/* * Copyright (c) 2000-2020 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /*- * Copyright (c) 2009 Bruce Simpson. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1988 Stephen Deering. * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Stephen Deering of Stanford University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)igmp.c 8.1 (Berkeley) 7/19/93 */ /* * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce * support for mandatory and extensible security protections. This notice * is included in support of clause 2.2 (b) of the Apple Public License, * Version 2.0. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Lock group and attribute for mld_mtx */ static LCK_ATTR_DECLARE(mld_mtx_attr, 0, 0); static LCK_GRP_DECLARE(mld_mtx_grp, "mld_mtx"); /* * Locking and reference counting: * * mld_mtx mainly protects mli_head. In cases where both mld_mtx and * in6_multihead_lock must be held, the former must be acquired first in order * to maintain lock ordering. It is not a requirement that mld_mtx be * acquired first before in6_multihead_lock, but in case both must be acquired * in succession, the correct lock ordering must be followed. * * Instead of walking the if_multiaddrs list at the interface and returning * the ifma_protospec value of a matching entry, we search the global list * of in6_multi records and find it that way; this is done with in6_multihead * lock held. Doing so avoids the race condition issues that many other BSDs * suffer from (therefore in our implementation, ifma_protospec will never be * NULL for as long as the in6_multi is valid.) * * The above creates a requirement for the in6_multi to stay in in6_multihead * list even after the final MLD leave (in MLDv2 mode) until no longer needs * be retransmitted (this is not required for MLDv1.) In order to handle * this, the request and reference counts of the in6_multi are bumped up when * the state changes to MLD_LEAVING_MEMBER, and later dropped in the timeout * handler. Each in6_multi holds a reference to the underlying mld_ifinfo. * * Thus, the permitted lock order is: * * mld_mtx, in6_multihead_lock, inm6_lock, mli_lock * * Any may be taken independently, but if any are held at the same time, * the above lock order must be followed. */ static LCK_MTX_DECLARE_ATTR(mld_mtx, &mld_mtx_grp, &mld_mtx_attr); SLIST_HEAD(mld_in6m_relhead, in6_multi); static void mli_initvar(struct mld_ifinfo *, struct ifnet *, int); static struct mld_ifinfo *mli_alloc(zalloc_flags_t); static void mli_free(struct mld_ifinfo *); static void mli_delete(const struct ifnet *, struct mld_in6m_relhead *); static void mld_dispatch_packet(struct mbuf *); static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *, struct mld_tparams *); static int mld_handle_state_change(struct in6_multi *, struct mld_ifinfo *, struct mld_tparams *); static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *, struct mld_tparams *, const int); #ifdef MLD_DEBUG static const char * mld_rec_type_to_str(const int); #endif static uint32_t mld_set_version(struct mld_ifinfo *, const int); static void mld_append_relq(struct mld_ifinfo *, struct in6_multi *); static void mld_flush_relq(struct mld_ifinfo *, struct mld_in6m_relhead *); static void mld_dispatch_queue_locked(struct mld_ifinfo *, struct ifqueue *, int); static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, /*const*/ struct mld_hdr *); static int mld_v1_input_report(struct ifnet *, struct mbuf *, const struct ip6_hdr *, /*const*/ struct mld_hdr *); static void mld_v1_process_group_timer(struct in6_multi *, const int); static void mld_v1_process_querier_timers(struct mld_ifinfo *); static int mld_v1_transmit_report(struct in6_multi *, const uint8_t); static uint32_t mld_v1_update_group(struct in6_multi *, const int); static void mld_v2_cancel_link_timers(struct mld_ifinfo *); static uint32_t mld_v2_dispatch_general_query(struct mld_ifinfo *); static struct mbuf * mld_v2_encap_report(struct ifnet *, struct mbuf *); static int mld_v2_enqueue_filter_change(struct ifqueue *, struct in6_multi *); static int mld_v2_enqueue_group_record(struct ifqueue *, struct in6_multi *, const int, const int, const int, const int); static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, struct mbuf *, const int, const int); static int mld_v2_merge_state_changes(struct in6_multi *, struct ifqueue *); static void mld_v2_process_group_timers(struct mld_ifinfo *, struct ifqueue *, struct ifqueue *, struct in6_multi *, const int); static int mld_v2_process_group_query(struct in6_multi *, int, struct mbuf *, const int); static int sysctl_mld_gsr SYSCTL_HANDLER_ARGS; static int sysctl_mld_ifinfo SYSCTL_HANDLER_ARGS; static int sysctl_mld_v2enable SYSCTL_HANDLER_ARGS; static const uint32_t mld_timeout_delay = 1000; /* in milliseconds */ static const uint32_t mld_timeout_leeway = 500; /* in millseconds */ static bool mld_timeout_run; /* MLD timer is scheduled to run */ static bool mld_fast_timeout_run; /* MLD fast timer is scheduled to run */ static void mld_timeout(thread_call_param_t, thread_call_param_t); static void mld_sched_timeout(void); static void mld_sched_fast_timeout(void); /* * Normative references: RFC 2710, RFC 3590, RFC 3810. */ static struct timeval mld_gsrdelay = {.tv_sec = 10, .tv_usec = 0}; static LIST_HEAD(, mld_ifinfo) mli_head; static int querier_present_timers_running6; static int interface_timers_running6; static int state_change_timers_running6; static int current_state_timers_running6; static unsigned int mld_mli_list_genid; /* * Subsystem lock macros. */ #define MLD_LOCK() \ lck_mtx_lock(&mld_mtx) #define MLD_LOCK_ASSERT_HELD() \ LCK_MTX_ASSERT(&mld_mtx, LCK_MTX_ASSERT_OWNED) #define MLD_LOCK_ASSERT_NOTHELD() \ LCK_MTX_ASSERT(&mld_mtx, LCK_MTX_ASSERT_NOTOWNED) #define MLD_UNLOCK() \ lck_mtx_unlock(&mld_mtx) #define MLD_ADD_DETACHED_IN6M(_head, _in6m) { \ SLIST_INSERT_HEAD(_head, _in6m, in6m_dtle); \ } #define MLD_REMOVE_DETACHED_IN6M(_head) { \ struct in6_multi *_in6m, *_inm_tmp; \ SLIST_FOREACH_SAFE(_in6m, _head, in6m_dtle, _inm_tmp) { \ SLIST_REMOVE(_head, _in6m, in6_multi, in6m_dtle); \ IN6M_REMREF(_in6m); \ } \ VERIFY(SLIST_EMPTY(_head)); \ } static KALLOC_TYPE_DEFINE(mli_zone, struct mld_ifinfo, NET_KT_DEFAULT); SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPv6 Multicast Listener Discovery"); SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &mld_gsrdelay.tv_sec, 0, sysctl_mld_gsr, "I", "Rate limit for MLDv2 Group-and-Source queries in seconds"); SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_mld_ifinfo, "Per-interface MLDv2 state"); static int mld_v1enable = 1; SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW | CTLFLAG_LOCKED, &mld_v1enable, 0, "Enable fallback to MLDv1"); static int mld_v2enable = 1; SYSCTL_PROC(_net_inet6_mld, OID_AUTO, v2enable, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &mld_v2enable, 0, sysctl_mld_v2enable, "I", "Enable MLDv2 (debug purposes only)"); static int mld_use_allow = 1; SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW | CTLFLAG_LOCKED, &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); #ifdef MLD_DEBUG int mld_debug = 0; SYSCTL_INT(_net_inet6_mld, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &mld_debug, 0, ""); #endif /* * Packed Router Alert option structure declaration. */ struct mld_raopt { struct ip6_hbh hbh; struct ip6_opt pad; struct ip6_opt_router ra; } __packed; /* * Router Alert hop-by-hop option header. */ static struct mld_raopt mld_ra = { .hbh = { .ip6h_nxt = 0, .ip6h_len = 0 }, .pad = { .ip6o_type = IP6OPT_PADN, .ip6o_len = 0 }, .ra = { .ip6or_type = (u_int8_t)IP6OPT_ROUTER_ALERT, .ip6or_len = (u_int8_t)(IP6OPT_RTALERT_LEN - 2), .ip6or_value = {((IP6OPT_RTALERT_MLD >> 8) & 0xFF), (IP6OPT_RTALERT_MLD & 0xFF) } } }; static struct ip6_pktopts mld_po; /* Store MLDv2 record count in the module private scratch space */ #define vt_nrecs pkt_mpriv.__mpriv_u.__mpriv32[0].__mpriv32_u.