/* * Copyright (c) 2000-2023 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 */ /* * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce * support for mandatory and extensible security protections. This notice * is included in support of clause 2.2 (b) of the Apple Public License, * Version 2.0. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if IPSEC #include #include #include extern int ipsec_bypass; #endif /* IPSEC */ #if NECP #include #endif /* NECP */ #if DUMMYNET #include #endif /* DUMMYNET */ #if PF #include #endif /* PF */ #include static int sysctl_reset_ip6_output_stats SYSCTL_HANDLER_ARGS; static int sysctl_ip6_output_measure_bins SYSCTL_HANDLER_ARGS; static int sysctl_ip6_output_getperf SYSCTL_HANDLER_ARGS; static int ip6_copyexthdr(struct mbuf **, caddr_t, int); static void ip6_out_cksum_stats(int, u_int32_t); static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, struct ip6_frag **); static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, struct ifnet *, struct in6_addr *, uint32_t, u_int32_t *); static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *, struct sockopt *sopt); static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int); static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, zalloc_flags_t); static void im6o_trace(struct ip6_moptions *, int); static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, int); static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); static void ip6_output_checksum(struct ifnet *, uint32_t, struct mbuf *, int, uint32_t, uint32_t); extern int udp_ctloutput(struct socket *, struct sockopt *); static int ip6_fragment_packet(struct mbuf **m, struct ip6_pktopts *opt, struct ip6_out_args * ip6oa, struct ip6_exthdrs *exthdrsp, struct ifnet *ifp, uint32_t mtu, uint32_t unfragpartlen, int nxt0, uint32_t optlen); SYSCTL_DECL(_net_inet6_ip6); static int ip6_output_measure = 0; SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, output_perf, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_output_measure, 0, sysctl_reset_ip6_output_stats, "I", "Do time measurement"); static uint64_t ip6_output_measure_bins = 0; SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, output_perf_bins, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_output_measure_bins, 0, sysctl_ip6_output_measure_bins, "I", "bins for chaining performance data histogram"); static net_perf_t net_perf; SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, output_perf_data, CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_ip6_output_getperf, "S,net_perf", "IP6 output performance data (struct net_perf, net/net_perf.h)"); #define IM6O_TRACE_HIST_SIZE 32 /* size of trace history */ /* For gdb */ __private_extern__ unsigned int im6o_trace_hist_size = IM6O_TRACE_HIST_SIZE; struct ip6_moptions_dbg { struct ip6_moptions im6o; /* ip6_moptions */ u_int16_t im6o_refhold_cnt; /* # of IM6O_ADDREF */ u_int16_t im6o_refrele_cnt; /* # of IM6O_REMREF */ /* * Alloc and free callers. */ ctrace_t im6o_alloc; ctrace_t im6o_free; /* * Circular lists of IM6O_ADDREF and IM6O_REMREF callers. */ ctrace_t im6o_refhold[IM6O_TRACE_HIST_SIZE]; ctrace_t im6o_refrele[IM6O_TRACE_HIST_SIZE]; }; #if DEBUG static unsigned int im6o_debug = 1; /* debugging (enabled) */ #else static unsigned int im6o_debug; /* debugging (disabled) */ #endif /* !DEBUG */ static struct zone *im6o_zone; /* zone for ip6_moptions */ #define IM6O_ZONE_NAME "ip6_moptions" /* zone name */ /* * ip6_output() calls ip6_output_list() to do the work */ int ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, int flags, struct ip6_moptions *im6o, struct ifnet **ifpp, struct ip6_out_args *ip6oa) { return ip6_output_list(m0, 0, opt, ro, flags, im6o, ifpp, ip6oa); } /* * IP6 output. Each packet in mbuf chain m contains a skeletal IP6 * header (with pri, len, nxt, hlim, src, dst). * This function may modify ver and hlim only. * The mbuf chain containing the packet will be freed. * The mbuf opt, if present, will not be freed. * * If ro is non-NULL and has valid ro->ro_rt, route lookup would be * skipped and ro->ro_rt would be used. Otherwise the result of route * lookup is stored in ro->ro_rt. * * type of "mtu": rt_rmx.rmx_mtu is u_int32_t, ifnet.ifr_mtu is int, and * nd_ifinfo.linkmtu is u_int32_t. so we use u_int32_t to hold largest one, * which is rt_rmx.rmx_mtu. */ int ip6_output_list(struct mbuf *m0, int packetchain, struct ip6_pktopts *opt, struct route_in6 *ro, int flags, struct ip6_moptions *im6o, struct ifnet **ifpp, struct ip6_out_args *ip6oa) { struct ip6_hdr *ip6; u_char *nexthdrp; struct ifnet *ifp = NULL, *origifp = NULL; /* refcnt'd */ struct ifnet **ifpp_save = ifpp; struct mbuf *m, *mprev; struct mbuf *sendchain = NULL, *sendchain_last = NULL; struct mbuf *inputchain = NULL; int nxt0 = 0; struct route_in6 *ro_pmtu = NULL; struct rtentry *rt = NULL; struct sockaddr_in6 *dst = NULL, src_sa, dst_sa; int error = 0; struct in6_ifaddr *ia = NULL, *src_ia = NULL; u_int32_t mtu = 0; u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; struct ip6_rthdr *rh; struct in6_addr finaldst; ipfilter_t inject_filter_ref; struct ipf_pktopts *ippo = NULL; struct flowadv *adv = NULL; uint32_t pktcnt = 0; uint32_t packets_processed = 0; struct timeval start_tv; #if PF boolean_t skip_pf = (ip6oa != NULL) && (ip6oa->ip6oa_flags & IP6OAF_SKIP_PF); #endif #if DUMMYNET struct m_tag *tag; struct ip6_out_args saved_ip6oa; struct sockaddr_in6 dst_buf; #endif /* DUMMYNET */ #if IPSEC struct socket *so = NULL; struct secpolicy *sp = NULL; struct route_in6 *ipsec_saved_route = NULL; boolean_t needipsectun = FALSE; #endif /* IPSEC */ #if NECP necp_kernel_policy_result necp_result = 0; necp_kernel_policy_result_parameter necp_result_parameter; necp_kernel_policy_id necp_matched_policy_id = 0; #endif /* NECP */ struct { struct ipf_pktopts ipf_pktopts; struct ip6_exthdrs exthdrs; struct route_in6 ip6route; #if IPSEC struct ipsec_output_state ipsec_state; #endif /* IPSEC */ #if NECP struct route_in6 necp_route; #endif /* NECP */ #if DUMMYNET struct route_in6 saved_route; struct route_in6 saved_ro_pmtu; struct ip_fw_args args; #endif /* DUMMYNET */ } ip6obz; #define ipf_pktopts ip6obz.ipf_pktopts #define exthdrs ip6obz.exthdrs #define ip6route ip6obz.ip6route #define ipsec_state ip6obz.ipsec_state #define necp_route ip6obz.necp_route #define saved_route ip6obz.saved_route #define saved_ro_pmtu ip6obz.saved_ro_pmtu #define args ip6obz.args union { struct { boolean_t select_srcif : 1; boolean_t hdrsplit : 1; boolean_t route_selected : 1; boolean_t dontfrag : 1; #if IPSEC boolean_t needipsec : 1; boolean_t noipsec : 1; #endif /* IPSEC */ }; uint32_t raw; } ip6obf = { .raw = 0 }; if (ip6_output_measure) { net_perf_start_time(&net_perf, &start_tv); } VERIFY(m0->m_flags & M_PKTHDR); /* zero out {saved_route, saved_ro_pmtu, ip6route, exthdrs, args} */ bzero(&ip6obz, sizeof(ip6obz)); #if DUMMYNET if (SLIST_EMPTY(&m0->m_pkthdr.tags)) { goto tags_done; } /* Grab info from mtags prepended to the chain */ if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET)) != NULL) { struct dn_pkt_tag *dn_tag; /* * ip6_output_list() cannot handle chains of packets reinjected * by dummynet. The same restriction applies to * ip_output_list(). */ VERIFY(0 == packetchain); dn_tag = (struct dn_pkt_tag *)(tag->m_tag_data); args.fwa_pf_rule = dn_tag->dn_pf_rule; SOCKADDR_COPY(&dn_tag->dn_dst6, &dst_buf, sizeof(dst_buf)); dst = &dst_buf; ifp = dn_tag->dn_ifp; if (ifp != NULL) { ifnet_reference(ifp); } flags = dn_tag->dn_flags; if (dn_tag->dn_flags & IPV6_OUTARGS) { saved_ip6oa = dn_tag->dn_ip6oa; ip6oa = &saved_ip6oa; } saved_route = dn_tag->dn_ro6; ro = &saved_route; saved_ro_pmtu = dn_tag->dn_ro6_pmtu; ro_pmtu = &saved_ro_pmtu; origifp = dn_tag->dn_origifp; if (origifp != NULL) { ifnet_reference(origifp); } mtu = dn_tag->dn_mtu; unfragpartlen = dn_tag->dn_unfragpartlen; bcopy(&dn_tag->dn_exthdrs, &exthdrs, sizeof(exthdrs)); m_tag_delete(m0, tag); } tags_done: #endif /* DUMMYNET */ m = m0; #if IPSEC if (ipsec_bypass == 0) { so = ipsec_getsocket(m); if (so != NULL) { (void) ipsec_setsocket(m, NULL); } /* If packet is bound to an interface, check bound policies */ if ((flags & IPV6_OUTARGS) && (ip6oa->ip6oa_flags & IP6OAF_BOUND_IF) && ip6oa->ip6oa_boundif != IFSCOPE_NONE) { /* ip6obf.noipsec is a bitfield, use temp integer */ int noipsec = 0; if (ipsec6_getpolicybyinterface(m, IPSEC_DIR_OUTBOUND, flags, ip6oa, &noipsec, &sp) != 0) { goto bad; } ip6obf.noipsec = (noipsec != 0); } } #endif /* IPSEC */ ippo = &ipf_pktopts; if (flags & IPV6_OUTARGS) { /* * In the forwarding case, only the ifscope value is used, * as source interface selection doesn't take place. */ if ((ip6obf.select_srcif = (!(flags & (IPV6_FORWARDING | IPV6_UNSPECSRC | IPV6_FLAG_NOSRCIFSEL)) && (ip6oa->ip6oa_flags & IP6OAF_SELECT_SRCIF)))) { ipf_pktopts.ippo_flags |= IPPOF_SELECT_SRCIF; } if ((ip6oa->ip6oa_flags & IP6OAF_BOUND_IF) && ip6oa->ip6oa_boundif != IFSCOPE_NONE) { ipf_pktopts.ippo_flags |= (IPPOF_BOUND_IF | (ip6oa->ip6oa_boundif << IPPOF_SHIFT_IFSCOPE)); } if (ip6oa->ip6oa_flags & IP6OAF_BOUND_SRCADDR) { ipf_pktopts.ippo_flags |= IPPOF_BOUND_SRCADDR; } } else { ip6obf.select_srcif = FALSE; if (flags & IPV6_OUTARGS) { ip6oa->ip6oa_boundif = IFSCOPE_NONE; ip6oa->ip6oa_flags &= ~(IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_IF | IP6OAF_BOUND_SRCADDR); } } if (flags & IPV6_OUTARGS) { if (ip6oa->ip6oa_flags & IP6OAF_NO_CELLULAR) { ipf_pktopts.ippo_flags |= IPPOF_NO_IFT_CELLULAR; } if (ip6oa->ip6oa_flags & IP6OAF_NO_EXPENSIVE) { ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_EXPENSIVE; } if (ip6oa->ip6oa_flags & IP6OAF_NO_CONSTRAINED) { ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_CONSTRAINED; } adv = &ip6oa->ip6oa_flowadv; adv->code = FADV_SUCCESS; ip6oa->ip6oa_flags &= ~IP6OAF_RET_MASK; } /* * Clear out ifpp to be filled in after determining route. ifpp_save is * used to keep old value to release reference properly and dtrace * ipsec tunnel traffic properly. */ if (ifpp != NULL && *ifpp != NULL) { *ifpp = NULL; } #if DUMMYNET if (args.fwa_pf_rule) { ip6 = mtod(m, struct ip6_hdr *); VERIFY(ro != NULL); /* ro == saved_route */ goto check_with_pf; } #endif /* DUMMYNET */ #if NECP /* * Since all packets are assumed to come from same socket, necp lookup * only needs to happen once per function entry. */ necp_matched_policy_id = necp_ip6_output_find_policy_match(m, flags, (flags & IPV6_OUTARGS) ? ip6oa : NULL, ro ? ro->ro_rt : NULL, &necp_result, &necp_result_parameter); #endif /* NECP */ /* * If a chain was passed in, prepare for ther first iteration. For all * other iterations, this work will be done at evaluateloop: label. */ if (packetchain) { /* * Remove m from the chain during processing to avoid * accidental frees on entire list. */ inputchain = m->m_nextpkt; m->m_nextpkt = NULL; } loopit: packets_processed++; m->m_pkthdr.pkt_flags &= ~(PKTF_LOOP | PKTF_IFAINFO); ip6 = mtod(m, struct ip6_hdr *); nxt0 = ip6->ip6_nxt; finaldst = ip6->ip6_dst; ip6obf.hdrsplit = FALSE; ro_pmtu = NULL; if (!SLIST_EMPTY(&m->m_pkthdr.tags)) { inject_filter_ref = ipf_get_inject_filter(m); } else { inject_filter_ref = NULL; } #define MAKE_EXTHDR(hp, mp) do { \ if (hp != NULL) { \ struct ip6_ext *eh = (struct ip6_ext *)(hp); \ error = ip6_copyexthdr((mp), (caddr_t)(hp), \ ((eh)->ip6e_len + 1) << 3); \ if (error) \ goto freehdrs; \ } \ } while (0) if (opt != NULL) { /* Hop-by-Hop options header */ MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); /* Destination options header(1st part) */ if (opt->ip6po_rthdr) { /* * Destination options header(1st part) * This only makes sense with a routing header. * See Section 9.2 of RFC 3542. * Disabling this part just for MIP6 convenience is * a bad idea. We need to think carefully about a * way to make the advanced API coexist with MIP6 * options, which might automatically be inserted in * the kernel. */ MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); } /* Routing