld_tparams mtp; bzero(&mtp, sizeof(mtp)); ifp = NULL; error = 0; doblock = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = SIN6(&gsr.gsr_group); ssa = SIN6(&gsr.gsr_source); switch (sopt->sopt_name) { case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); if (error) { return error; } if (gsa->sin6_family != AF_INET6 || gsa->sin6_len != sizeof(struct sockaddr_in6)) { return EINVAL; } if (ssa->sin6_family != AF_INET6 || ssa->sin6_len != sizeof(struct sockaddr_in6)) { return EINVAL; } ifnet_head_lock_shared(); if (gsr.gsr_interface == 0 || !IF_INDEX_IN_RANGE(gsr.gsr_interface)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[gsr.gsr_interface]; ifnet_head_done(); if (ifp == NULL) { return EADDRNOTAVAIL; } if (sopt->sopt_name == MCAST_BLOCK_SOURCE) { doblock = 1; } break; default: MLD_PRINTF(("%s: unknown sopt_name %d\n", __func__, sopt->sopt_name)); return EOPNOTSUPP; } if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr)) { return EINVAL; } (void) in6_setscope(&gsa->sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&gsa->sin6_scope_id)); /* * Check if we are actually a member of this group. */ imo = in6p_findmoptions(inp); if (imo == NULL) { return ENOMEM; } IM6O_LOCK(imo); idx = im6o_match_group(imo, ifp, gsa); if (idx == (size_t)-1 || imo->im6o_mfilters == NULL) { error = EADDRNOTAVAIL; goto out_imo_locked; } VERIFY(imo->im6o_mfilters != NULL); imf = &imo->im6o_mfilters[idx]; inm = imo->im6o_membership[idx]; /* * Attempting to use the delta-based API on an * non exclusive-mode membership is an error. */ fmode = imf->im6f_st[0]; if (fmode != MCAST_EXCLUDE) { error = EINVAL; goto out_imo_locked; } /* * Deal with error cases up-front: * Asked to block, but already blocked; or * Asked to unblock, but nothing to unblock. * If adding a new block entry, allocate it. */ ims = im6o_match_source(imo, idx, ssa); if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { MLD_PRINTF(("%s: source %s %spresent\n", __func__, ip6_sprintf(&ssa->sin6_addr), doblock ? "" : "not ")); error = EADDRNOTAVAIL; goto out_imo_locked; } /* * Begin state merge transaction at socket layer. */ if (doblock) { MLD_PRINTF(("%s: %s source\n", __func__, "block")); ims = im6f_graft(imf, fmode, ssa); if (ims == NULL) { error = ENOMEM; } } else { MLD_PRINTF(("%s: %s source\n", __func__, "allow")); error = im6f_prune(imf, ssa); } if (error) { MLD_PRINTF(("%s: merge imf state failed\n", __func__)); goto out_im6f_rollback; } /* * Begin state merge transaction at MLD layer. */ IN6M_LOCK(inm); MLD_PRINTF(("%s: merge inm state\n", __func__)); error = in6m_merge(inm, imf); if (error) { MLD_PRINTF(("%s: failed to merge inm state\n", __func__)); IN6M_UNLOCK(inm); goto out_im6f_rollback; } MLD_PRINTF(("%s: doing mld downcall\n", __func__)); error = mld_change_state(inm, &mtp, 0); IN6M_UNLOCK(inm); #if MLD_DEBUG if (error) { MLD_PRINTF(("%s: failed mld downcall\n", __func__)); } #endif out_im6f_rollback: if (error) { im6f_rollback(imf); } else { im6f_commit(imf); } im6f_reap(imf); out_imo_locked: IM6O_UNLOCK(imo); IM6O_REMREF(imo); /* from in6p_findmoptions() */ /* schedule timer now that we've dropped the lock(s) */ mld_set_fast_timeout(&mtp); return error; } /* * Given an inpcb, return its multicast options structure pointer. Accepts * an unlocked inpcb pointer, but will return it locked. May sleep. * */ static struct ip6_moptions * in6p_findmoptions(struct inpcb *inp) { struct ip6_moptions *imo; struct in6_multi **immp; struct in6_mfilter *imfp; size_t idx; if ((imo = inp->in6p_moptions) != NULL) { IM6O_ADDREF(imo); /* for caller */ return imo; } imo = ip6_allocmoptions(Z_WAITOK); if (imo == NULL) { return NULL; } immp = kalloc_type(struct in6_multi *, IPV6_MIN_MEMBERSHIPS, Z_WAITOK | Z_ZERO | Z_NOFAIL); imfp = kalloc_type(struct in6_mfilter, IPV6_MIN_MEMBERSHIPS, Z_WAITOK | Z_ZERO | Z_NOFAIL); imo->im6o_multicast_ifp = NULL; imo->im6o_multicast_hlim = (u_char)ip6_defmcasthlim; imo->im6o_multicast_loop = (u_char)in6_mcast_loop; imo->im6o_num_memberships = 0; imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; imo->im6o_membership = immp; imo->im6o_mfilters = imfp; /* Initialize per-group source filters. */ for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) { im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); } inp->in6p_moptions = imo; /* keep reference from ip6_allocmoptions() */ IM6O_ADDREF(imo); /* for caller */ return imo; } /* * Atomically get source filters on a socket for an IPv6 multicast group. * Called with INP lock held; returns with lock released. */ static int in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq64 msfr = {}, msfr64; struct __msfilterreq32 msfr32; struct sockaddr_in6 *gsa; struct ifnet *ifp; struct ip6_moptions *imo; struct in6_mfilter *imf; struct ip6_msource *ims; struct in6_msource *lims; struct sockaddr_in6 *psin; struct sockaddr_storage *ptss; struct sockaddr_storage *tss; int error; size_t idx, nsrcs, ncsrcs; user_addr_t tmp_ptr; const bool is_currproc_64bit_proc = IS_64BIT_PROCESS(current_proc()); imo = inp->in6p_moptions; VERIFY(imo != NULL); if (is_currproc_64bit_proc) { error = sooptcopyin(sopt, &msfr64, sizeof(struct __msfilterreq64), sizeof(struct __msfilterreq64)); if (error) { return error; } /* we never use msfr.msfr_srcs; */ memcpy(&msfr, &msfr64, sizeof(msfr64)); } else { error = sooptcopyin(sopt, &msfr32, sizeof(struct __msfilterreq32), sizeof(struct __msfilterreq32)); if (error) { return error; } /* we never use msfr.msfr_srcs; */ memcpy(&msfr, &msfr32, sizeof(msfr32)); } if (msfr.msfr_group.ss_family != AF_INET6 || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) { return EINVAL; } gsa = SIN6(&msfr.msfr_group); if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr)) { return EINVAL; } ifnet_head_lock_shared(); if (msfr.msfr_ifindex == 0 || !IF_INDEX_IN_RANGE(msfr.msfr_ifindex)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[msfr.msfr_ifindex]; ifnet_head_done(); if (ifp == NULL) { return EADDRNOTAVAIL; } if ((size_t) msfr.msfr_nsrcs > UINT32_MAX / sizeof(struct sockaddr_storage)) { msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage); } if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) { msfr.msfr_nsrcs = (uint32_t)in6_mcast_maxsocksrc; } (void)in6_setscope(&gsa->sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&gsa->sin6_scope_id)); IM6O_LOCK(imo); /* * Lookup group on the socket. */ idx = im6o_match_group(imo, ifp, gsa); if (idx == (size_t)-1 || imo->im6o_mfilters == NULL) { IM6O_UNLOCK(imo); return EADDRNOTAVAIL; } imf = &imo->im6o_mfilters[idx]; /* * Ignore memberships which are in limbo. */ if (imf->im6f_st[1] == MCAST_UNDEFINED) { IM6O_UNLOCK(imo); return EAGAIN; } msfr.msfr_fmode = imf->im6f_st[1]; /* * If the user specified a buffer, copy out the source filter * entries to userland gracefully. * We only copy out the number of entries which userland * has asked for, but we always tell userland how big the * buffer really needs to be. */ tss = NULL; if (is_currproc_64bit_proc) { tmp_ptr = (user_addr_t)msfr64.msfr_srcs; } else { tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs); } if (tmp_ptr != USER_ADDR_NULL && msfr.msfr_nsrcs > 0) { tss = kalloc_data((size_t) msfr.msfr_nsrcs * sizeof(*tss), Z_WAITOK | Z_ZERO); if (tss == NULL) { IM6O_UNLOCK(imo); return ENOBUFS; } } /* * Count number of sources in-mode at t0. * If buffer space exists and remains, copy out source entries. */ nsrcs = msfr.msfr_nsrcs; ncsrcs = 0; ptss = tss; RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == MCAST_UNDEFINED || lims->im6sl_st[0] != imf->im6f_st[0]) { continue; } if (tss != NULL && nsrcs > 0) { psin = SIN6(ptss); psin->sin6_family = AF_INET6; psin->sin6_len = sizeof(struct sockaddr_in6); psin->sin6_addr = lims->im6s_addr; psin->sin6_port = 0; --nsrcs; ++ptss; ++ncsrcs; } } IM6O_UNLOCK(imo); if (tss != NULL) { error = copyout(tss, tmp_ptr, ncsrcs * sizeof(*tss)); kfree_data(tss, (size_t) msfr.msfr_nsrcs * sizeof(*tss)); if (error) { return error; } } msfr.msfr_nsrcs = (uint32_t)ncsrcs; if (is_currproc_64bit_proc) { msfr64.msfr_ifindex = msfr.msfr_ifindex; msfr64.msfr_fmode = msfr.msfr_fmode; msfr64.msfr_nsrcs = msfr.msfr_nsrcs; memcpy(&msfr64.msfr_group, &msfr.msfr_group, sizeof(struct sockaddr_storage)); error = sooptcopyout(sopt, &msfr64, sizeof(struct __msfilterreq64)); } else { msfr32.msfr_ifindex = msfr.msfr_ifindex; msfr32.msfr_fmode = msfr.msfr_fmode; msfr32.msfr_nsrcs = msfr.msfr_nsrcs; memcpy(&msfr32.msfr_group, &msfr.msfr_group, sizeof(struct sockaddr_storage)); error = sooptcopyout(sopt, &msfr32, sizeof(struct __msfilterreq32)); } return error; } /* * Return the IP multicast options in response to user getsockopt(). */ int ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip6_moptions *im6o; int error; u_int optval; im6o = inp->in6p_moptions; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT || (SOCK_TYPE(inp->inp_socket) != SOCK_RAW && SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) { return EOPNOTSUPP; } error = 0; switch (sopt->sopt_name) { case IPV6_MULTICAST_IF: if (im6o != NULL) { IM6O_LOCK(im6o); } if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { optval = 0; } else { optval = im6o->im6o_multicast_ifp->if_index; } if (im6o != NULL) { IM6O_UNLOCK(im6o); } error = sooptcopyout(sopt, &optval, sizeof(u_int)); break; case IPV6_MULTICAST_HOPS: if (im6o == NULL) { optval = ip6_defmcasthlim; } else { IM6O_LOCK(im6o); optval = im6o->im6o_multicast_hlim; IM6O_UNLOCK(im6o); } error = sooptcopyout(sopt, &optval, sizeof(u_int)); break; case IPV6_MULTICAST_LOOP: if (im6o == NULL) { optval = in6_mcast_loop; /* XXX VIMAGE */ } else { IM6O_LOCK(im6o); optval = im6o->im6o_multicast_loop; IM6O_UNLOCK(im6o); } error = sooptcopyout(sopt, &optval, sizeof(u_int)); break; case IPV6_MSFILTER: if (im6o == NULL) { error = EADDRNOTAVAIL; } else { error = in6p_get_source_filters(inp, sopt); } break; default: error = ENOPROTOOPT; break; } return error; } /* * Look up the ifnet to use for a multicast group membership, * given the address of an IPv6 group. * * This routine exists to support legacy IPv6 multicast applications. * * If inp is non-NULL and is bound to an interface, use this socket's * inp_boundif for any required routing table lookup. * * If the route lookup fails, return NULL. * * FUTURE: Support multiple forwarding tables for IPv6. * * Returns NULL if no ifp could be found. */ static struct ifnet * in6p_lookup_mcast_ifp(const struct inpcb *in6p, const struct sockaddr_in6 *gsin6) { struct route_in6 ro6; struct ifnet *ifp; unsigned int ifscope = IFSCOPE_NONE; VERIFY(in6p == NULL || (in6p->inp_vflag & INP_IPV6)); VERIFY(gsin6->sin6_family == AF_INET6); if (IN6_IS_ADDR_MULTICAST(&gsin6->sin6_addr) == 0) { return NULL; } if (in6p != NULL && (in6p->inp_flags & INP_BOUND_IF)) { ifscope = in6p->inp_boundifp->if_index; } ifp = NULL; memset(&ro6, 0, sizeof(struct route_in6)); memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6)); rtalloc_scoped_ign((struct route *)&ro6, 0, ifscope); if (ro6.ro_rt != NULL) { ifp = ro6.ro_rt->rt_ifp; VERIFY(ifp != NULL); } ROUTE_RELEASE(&ro6); return ifp; } /* * Since ipv6_mreq contains an ifindex and ip_mreq contains an AF_INET * address, we need to lookup the AF_INET address when translating an * ipv6_mreq structure into an ipmreq structure. * This is used when userland performs multicast setsockopt() on AF_INET6 * sockets with AF_INET multicast addresses (IPv6 v4 mapped addresses). */ static int in6p_lookup_v4addr(struct ipv6_mreq *mreq, struct ip_mreq *v4mreq) { struct ifnet *ifp; struct ifaddr *ifa; struct sockaddr_in *sin; ifnet_head_lock_shared(); if (!IF_INDEX_IN_RANGE(mreq->ipv6mr_interface)) { ifnet_head_done(); return EADDRNOTAVAIL; } else { ifp = ifindex2ifnet[mreq->ipv6mr_interface]; } ifnet_head_done(); if (ifp == NULL) { return EADDRNOTAVAIL; } ifa = ifa_ifpgetprimary(ifp, AF_INET); if (ifa == NULL) { return EADDRNOTAVAIL; } sin = SIN(ifa->ifa_addr); v4mreq->imr_interface.s_addr = sin->sin_addr.s_addr; ifa_remref(ifa); return 