__val16[0] static __inline void mld_save_context(struct mbuf *m, struct ifnet *ifp) { m->m_pkthdr.rcvif = ifp; } static __inline void mld_scrub_context(struct mbuf *m) { m->m_pkthdr.rcvif = NULL; } /* * Restore context from a queued output chain. * Return saved ifp. */ static __inline struct ifnet * mld_restore_context(struct mbuf *m) { return m->m_pkthdr.rcvif; } /* * Retrieve or set threshold between group-source queries in seconds. */ static int sysctl_mld_gsr SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error; int i; MLD_LOCK(); i = (int)mld_gsrdelay.tv_sec; error = sysctl_handle_int(oidp, &i, 0, req); if (error || !req->newptr) { goto out_locked; } if (i < -1 || i >= 60) { error = EINVAL; goto out_locked; } mld_gsrdelay.tv_sec = i; out_locked: MLD_UNLOCK(); return error; } /* * Expose struct mld_ifinfo to userland, keyed by ifindex. * For use by ifmcstat(8). * */ static int sysctl_mld_ifinfo SYSCTL_HANDLER_ARGS { #pragma unused(oidp) int *name; int error; u_int namelen; struct ifnet *ifp; struct mld_ifinfo *mli; struct mld_ifinfo_u mli_u; name = (int *)arg1; namelen = arg2; if (req->newptr != USER_ADDR_NULL) { return EPERM; } if (namelen != 1) { return EINVAL; } MLD_LOCK(); if (name[0] <= 0 || name[0] > (u_int)if_index) { error = ENOENT; goto out_locked; } error = ENOENT; ifnet_head_lock_shared(); ifp = ifindex2ifnet[name[0]]; ifnet_head_done(); if (ifp == NULL) { goto out_locked; } bzero(&mli_u, sizeof(mli_u)); LIST_FOREACH(mli, &mli_head, mli_link) { MLI_LOCK(mli); if (ifp != mli->mli_ifp) { MLI_UNLOCK(mli); continue; } mli_u.mli_ifindex = mli->mli_ifp->if_index; mli_u.mli_version = mli->mli_version; mli_u.mli_v1_timer = mli->mli_v1_timer; mli_u.mli_v2_timer = mli->mli_v2_timer; mli_u.mli_flags = mli->mli_flags; mli_u.mli_rv = mli->mli_rv; mli_u.mli_qi = mli->mli_qi; mli_u.mli_qri = mli->mli_qri; mli_u.mli_uri = mli->mli_uri; MLI_UNLOCK(mli); error = SYSCTL_OUT(req, &mli_u, sizeof(mli_u)); break; } out_locked: MLD_UNLOCK(); return error; } static int sysctl_mld_v2enable SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error; int i; struct mld_ifinfo *mli; struct mld_tparams mtp = { .qpt = 0, .it = 0, .cst = 0, .sct = 0 }; MLD_LOCK(); i = mld_v2enable; error = sysctl_handle_int(oidp, &i, 0, req); if (error || !req->newptr) { goto out_locked; } if (i < 0 || i > 1) { error = EINVAL; goto out_locked; } mld_v2enable = i; /* * If we enabled v2, the state transition will take care of upgrading * the MLD version back to v2. Otherwise, we have to explicitly * downgrade. Note that this functionality is to be used for debugging. */ if (mld_v2enable == 1) { goto out_locked; } LIST_FOREACH(mli, &mli_head, mli_link) { MLI_LOCK(mli); if (mld_set_version(mli, MLD_VERSION_1) > 0) { mtp.qpt = 1; } MLI_UNLOCK(mli); } out_locked: MLD_UNLOCK(); mld_set_timeout(&mtp); return error; } /* * Dispatch an entire queue of pending packet chains. * * Must not be called with in6m_lock held. * XXX This routine unlocks MLD global lock and also mli locks. * Make sure that the calling routine takes reference on the mli * before calling this routine. * Also if we are traversing mli_head, remember to check for * mli list generation count and restart the loop if generation count * has changed. */ static void mld_dispatch_queue_locked(struct mld_ifinfo *mli, struct ifqueue *ifq, int limit) { struct mbuf *m; MLD_LOCK_ASSERT_HELD(); if (mli != NULL) { MLI_LOCK_ASSERT_HELD(mli); } for (;;) { IF_DEQUEUE(ifq, m); if (m == NULL) { break; } MLD_PRINTF(("%s: dispatch 0x%llx from 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifq), (uint64_t)VM_KERNEL_ADDRPERM(m))); if (mli != NULL) { MLI_UNLOCK(mli); } MLD_UNLOCK(); mld_dispatch_packet(m); MLD_LOCK(); if (mli != NULL) { MLI_LOCK(mli); } if (--limit == 0) { break; } } if (mli != NULL) { MLI_LOCK_ASSERT_HELD(mli); } } /* * Filter outgoing MLD report state by group. * * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) * and node-local addresses. However, kernel and socket consumers * always embed the KAME scope ID in the address provided, so strip it * when performing comparison. * Note: This is not the same as the *multicast* scope. * * Return zero if the given group is one for which MLD reports * should be suppressed, or non-zero if reports should