header */ MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); /* Destination options header(2nd part) */ MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); } #undef MAKE_EXTHDR #if NECP if (necp_matched_policy_id) { necp_mark_packet_from_ip(m, necp_matched_policy_id); switch (necp_result) { case NECP_KERNEL_POLICY_RESULT_PASS: if (necp_result_parameter.pass_flags & NECP_KERNEL_POLICY_PASS_NO_SKIP_IPSEC) { break; } goto skip_ipsec; case NECP_KERNEL_POLICY_RESULT_DROP: error = EHOSTUNREACH; ip6stat.ip6s_necp_policy_drop++; goto freehdrs; case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT: /* * Flow divert packets should be blocked at the IP * layer. */ error = EHOSTUNREACH; ip6stat.ip6s_necp_policy_drop++; goto freehdrs; case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL: { /* * Verify that the packet is being routed to the tunnel */ struct ifnet *policy_ifp = necp_get_ifnet_from_result_parameter( &necp_result_parameter); /* * Update the QOS marking policy if * 1. upper layer asks it to do so * 2. net_qos_policy_restricted is not set * 3. qos_marking_gencount doesn't match necp_kernel_socket_policies_gencount (checked in necp_lookup_current_qos_marking) */ if (ip6oa != NULL && (ip6oa->ip6oa_flags & IP6OAF_REDO_QOSMARKING_POLICY) && net_qos_policy_restricted != 0) { bool qos_marking = (ip6oa->ip6oa_flags & IP6OAF_QOSMARKING_ALLOWED) != 0; qos_marking = necp_lookup_current_qos_marking(&ip6oa->qos_marking_gencount, NULL, policy_ifp, necp_result_parameter.route_rule_id, qos_marking); if (qos_marking) { ip6oa->ip6oa_flags |= IP6OAF_QOSMARKING_ALLOWED; } else { ip6oa->ip6oa_flags &= ~IP6OAF_QOSMARKING_ALLOWED; } } if (policy_ifp == ifp) { goto skip_ipsec; } else { if (necp_packet_can_rebind_to_ifnet(m, policy_ifp, (struct route *)&necp_route, AF_INET6)) { /* * Set scoped index to the tunnel * interface, since it is compatible * with the packet. This will only work * for callers who pass IPV6_OUTARGS, * but that covers all of the clients * we care about today. */ if (flags & IPV6_OUTARGS) { ip6oa->ip6oa_boundif = policy_ifp->if_index; ip6oa->ip6oa_flags |= IP6OAF_BOUND_IF; } if (opt != NULL && opt->ip6po_pktinfo != NULL) { opt->ip6po_pktinfo-> ipi6_ifindex = policy_ifp->if_index; } ro = &necp_route; goto skip_ipsec; } else { error = ENETUNREACH; ip6stat.ip6s_necp_policy_drop++; goto freehdrs; } } } default: break; } } #endif /* NECP */ #if IPSEC if (ipsec_bypass != 0 || ip6obf.noipsec) { goto skip_ipsec; } if (sp == NULL) { /* get a security policy for this packet */ if (so != NULL) { sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); } else { sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); } if (sp == NULL) { IPSEC_STAT_INCREMENT(ipsec6stat.out_inval); goto freehdrs; } } error = 0; /* check policy */ switch (sp->policy) { case IPSEC_POLICY_DISCARD: case IPSEC_POLICY_GENERATE: /* * This packet is just discarded. */ IPSEC_STAT_INCREMENT(ipsec6stat.out_polvio); goto freehdrs; case IPSEC_POLICY_BYPASS: case IPSEC_POLICY_NONE: /* no need to do IPsec. */ ip6obf.needipsec = FALSE; break; case IPSEC_POLICY_IPSEC: if (sp->req == NULL) { /* acquire a policy */ error = key_spdacquire(sp); goto freehdrs; } if (sp->ipsec_if) { goto skip_ipsec; } else { ip6obf.needipsec = true; } break; case IPSEC_POLICY_ENTRUST: default: printf("%s: Invalid policy found: %d\n", __func__, sp->policy); break; } skip_ipsec: #endif /* IPSEC */ /* * Calculate the total length of the extension header chain. * Keep the length of the unfragmentable part for fragmentation. */ optlen = 0; if (exthdrs.ip6e_hbh != NULL) { optlen += exthdrs.ip6e_hbh->m_len; } if (exthdrs.ip6e_dest1 != NULL) { optlen += exthdrs.ip6e_dest1->m_len; } if (exthdrs.ip6e_rthdr != NULL) { optlen += exthdrs.ip6e_rthdr->m_len; } unfragpartlen = optlen + sizeof(struct ip6_hdr); /* NOTE: we don't add AH/ESP length here. do that later. */ if (exthdrs.ip6e_dest2 != NULL) { optlen += exthdrs.ip6e_dest2->m_len; } /* * If we need IPsec, or there is at least one extension header, * separate IP6 header from the payload. */ if (( #if IPSEC ip6obf.needipsec || #endif /* IPSEC */ optlen) && !ip6obf.hdrsplit) { if ((error = ip6_splithdr(m, &exthdrs)) != 0) { m = NULL; goto freehdrs; } m = exthdrs.ip6e_ip6; ip6obf.hdrsplit = true; } /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); /* adjust mbuf packet header length */ m->m_pkthdr.len += optlen; plen = m->m_pkthdr.len - sizeof(*ip6); /* If this is a jumbo payload, insert a jumbo payload option. */ if (plen > IPV6_MAXPACKET) { if (!ip6obf.hdrsplit) { if ((error = ip6_splithdr(m, &exthdrs)) != 0) { m = NULL; goto freehdrs; } m = exthdrs.ip6e_ip6; ip6obf.hdrsplit = true; } /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) { goto freehdrs; } ip6->ip6_plen = 0; } else { ip6->ip6_plen = htons((uint16_t)plen); } /* * Concatenate headers and fill in next header fields. * Here we have, on "m" * IPv6 payload * and we insert headers accordingly. Finally, we should be getting: * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] * * during the header composing process, "m" points to IPv6 header. * "mprev" points to an extension header prior to esp. */ nexthdrp = &ip6->ip6_nxt; mprev = m; /* * we treat dest2 specially. this makes IPsec processing * much easier. the goal here is to make mprev point the * mbuf prior to dest2. * * result: IPv6 dest2 payload * m and mprev will point to IPv6 header. */ if (exthdrs.ip6e_dest2 != NULL) { if (!ip6obf.hdrsplit) { panic("assumption failed: hdr not split"); /* NOTREACHED */ } exthdrs.ip6e_dest2->m_next = m->m_next; m->m_next = exthdrs.ip6e_dest2; *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; ip6->ip6_nxt = IPPROTO_DSTOPTS; } #define MAKE_CHAIN(m, mp, p, i) do { \ if (m != NULL) { \ if (!ip6obf.hdrsplit) { \ panic("assumption failed: hdr not split"); \ /* NOTREACHED */ \ } \ *mtod((m), u_char *) = *(p); \ *(p) = (i); \ p = mtod((m), u_char *); \ (m)->m_next = (mp)->m_next; \ (mp)->m_next = (m); \ (mp) = (m); \ } \ } while (0) /* * result: IPv6 hbh dest1 rthdr dest2 payload * m will point to IPv6 header. mprev will point to the * extension header prior to dest2 (rthdr in the above case). */ MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS); MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING); /* It is no longer safe to free the pointers in exthdrs. */ exthdrs.merged = TRUE; #undef MAKE_CHAIN #if IPSEC if (ip6obf.needipsec && (m->m_pkthdr.csum_flags & CSUM_DELAY_IPV6_DATA)) { in6_delayed_cksum_offset(m, 0, optlen, nxt0); } #endif /* IPSEC */ if (!TAILQ_EMPTY(&ipv6_filters) && !((flags & IPV6_OUTARGS) && (ip6oa->ip6oa_flags & IP6OAF_INTCOPROC_ALLOWED) && (ip6oa->ip6oa_flags & IP6OAF_MANAGEMENT_ALLOWED) #if NECP && !necp_packet_should_skip_filters(m) #endif // NECP )) { struct ipfilter *filter; int seen = (inject_filter_ref == NULL); int fixscope = 0; if (im6o != NULL && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { ippo->ippo_flags |= IPPOF_MCAST_OPTS; IM6O_LOCK(im6o); ippo->ippo_mcast_ifnet = im6o->im6o_multicast_ifp; ippo->ippo_mcast_ttl = im6o->im6o_multicast_hlim; ippo->ippo_mcast_loop = im6o->im6o_multicast_loop; IM6O_UNLOCK(im6o); } /* Hack: embed the scope_id in the destination */ if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst) && (ip6->ip6_dst.s6_addr16[1] == 0) && (ro != NULL)) { fixscope = 1; ip6->ip6_dst.s6_addr16[1] = htons((uint16_t)ro->ro_dst.sin6_scope_id); } ipf_ref(); TAILQ_FOREACH(filter, &ipv6_filters, ipf_link) { /* * Don't process packet twice if we've already seen it. */ if (seen == 0) { if ((struct ipfilter *)inject_filter_ref == filter) { seen = 1; } } else if (filter->ipf_filter.ipf_output != NULL) { errno_t result; result = filter->ipf_filter.ipf_output( filter->ipf_filter.cookie, (mbuf_t *)&m, ippo); if (result == EJUSTRETURN) { ipf_unref(); m = NULL; goto evaluateloop; } if (result != 0) { ipf_unref(); goto bad; } } } ipf_unref(); ip6 = mtod(m, struct ip6_hdr *); /* Hack: cleanup embedded scope_id if we put it there */ if (fixscope) { ip6->ip6_dst.s6_addr16[1] = 0; } } #if IPSEC if (ip6obf.needipsec) { uint8_t segleft_org; /* * pointers after IPsec headers are not valid any more. * other pointers need a great care too. * (IPsec routines should not mangle mbufs prior to AH/ESP) */ exthdrs.ip6e_dest2 = NULL; if (exthdrs.ip6e_rthdr != NULL) { rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); segleft_org = rh->ip6r_segleft; rh->ip6r_segleft = 0; } else { rh = NULL; segleft_org = 0; } ipsec_state.m = m; error = ipsec6_output_trans(&ipsec_state, nexthdrp, mprev, sp, flags, &needipsectun); m = ipsec_state.m; if (error) { /* mbuf is already reclaimed in ipsec6_output_trans. */ m = NULL; switch (error) { case EHOSTUNREACH: case ENETUNREACH: case EMSGSIZE: case ENOBUFS: case ENOMEM: break; default: printf("ip6_output (ipsec): error code %d\n", error); OS_FALLTHROUGH; case ENOENT: /* don't show these error codes to the user */ error = 0; break; } goto bad; } if (exthdrs.ip6e_rthdr != NULL) { /* ah6_output doesn't modify mbuf chain */ rh->ip6r_segleft = segleft_org; } } #endif /* IPSEC */ /* If there is a routing header, discard the packet. */ if (exthdrs.ip6e_rthdr != NULL) { error = EINVAL; goto bad; } /* Source address validation */ if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && !(flags & IPV6_UNSPECSRC)) { error = EOPNOTSUPP; ip6stat.ip6s_badscope++; goto bad; } if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { error = EOPNOTSUPP; ip6stat.ip6s_badscope++; goto bad; } ip6stat.ip6s_localout++; /* * Route packet. */ if (ro == NULL) { ro = &ip6route; bzero((caddr_t)ro, sizeof(*ro)); } ro_pmtu = ro; if (opt != NULL && opt->ip6po_rthdr) { ro = &opt->ip6po_route; } dst = SIN6(&ro->ro_dst); if (ro->ro_rt != NULL) { RT_LOCK_ASSERT_NOTHELD(ro->ro_rt); } /* * if specified, try to fill in the traffic class field. * do not override if a non-zero value is already set. * we check the diffserv field and the ecn field separately. */ if (opt != NULL && opt->ip6po_tclass >= 0) { int mask = 0; if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) { mask |= 0xfc; } if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) { mask |= 0x03; } if (mask != 0) { ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); } } if (((ntohl(ip6->ip6_flow & IPV6_FLOW_ECN_MASK) >> 20) & IPTOS_ECN_ECT1) == IPTOS_ECN_ECT1) { m->m_pkthdr.pkt_ext_flags |= PKTF_EXT_L4S; } /* fill in or override the hop limit field, if necessary. */ if (opt && opt->ip6po_hlim != -1) { ip6->ip6_hlim = opt->ip6po_hlim & 0xff; } else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { if (im6o != NULL) { IM6O_LOCK(im6o); ip6->ip6_hlim = im6o->im6o_multicast_hlim; IM6O_UNLOCK(im6o); } else { ip6->ip6_hlim = (uint8_t)ip6_defmcasthlim; } } /* * If there is a cached route, check that it is to the same * destination and is still up. If not, free it and try again. * Test rt_flags without holding rt_lock for performance reasons; * if the route is down it will hopefully be caught by the layer * below (since it uses this route as a hint) or during the * next transmit. */ if (ROUTE_UNUSABLE(ro) || dst->sin6_family != AF_INET6 || !in6_are_addr_equal_scoped(&dst->sin6_addr, &ip6->ip6_dst, dst->sin6_scope_id, ip6_output_getdstifscope(m))) { ROUTE_RELEASE(ro); } if (ro->ro_rt == NULL) { SOCKADDR_ZERO(dst, sizeof(*dst)); dst->sin6_family = AF_INET6; dst->sin6_len = sizeof(struct sockaddr_in6); dst->sin6_addr = ip6->ip6_dst; } #if IPSEC if (ip6obf.needipsec && needipsectun) { #if CONFIG_DTRACE struct ifnet *trace_ifp = (ifpp_save != NULL) ? (*ifpp_save) : NULL; #endif /* CONFIG_DTRACE */ /* * All the extension headers will become inaccessible * (since they can be encrypted). * Don't panic, we need no more updates to extension headers * on inner IPv6 packet (since they are now encapsulated). * * IPv6 [ESP|AH] IPv6 [extension headers] payload */ bzero(&exthdrs, sizeof(exthdrs)); exthdrs.ip6e_ip6 = m; ipsec_state.m = m; route_copyout((struct