0; } /* * Join an IPv6 multicast group, possibly with a source. * * FIXME: The KAME use of the unspecified address (::) * to join *all* multicast groups is currently unsupported. */ static int in6p_join_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct sockaddr_in6 *gsa, *ssa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_multi *__single inm = NULL; struct in6_msource *lims = NULL; size_t idx; int error, is_new; struct mld_tparams mtp; bzero(&mtp, sizeof(mtp)); ifp = NULL; imf = NULL; error = 0; is_new = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = SIN6(&gsr.gsr_group); ssa = SIN6(&gsr.gsr_source); /* * Chew everything into struct group_source_req. * Overwrite the port field if present, as the sockaddr * being copied in may be matched with a binary comparison. * Ignore passed-in scope ID. */ switch (sopt->sopt_name) { case IPV6_JOIN_GROUP: { struct ipv6_mreq mreq; error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), sizeof(struct ipv6_mreq)); if (error) { return error; } if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { struct ip_mreq v4mreq; struct sockopt v4sopt; v4mreq.imr_multiaddr.s_addr = mreq.ipv6mr_multiaddr.s6_addr32[3]; if (mreq.ipv6mr_interface == 0) { v4mreq.imr_interface.s_addr = INADDR_ANY; } else { error = in6p_lookup_v4addr(&mreq, &v4mreq); } if (error) { return error; } v4sopt.sopt_dir = SOPT_SET; v4sopt.sopt_level = sopt->sopt_level; v4sopt.sopt_name = IP_ADD_MEMBERSHIP; v4sopt.sopt_val = CAST_USER_ADDR_T(&v4mreq); v4sopt.sopt_valsize = sizeof(v4mreq); v4sopt.sopt_p = kernproc; return inp_join_group(inp, &v4sopt); } gsa->sin6_family = AF_INET6; gsa->sin6_len = sizeof(struct sockaddr_in6); gsa->sin6_addr = mreq.ipv6mr_multiaddr; /* Only allow IPv6 multicast addresses */ if (IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr) == 0) { return EINVAL; } if (mreq.ipv6mr_interface == 0) { ifp = in6p_lookup_mcast_ifp(inp, gsa); } else { ifnet_head_lock_shared(); if (!IF_INDEX_IN_RANGE(mreq.ipv6mr_interface)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[mreq.ipv6mr_interface]; ifnet_head_done(); } MLD_PRINTF(("%s: ipv6mr_interface = %d, ifp = 0x%llx\n", __func__, mreq.ipv6mr_interface, (uint64_t)VM_KERNEL_ADDRPERM(ifp))); break; } case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: if (sopt->sopt_name == MCAST_JOIN_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) { return error; } if (gsa->sin6_family != AF_INET6 || gsa->sin6_len != sizeof(struct sockaddr_in6)) { return EINVAL; } if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { if (ssa->sin6_family != AF_INET6 || ssa->sin6_len != sizeof(struct sockaddr_in6)) { return EINVAL; } if (IN6_IS_ADDR_MULTICAST(&ssa->sin6_addr)) { return EINVAL; } /* * TODO: Validate embedded scope ID in source * list entry against passed-in ifp, if and only * if source list filter entry is iface or node local. */ in6_clearscope(&ssa->sin6_addr); ssa->sin6_port = 0; ssa->sin6_scope_id = 0; } ifnet_head_lock_shared(); if (gsr.gsr_interface == 0 || !IF_INDEX_IN_RANGE(gsr.gsr_interface)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[gsr.gsr_interface]; ifnet_head_done(); break; default: MLD_PRINTF(("%s: unknown sopt_name %d\n", __func__, sopt->sopt_name)); return EOPNOTSUPP; } if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr)) { return EINVAL; } if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { return EADDRNOTAVAIL; } INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_total); /* * TBD: revisit the criteria for non-OS initiated joins */ if (inp->inp_lport == htons(5353)) { INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_os_total); } gsa->sin6_port = 0; if (in6_embedded_scope) { gsa->sin6_scope_id = 0; } (void)in6_setscope(&gsa->sin6_addr, ifp, &gsa->sin6_scope_id); if (!in6_embedded_scope) { if ((IN6_IS_ADDR_MC_LINKLOCAL(&gsa->sin6_addr) || IN6_IS_ADDR_MC_INTFACELOCAL(&gsa->sin6_addr)) && gsa->sin6_scope_id == 0) { return EINVAL; } } /* * Some addresses are not valid without an embedded scopeid. * This check must be present because otherwise we will later hit * a VERIFY() in in6_mc_join(). */ if ((IN6_IS_ADDR_MC_LINKLOCAL(&gsa->sin6_addr) || IN6_IS_ADDR_MC_INTFACELOCAL(&gsa->sin6_addr)) && gsa->sin6_scope_id == 0) { return EINVAL; } if (in6_embedded_scope) { gsa->sin6_scope_id = 0; } imo = in6p_findmoptions(inp); if (imo == NULL) { return ENOMEM; } IM6O_LOCK(imo); idx = im6o_match_group(imo, ifp, gsa); if (idx == (size_t)-1) { is_new = 1; } else { inm = imo->im6o_membership[idx]; imf = &imo->im6o_mfilters[idx]; if (ssa->sin6_family != AF_UNSPEC) { /* * MCAST_JOIN_SOURCE_GROUP on an exclusive membership * is an error. On an existing inclusive membership, * it just adds the source to the filter list. */ if (imf->im6f_st[1] != MCAST_INCLUDE) { error = EINVAL; goto out_imo_locked; } /* * Throw out duplicates. * * XXX FIXME: This makes a naive assumption that * even if entries exist for *ssa in this imf, * they will be rejected as dupes, even if they * are not valid in the current mode (in-mode). * * in6_msource is transactioned just as for anything * else in SSM -- but note naive use of in6m_graft() * below for allocating new filter entries. * * This is only an issue if someone mixes the * full-state SSM API with the delta-based API, * which is discouraged in the relevant RFCs. */ lims = im6o_match_source(imo, idx, ssa); if (lims != NULL /*&& * lims->im6sl_st[1] == MCAST_INCLUDE*/) { error = EADDRNOTAVAIL; goto out_imo_locked; } } else { /* * MCAST_JOIN_GROUP on an existing exclusive * membership is an error; return EADDRINUSE * to preserve 4.4BSD API idempotence, and * avoid tedious detour to code below. * NOTE: This is bending RFC 3678 a bit. * * On an existing inclusive membership, this is also * an error; if you want to change filter mode, * you must use the userland API setsourcefilter(). * XXX We don't reject this for imf in UNDEFINED * state at t1, because allocation of a filter * is atomic with allocation of a membership. */ error = EINVAL; /* See comments