be issued. */ static __inline__ int mld_is_addr_reported(const struct in6_addr *addr) { VERIFY(IN6_IS_ADDR_MULTICAST(addr)); if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) { return 0; } if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL && !IN6_IS_ADDR_UNICAST_BASED_MULTICAST(addr)) { struct in6_addr tmp = *addr; in6_clearscope(&tmp); if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) { return 0; } } return 1; } /* * Attach MLD when PF_INET6 is attached to an interface. */ struct mld_ifinfo * mld_domifattach(struct ifnet *ifp, zalloc_flags_t how) { struct mld_ifinfo *mli; os_log_debug(OS_LOG_DEFAULT, "%s: called for ifp %s\n", __func__, if_name(ifp)); mli = mli_alloc(how); if (mli == NULL) { return NULL; } MLD_LOCK(); MLI_LOCK(mli); mli_initvar(mli, ifp, 0); mli->mli_debug |= IFD_ATTACHED; MLI_ADDREF_LOCKED(mli); /* hold a reference for mli_head */ MLI_ADDREF_LOCKED(mli); /* hold a reference for caller */ MLI_UNLOCK(mli); ifnet_lock_shared(ifp); mld6_initsilent(ifp, mli); ifnet_lock_done(ifp); LIST_INSERT_HEAD(&mli_head, mli, mli_link); mld_mli_list_genid++; MLD_UNLOCK(); os_log_info(OS_LOG_DEFAULT, "%s: allocated mld_ifinfo for ifp %s\n", __func__, if_name(ifp)); return mli; } /* * Attach MLD when PF_INET6 is reattached to an interface. Caller is * expected to have an outstanding reference to the mli. */ void mld_domifreattach(struct mld_ifinfo *mli) { struct ifnet *ifp; MLD_LOCK(); MLI_LOCK(mli); VERIFY(!(mli->mli_debug & IFD_ATTACHED)); ifp = mli->mli_ifp; VERIFY(ifp != NULL); mli_initvar(mli, ifp, 1); mli->mli_debug |= IFD_ATTACHED; MLI_ADDREF_LOCKED(mli); /* hold a reference for mli_head */ MLI_UNLOCK(mli); ifnet_lock_shared(ifp); mld6_initsilent(ifp, mli); ifnet_lock_done(ifp); LIST_INSERT_HEAD(&mli_head, mli, mli_link); mld_mli_list_genid++; MLD_UNLOCK(); os_log_info(OS_LOG_DEFAULT, "%s: reattached mld_ifinfo for ifp %s\n", __func__, if_name(ifp)); } /* * Hook for domifdetach. */ void mld_domifdetach(struct ifnet *ifp) { SLIST_HEAD(, in6_multi) in6m_dthead; SLIST_INIT(&in6m_dthead); os_log_info(OS_LOG_DEFAULT, "%s: called for ifp %s\n", __func__, if_name(ifp)); MLD_LOCK(); mli_delete(ifp, (struct mld_in6m_relhead *)&in6m_dthead); MLD_UNLOCK(); /* Now that we're dropped all locks, release detached records */ MLD_REMOVE_DETACHED_IN6M(&in6m_dthead); } /* * Called at interface detach time. Note that we only flush all deferred * responses and record releases; all remaining inm records and their source * entries related to this interface are left intact, in order to handle * the reattach case. */ static void mli_delete(const struct ifnet *ifp, struct mld_in6m_relhead *in6m_dthead) { struct mld_ifinfo *mli, *tmli; MLD_LOCK_ASSERT_HELD(); LIST_FOREACH_SAFE(mli, &mli_head, mli_link, tmli) { MLI_LOCK(mli); if (mli->mli_ifp == ifp) { /* * Free deferred General Query responses. */ IF_DRAIN(&mli->mli_gq); IF_DRAIN(&mli->mli_v1q); mld_flush_relq(mli, in6m_dthead); mli->mli_debug &= ~IFD_ATTACHED; MLI_UNLOCK(mli); LIST_REMOVE(mli, mli_link); MLI_REMREF(mli); /* release mli_head reference */ mld_mli_list_genid++; return; } MLI_UNLOCK(mli); } panic("%s: mld_ifinfo not found for ifp %p(%s)", __func__, ifp, ifp->if_xname); } __private_extern__ void mld6_initsilent(struct ifnet *ifp, struct mld_ifinfo *mli) { ifnet_lock_assert(ifp, IFNET_LCK_ASSERT_OWNED); MLI_LOCK_ASSERT_NOTHELD(mli); MLI_LOCK(mli); if (!(ifp->if_flags & IFF_MULTICAST) && (ifp->if_eflags & (IFEF_IPV6_ND6ALT | IFEF_LOCALNET_PRIVATE))) { mli->mli_flags |= MLIF_SILENT; } else { mli->mli_flags &= ~MLIF_SILENT; } MLI_UNLOCK(mli); } static void mli_initvar(struct mld_ifinfo *mli, struct ifnet *ifp, int reattach) { MLI_LOCK_ASSERT_HELD(mli); mli->mli_ifp = ifp; if (mld_v2enable) { mli->mli_version = MLD_VERSION_2; } else { mli->mli_version = MLD_VERSION_1; } mli->mli_flags = 0; mli->mli_rv = MLD_RV_INIT; mli->mli_qi = MLD_QI_INIT; mli->mli_qri = MLD_QRI_INIT; mli->mli_uri = MLD_URI_INIT; if (mld_use_allow) { mli->mli_flags |= MLIF_USEALLOW; } if (!reattach) { SLIST_INIT(&mli->mli_relinmhead); } /* * Responses to