route *)&ipsec_state.ro, (struct route *)ro, sizeof(struct route_in6)); ipsec_state.dst = SA(dst); /* So that we can see packets inside the tunnel */ DTRACE_IP6(send, struct mbuf *, m, struct inpcb *, NULL, struct ip6_hdr *, ip6, struct ifnet *, trace_ifp, struct ip *, NULL, struct ip6_hdr *, ip6); error = ipsec6_output_tunnel(&ipsec_state, sp, flags); /* tunneled in IPv4? packet is gone */ if (ipsec_state.tunneled == 4) { m = NULL; goto evaluateloop; } m = ipsec_state.m; ipsec_saved_route = ro; ro = (struct route_in6 *)&ipsec_state.ro; dst = SIN6(ipsec_state.dst); if (error) { /* mbuf is already reclaimed in ipsec6_output_tunnel. */ m = NULL; switch (error) { case EHOSTUNREACH: case ENETUNREACH: case EMSGSIZE: case ENOBUFS: case ENOMEM: break; default: printf("ip6_output (ipsec): error code %d\n", error); OS_FALLTHROUGH; case ENOENT: /* don't show these error codes to the user */ error = 0; break; } goto bad; } /* * The packet has been encapsulated so the ifscope * is no longer valid since it does not apply to the * outer address: ignore the ifscope. */ if (flags & IPV6_OUTARGS) { ip6oa->ip6oa_boundif = IFSCOPE_NONE; ip6oa->ip6oa_flags &= ~IP6OAF_BOUND_IF; } if (opt != NULL && opt->ip6po_pktinfo != NULL) { if (opt->ip6po_pktinfo->ipi6_ifindex != IFSCOPE_NONE) { opt->ip6po_pktinfo->ipi6_ifindex = IFSCOPE_NONE; } } exthdrs.ip6e_ip6 = m; } #endif /* IPSEC */ /* * ifp should only be filled in for dummy net packets which will jump * to check_with_pf label. */ if (ifp != NULL) { VERIFY(ip6obf.route_selected); } /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); if (ip6obf.select_srcif) { SOCKADDR_ZERO(&src_sa, sizeof(src_sa)); src_sa.sin6_family = AF_INET6; src_sa.sin6_len = sizeof(src_sa); src_sa.sin6_addr = ip6->ip6_src; src_sa.sin6_scope_id = (!in6_embedded_scope && IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) ? ip6_output_getsrcifscope(m) : IFSCOPE_NONE; } SOCKADDR_ZERO(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = ip6->ip6_dst; dst_sa.sin6_scope_id = (!in6_embedded_scope && IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) ? ip6_output_getdstifscope(m) : IFSCOPE_NONE; /* * Only call in6_selectroute() on first iteration to avoid taking * multiple references on ifp and rt. * * in6_selectroute() might return an ifp with its reference held * even in the error case, so make sure to release its reference. * ip6oa may be NULL if IPV6_OUTARGS isn't set. */ if (!ip6obf.route_selected) { error = in6_selectroute( ip6obf.select_srcif ? &src_sa : NULL, &dst_sa, opt, im6o, &src_ia, ro, &ifp, &rt, 0, ip6oa); if (error != 0) { switch (error) { case EHOSTUNREACH: ip6stat.ip6s_noroute++; break; case EADDRNOTAVAIL: default: break; /* XXX statistics? */ } if (ifp != NULL) { in6_ifstat_inc(ifp, ifs6_out_discard); } /* ifp (if non-NULL) will be released at the end */ goto bad; } ip6obf.route_selected = true; } if (rt == NULL) { /* * If in6_selectroute() does not return a route entry, * dst may not have been updated. */ *dst = dst_sa; /* XXX */ } #if NECP /* Catch-all to check if the interface is allowed */ if (!necp_packet_is_allowed_over_interface(m, ifp)) { error = EHOSTUNREACH; ip6stat.ip6s_necp_policy_drop++; goto bad; } #endif /* NECP */ /* * then rt (for unicast) and ifp must be non-NULL valid values. */ if (!(flags & IPV6_FORWARDING)) { in6_ifstat_inc_na(ifp, ifs6_out_request); } if (rt != NULL) { RT_LOCK(rt); if (ia == NULL) { ia = (struct in6_ifaddr *)(rt->rt_ifa); if (ia != NULL) { ifa_addref(&ia->ia_ifa); } } rt->rt_use++; RT_UNLOCK(rt); } /* * The outgoing interface must be in the zone of source and * destination addresses (except local/loopback). We should * use ia_ifp to support the case of sending packets to an * address of our own. */ if (ia != NULL && ia->ia_ifp) { ifnet_reference(ia->ia_ifp); /* for origifp */ if (origifp != NULL) { ifnet_release(origifp); } origifp = ia->ia_ifp; } else { if (ifp != NULL) { ifnet_reference(ifp); /* for origifp */ } if (origifp != NULL) { ifnet_release(origifp); } origifp = ifp; } /* skip scope enforcements for local/loopback route */ if (rt == NULL || !(rt->rt_ifp->if_flags & IFF_LOOPBACK)) { struct in6_addr src0, dst0; u_int32_t zone; src0 = ip6->ip6_src; if (in6_setscope(&src0, origifp, &zone)) { goto badscope; } SOCKADDR_ZERO(&src_sa, sizeof(src_sa)); src_sa.sin6_family = AF_INET6; src_sa.sin6_len = sizeof(src_sa); src_sa.sin6_addr = ip6->ip6_src; src_sa.sin6_scope_id = (!in6_embedded_scope && IN6_IS_SCOPE_EMBED(&src_sa.sin6_addr)) ? ip6_output_getsrcifscope(m) : IFSCOPE_NONE; if ((sa6_recoverscope(&src_sa, TRUE) || zone != src_sa.sin6_scope_id)) { goto badscope; } dst0 = ip6->ip6_dst; if ((in6_setscope(&dst0, origifp, &zone))) { goto badscope; } /* re-initialize to be sure */ SOCKADDR_ZERO(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = ip6->ip6_dst; dst_sa.sin6_scope_id = (!in6_embedded_scope && IN6_IS_SCOPE_EMBED(&dst_sa.sin6_addr)) ? ip6_output_getdstifscope(m) : IFSCOPE_NONE; if ((sa6_recoverscope(&dst_sa, TRUE) || zone != dst_sa.sin6_scope_id)) { goto badscope; } /* scope check is done. */ goto routefound; badscope: ip6stat.ip6s_badscope++; in6_ifstat_inc(origifp, ifs6_out_discard); if (error == 0) { error = EHOSTUNREACH; /* XXX */ } goto bad; } routefound: if (rt != NULL && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { if (opt != NULL && opt->ip6po_nextroute.ro_rt) { /* * The nexthop is explicitly specified by the * application. We assume the next hop is an IPv6 * address. */ dst = SIN6(opt->ip6po_nexthop); } else if ((rt->rt_flags & RTF_GATEWAY)) { dst = SIN6(rt->rt_gateway); } /* * For packets destined to local/loopback, record the * source the source interface (which owns the source * address), as well as the output interface. This is * needed to reconstruct the embedded zone for the * link-local address case in ip6_input(). */ if (ia != NULL && (ifp->if_flags & IFF_LOOPBACK)) { uint32_t srcidx; if (src_ia != NULL) { srcidx = src_ia->ia_ifp->if_index; } else if (ro->ro_srcia != NULL) { srcidx = ro->ro_srcia->ifa_ifp->if_index; } else { srcidx = 0; } ip6_setsrcifaddr_info(m, srcidx, NULL); ip6_setdstifaddr_info(m, 0, ia); } } if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ } else { struct in6_multi *in6m; m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; in6_ifstat_inc_na(ifp, ifs6_out_mcast); /* * Confirm that the outgoing interface supports multicast. */ if (!(ifp->if_flags & IFF_MULTICAST)) { ip6stat.ip6s_noroute++; in6_ifstat_inc(ifp, ifs6_out_discard); error = ENETUNREACH; goto bad; } in6_multihead_lock_shared(); IN6_LOOKUP_MULTI(&ip6->ip6_dst, ifp, in6m); in6_multihead_lock_done(); if (im6o != NULL) { IM6O_LOCK(im6o); } if (in6m != NULL && (im6o == NULL || im6o->im6o_multicast_loop)) { if (im6o != NULL) { IM6O_UNLOCK(im6o); } /* * If we belong to the destination multicast group * on the outgoing interface, and the caller did not * forbid loopback, loop back a copy. */ ip6_mloopback(NULL, ifp, m, dst, optlen, nxt0); } else if (im6o != NULL) { IM6O_UNLOCK(im6o); } if (in6m != NULL) { IN6M_REMREF(in6m); } /* * Multicasts with a hoplimit of zero may be looped back, * above, but must not be transmitted on a network. * Also, multicasts addressed to the loopback interface * are not sent -- the above call to ip6_mloopback() will * loop back a copy if this host actually belongs to the * destination group on the loopback interface. */ if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { /* remove m from the packetchain and continue looping */ if (m != NULL) { m_freem(m); } m = NULL; goto evaluateloop; } } /* * Fill the outgoing inteface to tell the upper layer * to increment per-interface statistics. */ if (ifpp != NULL && *ifpp == NULL) { ifnet_reference(ifp); /* for caller */ *ifpp = ifp; } /* Determine path MTU. */ if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, ifp->if_index, &mtu)) != 0) { goto bad; } /* * The caller of this function may specify to use the minimum MTU * in some cases. * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU * setting. The logic is a bit complicated; by default, unicast * packets will follow path MTU while multicast packets will be sent at * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets * including unicast ones will be sent at the minimum MTU. Multicast * packets will always be sent at the minimum MTU unless * IP6PO_MINMTU_DISABLE is explicitly specified. * See RFC 3542 for more details. */ if (mtu > IPV6_MMTU) { if ((flags & IPV6_MINMTU)) { mtu = IPV6_MMTU; } else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) { mtu = IPV6_MMTU; } else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { mtu = IPV6_MMTU; } } /* * clear embedded scope identifiers if necessary. * in6_clearscope will touch the addresses only when necessary. */ in6_clearscope(&ip6->ip6_src); in6_clearscope(&ip6->ip6_dst); /* * If the outgoing packet contains a hop-by-hop options header, * it must be examined and processed even by the source node. * (RFC 2460, section 4.) */ if (exthdrs.ip6e_hbh != NULL) { struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); u_int32_t dummy; /* XXX unused */ uint32_t oplen = 0; /* for ip6_process_hopopts() */ #if DIAGNOSTIC if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) { panic("ip6e_hbh is not continuous"); } #endif /* * XXX: If we have to send an ICMPv6 error to the sender, * we need the M_LOOP flag since icmp6_error() expects * the IPv6 and the hop-by-hop options header are * continuous unless the flag is set. */ m->m_flags |= M_LOOP; m->m_pkthdr.rcvif = ifp; if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), &dummy, &oplen) < 0) { /* * m was already freed at this point. Set to NULL so it * is not re-freed at end of ip6_output_list. */ m = NULL; error = EINVAL; /* better error? */ goto bad; } m->m_flags &= ~M_LOOP; /* XXX */ m->m_pkthdr.rcvif = NULL; } #if DUMMYNET check_with_pf: #endif /* DUMMYNET */ #if PF if (PF_IS_ENABLED && !skip_pf) { #if DUMMYNET /* * TODO: Need to save opt->ip6po_flags for reinjection * rdar://10434993 */ args.fwa_oif = ifp; args.fwa_oflags = flags; if (flags & IPV6_OUTARGS) { args.fwa_ip6oa = ip6oa; } args.fwa_ro6 = ro; args.fwa_dst6 = dst; args.fwa_ro6_pmtu = ro_pmtu; args.fwa_origifp = origifp; args.fwa_mtu = mtu; args.fwa_unfragpartlen = unfragpartlen; args.fwa_exthdrs = &exthdrs; /* Invoke outbound packet filter */ error = pf_af_hook(ifp, NULL, &m, AF_INET6, FALSE, &args); #else /* !DUMMYNET */ error = pf_af_hook(ifp, NULL, &m, AF_INET6, FALSE, NULL); #endif /* !DUMMYNET */ if (error != 0 || m == NULL) { if (m != NULL) { panic("%s: unexpected packet %p", __func__, m); /* NOTREACHED */ } /* m was already freed by callee and is now NULL. */ goto evaluateloop; } ip6 = mtod(m, struct ip6_hdr *); } #endif /* PF */ #ifdef IPSEC /* clean ipsec history before fragmentation */ ipsec_delaux(m); #endif /* IPSEC */ if (ip6oa != NULL) { u_int8_t dscp; dscp = (ntohl(ip6->ip6_flow) & IP6FLOW_DSCP_MASK) >> IP6FLOW_DSCP_SHIFT; error = set_packet_qos(m, ifp, ip6oa->ip6oa_flags & IP6OAF_QOSMARKING_ALLOWED ? TRUE : FALSE, ip6oa->ip6oa_sotc, ip6oa->ip6oa_netsvctype, &dscp); if (error == 0) { ip6->ip6_flow &= ~htonl(IP6FLOW_DSCP_MASK); ip6->ip6_flow |= htonl((u_int32_t)dscp << IP6FLOW_DSCP_SHIFT); } else { printf("%s if_dscp_for_mbuf() error %d\n", __func__, error); error = 0; } } /* * Determine whether fragmentation is necessary. If so, m is passed * back as a chain of packets and original mbuf is freed. Otherwise, m * is unchanged. */ error = ip6_fragment_packet(&m, opt, ip6oa, &exthdrs, ifp, mtu, unfragpartlen, nxt0, optlen); if (error) { goto bad; } /* * The evaluateloop label is where we decide whether to continue looping over * packets or call into nd code to send. */ evaluateloop: /* * m may be NULL when we jump to the evaluateloop label from PF or * other code that can drop packets. */ if (m != NULL) { /* * If we already have a chain to send, tack m onto the end. * Otherwise make m the start and end