above for EADDRINUSE */ if (imf->im6f_st[1] == MCAST_EXCLUDE) { error = EADDRINUSE; } goto out_imo_locked; } } /* * Begin state merge transaction at socket layer. */ if (is_new) { if (imo->im6o_num_memberships == imo->im6o_max_memberships) { error = im6o_grow(imo); if (error) { goto out_imo_locked; } } /* * Allocate the new slot upfront so we can deal with * grafting the new source filter in same code path * as for join-source on existing membership. */ idx = imo->im6o_num_memberships; imo->im6o_membership[idx] = NULL; imo->im6o_num_memberships++; VERIFY(imo->im6o_mfilters != NULL); imf = &imo->im6o_mfilters[idx]; VERIFY(RB_EMPTY(&imf->im6f_sources)); } /* * Graft new source into filter list for this inpcb's * membership of the group. The in6_multi may not have * been allocated yet if this is a new membership, however, * the in_mfilter slot will be allocated and must be initialized. * * Note: Grafting of exclusive mode filters doesn't happen * in this path. * XXX: Should check for non-NULL lims (node exists but may * not be in-mode) for interop with full-state API. */ if (ssa->sin6_family != AF_UNSPEC) { /* Membership starts in IN mode */ if (is_new) { MLD_PRINTF(("%s: new join w/source\n", __func__); im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE)); } else { MLD_PRINTF(("%s: %s source\n", __func__, "allow")); } lims = im6f_graft(imf, MCAST_INCLUDE, ssa); if (lims == NULL) { MLD_PRINTF(("%s: merge imf state failed\n", __func__)); error = ENOMEM; goto out_im6o_free; } } else { /* No address specified; Membership starts in EX mode */ if (is_new) { MLD_PRINTF(("%s: new join w/o source", __func__)); im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); } } /* * Begin state merge transaction at MLD layer. */ if (is_new) { VERIFY(inm == NULL); error = in6_mc_join(ifp, &gsa->sin6_addr, imf, &inm, 0); VERIFY(inm != NULL || error != 0); if (error) { goto out_im6o_free; } imo->im6o_membership[idx] = inm; /* from in6_mc_join() */ } else { MLD_PRINTF(("%s: merge inm state\n", __func__)); IN6M_LOCK(inm); error = in6m_merge(inm, imf); if (error) { MLD_PRINTF(("%s: failed to merge inm state\n", __func__)); IN6M_UNLOCK(inm); goto out_im6f_rollback; } MLD_PRINTF(("%s: doing mld downcall\n", __func__)); error = mld_change_state(inm, &mtp, 0); IN6M_UNLOCK(inm); if (error) { MLD_PRINTF(("%s: failed mld downcall\n", __func__)); goto out_im6f_rollback; } } out_im6f_rollback: if (error) { im6f_rollback(imf); if (is_new) { im6f_purge(imf); } else { im6f_reap(imf); } } else { im6f_commit(imf); } out_im6o_free: if (error && is_new) { VERIFY(inm == NULL); imo->im6o_membership[idx] = NULL; --imo->im6o_num_memberships; } out_imo_locked: IM6O_UNLOCK(imo); IM6O_REMREF(imo); /* from in6p_findmoptions() */ /* schedule timer now that we've dropped the lock(s) */ mld_set_fast_timeout(&mtp); return error; } /* * Leave an IPv6 multicast group on an inpcb, possibly with a source. */ static int in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) { struct ipv6_mreq mreq; struct group_source_req gsr; struct sockaddr_in6 *gsa, *ssa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_msource *ims; struct in6_multi *inm = NULL; uint32_t ifindex = 0; size_t idx; int error, is_final; struct mld_tparams mtp; bzero(&mtp, sizeof(mtp)); ifp = NULL; error = 0; is_final = 1; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = SIN6(&gsr.gsr_group); ssa = SIN6(&gsr.gsr_source); /* * Chew everything passed in up into a struct group_source_req * as that is easier to process. * Note: Any embedded scope ID in the multicast group passed * in by userland is ignored, the interface index is the recommended * mechanism to specify an interface; see below. */ switch (sopt->sopt_name) { case IPV6_LEAVE_GROUP: { error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), sizeof(struct ipv6_mreq)); if (error) { return error; } if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { struct ip_mreq v4mreq; struct sockopt v4sopt; v4mreq.imr_multiaddr.s_addr = mreq.ipv6mr_multiaddr.s6_addr32[3]; if (mreq.ipv6mr_interface == 0) { v4mreq.imr_interface.s_addr = INADDR_ANY; } else { error = in6p_lookup_v4addr(&mreq, &v4mreq); } if (error) { return error; } v4sopt.sopt_dir = SOPT_SET; v4sopt.sopt_level = sopt->sopt_level; v4sopt.sopt_name = IP_DROP_MEMBERSHIP; v4sopt.sopt_val = CAST_USER_ADDR_T(&v4mreq); v4sopt.sopt_valsize = sizeof(v4mreq); v4sopt.sopt_p = kernproc; return inp_leave_group(inp, &v4sopt); } gsa->sin6_family = AF_INET6; gsa->sin6_len = sizeof(struct sockaddr_in6); gsa->sin6_addr = mreq.ipv6mr_multiaddr; gsa->sin6_port = 0; if (!in6_embedded_scope) { gsa->sin6_scope_id = 0; } ifindex = mreq.ipv6mr_interface; /* Only allow IPv6 multicast addresses */ if (IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr) == 0) { return EINVAL; } break; } case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: if (sopt->sopt_name == MCAST_LEAVE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) { return error; } if (gsa->sin6_family != AF_INET6 || gsa->sin6_len != sizeof(struct sockaddr_in6)) { return EINVAL; } if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { if (ssa->sin6_family != AF_INET6 || ssa->sin6_len != sizeof(struct sockaddr_in6)) { return EINVAL; } if (IN6_IS_ADDR_MULTICAST(&ssa->sin6_addr)) { return EINVAL; } /* * TODO: Validate embedded scope ID in source * list entry against passed-in ifp, if and only * if source list filter entry is iface or node local. */ in6_clearscope(&ssa->sin6_addr); } gsa->sin6_port = 0; if (in6_embedded_scope) { gsa->sin6_scope_id = 0; } ifindex = gsr.gsr_interface; break; default: MLD_PRINTF(("%s: unknown sopt_name %d\n", __func__, sopt->sopt_name)); return EOPNOTSUPP; } if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr)) { return EINVAL; } /* * Validate interface index if provided. If no interface index * was provided separately, attempt to look the membership up * from the default scope as a last resort to disambiguate * the membership we are being asked to leave. * XXX