general queries are subject to bounds. */ mli->mli_gq.ifq_maxlen = MLD_MAX_RESPONSE_PACKETS; mli->mli_v1q.ifq_maxlen = MLD_MAX_RESPONSE_PACKETS; } static struct mld_ifinfo * mli_alloc(zalloc_flags_t how) { struct mld_ifinfo *mli = zalloc_flags(mli_zone, how | Z_ZERO); if (mli != NULL) { lck_mtx_init(&mli->mli_lock, &mld_mtx_grp, &mld_mtx_attr); mli->mli_debug |= IFD_ALLOC; } return mli; } static void mli_free(struct mld_ifinfo *mli) { MLI_LOCK(mli); if (mli->mli_debug & IFD_ATTACHED) { panic("%s: attached mli=%p is being freed", __func__, mli); /* NOTREACHED */ } else if (mli->mli_ifp != NULL) { panic("%s: ifp not NULL for mli=%p", __func__, mli); /* NOTREACHED */ } else if (!(mli->mli_debug & IFD_ALLOC)) { panic("%s: mli %p cannot be freed", __func__, mli); /* NOTREACHED */ } else if (mli->mli_refcnt != 0) { panic("%s: non-zero refcnt mli=%p", __func__, mli); /* NOTREACHED */ } mli->mli_debug &= ~IFD_ALLOC; MLI_UNLOCK(mli); lck_mtx_destroy(&mli->mli_lock, &mld_mtx_grp); zfree(mli_zone, mli); } void mli_addref(struct mld_ifinfo *mli, int locked) { if (!locked) { MLI_LOCK_SPIN(mli); } else { MLI_LOCK_ASSERT_HELD(mli); } if (++mli->mli_refcnt == 0) { panic("%s: mli=%p wraparound refcnt", __func__, mli); /* NOTREACHED */ } if (!locked) { MLI_UNLOCK(mli); } } void mli_remref(struct mld_ifinfo *mli) { SLIST_HEAD(, in6_multi) in6m_dthead; struct ifnet *ifp; MLI_LOCK_SPIN(mli); if (mli->mli_refcnt == 0) { panic("%s: mli=%p negative refcnt", __func__, mli); /* NOTREACHED */ } --mli->mli_refcnt; if (mli->mli_refcnt > 0) { MLI_UNLOCK(mli); return; } ifp = mli->mli_ifp; mli->mli_ifp = NULL; IF_DRAIN(&mli->mli_gq); IF_DRAIN(&mli->mli_v1q); SLIST_INIT(&in6m_dthead); mld_flush_relq(mli, (struct mld_in6m_relhead *)&in6m_dthead); MLI_UNLOCK(mli); /* Now that we're dropped all locks, release detached records */ MLD_REMOVE_DETACHED_IN6M(&in6m_dthead); os_log(OS_LOG_DEFAULT, "%s: freeing mld_ifinfo for ifp %s\n", __func__, if_name(ifp)); mli_free(mli); } /* * Process a received MLDv1 general or address-specific query. * Assumes that the query header has been pulled up to sizeof(mld_hdr). * * NOTE: Can't be fully const correct as we temporarily embed scope ID in * mld_addr. This is OK as we own the mbuf chain. */ static int mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, /*const*/ struct mld_hdr *mld) { struct mld_ifinfo *mli; struct in6_multi *inm; int err = 0, is_general_query; uint16_t timer; struct mld_tparams mtp = { .qpt = 0, .it = 0, .cst = 0, .sct = 0 }; MLD_LOCK_ASSERT_NOTHELD(); is_general_query = 0; if (!mld_v1enable) { os_log_info(OS_LOG_DEFAULT, "%s: ignore v1 query on ifp %s\n", __func__, if_name(ifp)); goto done; } /* * RFC3810 Section 6.2: MLD queries must originate from * a router's link-local address. */ if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { os_log_info(OS_LOG_DEFAULT, "%s: ignore v1 query src %s on ifp %s\n", __func__, ip6_sprintf(&ip6->ip6_src), if_name(ifp)); goto done; } /* * Do address field validation upfront before we accept * the query. */ if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { /* * MLDv1 General Query. * If this was not sent to the all-nodes group, ignore it. */ struct in6_addr dst; dst = ip6->ip6_dst; in6_clearscope(&dst); if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) { err = EINVAL; goto done; } is_general_query = 1; } else { /* * Embed scope ID of receiving interface in MLD query for * lookup whilst we don't hold other locks. */ (void)in6_setscope(&mld->mld_addr, ifp, NULL); } /* * Switch to MLDv1 host compatibility mode. */ mli = MLD_IFINFO(ifp); VERIFY(mli != NULL); MLI_LOCK(mli); mtp.qpt = mld_set_version(mli, MLD_VERSION_1); MLI_UNLOCK(mli); timer = ntohs(mld->mld_maxdelay) / MLD_TIMER_SCALE; if (timer == 0) { timer = 1; } if (is_general_query) { struct in6_multistep step; os_log_debug(OS_LOG_DEFAULT, "%s: process v1 general query on ifp %s\n", __func__, if_name(ifp)); /* * For each reporting group joined on this * interface, kick the report timer. */ in6_multihead_lock_shared(); IN6_FIRST_MULTI(step, inm); while (inm != NULL) { IN6M_LOCK(inm); if (inm->in6m_ifp == ifp) { mtp.cst += mld_v1_update_group(inm, timer); } IN6M_UNLOCK(inm); IN6_NEXT_MULTI(step, inm); } in6_multihead_lock_done(); } else { /* * MLDv1 Group-Specific Query. * If this is a group-specific MLDv1 query, we need only * look up the single group to process it. */ in6_multihead_lock_shared(); IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm); in6_multihead_lock_done(); if (inm != NULL) { IN6M_LOCK(inm); os_log_debug(OS_LOG_DEFAULT, "%s: process v1 query %s on " "ifp %s\n", __func__, ip6_sprintf(&mld->mld_addr), if_name(ifp)); mtp.cst = mld_v1_update_group(inm, timer); IN6M_UNLOCK(inm); IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */ } /* XXX Clear embedded scope ID as userland won't expect it. */ in6_clearscope(&mld->mld_addr); } done: mld_set_timeout(&mtp); return err; } /* * Update the report timer on a group in response to an MLDv1 query. * * If we are becoming the reporting member for this group, start the timer. * If we already are the reporting member for this group, and timer is * below the threshold, reset it. * * We may be updating the group for the first time since we switched * to MLDv2. If we are, then we must clear any recorded source lists, * and transition to REPORTING state; the group timer is overloaded * for group and group-source query responses. * * Unlike MLDv2, the delay per group should be jittered * to avoid bursts of MLDv1 reports. */ static uint32_t mld_v1_update_group(struct in6_multi *inm, const int timer) { IN6M_LOCK_ASSERT_HELD(inm); MLD_PRINTF(("%s: %s/%s timer=%d\n", __func__, ip6_sprintf(&inm->in6m_addr), if_name(inm->in6m_ifp), timer)); switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: break; case MLD_REPORTING_MEMBER: if (inm->in6m_timer != 0 && inm->in6m_timer <= timer) { MLD_PRINTF(("%s: REPORTING and timer running, " "skipping.\n", __func__)); break; } OS_FALLTHROUGH; case MLD_SG_QUERY_PENDING_MEMBER: case MLD_G_QUERY_PENDING_MEMBER: case MLD_IDLE_MEMBER: case MLD_LAZY_MEMBER: case MLD_AWAKENING_MEMBER: MLD_PRINTF(("%s: ->REPORTING\n", __func__)); inm->in6m_state = MLD_REPORTING_MEMBER; inm->in6m_timer = MLD_RANDOM_DELAY(timer); break; case MLD_SLEEPING_MEMBER: MLD_PRINTF(("%s: ->AWAKENING\n", __func__)); inm->in6m_state = MLD_AWAKENING_MEMBER; break; case MLD_LEAVING_MEMBER: break; } return inm->in6m_timer; } /* * Process a received MLDv2 general, group-specific or * group-and-source-specific query. * * Assumes that the query header has been pulled up to sizeof(mldv2_query). * * Return 0 if successful, otherwise an appropriate error code is returned. */ static int mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, struct mbuf *m, const int off, const int icmp6len) { struct mld_ifinfo *mli; struct mldv2_query *mld; struct in6_multi *inm; uint32_t maxdelay, nsrc, qqi, timer; int err = 0, is_general_query; uint8_t qrv; struct mld_tparams mtp = { .qpt = 0, .it = 0, .cst = 0, .sct = 0 }; MLD_LOCK_ASSERT_NOTHELD(); is_general_query = 0; if (!mld_v2enable) { os_log_info(OS_LOG_DEFAULT, "%s: ignore v2 query on ifp %s\n", __func__, if_name(ifp)); goto done; } /* * RFC3810 Section 6.2: MLD queries must originate from * a router's link-local address. */ if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { os_log_info(OS_LOG_DEFAULT, "%s: ignore v1 query src %s on ifp %s\n", __func__, ip6_sprintf(&ip6->ip6_src), if_name(ifp)); goto done; } os_log_debug(OS_LOG_DEFAULT, "%s: input v2 query on ifp %s\n", __func__, if_name(ifp)); mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ if (maxdelay > SHRT_MAX) { maxdelay = (MLD_MRC_MANT((uint16_t)maxdelay) | 0x1000) << (MLD_MRC_EXP((uint16_t)maxdelay) + 3); } timer = maxdelay / MLD_TIMER_SCALE; if (timer == 0) { timer = 1; } qrv = MLD_QRV(mld->mld_misc); if (qrv < 2) { MLD_PRINTF(("%s: clamping qrv %d to %d\n", __func__, qrv, MLD_RV_INIT)); qrv = MLD_RV_INIT; } qqi = mld->mld_qqi; if (qqi >= 128) { qqi = MLD_QQIC_MANT(mld->mld_qqi) << (MLD_QQIC_EXP(mld->mld_qqi) + 3); } nsrc = ntohs(mld->mld_numsrc); if (nsrc > MLD_MAX_GS_SOURCES) { err = EMSGSIZE; goto done; } if (icmp6len < sizeof(struct mldv2_query) + (nsrc * sizeof(struct in6_addr))) { err = EMSGSIZE; goto done; } /* * Do further input validation upfront to avoid resetting timers * should we need to discard this query. */ if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { /* * A general query with a source list has undefined * behaviour; discard it. */ if (nsrc > 0) { err = EINVAL; goto done; } is_general_query = 1; } else { /* * Embed scope ID of receiving interface in MLD query for * lookup whilst we don't hold other locks (due to KAME * locking lameness). We own this mbuf chain just now. */ (void)in6_setscope(&mld->mld_addr, ifp, NULL); } mli = MLD_IFINFO(ifp); VERIFY(mli != NULL); MLI_LOCK(mli); /* * Discard the v2 query if we're in Compatibility Mode. * The RFC is pretty clear that hosts need to stay in MLDv1 mode * until the Old Version Querier Present timer expires. */ if (mli->mli_version != MLD_VERSION_2) { MLI_UNLOCK(mli); goto done; } mtp.qpt = mld_set_version(mli, MLD_VERSION_2); mli->mli_rv = qrv; mli->mli_qi = qqi; mli->mli_qri = MAX(timer, MLD_QRI_MIN); MLD_PRINTF(("%s: qrv %d qi %d qri %d\n", __func__, mli->mli_rv, mli->mli_qi, mli->mli_qri)); if (is_general_query) { /* * MLDv2 General Query. * * Schedule a current-state report on this ifp for * all groups, possibly containing source lists. * * If there is a pending General Query response * scheduled earlier than the selected delay, do * not schedule any other reports. * Otherwise, reset the interface timer. */ os_log_debug(OS_LOG_DEFAULT, "%s: process v2 general query on ifp %s\n", __func__, if_name(ifp)); if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { mtp.it = mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); } MLI_UNLOCK(mli); } else { MLI_UNLOCK(mli); /* * MLDv2 Group-specific or Group-and-source-specific Query. * * Group-source-specific queries are throttled on * a per-group basis to defeat denial-of-service attempts. * Queries for groups we are not a member of on this * link are simply ignored. */ in6_multihead_lock_shared(); IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm); in6_multihead_lock_done(); if (inm == NULL) { goto done; } IN6M_LOCK(inm); if (nsrc > 0) { if (!ratecheck(&inm->in6m_lastgsrtv, &mld_gsrdelay)) { os_log_info(OS_LOG_DEFAULT, "%s: GS query throttled\n", __func__); IN6M_UNLOCK(inm); IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */ goto done; } } os_log_debug(OS_LOG_DEFAULT, "%s: process v2 group query on ifp %s\n", __func__, if_name(ifp)); /* * If there is a pending General Query response * scheduled sooner than the selected delay, no * further report need be scheduled. * Otherwise, prepare to respond to the * group-specific or group-and-source query. */ MLI_LOCK(mli); mtp.it = mli->mli_v2_timer; MLI_UNLOCK(mli); if (mtp.it == 0 || mtp.it >= timer) { (void) mld_v2_process_group_query(inm, timer, m, off); mtp.cst = inm->in6m_timer; } IN6M_UNLOCK(inm); IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */ /* XXX Clear embedded scope ID as userland won't expect it. */ in6_clearscope(&mld->mld_addr); } done: if (mtp.it > 0) { os_log_debug(OS_LOG_DEFAULT, "%s: v2 general query response scheduled in " "T+%d seconds on ifp %s\n", __func__, mtp.it, if_name(ifp)); } mld_set_timeout(&mtp); return err; } /* * Process a recieved MLDv2 group-specific or group-and-source-specific * query. * Return <0 if any error occured. Currently this is ignored. */ static int mld_v2_process_group_query(struct in6_multi *inm, int timer, struct mbuf *m0, const int off) { struct mldv2_query *mld; int retval; uint16_t nsrc; IN6M_LOCK_ASSERT_HELD(inm); retval = 0; mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_LAZY_MEMBER: case MLD_AWAKENING_MEMBER: case MLD_IDLE_MEMBER: case MLD_LEAVING_MEMBER: return retval; case MLD_REPORTING_MEMBER: case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: break; } nsrc = ntohs(mld->mld_numsrc); /* * Deal with group-specific queries upfront. * If any group query is already pending, purge any recorded * source-list state