of the to-be-sent chain. */ if (sendchain != NULL) { sendchain_last->m_nextpkt = m; } else { sendchain = m; } /* Fragmentation may mean m is a chain. Find the last packet. */ while (m->m_nextpkt) { m = m->m_nextpkt; } sendchain_last = m; pktcnt++; } /* Fill in next m from inputchain as appropriate. */ m = inputchain; if (m != NULL) { /* Isolate m from rest of input chain. */ inputchain = m->m_nextpkt; m->m_nextpkt = NULL; /* * Clear exthdrs and ipsec_state so stale contents are not * reused. Note this also clears the exthdrs.merged flag. */ bzero(&exthdrs, sizeof(exthdrs)); bzero(&ipsec_state, sizeof(ipsec_state)); /* Continue looping. */ goto loopit; } /* * If we get here, there's no more mbufs in inputchain, so send the * sendchain if there is one. */ if (pktcnt > 0) { error = nd6_output_list(ifp, origifp, sendchain, dst, ro->ro_rt, adv); /* * Fall through to done label even in error case because * nd6_output_list frees packetchain in both success and * failure cases. */ } done: if (ifpp_save != NULL && *ifpp_save != NULL) { ifnet_release(*ifpp_save); *ifpp_save = NULL; } ROUTE_RELEASE(&ip6route); #if IPSEC ROUTE_RELEASE(&ipsec_state.ro); if (sp != NULL) { key_freesp(sp, KEY_SADB_UNLOCKED); } #endif /* IPSEC */ #if NECP ROUTE_RELEASE(&necp_route); #endif /* NECP */ #if DUMMYNET ROUTE_RELEASE(&saved_route); ROUTE_RELEASE(&saved_ro_pmtu); #endif /* DUMMYNET */ if (ia != NULL) { ifa_remref(&ia->ia_ifa); } if (src_ia != NULL) { ifa_remref(&src_ia->ia_ifa); } if (ifp != NULL) { ifnet_release(ifp); } if (origifp != NULL) { ifnet_release(origifp); } if (ip6_output_measure) { net_perf_measure_time(&net_perf, &start_tv, packets_processed); net_perf_histogram(&net_perf, packets_processed); } return error; freehdrs: if (exthdrs.ip6e_hbh != NULL) { if (exthdrs.merged) { panic("Double free of ip6e_hbh"); } m_freem(exthdrs.ip6e_hbh); } if (exthdrs.ip6e_dest1 != NULL) { if (exthdrs.merged) { panic("Double free of ip6e_dest1"); } m_freem(exthdrs.ip6e_dest1); } if (exthdrs.ip6e_rthdr != NULL) { if (exthdrs.merged) { panic("Double free of ip6e_rthdr"); } m_freem(exthdrs.ip6e_rthdr); } if (exthdrs.ip6e_dest2 != NULL) { if (exthdrs.merged) { panic("Double free of ip6e_dest2"); } m_freem(exthdrs.ip6e_dest2); } /* FALLTHRU */ bad: if (inputchain != NULL) { m_freem_list(inputchain); } if (sendchain != NULL) { m_freem_list(sendchain); } if (m != NULL) { m_freem(m); } goto done; #undef ipf_pktopts #undef exthdrs #undef ip6route #undef ipsec_state #undef saved_route #undef saved_ro_pmtu #undef args } /* ip6_fragment_packet * * The fragmentation logic is rather complex: * 1: normal case (dontfrag == 0) * 1-a: send as is if tlen <= path mtu * 1-b: fragment if tlen > path mtu * * 2: if user asks us not to fragment (dontfrag == 1) * 2-a: send as is if tlen <= interface mtu * 2-b: error if tlen > interface mtu */ static int ip6_fragment_packet(struct mbuf **mptr, struct ip6_pktopts *opt, struct ip6_out_args *ip6oa, struct ip6_exthdrs *exthdrsp, struct ifnet *ifp, uint32_t mtu, uint32_t unfragpartlen, int nxt0, uint32_t optlen) { VERIFY(NULL != mptr); struct mbuf *m = *mptr; int error = 0; uint32_t tlen = m->m_pkthdr.len; boolean_t dontfrag = (opt != NULL && (opt->ip6po_flags & IP6PO_DONTFRAG)) || (ip6oa != NULL && (ip6oa->ip6oa_flags & IP6OAF_DONT_FRAG)); if (m->m_pkthdr.pkt_flags & PKTF_FORWARDED) { dontfrag = TRUE; /* * Discard partial sum information if this packet originated * from another interface; the packet would already have the * final checksum and we shouldn't recompute it. */ if ((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PARTIAL)) == (CSUM_DATA_VALID | CSUM_PARTIAL)) { m->m_pkthdr.csum_flags &= ~CSUM_TX_FLAGS; m->m_pkthdr.csum_data = 0; } } /* Access without acquiring nd_ifinfo lock for performance */ if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ /* * We do not notify the connection in the same outbound path * to avoid lock ordering issues. * The returned error should imply that the packet is too big * and the application should query the PMTU for a given destination. */ return EMSGSIZE; } /* * transmit packet without fragmentation */ if (dontfrag || (tlen <= mtu || TSO_IPV6_OK(ifp, m) || (ifp->if_hwassist & CSUM_FRAGMENT_IPV6))) { /* * mppn not updated in this case because no new chain is formed * and inserted */ ip6_output_checksum(ifp, mtu, m, nxt0, tlen, optlen); } else { /* * time to fragment - cases 1-b is handled inside * ip6_do_fragmentation(). * mppn is passed down to be updated to point at fragment chain. */ u_int8_t *lexthdrsp; if (exthdrsp->ip6e_rthdr != NULL) { lexthdrsp = mtod(exthdrsp->ip6e_rthdr, uint8_t *); } else if (exthdrsp->ip6e_dest1 != NULL) { lexthdrsp = mtod(exthdrsp->ip6e_dest1, uint8_t *); } else if (exthdrsp->ip6e_hbh != NULL) { lexthdrsp = mtod(exthdrsp->ip6e_hbh, uint8_t *); } else { lexthdrsp = NULL; } error = ip6_do_fragmentation(mptr, optlen, ifp, unfragpartlen, mtod(m, struct ip6_hdr *), lexthdrsp, mtu, nxt0, htonl(ip6_randomid())); } return error; } /* * ip6_do_fragmentation() is called by ip6_fragment_packet() after determining * the packet needs to be fragmented. on success, morig is freed and a chain * of fragments is linked into the packet chain where morig existed. Otherwise, * an errno is returned. * optlen: total length of all extension headers (excludes the IPv6 header). * unfragpartlen: length of the per-fragment headers which consist of the IPv6 * header plus any extension headers that must be processed by nodes * en route to the destination. * lexthdrsp: pointer to the last extension header in the unfragmentable part * or NULL. * nxt0: upper-layer protocol number. * id: Identification value to be used in the fragment header. */ int ip6_do_fragmentation(struct mbuf **mptr, uint32_t optlen, struct ifnet *ifp, uint32_t unfragpartlen, struct ip6_hdr *ip6, uint8_t *lexthdrsp, uint32_t mtu, int nxt0, uint32_t id) { VERIFY(NULL != mptr); int error = 0; struct mbuf *morig = *mptr; struct mbuf *first_mbufp = NULL; struct mbuf *last_mbufp = NULL; uint32_t tlen = morig->m_pkthdr.len; /* try to fragment the packet. case 1-b */ if ((morig->m_pkthdr.csum_flags & CSUM_TSO_IPV6)) { /* TSO and fragment aren't compatible */ in6_ifstat_inc(ifp, ifs6_out_fragfail); return EMSGSIZE; } else if (mtu < IPV6_MMTU) { /* path MTU cannot be less than IPV6_MMTU */ in6_ifstat_inc(ifp, ifs6_out_fragfail); return EMSGSIZE; } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ in6_ifstat_inc(ifp, ifs6_out_fragfail); return EMSGSIZE; } else { uint32_t hlen, off, len; struct mbuf **mnext = NULL; struct ip6_frag *ip6f; u_char nextproto; /* * Too large for the destination or interface; * fragment if possible. * Must be able to put at least 8 bytes per fragment. */ hlen = unfragpartlen; if (mtu > IPV6_MAXPACKET) { mtu = IPV6_MAXPACKET; } len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; if (len < 8) { in6_ifstat_inc(ifp, ifs6_out_fragfail); return EMSGSIZE; } /* * Change the next header field of the last header in the * unfragmentable part. */ if (lexthdrsp != NULL) { nextproto = *lexthdrsp; *lexthdrsp = IPPROTO_FRAGMENT; } else { nextproto = ip6->ip6_nxt; ip6->ip6_nxt = IPPROTO_FRAGMENT; } if (morig->m_pkthdr.csum_flags & CSUM_DELAY_IPV6_DATA) { in6_delayed_cksum_offset(morig, 0, optlen, nxt0); } /* * Loop through length of segment after first fragment, * make new header and copy data of each part and link onto * chain. */ for (off = hlen; off < tlen; off += len) { struct ip6_hdr *new_mhip6; struct mbuf *new_m; struct mbuf *m_frgpart; MGETHDR(new_m, M_DONTWAIT, MT_HEADER); /* MAC-OK */ if (new_m == NULL) { error = ENOBUFS; ip6stat.ip6s_odropped++; break; } new_m->m_pkthdr.rcvif = NULL; new_m->m_flags = morig->m_flags & M_COPYFLAGS; if (first_mbufp != NULL) { /* Every pass through loop but first */ *mnext = new_m; last_mbufp = new_m; } else { /* This is the first element of the fragment chain */ first_mbufp = new_m; last_mbufp = new_m; } mnext = &new_m->m_nextpkt; new_m->m_data += max_linkhdr; new_mhip6 = mtod(new_m, struct ip6_hdr *); *new_mhip6 = *ip6; new_m->m_len = sizeof(*new_mhip6); error = ip6_insertfraghdr(morig, new_m, hlen, &ip6f); if (error) { ip6stat.ip6s_odropped++; break; } ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); if (off + len >= tlen) { len = tlen - off; } else { ip6f->ip6f_offlg |= IP6F_MORE_FRAG; } new_mhip6->ip6_plen = htons((u_short)(len + hlen + sizeof(*ip6f) - sizeof(struct ip6_hdr))); if ((m_frgpart = m_copy(morig, off, len)) == NULL) { error = ENOBUFS; ip6stat.ip6s_odropped++; break; } m_cat(new_m, m_frgpart); new_m->m_pkthdr.len = len + hlen + sizeof(*ip6f); new_m->m_pkthdr.rcvif = NULL; M_COPY_CLASSIFIER(new_m, morig); M_COPY_PFTAG(new_m, morig); M_COPY_NECPTAG(new_m, morig); ip6f->ip6f_reserved = 0; ip6f->ip6f_ident = id; ip6f->ip6f_nxt = nextproto; ip6stat.ip6s_ofragments++; in6_ifstat_inc(ifp, ifs6_out_fragcreat); } if (error) { /* free all the fragments created */ if (first_mbufp != NULL) { m_freem_list(first_mbufp); first_mbufp = NULL; } last_mbufp = NULL; } else { /* successful fragmenting */ m_freem(morig); *mptr = first_mbufp; last_mbufp->m_nextpkt = NULL; ip6stat.ip6s_fragmented++; in6_ifstat_inc(ifp, ifs6_out_fragok); } } return error; } static int ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) { struct mbuf *m; if (hlen > MCLBYTES) { return ENOBUFS; /* XXX */ } MGET(m, M_DONTWAIT, MT_DATA); if (m == NULL) { return ENOBUFS; } if (hlen > MLEN) { MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_free(m); return ENOBUFS; } } m->m_len = hlen; if (hdr != NULL) { bcopy(hdr, mtod(m, caddr_t), hlen); } *mp = m; return 0; } static void ip6_out_cksum_stats(int proto, u_int32_t len) { switch (proto) { case IPPROTO_TCP: tcp_out6_cksum_stats(len); break; case IPPROTO_UDP: udp_out6_cksum_stats(len); break; default: /* keep only TCP or UDP stats for now */ break; } } /* * Process a delayed payload checksum calculation (outbound path.) * * hoff is the number of bytes beyond the mbuf data pointer which * points to the IPv6 header. optlen is the number of bytes, if any, * between the end of IPv6 header and the beginning of the ULP payload * header, which represents the extension headers. If optlen is less * than zero, this routine will bail when it detects extension headers. * * Returns a bitmask representing all the work done in software. */ uint32_t in6_finalize_cksum(struct mbuf *m, uint32_t hoff, int32_t optlen, int32_t nxt0, uint32_t csum_flags) { unsigned char buf[sizeof(struct ip6_hdr)] __attribute__((aligned(8))); struct ip6_hdr *ip6; uint32_t offset, mlen, hlen, olen, sw_csum; uint16_t csum, ulpoff, plen; uint8_t nxt; _CASSERT(sizeof(csum) == sizeof(uint16_t)); VERIFY(m->m_flags & M_PKTHDR); sw_csum = (csum_flags & m->m_pkthdr.csum_flags); if ((sw_csum &= CSUM_DELAY_IPV6_DATA) == 0) { goto done; } mlen = m->m_pkthdr.len; /* total mbuf len */ hlen = sizeof(*ip6); /* IPv6 header len */ /* sanity check (need at least IPv6 header) */ if (mlen < (hoff + hlen)) { panic("%s: mbuf %p pkt len (%u) < hoff+ip6_hdr " "(%u+%u)\n", __func__, m, mlen, hoff, hlen); /* NOTREACHED */ } /* * In case the IPv6 header is not contiguous, or not 32-bit * aligned, copy it to a local buffer. */ if ((hoff + hlen) > m->m_len || !IP6_HDR_ALIGNED_P(mtod(m, caddr_t) + hoff)) { m_copydata(m, hoff, hlen, (caddr_t)buf); ip6 = (struct ip6_hdr *)(void *)buf; } else { ip6 = (struct ip6_hdr *)(void *)(m->m_data + hoff); } nxt = ip6->ip6_nxt; plen = ntohs(ip6->ip6_plen); if (plen != (mlen - (hoff + hlen))) { plen = OSSwapInt16(plen); if (plen != (mlen - (hoff + hlen))) { /* Don't complain for jumbograms */ if (plen != 0 || nxt != IPPROTO_HOPOPTS) { printf("%s: mbuf 0x%llx proto %d IPv6 " "plen %d (%x) [swapped %d (%x)] doesn't " "match actual packet length; %d is used " "instead\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(m), nxt, ip6->ip6_plen, ip6->ip6_plen, plen, plen, (mlen - (hoff + hlen))); } plen = (uint16_t)(mlen - (hoff + hlen)); } } if (optlen < 0) { /* next