SCOPE6 lock potentially taken here. */ if (ifindex != 0) { ifnet_head_lock_shared(); if (!IF_INDEX_IN_RANGE(ifindex)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[ifindex]; ifnet_head_done(); if (ifp == NULL) { return EADDRNOTAVAIL; } (void) in6_setscope(&gsa->sin6_addr, ifp, NULL); if (!in6_embedded_scope) { gsa->sin6_scope_id = ifindex; } } else { error = sa6_embedscope(gsa, ip6_use_defzone, IN6_NULL_IF_EMBEDDED_SCOPE(&ifindex)); if (error) { return EADDRNOTAVAIL; } /* * Some badly behaved applications don't pass an ifindex * or a scope ID, which is an API violation. In this case, * perform a lookup as per a v6 join. * * XXX For now, stomp on zone ID for the corner case. * This is not the 'KAME way', but we need to see the ifp * directly until such time as this implementation is * refactored, assuming the scope IDs are the way to go. */ if (in6_embedded_scope) { ifindex = ntohs(gsa->sin6_addr.s6_addr16[1]); } if (ifindex == 0) { MLD_PRINTF(("%s: warning: no ifindex, looking up " "ifp for group %s.\n", __func__, ip6_sprintf(&gsa->sin6_addr))); ifp = in6p_lookup_mcast_ifp(inp, gsa); } else { if (!IF_INDEX_IN_RANGE(ifindex)) { return EADDRNOTAVAIL; } ifnet_head_lock_shared(); ifp = ifindex2ifnet[ifindex]; ifnet_head_done(); } if (ifp == NULL) { return EADDRNOTAVAIL; } } VERIFY(ifp != NULL); MLD_PRINTF(("%s: ifp = 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp))); /* * Find the membership in the membership array. */ imo = in6p_findmoptions(inp); if (imo == NULL) { return ENOMEM; } IM6O_LOCK(imo); idx = im6o_match_group(imo, ifp, gsa); if (idx == (size_t)-1) { error = EADDRNOTAVAIL; goto out_locked; } inm = imo->im6o_membership[idx]; imf = &imo->im6o_mfilters[idx]; if (ssa->sin6_family != AF_UNSPEC) { is_final = 0; } /* * Begin state merge transaction at socket layer. */ /* * If we were instructed only to leave a given source, do so. * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. */ if (is_final) { im6f_leave(imf); } else { if (imf->im6f_st[0] == MCAST_EXCLUDE) { error = EADDRNOTAVAIL; goto out_locked; } ims = im6o_match_source(imo, idx, ssa); if (ims == NULL) { MLD_PRINTF(("%s: source %s %spresent\n", __func__, ip6_sprintf(&ssa->sin6_addr), "not ")); error = EADDRNOTAVAIL; goto out_locked; } MLD_PRINTF(("%s: %s source\n", __func__, "block")); error = im6f_prune(imf, ssa); if (error) { MLD_PRINTF(("%s: merge imf state failed\n", __func__)); goto out_locked; } } /* * Begin state merge transaction at MLD layer. */ if (is_final) { /* * Give up the multicast address record to which * the membership points. Reference held in im6o * will be released below. */ (void) in6_mc_leave(inm, imf); } else { MLD_PRINTF(("%s: merge inm state\n", __func__)); IN6M_LOCK(inm); error = in6m_merge(inm, imf); if (error) { MLD_PRINTF(("%s: failed to merge inm state\n", __func__)); IN6M_UNLOCK(inm); goto out_im6f_rollback; } MLD_PRINTF(("%s: doing mld downcall\n", __func__)); error = mld_change_state(inm, &mtp, 0); if (error) { MLD_PRINTF(("%s: failed mld downcall\n", __func__)); } IN6M_UNLOCK(inm); } out_im6f_rollback: if (error) { im6f_rollback(imf); } else { im6f_commit(imf); } im6f_reap(imf); if (is_final) { /* Remove the gap in the membership array. */ VERIFY(inm == imo->im6o_membership[idx]); IN6M_REMREF(inm); for (++idx; idx < imo->im6o_num_memberships; ++idx) { imo->im6o_membership[idx - 1] = imo->im6o_membership[idx]; imo->im6o_mfilters[idx - 1] = imo->im6o_mfilters[idx]; } imo->im6o_num_memberships--; /* Re-initialize the now unused tail of the list */ imo->im6o_membership[imo->im6o_num_memberships] = NULL; im6f_init(&imo->im6o_mfilters[imo->im6o_num_memberships], MCAST_UNDEFINED, MCAST_EXCLUDE); } out_locked: IM6O_UNLOCK(imo); IM6O_REMREF(imo); /* from in6p_findmoptions() */ /* schedule timer now that we've dropped the lock(s) */ mld_set_fast_timeout(&mtp); return error; } /* * Select the interface for transmitting IPv6 multicast datagrams. * * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn * may be passed to this socket option. An address of in6addr_any or an * interface index of 0 is used to remove a previous selection. * When no interface is selected, one is chosen for every send. */ static int in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) { struct ifnet *ifp; struct ip6_moptions *imo; u_int ifindex; int error; if (sopt->sopt_valsize != sizeof(u_int)) { return EINVAL; } error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); if (error) { return error; } ifnet_head_lock_shared(); if (!IF_INDEX_IN_RANGE(ifindex)) { ifnet_head_done(); return EINVAL; } ifp = ifindex2ifnet[ifindex]; ifnet_head_done(); if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { return EADDRNOTAVAIL; } imo = in6p_findmoptions(inp); if (imo == NULL) { return ENOMEM; } IM6O_LOCK(imo); imo->im6o_multicast_ifp = ifp; IM6O_UNLOCK(imo); IM6O_REMREF(imo); /* from in6p_findmoptions() */ return 0; } /* * Atomically set source filters on a socket for an IPv6 multicast group. * */ static int in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq64 msfr = {}, msfr64; struct __msfilterreq32 msfr32; struct sockaddr_in6 *gsa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_multi *inm; size_t idx; int error; user_addr_t tmp_ptr; struct mld_tparams mtp; const bool is_currproc_64bit_proc = IS_64BIT_PROCESS(current_proc()); bzero(&mtp, sizeof(mtp)); if (is_currproc_64bit_proc) { error = sooptcopyin(sopt, &msfr64, sizeof(struct __msfilterreq64), sizeof(struct __msfilterreq64)); if (error) { return error; } /* we never use msfr.msfr_srcs; */ memcpy(&msfr, &msfr64, sizeof(msfr64)); } else { error = sooptcopyin(sopt, &msfr32, sizeof(struct __msfilterreq32), sizeof(struct __msfilterreq32)); if (error) { return error; } /* we never use msfr.msfr_srcs; */ memcpy(&msfr, &msfr32, sizeof(msfr32)); } if ((size_t) msfr.msfr_nsrcs > UINT32_MAX / sizeof(struct sockaddr_storage)) { msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage); } if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) { return ENOBUFS; } if (msfr.msfr_fmode != MCAST_EXCLUDE && msfr.msfr_fmode != MCAST_INCLUDE) { return EINVAL; } if (msfr.msfr_group.ss_family != AF_INET6 || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) { return EINVAL; } gsa = SIN6(&msfr.msfr_group); if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr)) { return EINVAL; } gsa->sin6_port = 0; /* ignore port */ ifnet_head_lock_shared(); if (msfr.msfr_ifindex == 0 || !IF_INDEX_IN_RANGE(msfr.msfr_ifindex)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[msfr.msfr_ifindex]; ifnet_head_done(); if (ifp == NULL) { return EADDRNOTAVAIL; } (void)in6_setscope(&gsa->sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&gsa->sin6_scope_id)); /* * Take the INP write lock. * Check if this socket is a member of this group. */ imo = in6p_findmoptions(inp); if (imo == NULL) { return ENOMEM; } IM6O_LOCK(imo); idx = im6o_match_group(imo, ifp, gsa); if (idx == (size_t)-1 || imo->im6o_mfilters == NULL) { error = EADDRNOTAVAIL; goto out_imo_locked; } inm = imo->im6o_membership[idx]; imf = &imo->im6o_mfilters[idx]; /* * Begin state merge transaction at socket layer. */ imf->im6f_st[1] = (uint8_t)msfr.msfr_fmode; /* * Apply any new source filters, if present. * Make a copy of the user-space source vector so * that we may copy them with a single copyin. This * allows us to deal with page faults up-front. */ if (msfr.msfr_nsrcs > 0) { struct in6_msource *__single lims; struct sockaddr_in6 *psin; struct sockaddr_storage *kss, *pkss; unsigned int i; if (is_currproc_64bit_proc) { tmp_ptr = (user_addr_t)msfr64.msfr_srcs; } else { tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs); } MLD_PRINTF(("%s: loading %lu source list entries\n", __func__, (unsigned long)msfr.msfr_nsrcs)); kss = kalloc_data((size_t) msfr.msfr_nsrcs * sizeof(*kss), Z_WAITOK); if (kss == NULL) { error = ENOMEM; goto out_imo_locked; } error = copyin(tmp_ptr, kss, (size_t) msfr.msfr_nsrcs * sizeof(*kss)); if (error) { kfree_data(kss, (size_t) msfr.msfr_nsrcs * sizeof(*kss)); goto out_imo_locked; } /* * Mark all source filters as UNDEFINED at t1. * Restore new group filter mode, as im6f_leave() * will set it to INCLUDE. */ im6f_leave(imf); imf->im6f_st[1] = (uint8_t)msfr.msfr_fmode; /* * Update socket layer filters at t1, lazy-allocating * new entries. This saves a bunch of memory at the * cost of one RB_FIND() per source entry; duplicate * entries in the msfr_nsrcs vector are ignored. * If we encounter an error, rollback transaction. * * XXX This too could be replaced with a set-symmetric * difference like loop to avoid walking from root * every time, as the key space is common. */ for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { psin = SIN6(pkss); if (psin->sin6_family != AF_INET6) { error = EAFNOSUPPORT; break; } if (psin->sin6_len != sizeof(struct sockaddr_in6)) { error = EINVAL; break; } if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { error = EINVAL; break; } /* * TODO: Validate embedded scope ID in source * list entry against passed-in ifp, if and only * if source list filter entry is iface or node local. */ in6_clearscope(&psin->sin6_addr); error = im6f_get_source(imf, psin, &lims); if (error) { break; } lims->im6sl_st[1] = imf->im6f_st[1]; } kfree_data(kss, (size_t) msfr.msfr_nsrcs * sizeof(*kss)); } if (error) { goto out_im6f_rollback; } /* * Begin state merge transaction at MLD layer. */ IN6M_LOCK(inm); MLD_PRINTF(("%s: merge inm state\n", __func__)); error = in6m_merge(inm, imf); if (error) { MLD_PRINTF(("%s: failed to merge inm state\n", __func__)); IN6M_UNLOCK(inm); goto out_im6f_rollback; } MLD_PRINTF(("%s: doing mld downcall\n", __func__)); error = mld_change_state(inm, &mtp, 0); IN6M_UNLOCK(inm); #if MLD_DEBUG if (error) { MLD_PRINTF(("%s: failed mld downcall\n", __func__)); } #endif out_im6f_rollback: if (error) { im6f_rollback(imf); } else { im6f_commit(imf); } im6f_reap(imf); out_imo_locked: IM6O_UNLOCK(imo); IM6O_REMREF(imo); /* from in6p_findmoptions() */ /* schedule timer now that we've dropped the lock(s) */ mld_set_fast_timeout(&mtp); return error; } /* * Set the IP multicast options in response to user setsockopt(). * * Many of the socket options handled in this function duplicate the * functionality of socket options in the regular unicast API. However, * it is not possible to merge the duplicate code, because the idempotence * of the IPv6 multicast part of the BSD Sockets API must be preserved; * the effects of these options must be treated as separate and distinct. * */ int ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip6_moptions *im6o; int error; error = 0; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT || (SOCK_TYPE(inp->inp_socket) != SOCK_RAW && SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) { return EOPNOTSUPP; } switch (sopt->sopt_name) { case IPV6_MULTICAST_IF: error = in6p_set_multicast_if(inp, sopt); break; case IPV6_MULTICAST_HOPS: { int hlim; if (sopt->sopt_valsize != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); if (error) { break; } if (hlim < -1 || hlim > IPV6_MAXHLIM) { error = EINVAL; break; } else if (hlim == -1) { hlim = ip6_defmcasthlim; } im6o = in6p_findmoptions(inp); if (im6o == NULL) { error = ENOMEM; break; } IM6O_LOCK(im6o); im6o->im6o_multicast_hlim = (u_char)hlim; IM6O_UNLOCK(im6o); IM6O_REMREF(im6o); /* from in6p_findmoptions() */ break; } case IPV6_MULTICAST_LOOP: { u_int loop; /* * Set the loopback flag for outgoing multicast packets. * Must be zero or one. */ if (sopt->sopt_valsize != sizeof(u_int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); if (error) { break; } if (loop > 1) { error = EINVAL; break; } im6o = in6p_findmoptions(inp); if (im6o == NULL) { error = ENOMEM; break; } IM6O_LOCK(im6o); im6o->im6o_multicast_loop = (u_char)loop; IM6O_UNLOCK(im6o); IM6O_REMREF(im6o); /* from in6p_findmoptions() */ break; } case IPV6_JOIN_GROUP: case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: error = in6p_join_group(inp, sopt); break; case IPV6_LEAVE_GROUP: case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = in6p_leave_group(inp, sopt); break; case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = in6p_block_unblock_source(inp, sopt); break; case IPV6_MSFILTER: error = in6p_set_source_filters(inp, sopt); break; default: error = EOPNOTSUPP; break; } return error; } /* * Expose MLD's multicast filter mode and source list(s) to userland, * keyed by (ifindex, group). * The filter mode is written out as a uint32_t, followed by * 0..n of struct in6_addr. * For use by ifmcstat(8). */ static int sysctl_ip6_mcast_filters SYSCTL_HANDLER_ARGS { #pragma unused(oidp) struct in6_addr mcaddr; struct in6_addr src; struct ifnet *ifp; struct in6_multi *inm; struct in6_multistep step; struct ip6_msource *ims; int *name; int retval = 0; u_int namelen; uint32_t fmode, ifindex; namelen = arg2; if (req->newptr != USER_ADDR_NULL) { return EPERM; } /* int: ifindex + 4 * 32 bits of IPv6 address */ if (namelen != 5) { return EINVAL; } name = __unsafe_forge_bidi_indexable(int *, arg1, namelen * sizeof(int)); ifindex = name[0]; ifnet_head_lock_shared(); if (!IF_INDEX_IN_RANGE(ifindex)) { MLD_PRINTF(("%s: ifindex %u out of range\n", __func__, ifindex)); ifnet_head_done(); return ENOENT; } memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { MLD_PRINTF(("%s: group %s is not multicast\n", __func__, ip6_sprintf(&mcaddr))); ifnet_head_done(); return EINVAL; } ifp = ifindex2ifnet[ifindex]; ifnet_head_done(); if (ifp == NULL) { MLD_PRINTF(("%s: no ifp for ifindex %u\n", __func__, ifindex)); return ENOENT; } /* * Internal MLD lookups require that scope/zone ID is set. */ uint32_t ifscope = IFSCOPE_NONE; (void)in6_setscope(&mcaddr, ifp, &ifscope); in6_multihead_lock_shared(); IN6_FIRST_MULTI(step, inm); while (inm != NULL) { IN6M_LOCK(inm); if (inm->in6m_ifp != ifp) { goto next; } if (!in6_are_addr_equal_scoped(&inm->in6m_addr, &mcaddr, inm->ifscope, ifscope)) { goto next; } fmode = inm->in6m_st[1].iss_fmode; retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); if (retval != 0) { IN6M_UNLOCK(inm); break; /* abort */ } RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { MLD_PRINTF(("%s: visit node 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(ims))); /* * Only copy-out sources which are in-mode. */ if (fmode != im6s_get_mode(inm, ims, 1)) { MLD_PRINTF(("%s: skip non-in-mode\n", __func__)); continue; /* process next source */ } src = ims->im6s_addr; retval = SYSCTL_OUT(req, &src, sizeof(struct in6_addr)); if (retval != 0) { break; /* process next inm */ } } next: IN6M_UNLOCK(inm); IN6_NEXT_MULTI(step, inm); } in6_multihead_lock_done(); return retval; } static struct in6_multi * in6_multi_alloc(zalloc_flags_t how) { struct in6_multi *__single in6m; if (in6m_debug == 0) { in6m = kalloc_type(struct in6_multi, how | Z_ZERO); } else { struct in6_multi_dbg *__single in6m_dbg; in6m_dbg = kalloc_type(struct in6_multi_dbg, how | Z_ZERO); in6m = (struct in6_multi *__single)in6m_dbg; } if (in6m != NULL) { lck_mtx_init(&in6m->in6m_lock, &in6_multihead_lock_grp, &in6_multihead_lock_attr); in6m->in6m_debug |= IFD_ALLOC; if (in6m_debug != 0) { in6m->in6m_debug |= IFD_DEBUG; in6m->in6m_trace = in6m_trace; } in6m->ifscope = IFSCOPE_NONE; } return in6m; } static void in6_multi_free(struct in6_multi *in6m) { IN6M_LOCK(in6m); if (in6m->in6m_debug & IFD_ATTACHED) { panic("%s: attached in6m=%p is being freed", __func__, in6m); /* NOTREACHED */ } else if (in6m->in6m_ifma != NULL) { panic("%s: ifma not NULL for in6m=%p", __func__, in6m); /* NOTREACHED */ } else if (!(in6m->in6m_debug & IFD_ALLOC)) { panic("%s: in6m %p cannot be freed", __func__, in6m); /* NOTREACHED */ } else if (in6m->in6m_refcount != 0) { panic("%s: non-zero refcount in6m=%p", __func__, in6m); /* NOTREACHED */ } else if (in6m->in6m_reqcnt != 0) { panic("%s: non-zero reqcnt in6m=%p", __func__, in6m); /* NOTREACHED */ } /* Free any pending MLDv2 state-change records */ IF_DRAIN(&in6m->in6m_scq); in6m->in6m_debug &= ~IFD_ALLOC; if ((in6m->in6m_debug & (IFD_DEBUG | IFD_TRASHED)) == (IFD_DEBUG | IFD_TRASHED)) { lck_mtx_lock(&in6m_trash_lock); TAILQ_REMOVE(&in6m_trash_head, (struct in6_multi_dbg *)in6m, in6m_trash_link); lck_mtx_unlock(&in6m_trash_lock); in6m->in6m_debug &= ~IFD_TRASHED; } IN6M_UNLOCK(in6m); lck_mtx_destroy(&in6m->in6m_lock, &in6_multihead_lock_grp); if (!in6m_debug) { kfree_type(struct in6_multi, in6m); } else { struct in6_multi_dbg *__single in6m_dbg = (struct in6_multi_dbg *__single)in6m; kfree_type(struct in6_multi_dbg, in6m_dbg); in6m = NULL; } } static void in6_multi_attach(struct in6_multi *in6m) { in6_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE); IN6M_LOCK_ASSERT_HELD(in6m); if (in6m->in6m_debug & IFD_ATTACHED) { panic("%s: Attempt to attach an already attached in6m=%p", __func__, in6m); /* NOTREACHED */ } in6m->in6m_reqcnt++; VERIFY(in6m->in6m_reqcnt == 1); IN6M_ADDREF_LOCKED(in6m); in6m->in6m_debug |= IFD_ATTACHED; /* * Reattach case: If debugging is enabled, take it * out of the trash list and clear IFD_TRASHED. */ if ((in6m->in6m_debug & (IFD_DEBUG | IFD_TRASHED)) == (IFD_DEBUG | IFD_TRASHED)) { /* Become a regular mutex, just in case */ IN6M_CONVERT_LOCK(in6m); lck_mtx_lock(&in6m_trash_lock); TAILQ_REMOVE(&in6m_trash_head, (struct in6_multi_dbg *)in6m, in6m_trash_link); lck_mtx_unlock(&in6m_trash_lock); in6m->in6m_debug &= ~IFD_TRASHED; } LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); } int in6_multi_detach(struct in6_multi *in6m) { in6_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE); IN6M_LOCK_ASSERT_HELD(in6m); if (in6m->in6m_reqcnt == 0) { panic("%s: in6m=%p negative reqcnt", __func__, in6m); /* NOTREACHED */ } --in6m->in6m_reqcnt; if (in6m->in6m_reqcnt > 0) { return 0; } if (!