header isn't TCP/UDP and we don't know optlen, bail */ if (nxt != IPPROTO_TCP && nxt != IPPROTO_UDP) { sw_csum = 0; goto done; } olen = 0; } else { /* caller supplied the original transport number; use it */ if (nxt0 >= 0) { nxt = (uint8_t)nxt0; } olen = optlen; } offset = hoff + hlen + olen; /* ULP header */ /* sanity check */ if (mlen < offset) { panic("%s: mbuf %p pkt len (%u) < hoff+ip6_hdr+ext_hdr " "(%u+%u+%u)\n", __func__, m, mlen, hoff, hlen, olen); /* NOTREACHED */ } /* * offset is added to the lower 16-bit value of csum_data, * which is expected to contain the ULP offset; therefore * CSUM_PARTIAL offset adjustment must be undone. */ if ((m->m_pkthdr.csum_flags & (CSUM_PARTIAL | CSUM_DATA_VALID)) == (CSUM_PARTIAL | CSUM_DATA_VALID)) { /* * Get back the original ULP offset (this will * undo the CSUM_PARTIAL logic in ip6_output.) */ m->m_pkthdr.csum_data = (m->m_pkthdr.csum_tx_stuff - m->m_pkthdr.csum_tx_start); } ulpoff = (m->m_pkthdr.csum_data & 0xffff); /* ULP csum offset */ if (mlen < (ulpoff + sizeof(csum))) { panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP " "cksum offset (%u) cksum flags 0x%x\n", __func__, m, mlen, nxt, ulpoff, m->m_pkthdr.csum_flags); /* NOTREACHED */ } csum = inet6_cksum(m, 0, offset, plen - olen); /* Update stats */ ip6_out_cksum_stats(nxt, plen - olen); /* RFC1122 4.1.3.4 */ if (csum == 0 && (m->m_pkthdr.csum_flags & (CSUM_UDPIPV6 | CSUM_ZERO_INVERT))) { csum = 0xffff; } /* Insert the checksum in the ULP csum field */ offset += ulpoff; if ((offset + sizeof(csum)) > m->m_len) { m_copyback(m, offset, sizeof(csum), &csum); } else if (IP6_HDR_ALIGNED_P(mtod(m, char *) + hoff)) { *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum; } else { bcopy(&csum, (mtod(m, char *) + offset), sizeof(csum)); } m->m_pkthdr.csum_flags &= ~(CSUM_DELAY_IPV6_DATA | CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_ZERO_INVERT); done: return sw_csum; } /* * Insert jumbo payload option. */ static int ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) { struct mbuf *mopt; u_char *optbuf; u_int32_t v; #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ /* * If there is no hop-by-hop options header, allocate new one. * If there is one but it doesn't have enough space to store the * jumbo payload option, allocate a cluster to store the whole options. * Otherwise, use it to store the options. */ if (exthdrs->ip6e_hbh == NULL) { MGET(mopt, M_DONTWAIT, MT_DATA); if (mopt == NULL) { return ENOBUFS; } mopt->m_len = JUMBOOPTLEN; optbuf = mtod(mopt, u_char *); optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ exthdrs->ip6e_hbh = mopt; } else { struct ip6_hbh *hbh; mopt = exthdrs->ip6e_hbh; if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { /* * XXX assumption: * - exthdrs->ip6e_hbh is not referenced from places * other than exthdrs. * - exthdrs->ip6e_hbh is not an mbuf chain. */ u_int32_t oldoptlen = mopt->m_len; struct mbuf *n; /* * XXX: give up if the whole (new) hbh header does * not fit even in an mbuf cluster. */ if (oldoptlen + JUMBOOPTLEN > MCLBYTES) { return ENOBUFS; } /* * As a consequence, we must always prepare a cluster * at this point. */ MGET(n, M_DONTWAIT, MT_DATA); if (n != NULL) { MCLGET(n, M_DONTWAIT); if (!(n->m_flags & M_EXT)) { m_freem(n); n = NULL; } } if (n == NULL) { return ENOBUFS; } n->m_len = oldoptlen + JUMBOOPTLEN; bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen); optbuf = mtod(n, u_char *) + oldoptlen; m_freem(mopt); mopt = exthdrs->ip6e_hbh = n; } else { optbuf = mtod(mopt, u_char *) + mopt->m_len; mopt->m_len += JUMBOOPTLEN; } optbuf[0] = IP6OPT_PADN; optbuf[1] = 1; /* * Adjust the header length according to the pad and * the jumbo payload option. */ hbh = mtod(mopt, struct ip6_hbh *); hbh->ip6h_len += (JUMBOOPTLEN >> 3); } /* fill in the option. */ optbuf[2] = IP6OPT_JUMBO; optbuf[3] = 4; v = (u_int32_t)htonl(plen + JUMBOOPTLEN); bcopy(&v, &optbuf[4], sizeof(u_int32_t)); /* finally, adjust the packet header length */ exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; return 0; #undef JUMBOOPTLEN } /* * Insert fragment header and copy unfragmentable header portions. */ static int ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, struct ip6_frag **frghdrp) { struct mbuf *n, *mlast; if (hlen > sizeof(struct ip6_hdr)) { n = m_copym(m0, sizeof(struct ip6_hdr), hlen - sizeof(struct ip6_hdr), M_DONTWAIT); if (n == NULL) { return ENOBUFS; } m->m_next = n; } else { n = m; } /* Search for the last mbuf of unfragmentable part. */ for (mlast = n; mlast->m_next; mlast = mlast->m_next) { ; } if (!(mlast->m_flags & M_EXT) && M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { /* use the trailing space of the last mbuf for the frag hdr */ *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); mlast->m_len += sizeof(struct ip6_frag); m->m_pkthdr.len += sizeof(struct ip6_frag); } else { /* allocate a new mbuf for the fragment header */ struct mbuf *mfrg; MGET(mfrg, M_DONTWAIT, MT_DATA); if (mfrg == NULL) { return ENOBUFS; } mfrg->m_len = sizeof(struct ip6_frag); *frghdrp = mtod(mfrg, struct ip6_frag *); mlast->m_next = mfrg; } return 0; } static int ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, struct ifnet *ifp, struct in6_addr *dst, uint32_t dst_ifscope, u_int32_t *mtup) { u_int32_t mtu = 0; int error = 0; if (ro_pmtu != ro) { /* The first hop and the final destination may differ. */ struct sockaddr_in6 *sa6_dst = SIN6(&ro_pmtu->ro_dst); if (ROUTE_UNUSABLE(ro_pmtu) || !in6_are_addr_equal_scoped(&sa6_dst->sin6_addr, dst, sa6_dst->sin6_scope_id, dst_ifscope)) { ROUTE_RELEASE(ro_pmtu); } if (ro_pmtu->ro_rt == NULL) { SOCKADDR_ZERO(sa6_dst, sizeof(*sa6_dst)); sa6_dst->sin6_family = AF_INET6; sa6_dst->sin6_len = sizeof(struct sockaddr_in6); sa6_dst->sin6_addr = *dst; rtalloc_scoped((struct route *)ro_pmtu, ifp != NULL ? ifp->if_index : IFSCOPE_NONE); } } if (ro_pmtu->ro_rt != NULL) { u_int32_t ifmtu; if (ifp == NULL) { ifp = ro_pmtu->ro_rt->rt_ifp; } /* Access without acquiring nd_ifinfo lock for performance */ ifmtu = IN6_LINKMTU(ifp); /* * Access rmx_mtu without holding the route entry lock, * for performance; this isn't something that changes * often, so optimize. */ mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; if (mtu > ifmtu || mtu == 0) { /* * The MTU on the route is larger than the MTU on * the interface! This shouldn't happen, unless the * MTU of the interface has been changed after the * interface was brought up. Change the MTU in the * route to match the interface MTU (as long as the * field isn't locked). * * if MTU on the route is 0, we need to fix the MTU. * this case happens with path MTU discovery timeouts. */ mtu = ifmtu; if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU)) { ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ } } } else { if (ifp) { /* Don't hold nd_ifinfo lock for performance */ mtu = IN6_LINKMTU(ifp); } else { error = EHOSTUNREACH; /* XXX */ } } *mtup = mtu; return error; } /* * IP6 socket option processing. */ int ip6_ctloutput(struct socket *so, struct sockopt *sopt) { int optdatalen, uproto; void *optdata; int privileged; struct inpcb *in6p = sotoinpcb(so); int error = 0, optval = 0; int level, op = -1, optname = 0; size_t optlen = 0; struct proc *p; lck_mtx_t *mutex_held = NULL; VERIFY(sopt != NULL); level = sopt->sopt_level; op = sopt->sopt_dir; optname = sopt->sopt_name; optlen = sopt->sopt_valsize; p = sopt->sopt_p; uproto = (int)SOCK_PROTO(so); privileged = (proc_suser(p) == 0); if (level == IPPROTO_IPV6) { boolean_t capture_exthdrstat_in = FALSE; switch (op) { case SOPT_SET: mutex_held = socket_getlock(so, PR_F_WILLUNLOCK); /* * Wait if we are in the middle of ip6_output * as we unlocked the socket there and don't * want to overwrite the IP options */ if (in6p->inp_sndinprog_cnt > 0) { in6p->inp_sndingprog_waiters++; while (in6p->inp_sndinprog_cnt > 0) { msleep(&in6p->inp_sndinprog_cnt, mutex_held, PSOCK | PCATCH, "inp_sndinprog_cnt", NULL); } in6p->inp_sndingprog_waiters--; } switch (optname) { case IPV6_2292PKTOPTIONS: { struct mbuf *m; error = soopt_getm(sopt, &m); if (error != 0) { break; } error = soopt_mcopyin(sopt, m); if (error != 0) { break; } error = ip6_pcbopts(&in6p->in6p_outputopts, m, so, sopt); m_freem(m); break; } /* * Use of some Hop-by-Hop options or some * Destination options, might require special * privilege. That is, normal applications * (without special privilege) might be forbidden * from setting certain options in outgoing packets, * and might never see certain options in received * packets. [RFC 2292 Section 6] * KAME specific note: * KAME prevents non-privileged users from sending or * receiving ANY hbh/dst options in order to avoid * overhead of parsing options in the kernel. */ case IPV6_RECVHOPOPTS: case IPV6_RECVDSTOPTS: case IPV6_RECVRTHDRDSTOPTS: if (!privileged) { break; } OS_FALLTHROUGH; case IPV6_UNICAST_HOPS: case IPV6_HOPLIMIT: case IPV6_RECVPKTINFO: case IPV6_RECVHOPLIMIT: case IPV6_RECVRTHDR: case IPV6_RECVPATHMTU: case IPV6_RECVTCLASS: case IPV6_V6ONLY: case IPV6_AUTOFLOWLABEL: if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } switch (optname) { case IPV6_UNICAST_HOPS: if (optval < -1 || optval >= 256) { error = EINVAL; } else { /* -1 = kernel default */ in6p->in6p_hops = (short)optval; if (in6p->inp_vflag & INP_IPV4) { in6p->inp_ip_ttl = (uint8_t)optval; } } break; #define OPTSET(bit) do { \ if (optval) \ in6p->inp_flags |= (bit); \ else \ in6p->inp_flags &= ~(bit); \ } while (0) #define OPTSET2292(bit) do { \ in6p->inp_flags |= IN6P_RFC2292; \ if (optval) \ in6p->inp_flags |= (bit); \ else \ in6p->inp_flags &= ~(bit); \ } while (0) #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) case IPV6_RECVPKTINFO: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_PKTINFO); break; case IPV6_HOPLIMIT: { struct ip6_pktopts **optp; /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } optp = &in6p->in6p_outputopts; error = ip6_pcbopt(IPV6_HOPLIMIT, (u_char *)&optval, sizeof(optval), optp, uproto); break; } case IPV6_RECVHOPLIMIT: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_HOPLIMIT); break; case IPV6_RECVHOPOPTS: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_HOPOPTS); capture_exthdrstat_in = TRUE; break; case IPV6_RECVDSTOPTS: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_DSTOPTS); capture_exthdrstat_in = TRUE; break; case IPV6_RECVRTHDRDSTOPTS: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_RTHDRDSTOPTS); capture_exthdrstat_in = TRUE; break; case IPV6_RECVRTHDR: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_RTHDR); capture_exthdrstat_in = TRUE; break; case IPV6_RECVPATHMTU: /* * We ignore this option for TCP * sockets. * (RFC3542 leaves this case * unspecified.) */ if (uproto != IPPROTO_TCP) { OPTSET(IN6P_MTU); } break; case IPV6_V6ONLY: /* * make setsockopt(IPV6_V6ONLY) * available only prior to bind(2). * see ipng mailing list, Jun 22 2001. */ if (in6p->inp_lport || !IN6_IS_ADDR_UNSPECIFIED( &in6p->in6p_laddr)) { error = EINVAL; break; } OPTSET(IN6P_IPV6_V6ONLY); if (optval) { in6p->inp_vflag &= ~INP_IPV4; } else { in6p->inp_vflag |= INP_IPV4; } break; case IPV6_RECVTCLASS: /* we can mix with RFC2292 */ OPTSET(IN6P_TCLASS); break; case IPV6_AUTOFLOWLABEL: OPTSET(IN6P_AUTOFLOWLABEL); break; } break; case IPV6_TCLASS: case IPV6_DONTFRAG: case IPV6_USE_MIN_MTU: case IPV6_PREFER_TEMPADDR: { struct ip6_pktopts **optp; if (optlen != sizeof(optval)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } optp = &in6p->in6p_outputopts; error = ip6_pcbopt(optname, (u_char *)&optval, sizeof(optval), optp, uproto); if (optname == IPV6_TCLASS) { // Add in the ECN flags u_int8_t tos = (in6p->inp_ip_tos & ~IPTOS_ECN_MASK); u_int8_t ecn = optval & IPTOS_ECN_MASK; in6p->inp_ip_tos = tos | ecn; } break; } case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292HOPOPTS: case IPV6_2292DSTOPTS: case IPV6_2292RTHDR: /* RFC 2292 */ if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } switch (optname) { case IPV6_2292PKTINFO: OPTSET2292(IN6P_PKTINFO); break; case IPV6_2292HOPLIMIT: OPTSET2292(IN6P_HOPLIMIT); break; case IPV6_2292HOPOPTS: /* * Check super-user privilege. * See comments for IPV6_RECVHOPOPTS. */ if (!privileged) { return EPERM; } OPTSET2292(IN6P_HOPOPTS); capture_exthdrstat_in = TRUE; break; case IPV6_2292DSTOPTS: if (!privileged) { return EPERM; } OPTSET2292(IN6P_DSTOPTS | IN6P_RTHDRDSTOPTS); /* XXX */ capture_exthdrstat_in = TRUE; break; case IPV6_2292RTHDR: OPTSET2292(IN6P_RTHDR); capture_exthdrstat_in = TRUE; break; } break; case IPV6_3542PKTINFO: case IPV6_3542HOPOPTS: case IPV6_3542RTHDR: case IPV6_3542DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_3542NEXTHOP: { struct ip6_pktopts **optp; /* new advanced API (RFC3542) */ struct mbuf *m; /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } error = soopt_getm(sopt, &m); if (error != 0) { break; } error = soopt_mcopyin(sopt, m); if (error != 0) { break; } optp = &in6p->in6p_outputopts; error = ip6_pcbopt(optname, mtod(m, u_char *), m->m_len, optp, uproto); m_freem(m); break; } #undef OPTSET case IPV6_MULTICAST_IF: case IPV6_MULTICAST_HOPS: case IPV6_MULTICAST_LOOP: case IPV6_JOIN_GROUP: case IPV6_LEAVE_GROUP: case IPV6_MSFILTER: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = ip6_setmoptions(in6p, sopt); break; case IPV6_PORTRANGE: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } switch (optval) { case IPV6_PORTRANGE_DEFAULT: in6p->inp_flags &= ~(INP_LOWPORT); in6p->inp_flags &= ~(INP_HIGHPORT); break; case IPV6_PORTRANGE_HIGH: in6p->inp_flags &= ~(INP_LOWPORT); in6p->inp_flags |= INP_HIGHPORT; break; case IPV6_PORTRANGE_LOW: in6p->inp_flags &= ~(INP_HIGHPORT); in6p->inp_flags |= INP_LOWPORT; break; default: error = EINVAL; break; } break; #if IPSEC case IPV6_IPSEC_POLICY: { caddr_t req = NULL; size_t len = 0; struct mbuf *m; if ((error = soopt_getm(sopt, &m)) != 0) { break; } if ((error = soopt_mcopyin(sopt, m)) != 0) { break; } req = mtod(m, caddr_t); len = m->m_len; error = ipsec6_set_policy(in6p, optname, req, len, privileged); m_freem(m); break; } #endif /* IPSEC */ /* * IPv6 variant of IP_BOUND_IF; for details see * comments on IP_BOUND_IF in ip_ctloutput(). */ case IPV6_BOUND_IF: /* This option is settable only on IPv6 */ if (!(in6p->inp_vflag & INP_IPV6)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } error = inp_bindif(in6p, optval, NULL); break; case IPV6_NO_IFT_CELLULAR: /* This option is settable only for IPv6 */ if (!(in6p->inp_vflag & INP_IPV6)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } /* once set, it cannot be unset */ if (!optval && INP_NO_CELLULAR(in6p)) { error = EINVAL; break; } error = so_set_restrictions(so, SO_RESTRICT_DENY_CELLULAR); break; case IPV6_OUT_IF: /* This option is not settable */ error = EINVAL; break; default: error = ENOPROTOOPT; break; } if (capture_exthdrstat_in) { if (uproto == IPPROTO_TCP) { INC_ATOMIC_INT64_LIM(net_api_stats.nas_sock_inet6_stream_exthdr_in); } else if (uproto == IPPROTO_UDP) { INC_ATOMIC_INT64_LIM(net_api_stats.nas_sock_inet6_dgram_exthdr_in); } } break; case SOPT_GET: switch (optname) { case IPV6_2292PKTOPTIONS: /* * RFC3542 (effectively) deprecated the * semantics of the 2292-style pktoptions. * Since it was not reliable in nature (i.e., * applications had to expect the lack of some * information after all), it would make sense * to simplify this part by always returning * empty data. */ sopt->sopt_valsize = 0; break; case IPV6_RECVHOPOPTS: case IPV6_RECVDSTOPTS: case IPV6_RECVRTHDRDSTOPTS: case IPV6_UNICAST_HOPS: case IPV6_RECVPKTINFO: case IPV6_RECVHOPLIMIT: case IPV6_RECVRTHDR: case IPV6_RECVPATHMTU: case IPV6_V6ONLY: case IPV6_PORTRANGE: case IPV6_RECVTCLASS: case IPV6_AUTOFLOWLABEL: switch (optname) { case IPV6_RECVHOPOPTS: optval = OPTBIT(IN6P_HOPOPTS); break; case IPV6_RECVDSTOPTS: optval = OPTBIT(IN6P_DSTOPTS); break; case IPV6_RECVRTHDRDSTOPTS: optval = OPTBIT(IN6P_RTHDRDSTOPTS); break; case IPV6_UNICAST_HOPS: optval = in6p->in6p_hops; break; case IPV6_RECVPKTINFO: optval = OPTBIT(IN6P_PKTINFO); break; case IPV6_RECVHOPLIMIT: optval = OPTBIT(IN6P_HOPLIMIT); break; case IPV6_RECVRTHDR: optval = OPTBIT(IN6P_RTHDR); break; case IPV6_RECVPATHMTU: optval = OPTBIT(IN6P_MTU); break; case IPV6_V6ONLY: optval = OPTBIT(IN6P_IPV6_V6ONLY); break; case IPV6_PORTRANGE: { int flags; flags = in6p->inp_flags; if (flags & INP_HIGHPORT) { optval = IPV6_PORTRANGE_HIGH; } else if (flags & INP_LOWPORT) { optval = IPV6_PORTRANGE_LOW; } else { optval = 0; } break; } case IPV6_RECVTCLASS: optval = OPTBIT(IN6P_TCLASS); break; case IPV6_AUTOFLOWLABEL: optval = OPTBIT(IN6P_AUTOFLOWLABEL); break; } if (error) { break; } error = sooptcopyout(sopt, &optval, sizeof(optval)); break; case IPV6_PATHMTU: { u_int32_t pmtu = 0; struct ip6_mtuinfo mtuinfo; struct route_in6 sro; bzero(&sro, sizeof(sro)); if (!(so->so_state & SS_ISCONNECTED)) { return ENOTCONN; } /* * XXX: we dot not consider the case of source * routing, or optional information to specify * the outgoing interface. */ error = ip6_getpmtu(&sro, NULL, NULL, &in6p->in6p_faddr, in6p->inp_fifscope, &pmtu); ROUTE_RELEASE(&sro); if (error) { break; } if (pmtu > IPV6_MAXPACKET) { pmtu = IPV6_MAXPACKET; } bzero(&mtuinfo, sizeof(mtuinfo)); mtuinfo.ip6m_mtu = (u_int32_t)pmtu; optdata = (void *)&mtuinfo; optdatalen = sizeof(mtuinfo); error = sooptcopyout(sopt, optdata, optdatalen); break; } case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292HOPOPTS: case IPV6_2292RTHDR: case IPV6_2292DSTOPTS: switch (optname) { case IPV6_2292PKTINFO: optval = OPTBIT(IN6P_PKTINFO); break; case IPV6_2292HOPLIMIT: optval = OPTBIT(IN6P_HOPLIMIT); break; case IPV6_2292HOPOPTS: optval = OPTBIT(IN6P_HOPOPTS); break; case IPV6_2292RTHDR: optval = OPTBIT(IN6P_RTHDR); break; case IPV6_2292DSTOPTS: optval = OPTBIT(IN6P_DSTOPTS | IN6P_RTHDRDSTOPTS); break; } error = sooptcopyout(sopt, &optval, sizeof(optval)); break; case IPV6_PKTINFO: case IPV6_HOPOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_NEXTHOP: case IPV6_TCLASS: case IPV6_DONTFRAG: case IPV6_USE_MIN_MTU: case IPV6_PREFER_TEMPADDR: error = ip6_getpcbopt(in6p->in6p_outputopts, optname, sopt); break; case IPV6_MULTICAST_IF: case IPV6_MULTICAST_HOPS: case IPV6_MULTICAST_LOOP: case IPV6_MSFILTER: error = ip6_getmoptions(in6p, sopt); break; #if IPSEC case IPV6_IPSEC_POLICY: { error = 0; /* This option is no longer supported */ break; } #endif /* IPSEC */ case IPV6_BOUND_IF: if (in6p->inp_flags & INP_BOUND_IF) { optval = in6p->inp_boundifp->if_index; } error = sooptcopyout(sopt, &optval, sizeof(optval)); break; case IPV6_NO_IFT_CELLULAR: optval = INP_NO_CELLULAR(in6p) ? 1 : 0; error = sooptcopyout(sopt, &optval, sizeof(optval)); break; case IPV6_OUT_IF: optval = (in6p->in6p_last_outifp != NULL) ? in6p->in6p_last_outifp->if_index : 0; error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: error = ENOPROTOOPT; break; } break; } } else { error = EINVAL; } return error; } int ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) { int error = 0, optval; size_t optlen; const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); struct inpcb *in6p = sotoinpcb(so); int level, op, optname; level = sopt->sopt_level; op = sopt->sopt_dir; optname = sopt->sopt_name; optlen = sopt->sopt_valsize; if (level != IPPROTO_IPV6) { return EINVAL; } switch (optname) { case IPV6_CHECKSUM: /* * For ICMPv6 sockets, no modification allowed for checksum * offset, permit "no change" values to help existing apps. * * RFC3542 says: "An attempt to set IPV6_CHECKSUM * for an ICMPv6 socket will fail." * The current behavior does not meet RFC3542. */ switch (op) { case SOPT_SET: if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if ((optval % 2) != 0) { /* the API assumes even offset values */ error = EINVAL; } else if (SOCK_PROTO(so) == IPPROTO_ICMPV6) { if (optval != icmp6off) { error = EINVAL; } } else { in6p->in6p_cksum = optval; } break; case SOPT_GET: if (SOCK_PROTO(so) == IPPROTO_ICMPV6) { optval = icmp6off; } else { optval = in6p->in6p_cksum; } error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: error = EINVAL; break; } break; default: error = ENOPROTOOPT; break; } return error; } /* * Set up IP6 options in pcb for insertion in output packets or * specifying behavior of outgoing packets. */ static int ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so, struct sockopt *sopt) { #pragma unused(sopt) struct ip6_pktopts *opt = *pktopt; int error = 0; /* turn off any old options. */ if (opt != NULL) { #if DIAGNOSTIC if (opt->ip6po_pktinfo || opt->ip6po_nexthop || opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || opt->ip6po_rhinfo.ip6po_rhi_rthdr) { printf("%s: all specified options are cleared.\n", __func__); } #endif ip6_clearpktopts(opt, -1); } else { opt = kalloc_type(struct ip6_pktopts, Z_WAITOK | Z_NOFAIL); } *pktopt = NULL; if (m == NULL || m->m_len == 0) { /* * Only turning off any previous options, regardless of * whether the opt is just created or given. */ if (opt != NULL) { kfree_type(struct ip6_pktopts, opt); } return 0; } /* set options specified by user. */ if ((error = ip6_setpktopts(m, opt, NULL, SOCK_PROTO(so))) != 0) { ip6_clearpktopts(opt, -1); /* XXX: discard all options */ kfree_type(struct ip6_pktopts, opt); return error; } *pktopt = opt; return 0; } /* * initialize ip6_pktopts. beware that there are non-zero default values in * the struct. */ void ip6_initpktopts(struct ip6_pktopts *opt) { bzero(opt, sizeof(*opt)); opt->ip6po_hlim = -1; /* -1 means default hop limit */ opt->ip6po_tclass = -1; /* -1 means default traffic class */ opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; } static int ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, int uproto) { struct ip6_pktopts *opt; opt = *pktopt; if (opt == NULL) { opt = kalloc_type(struct ip6_pktopts, Z_WAITOK | Z_NOFAIL); ip6_initpktopts(opt); *pktopt = opt; } return ip6_setpktopt(optname, buf, len, opt, 1, 0, uproto); } static int ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) { void *optdata = NULL; int optdatalen = 0; struct ip6_ext *ip6e; struct in6_pktinfo null_pktinfo; int deftclass = 0, on; int defminmtu = IP6PO_MINMTU_MCASTONLY; int defpreftemp = IP6PO_TEMPADDR_SYSTEM; switch (optname) { case IPV6_PKTINFO: if (pktopt && pktopt->ip6po_pktinfo) { optdata = (void *)pktopt->ip6po_pktinfo; } else { /* XXX: we don't have to do this every time... */ bzero(&null_pktinfo, sizeof(null_pktinfo)); optdata = (void *)&null_pktinfo; } optdatalen = sizeof(struct in6_pktinfo); break; case IPV6_TCLASS: if (pktopt && pktopt->ip6po_tclass >= 0) { optdata = (void *)&pktopt->ip6po_tclass; } else { optdata = (void *)&deftclass; } optdatalen = sizeof(int); break; case IPV6_HOPOPTS: if (pktopt && pktopt->ip6po_hbh) { optdata = (void *)pktopt->ip6po_hbh; ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_RTHDR: if (pktopt && pktopt->ip6po_rthdr) { optdata = (void *)pktopt->ip6po_rthdr; ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_RTHDRDSTOPTS: if (pktopt && pktopt->ip6po_dest1) { optdata = (void *)pktopt->ip6po_dest1; ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_DSTOPTS: if (pktopt && pktopt->ip6po_dest2) { optdata = (void *)pktopt->ip6po_dest2; ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_NEXTHOP: if (pktopt && pktopt->ip6po_nexthop) { optdata = (void *)pktopt->ip6po_nexthop; optdatalen = pktopt->ip6po_nexthop->sa_len; } break; case IPV6_USE_MIN_MTU: if (pktopt) { optdata = (void *)&pktopt->ip6po_minmtu; } else { optdata = (void *)&defminmtu; } optdatalen = sizeof(int); break; case IPV6_DONTFRAG: if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) { on = 1; } else { on = 0; } optdata = (void *)&on; optdatalen = sizeof(on); break; case IPV6_PREFER_TEMPADDR: if (pktopt) { optdata = (void *)&pktopt->ip6po_prefer_tempaddr; } else { optdata = (void *)&defpreftemp; } optdatalen = sizeof(int); break; default: /* should not happen */ #ifdef DIAGNOSTIC panic("ip6_getpcbopt: unexpected option"); #endif return ENOPROTOOPT; } return sooptcopyout(sopt, optdata, optdatalen); } void ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) { if (pktopt == NULL) { return; } if (optname == -1 || optname == IPV6_PKTINFO) { if (pktopt->ip6po_pktinfo) { kfree_type(struct in6_pktinfo, pktopt->ip6po_pktinfo); } pktopt->ip6po_pktinfo = NULL; } if (optname == -1 || optname == IPV6_HOPLIMIT) { pktopt->ip6po_hlim = -1; } if (optname == -1 || optname == IPV6_TCLASS) { pktopt->ip6po_tclass = -1; } if (optname == -1 || optname == IPV6_NEXTHOP) { ROUTE_RELEASE(&pktopt->ip6po_nextroute); if (pktopt->ip6po_nexthop) { kfree_data_addr(pktopt->ip6po_nexthop); } pktopt->ip6po_nexthop = NULL; } if (optname == -1 || optname == IPV6_HOPOPTS) { if (pktopt->ip6po_hbh) { kfree_data_addr(pktopt->ip6po_hbh); } pktopt->ip6po_hbh = NULL; } if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { if (pktopt->ip6po_dest1) { kfree_data_addr(pktopt->ip6po_dest1); } pktopt->ip6po_dest1 = NULL; } if (optname == -1 || optname == IPV6_RTHDR) { if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) { kfree_data_addr(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr); } pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; ROUTE_RELEASE(&pktopt->ip6po_route); } if (optname == -1 || optname == IPV6_DSTOPTS) { if (pktopt->ip6po_dest2) { kfree_data_addr(pktopt->ip6po_dest2); } pktopt->ip6po_dest2 = NULL; } } #define PKTOPT_EXTHDRCPY(type) do { \ if (src->type) { \ int hlen = \ (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3; \ dst->type = kalloc_data(hlen, canwait); \ if (dst->type == NULL && canwait == Z_NOWAIT) \ goto bad; \ bcopy(src->type, dst->type, hlen); \ } \ } while (0) static int copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, zalloc_flags_t canwait) { if (dst == NULL || src == NULL) { printf("copypktopts: invalid argument\n"); return EINVAL; } dst->ip6po_hlim = src->ip6po_hlim; dst->ip6po_tclass = src->ip6po_tclass; dst->ip6po_flags = src->ip6po_flags; if (src->ip6po_pktinfo) { dst->ip6po_pktinfo = kalloc_type(struct in6_pktinfo, canwait); if (dst->ip6po_pktinfo == NULL && canwait == Z_NOWAIT) { goto bad; } *dst->ip6po_pktinfo = *src->ip6po_pktinfo; } if (src->ip6po_nexthop) { dst->ip6po_nexthop = kalloc_data(src->ip6po_nexthop->sa_len, canwait); if (dst->ip6po_nexthop == NULL && canwait == Z_NOWAIT) { goto bad; } SOCKADDR_COPY(src->ip6po_nexthop, dst->ip6po_nexthop, src->ip6po_nexthop->sa_len); } PKTOPT_EXTHDRCPY(ip6po_hbh); PKTOPT_EXTHDRCPY(ip6po_dest1); PKTOPT_EXTHDRCPY(ip6po_dest2); PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ return 0; bad: ip6_clearpktopts(dst, -1); return ENOBUFS; } #undef PKTOPT_EXTHDRCPY struct ip6_pktopts * ip6_copypktopts(struct ip6_pktopts *src, zalloc_flags_t canwait) { int error; struct ip6_pktopts *dst; dst = kalloc_type(struct ip6_pktopts, canwait); if (dst == NULL) { return NULL; } ip6_initpktopts(dst); if ((error = copypktopts(dst, src, canwait)) != 0) { kfree_type(struct ip6_pktopts, dst); return NULL; } return dst; } void ip6_freepcbopts(struct ip6_pktopts *pktopt) { if (pktopt == NULL) { return; } ip6_clearpktopts(pktopt, -1); kfree_type(struct ip6_pktopts, pktopt); } void ip6_moptions_init(void) { PE_parse_boot_argn("ifa_debug", &im6o_debug, sizeof(im6o_debug)); vm_size_t im6o_size = (im6o_debug == 0) ? sizeof(struct ip6_moptions) : sizeof(struct ip6_moptions_dbg); im6o_zone = zone_create(IM6O_ZONE_NAME, im6o_size, ZC_ZFREE_CLEARMEM); } void im6o_addref(struct ip6_moptions *im6o, int locked) { if (!locked) { IM6O_LOCK(im6o); } else { IM6O_LOCK_ASSERT_HELD(im6o); } if (++im6o->im6o_refcnt == 0) { panic("%s: im6o %p wraparound refcnt", __func__, im6o); /* NOTREACHED */ } else if (im6o->im6o_trace != NULL) { (*im6o->im6o_trace)(im6o, TRUE); } if (!locked) { IM6O_UNLOCK(im6o); } } void im6o_remref(struct ip6_moptions *im6o) { int i; IM6O_LOCK(im6o); if (im6o->im6o_refcnt == 0) { panic("%s: im6o %p negative refcnt", __func__, im6o); /* NOTREACHED */ } else if (im6o->im6o_trace != NULL) { (*im6o->im6o_trace)(im6o, FALSE); } --im6o->im6o_refcnt; if (im6o->im6o_refcnt > 0) { IM6O_UNLOCK(im6o); return; } for (i = 0; i < im6o->im6o_num_memberships; ++i) { struct in6_mfilter *imf; imf = im6o->im6o_mfilters ? &im6o->im6o_mfilters[i] : NULL; if (imf != NULL) { im6f_leave(imf); } (void) in6_mc_leave(im6o->im6o_membership[i], imf); if (imf != NULL) { im6f_purge(imf); } IN6M_REMREF(im6o->im6o_membership[i]); im6o->im6o_membership[i] = NULL; } im6o->im6o_num_memberships = 0; IM6O_UNLOCK(im6o); kfree_type(struct in6_multi *, im6o->im6o_max_memberships, im6o->im6o_membership); kfree_type(struct in6_mfilter, im6o->im6o_max_memberships, im6o->im6o_mfilters); lck_mtx_destroy(&im6o->im6o_lock, &ifa_mtx_grp); if (!(im6o->im6o_debug & IFD_ALLOC)) { panic("%s: im6o %p cannot be freed", __func__, im6o); /* NOTREACHED */ } zfree(im6o_zone, im6o); } static void im6o_trace(struct ip6_moptions *im6o, int refhold) { struct ip6_moptions_dbg *im6o_dbg = (struct ip6_moptions_dbg *)im6o; ctrace_t *tr; u_int32_t idx; u_int16_t *cnt; if (!(im6o->im6o_debug & IFD_DEBUG)) { panic("%s: im6o %p has no debug structure", __func__, im6o); /* NOTREACHED */ } if (refhold) { cnt = &im6o_dbg->im6o_refhold_cnt; tr = im6o_dbg->im6o_refhold; } else { cnt = &im6o_dbg->im6o_refrele_cnt; tr = im6o_dbg->im6o_refrele; } idx = os_atomic_inc_orig(cnt, relaxed) % IM6O_TRACE_HIST_SIZE; ctrace_record(&tr[idx]); } struct ip6_moptions * ip6_allocmoptions(zalloc_flags_t how) { struct ip6_moptions *im6o; im6o = zalloc_flags(im6o_zone, how | Z_ZERO); if (im6o != NULL) { lck_mtx_init(&im6o->im6o_lock, &ifa_mtx_grp, &ifa_mtx_attr); im6o->im6o_debug |= IFD_ALLOC; if (im6o_debug != 0) { im6o->im6o_debug |= IFD_DEBUG; im6o->im6o_trace = im6o_trace; } IM6O_ADDREF(im6o); } return im6o; } /* * Set IPv6 outgoing packet options based on advanced API. */ int ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, struct ip6_pktopts *stickyopt, int uproto) { struct cmsghdr *cm = NULL; if (control == NULL || opt == NULL) { return EINVAL; } ip6_initpktopts(opt); if (stickyopt) { int error; /* * If stickyopt is provided, make a local copy of the options * for this particular packet, then override them by ancillary * objects. * XXX: copypktopts() does not copy the cached route to a next * hop (if any). This is not very good in terms of efficiency, * but we can allow this since this option should be rarely * used. */ if ((error = copypktopts(opt, stickyopt, Z_NOWAIT)) != 0) { return error; } } /* * XXX: Currently, we assume all the optional information is stored * in a single mbuf. */ if (control->m_next) { return EINVAL; } if (control->m_len < CMSG_LEN(0)) { return EINVAL; } for (cm = M_FIRST_CMSGHDR(control); is_cmsg_valid(control, cm); cm = M_NXT_CMSGHDR(control, cm)) { int error; if (cm->cmsg_level != IPPROTO_IPV6) { continue; } error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), cm->cmsg_len - CMSG_LEN(0), opt, 0, 1, uproto); if (error) { return error; } } return 0; } /* * Set a particular packet option, as a sticky option or an ancillary data * item. "len" can be 0 only when it's a sticky option. * We have 4 cases of combination of "sticky" and "cmsg": * "sticky=0, cmsg=0": impossible * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data * "sticky=1, cmsg=0": RFC3542 socket option * "sticky=1, cmsg=1": RFC2292 socket option */ static int ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, int sticky, int cmsg, int uproto) { int minmtupolicy, preftemp; int error; boolean_t capture_exthdrstat_out = FALSE; if (!sticky && !cmsg) { #ifdef DIAGNOSTIC printf("ip6_setpktopt: impossible case\n"); #endif return EINVAL; } /* * Caller must have ensured that the buffer is at least * aligned on 32-bit boundary. */ VERIFY(IS_P2ALIGNED(buf, sizeof(u_int32_t))); /* * IPV6_2292xxx is for backward compatibility to RFC2292, and should * not be specified in the context of RFC3542. Conversely, * RFC3542 types should not be specified in the context of RFC2292. */ if (!cmsg) { switch (optname) { case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292NEXTHOP: case IPV6_2292HOPOPTS: case IPV6_2292DSTOPTS: case IPV6_2292RTHDR: case IPV6_2292PKTOPTIONS: return ENOPROTOOPT; } } if (sticky && cmsg) { switch (optname) { case IPV6_PKTINFO: case IPV6_HOPLIMIT: case IPV6_NEXTHOP: case IPV6_HOPOPTS: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_RTHDR: case IPV6_USE_MIN_MTU: case IPV6_DONTFRAG: case IPV6_TCLASS: case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ return ENOPROTOOPT; } } switch (optname) { case IPV6_2292PKTINFO: case IPV6_PKTINFO: { struct ifnet *ifp = NULL; struct in6_pktinfo *pktinfo; if (len != sizeof(struct in6_pktinfo)) { return EINVAL; } pktinfo = (struct in6_pktinfo *)(void *)buf; /* * An application can clear any sticky IPV6_PKTINFO option by * doing a "regular" setsockopt with ipi6_addr being * in6addr_any and ipi6_ifindex being zero. * [RFC 3542, Section 6] */ if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && pktinfo->ipi6_ifindex == 0 && IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { ip6_clearpktopts(opt, optname); break; } if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { return EINVAL; } /* validate the interface index if specified. */ ifnet_head_lock_shared(); if (pktinfo->ipi6_ifindex > if_index) { ifnet_head_done(); return ENXIO; } if (pktinfo->ipi6_ifindex) { ifp = ifindex2ifnet[pktinfo->ipi6_ifindex]; if (ifp == NULL) { ifnet_head_done(); return ENXIO; } } ifnet_head_done(); /* * We store the address anyway, and let in6_selectsrc() * validate the specified address. This is because ipi6_addr * may not have enough information about its scope zone, and * we may need additional information (such as outgoing * interface or the scope zone of a destination address) to * disambiguate the scope. * XXX: the delay of the validation may confuse the * application when it is used as a sticky option. */ if (opt->ip6po_pktinfo == NULL) { opt->ip6po_pktinfo = kalloc_type(struct in6_pktinfo, Z_NOWAIT); if (opt->ip6po_pktinfo == NULL) { return ENOBUFS; } } bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); break; } case IPV6_2292HOPLIMIT: case IPV6_HOPLIMIT: { int *hlimp; /* * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT * to simplify the ordering among hoplimit options. */ if (optname == IPV6_HOPLIMIT && sticky) { return ENOPROTOOPT; } if (len != sizeof(int)) { return EINVAL; } hlimp = (int *)(void *)buf; if (*hlimp < -1 || *hlimp > IPV6_MAXHLIM) { return EINVAL; } opt->ip6po_hlim = *hlimp; break; } case IPV6_TCLASS: { int tclass; if (len != sizeof(int)) { return EINVAL; } tclass = *(int *)(void *)buf; if (tclass < -1 || tclass > 255) { return EINVAL; } opt->ip6po_tclass = tclass; break; } case IPV6_2292NEXTHOP: case IPV6_NEXTHOP: error = suser(kauth_cred_get(), 0); if (error) { return EACCES; } if (len == 0) { /* just remove the option */ ip6_clearpktopts(opt, IPV6_NEXTHOP); break; } /* check if cmsg_len is large enough for sa_len */ if (len < sizeof(struct sockaddr) || len < *buf) { return EINVAL; } switch (SA(buf)->sa_family) { case AF_INET6: { struct sockaddr_in6 *sa6 = SIN6(buf); if (sa6->sin6_len != sizeof(struct sockaddr_in6)) { return EINVAL; } if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { return EINVAL; } if ((error = sa6_embedscope(sa6, ip6_use_defzone, IN6_NULL_IF_EMBEDDED_SCOPE(&sa6->sin6_scope_id))) != 0) { return error; } break; } case AF_LINK: /* should eventually be supported */ default: return EAFNOSUPPORT; } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, IPV6_NEXTHOP); opt->ip6po_nexthop = kalloc_data(*buf, Z_NOWAIT); if (opt->ip6po_nexthop == NULL) { return ENOBUFS; } SOCKADDR_COPY(buf, opt->ip6po_nexthop, *buf); break; case IPV6_2292HOPOPTS: case IPV6_HOPOPTS: { struct ip6_hbh *hbh; int hbhlen; /* * XXX: We don't allow a non-privileged user to set ANY HbH * options, since per-option restriction has too much * overhead. */ error = suser(kauth_cred_get(), 0); if (error) { return EACCES; } if (len == 0) { ip6_clearpktopts(opt, IPV6_HOPOPTS); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_hbh)) { return EINVAL; } hbh = (struct ip6_hbh *)(void *)buf; hbhlen = (hbh->ip6h_len + 1) << 3; if (len != hbhlen) { return EINVAL; } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, IPV6_HOPOPTS); opt->ip6po_hbh = kalloc_data(hbhlen, Z_NOWAIT); if (opt->ip6po_hbh == NULL) { return ENOBUFS; } bcopy(hbh, opt->ip6po_hbh, hbhlen); capture_exthdrstat_out = TRUE; break; } case IPV6_2292DSTOPTS: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: { struct ip6_dest *dest, **newdest = NULL; int destlen; error = suser(kauth_cred_get(), 0); if (error) { return EACCES; } if (len == 0) { ip6_clearpktopts(opt, optname); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_dest)) { return EINVAL; } dest = (struct ip6_dest *)(void *)buf; destlen = (dest->ip6d_len + 1) << 3; if (len != destlen) { return EINVAL; } /* * Determine the position that the destination options header * should be inserted; before or after the routing header. */ switch (optname) { case IPV6_2292DSTOPTS: /* * The old advacned API is ambiguous on this point. * Our approach is to determine the position based * according to the existence of a routing header. * Note, however, that this depends on the order of the * extension headers in the ancillary data; the 1st * part of the destination options header must appear * before the routing header in the ancillary data, * too. * RFC3542 solved the ambiguity by introducing * separate ancillary data or option types. */ if (opt->ip6po_rthdr == NULL) { newdest = &opt->ip6po_dest1; } else { newdest = &opt->ip6po_dest2; } break; case IPV6_RTHDRDSTOPTS: newdest = &opt->ip6po_dest1; break; case IPV6_DSTOPTS: newdest = &opt->ip6po_dest2; break; } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, optname); *newdest = kalloc_data(destlen, Z_NOWAIT); if (*newdest == NULL) { return ENOBUFS; } bcopy(dest, *newdest, destlen); capture_exthdrstat_out = TRUE; break; } case IPV6_2292RTHDR: case IPV6_RTHDR: { struct ip6_rthdr *rth; int rthlen; if (len == 0) { ip6_clearpktopts(opt, IPV6_RTHDR); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_rthdr)) { return EINVAL; } rth = (struct ip6_rthdr *)(void *)buf; rthlen = (rth->ip6r_len + 1) << 3; if (len != rthlen) { return EINVAL; } switch (rth->ip6r_type) { case IPV6_RTHDR_TYPE_0: if (rth->ip6r_len == 0) { /* must contain one addr */ return EINVAL; } if (rth->ip6r_len % 2) { /* length must be even */ return EINVAL; } if (rth->ip6r_len / 2 != rth->ip6r_segleft) { return EINVAL; } break; default: return EINVAL; /* not supported */ } /* turn off the previous option */ ip6_clearpktopts(opt, IPV6_RTHDR); opt->ip6po_rthdr = kalloc_data(rthlen, Z_NOWAIT); if (opt->ip6po_rthdr == NULL) { return ENOBUFS; } bcopy(rth, opt->ip6po_rthdr, rthlen); capture_exthdrstat_out = TRUE; break; } case IPV6_USE_MIN_MTU: if (len != sizeof(int)) { return EINVAL; } minmtupolicy = *(int *)(void *)buf; if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && minmtupolicy != IP6PO_MINMTU_DISABLE && minmtupolicy != IP6PO_MINMTU_ALL) { return EINVAL; } opt->ip6po_minmtu = minmtupolicy; break; case IPV6_DONTFRAG: if (len != sizeof(int)) { return EINVAL; } if (uproto == IPPROTO_TCP || *(int *)(void *)buf == 0) { /* * we ignore this option for TCP sockets. * (RFC3542 leaves this case unspecified.) */ opt->ip6po_flags &= ~IP6PO_DONTFRAG; } else { opt->ip6po_flags |= IP6PO_DONTFRAG; } break; case IPV6_PREFER_TEMPADDR: if (len != sizeof(int)) { return EINVAL; } preftemp = *(int *)(void *)buf; if (preftemp != IP6PO_TEMPADDR_SYSTEM && preftemp != IP6PO_TEMPADDR_NOTPREFER && preftemp != IP6PO_TEMPADDR_PREFER) { return EINVAL; } opt->ip6po_prefer_tempaddr = preftemp; break; default: return ENOPROTOOPT; } /* end of switch */ if (capture_exthdrstat_out) { if (uproto == IPPROTO_TCP) { INC_ATOMIC_INT64_LIM(net_api_stats.nas_sock_inet6_stream_exthdr_out); } else if (uproto == IPPROTO_UDP) { INC_ATOMIC_INT64_LIM(net_api_stats.nas_sock_inet6_dgram_exthdr_out); } } return 0; } /* * Routine called from ip6_output() to loop back a copy of an IP6 multicast * packet to the input queue of a specified interface. Note that this * calls the output routine of the loopback "driver", but with an interface * pointer that might NOT be &loif -- easier than replicating that code here. */ void ip6_mloopback(struct ifnet *srcifp, struct ifnet *origifp, struct mbuf *m, struct sockaddr_in6 *dst, uint32_t optlen, int32_t nxt0) { struct mbuf *copym; struct ip6_hdr *ip6; struct in6_addr src; if (lo_ifp == NULL) { return; } /* * Copy the packet header as it's needed for the checksum. * Make sure to deep-copy IPv6 header portion in case the data * is in an mbuf cluster, so that we can safely override the IPv6 * header portion later. */ copym = m_copym_mode(m, 0, M_COPYALL, M_DONTWAIT, NULL, NULL, M_COPYM_COPY_HDR); if (copym != NULL && ((copym->m_flags & M_EXT) || copym->m_len < sizeof(struct ip6_hdr))) { copym = m_pullup(copym, sizeof(struct ip6_hdr)); } if (copym == NULL) { return; } ip6 = mtod(copym, struct ip6_hdr *); src = ip6->ip6_src; /* * clear embedded scope identifiers if necessary. * in6_clearscope will touch the addresses only when necessary. */ in6_clearscope(&ip6->ip6_src); in6_clearscope(&ip6->ip6_dst); if (copym->m_pkthdr.csum_flags & CSUM_DELAY_IPV6_DATA) { in6_delayed_cksum_offset(copym, 0, optlen, nxt0); } /* * Stuff the 'real' ifp into the pkthdr, to be used in matching * in ip6_input(); we need the loopback ifp/dl_tag passed as args * to make the loopback driver compliant with the data link * requirements. */ copym->m_pkthdr.rcvif = origifp; /* * Also record the source interface (which owns the source address). * This is basically a stripped down version of ifa_foraddr6(). */ if (srcifp == NULL) { struct in6_ifaddr *ia; lck_rw_lock_shared(&in6_ifaddr_rwlock); TAILQ_FOREACH(ia, IN6ADDR_HASH(&src), ia6_hash) { IFA_LOCK_SPIN(&ia->ia_ifa); /* compare against src addr with embedded scope */ if (in6_are_addr_equal_scoped(&ia->ia_addr.sin6_addr, &src, ia->ia_addr.sin6_scope_id, ip6_output_getsrcifscope(m))) { srcifp = ia->ia_ifp; IFA_UNLOCK(&ia->ia_ifa); break; } IFA_UNLOCK(&ia->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); } if (srcifp != NULL) { ip6_setsrcifaddr_info(copym, srcifp->if_index, NULL); } ip6_setdstifaddr_info(copym, origifp->if_index, NULL); dlil_output(lo_ifp, PF_INET6, copym, NULL, SA(dst), 0, NULL); } /* * Chop IPv6 header off from the payload. */ static int ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) { struct mbuf *mh; struct ip6_hdr *ip6; ip6 = mtod(m, struct ip6_hdr *); if (m->m_len > sizeof(*ip6)) { MGETHDR(mh, M_DONTWAIT, MT_HEADER); /* MAC-OK */ if (mh == NULL) { m_freem(m); return ENOBUFS; } M_COPY_PKTHDR(mh, m); MH_ALIGN(mh, sizeof(*ip6)); m->m_flags &= ~M_PKTHDR; m->m_len -= sizeof(*ip6); m->m_data += sizeof(*ip6); mh->m_next = m; m = mh; m->m_len = sizeof(*ip6); bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); } exthdrs->ip6e_ip6 = m; return 0; } static void ip6_output_checksum(struct ifnet *ifp, uint32_t mtu, struct mbuf *m, int nxt0, uint32_t tlen, uint32_t optlen) { uint32_t sw_csum, hwcap = ifp->if_hwassist; if (!hwcksum_tx) { /* do all in software; checksum offload is disabled */ sw_csum = CSUM_DELAY_IPV6_DATA & m->m_pkthdr.csum_flags; } else { /* do in software what the hardware cannot */ sw_csum = m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_FLAGS(hwcap); } if (optlen != 0) { sw_csum |= (CSUM_DELAY_IPV6_DATA & m->m_pkthdr.csum_flags); } else if ((sw_csum & CSUM_DELAY_IPV6_DATA) && (hwcap & CSUM_PARTIAL)) { /* * Partial checksum offload, ere), if no extension headers, * and TCP only (no UDP support, as the hardware may not be * able to convert +0 to -0 (0xffff) per RFC1122 4.1.3.4. * unless the interface supports "invert zero" capability.) */ if (hwcksum_tx && ((m->m_pkthdr.csum_flags & CSUM_TCPIPV6) || ((hwcap & CSUM_ZERO_INVERT) && (m->m_pkthdr.csum_flags & CSUM_ZERO_INVERT))) && tlen <= mtu) { uint16_t start = sizeof(struct ip6_hdr); uint16_t ulpoff = m->m_pkthdr.csum_data & 0xffff; m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PARTIAL); m->m_pkthdr.csum_tx_stuff = (ulpoff + start); m->m_pkthdr.csum_tx_start = start; sw_csum = 0; } else { sw_csum |= (CSUM_DELAY_IPV6_DATA & m->m_pkthdr.csum_flags); } } if (sw_csum & CSUM_DELAY_IPV6_DATA) { in6_delayed_cksum_offset(m, 0, optlen, nxt0); sw_csum &= ~CSUM_DELAY_IPV6_DATA; } if (hwcksum_tx) { uint32_t delay_data = m->m_pkthdr.csum_flags & CSUM_DELAY_IPV6_DATA; uint32_t hw_csum = IF_HWASSIST_CSUM_FLAGS(hwcap); /* * Drop off bits that aren't supported by hardware; * also make sure to preserve non-checksum related bits. */ m->m_pkthdr.csum_flags = ((m->m_pkthdr.csum_flags & (hw_csum | CSUM_DATA_VALID)) | (m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_MASK)); /* * If hardware supports partial checksum but not delay_data, * add back delay_data. */ if ((hw_csum & CSUM_PARTIAL) != 0 && (hw_csum & delay_data) == 0) { m->m_pkthdr.csum_flags |= delay_data; } } else { /* drop all bits; checksum offload is disabled */ m->m_pkthdr.csum_flags = 0; } } /* * Compute IPv6 extension header length. */ int ip6_optlen(struct in6pcb *in6p) { int len; if (!in6p->in6p_outputopts) { return 0; } len = 0; #define elen(x) \ (((struct ip6_ext *)(x)) ? \ (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) len += elen(in6p->in6p_outputopts->ip6po_hbh); if (in6p->in6p_outputopts->ip6po_rthdr) { /* dest1 is valid with rthdr only */ len += elen(in6p->in6p_outputopts->ip6po_dest1); } len += elen(in6p->in6p_outputopts->ip6po_rthdr); len += elen(in6p->in6p_outputopts->ip6po_dest2); return len; #undef elen } static int sysctl_reset_ip6_output_stats SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, i; i = ip6_output_measure; error = sysctl_handle_int(oidp, &i, 0, req); if (error || req->newptr == USER_ADDR_NULL) { goto done; } /* impose bounds */ if (i < 0 || i > 1) { error = EINVAL; goto done; } if (ip6_output_measure != i && i == 1) { net_perf_initialize(&net_perf, ip6_output_measure_bins); } ip6_output_measure = i; done: return error; } static int sysctl_ip6_output_measure_bins SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error; uint64_t i; i = ip6_output_measure_bins; error = sysctl_handle_quad(oidp, &i, 0, req); if (error || req->newptr == USER_ADDR_NULL) { goto done; } /* validate data */ if (!net_perf_validate_bins(i)) { error = EINVAL; goto done; } ip6_output_measure_bins = i; done: return error; } static int sysctl_ip6_output_getperf SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) if (req->oldptr == USER_ADDR_NULL) { req->oldlen = (size_t)sizeof(struct ipstat); } return SYSCTL_OUT(req, &net_perf, MIN(sizeof(net_perf), req->oldlen)); } void ip6_output_setsrcifscope(struct mbuf *m, uint32_t src_idx, struct in6_ifaddr *ia6) { VERIFY(m->m_flags & M_PKTHDR); m->m_pkthdr.pkt_ext_flags |= PKTF_EXT_OUTPUT_SCOPE; if (ia6 != NULL) { m->m_pkthdr.src_ifindex = ia6->ia_ifp->if_index; } else { m->m_pkthdr.src_ifindex = (uint16_t)src_idx; } } void ip6_output_setdstifscope(struct mbuf *m, uint32_t dst_idx, struct in6_ifaddr *ia6) { VERIFY(m->m_flags & M_PKTHDR); m->m_pkthdr.pkt_ext_flags |= PKTF_EXT_OUTPUT_SCOPE; if (ia6 != NULL) { m->m_pkthdr.dst_ifindex = ia6->ia_ifp->if_index; } else { m->m_pkthdr.dst_ifindex = (uint16_t)dst_idx; } } uint32_t ip6_output_getsrcifscope(struct mbuf *m) { VERIFY(m->m_flags & M_PKTHDR); if (in6_embedded_scope_debug) { VERIFY(m->m_pkthdr.pkt_ext_flags & PKTF_EXT_OUTPUT_SCOPE); VERIFY((m->m_pkthdr.pkt_flags & PKTF_IFAINFO) == 0); } return m->m_pkthdr.src_ifindex; } uint32_t ip6_output_getdstifscope(struct mbuf *m) { VERIFY(m->m_flags & M_PKTHDR); if (in6_embedded_scope_debug) { VERIFY(m->m_pkthdr.pkt_ext_flags & PKTF_EXT_OUTPUT_SCOPE); VERIFY((m->m_pkthdr.pkt_flags & PKTF_IFAINFO) == 0); } return m->m_pkthdr.dst_ifindex; }