(in6m->in6m_debug & IFD_ATTACHED)) { panic("%s: Attempt to detach an unattached record in6m=%p", __func__, in6m); /* NOTREACHED */ } else if (in6m->in6m_debug & IFD_TRASHED) { panic("%s: in6m %p is already in trash list", __func__, in6m); /* NOTREACHED */ } /* * NOTE: Caller calls IFMA_REMREF */ in6m->in6m_debug &= ~IFD_ATTACHED; LIST_REMOVE(in6m, in6m_entry); if (in6m->in6m_debug & IFD_DEBUG) { /* Become a regular mutex, just in case */ IN6M_CONVERT_LOCK(in6m); lck_mtx_lock(&in6m_trash_lock); TAILQ_INSERT_TAIL(&in6m_trash_head, (struct in6_multi_dbg *)in6m, in6m_trash_link); lck_mtx_unlock(&in6m_trash_lock); in6m->in6m_debug |= IFD_TRASHED; } return 1; } void in6m_addref(struct in6_multi *in6m, int locked) { if (!locked) { IN6M_LOCK_SPIN(in6m); } else { IN6M_LOCK_ASSERT_HELD(in6m); } if (++in6m->in6m_refcount == 0) { panic("%s: in6m=%p wraparound refcnt", __func__, in6m); /* NOTREACHED */ } else if (in6m->in6m_trace != NULL) { (*in6m->in6m_trace)(in6m, TRUE); } if (!locked) { IN6M_UNLOCK(in6m); } } void in6m_remref(struct in6_multi *in6m, int locked) { struct ifmultiaddr *ifma; struct mld_ifinfo *mli; if (!locked) { IN6M_LOCK_SPIN(in6m); } else { IN6M_LOCK_ASSERT_HELD(in6m); } if (in6m->in6m_refcount == 0 || (in6m->in6m_refcount == 1 && locked)) { panic("%s: in6m=%p negative refcnt", __func__, in6m); /* NOTREACHED */ } else if (in6m->in6m_trace != NULL) { (*in6m->in6m_trace)(in6m, FALSE); } --in6m->in6m_refcount; if (in6m->in6m_refcount > 0) { if (!locked) { IN6M_UNLOCK(in6m); } return; } /* * Synchronization with in6_mc_get(). In the event the in6m has been * detached, the underlying ifma would still be in the if_multiaddrs * list, and thus can be looked up via if_addmulti(). At that point, * the only way to find this in6m is via ifma_protospec. To avoid * race conditions between the last in6m_remref() of that in6m and its * use via ifma_protospec, in6_multihead lock is used for serialization. * In order to avoid violating the lock order, we must drop in6m_lock * before acquiring in6_multihead lock. To prevent the in6m from being * freed prematurely, we hold an extra reference. */ ++in6m->in6m_refcount; IN6M_UNLOCK(in6m); in6_multihead_lock_shared(); IN6M_LOCK_SPIN(in6m); --in6m->in6m_refcount; if (in6m->in6m_refcount > 0) { /* We've lost the race, so abort since in6m is still in use */ IN6M_UNLOCK(in6m); in6_multihead_lock_done(); /* If it was locked, return it as such */ if (locked) { IN6M_LOCK(in6m); } return; } in6m_purge(in6m); ifma = in6m->in6m_ifma; in6m->in6m_ifma = NULL; in6m->in6m_ifp = NULL; mli = in6m->in6m_mli; in6m->in6m_mli = NULL; IN6M_UNLOCK(in6m); IFMA_LOCK_SPIN(ifma); ifma->ifma_protospec = NULL; IFMA_UNLOCK(ifma); in6_multihead_lock_done(); in6_multi_free(in6m); if_delmulti_ifma(ifma); /* Release reference held to the underlying ifmultiaddr */ IFMA_REMREF(ifma); if (mli != NULL) { MLI_REMREF(mli); } } static void in6m_trace(struct in6_multi *in6m, int refhold) { struct in6_multi_dbg *__single in6m_dbg = (struct in6_multi_dbg *__single)in6m; ctrace_t *tr; u_int32_t idx; u_int16_t *cnt; if (!(in6m->in6m_debug & IFD_DEBUG)) { panic("%s: in6m %p has no debug structure", __func__, in6m); /* NOTREACHED */ } if (refhold) { cnt = &in6m_dbg->in6m_refhold_cnt; tr = in6m_dbg->in6m_refhold; } else { cnt = &in6m_dbg->in6m_refrele_cnt; tr = in6m_dbg->in6m_refrele; } idx = os_atomic_inc_orig(cnt, relaxed) % IN6M_TRACE_HIST_SIZE; ctrace_record(&tr[idx]); } static struct in6_multi_mship * in6_multi_mship_alloc(zalloc_flags_t how) { return zalloc_flags(imm_zone, how | Z_ZERO); } static void in6_multi_mship_free(struct in6_multi_mship *imm) { if (imm->i6mm_maddr != NULL) { panic("%s: i6mm_maddr not NULL for imm=%p", __func__, imm); /* NOTREACHED */ } zfree(imm_zone, imm); } void in6_multihead_lock_exclusive(void) { lck_rw_lock_exclusive(&in6_multihead_lock); } void in6_multihead_lock_shared(void) { lck_rw_lock_shared(&in6_multihead_lock); } void in6_multihead_lock_assert(int what) { #if !MACH_ASSERT #pragma unused(what) #endif LCK_RW_ASSERT(&in6_multihead_lock, what); } void in6_multihead_lock_done(void) { lck_rw_done(&in6_multihead_lock); } static struct ip6_msource * ip6ms_alloc(zalloc_flags_t how) { return zalloc_flags(ip6ms_zone, how | Z_ZERO); } static void ip6ms_free(struct ip6_msource *i6ms) { zfree(ip6ms_zone, i6ms); } static struct in6_msource * in6ms_alloc(zalloc_flags_t how) { return zalloc_flags(in6ms_zone, how | Z_ZERO); } static void in6ms_free(struct in6_msource *in6ms) { zfree(in6ms_zone, in6ms); } #ifdef MLD_DEBUG static const char *in6m_modestrs[] = { "un", "in", "ex" }; static const char * in6m_mode_str(const int mode) { if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) { return in6m_modestrs[mode]; } return "??"; } static const char *in6m_statestrs[] = { "not-member", "silent", "reporting", "idle", "lazy", "sleeping", "awakening", "query-pending", "sg-query-pending", "leaving" }; static const char * in6m_state_str(const int state) { if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) { return in6m_statestrs[state]; } return "??"; } /* * Dump an in6_multi structure to the console. */ void in6m_print(const struct in6_multi *inm) { int t; IN6M_LOCK_ASSERT_HELD(__DECONST(struct in6_multi *, inm)); if (mld_debug == 0) { return; } printf("%s: --- begin in6m 0x%llx ---\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm)); printf("addr %s ifp 0x%llx(%s) ifma 0x%llx\n", ip6_sprintf(&inm->in6m_addr), (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp), if_name(inm->in6m_ifp), (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifma)); printf("timer %u state %s refcount %u scq.len %u\n", inm->in6m_timer, in6m_state_str(inm->in6m_state), inm->in6m_refcount, inm->in6m_scq.ifq_len); printf("mli 0x%llx nsrc %lu sctimer %u scrv %u\n", (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_mli), inm->in6m_nsrc, inm->in6m_sctimer, inm->in6m_scrv); for (t = 0; t < 2; t++) { printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, in6m_mode_str(inm->in6m_st[t].iss_fmode), inm->in6m_st[t].iss_asm, inm->in6m_st[t].iss_ex, inm->in6m_st[t].iss_in, inm->in6m_st[t].iss_rec); } printf("%s: --- end in6m 0x%llx ---\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm)); } #else void in6m_print(__unused const struct in6_multi *inm) { } #endif