if it exists, and schedule a query response * for this group-specific query. */ if (nsrc == 0) { if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { in6m_clear_recorded(inm); timer = min(inm->in6m_timer, timer); } inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; inm->in6m_timer = MLD_RANDOM_DELAY(timer); return retval; } /* * Deal with the case where a group-and-source-specific query has * been received but a group-specific query is already pending. */ if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { timer = min(inm->in6m_timer, timer); inm->in6m_timer = MLD_RANDOM_DELAY(timer); return retval; } /* * Finally, deal with the case where a group-and-source-specific * query has been received, where a response to a previous g-s-r * query exists, or none exists. * In this case, we need to parse the source-list which the Querier * has provided us with and check if we have any source list filter * entries at T1 for these sources. If we do not, there is no need * schedule a report and the query may be dropped. * If we do, we must record them and schedule a current-state * report for those sources. */ if (inm->in6m_nsrc > 0) { struct mbuf *m; struct in6_addr addr; int i, nrecorded; int soff; m = m0; soff = off + sizeof(struct mldv2_query); nrecorded = 0; for (i = 0; i < nsrc; i++) { m_copydata(m, soff, sizeof(addr), &addr); retval = in6m_record_source(inm, &addr); if (retval < 0) { break; } nrecorded += retval; soff += sizeof(struct in6_addr); while (m && (soff >= m->m_len)) { soff -= m->m_len; m = m->m_next; } /* should not be possible: */ if (m == NULL) { break; } } if (nrecorded > 0) { MLD_PRINTF(("%s: schedule response to SG query\n", __func__)); inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; inm->in6m_timer = MLD_RANDOM_DELAY(timer); } } return retval; } /* * Process a received MLDv1 host membership report. * Assumes mld points to mld_hdr in pulled up mbuf chain. * * NOTE: Can't be fully const correct as we temporarily embed scope ID in * mld_addr. This is OK as we own the mbuf chain. */ static int mld_v1_input_report(struct ifnet *ifp, struct mbuf *m, const struct ip6_hdr *ip6, /*const*/ struct mld_hdr *mld) { struct in6_addr src, dst; struct in6_ifaddr *ia; struct in6_multi *inm; if (!mld_v1enable) { os_log_info(OS_LOG_DEFAULT, "%s: ignore v1 report on ifp %s\n", __func__, if_name(ifp)); return 0; } if ((ifp->if_flags & IFF_LOOPBACK) || (m->m_pkthdr.pkt_flags & PKTF_LOOP)) { return 0; } /* * MLDv1 reports must originate from a host's link-local address, * or the unspecified address (when booting). */ src = ip6->ip6_src; in6_clearscope(&src); if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { os_log_info(OS_LOG_DEFAULT, "%s: ignore v1 query src %s on ifp %s\n", __func__, ip6_sprintf(&ip6->ip6_src), if_name(ifp)); return EINVAL; } /* * RFC2710 Section 4: MLDv1 reports must pertain to a multicast * group, and must be directed to the group itself. */ dst = ip6->ip6_dst; in6_clearscope(&dst); if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { os_log_info(OS_LOG_DEFAULT, "%s: ignore v1 query dst %s on ifp %s\n", __func__, ip6_sprintf(&ip6->ip6_dst), if_name(ifp)); return EINVAL; } /* * Make sure we don't hear our own membership report, as fast * leave requires knowing that we are the only member of a * group. Assume we used the link-local address if available, * otherwise look for ::. * * XXX Note that scope ID comparison is needed for the address * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be * performed for the on-wire address. */ ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY | IN6_IFF_ANYCAST); if (ia != NULL) { IFA_LOCK(&ia->ia_ifa); if ((IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia)))) { IFA_UNLOCK(&ia->ia_ifa); ifa_remref(&ia->ia_ifa); return 0; } IFA_UNLOCK(&ia->ia_ifa); ifa_remref(&ia->ia_ifa); } else if (IN6_IS_ADDR_UNSPECIFIED(&src)) { return 0; } os_log_debug(OS_LOG_DEFAULT, "%s: process v1 report %s on ifp %s\n", __func__, ip6_sprintf(&mld->mld_addr), if_name(ifp)); /* * Embed scope ID of receiving interface in MLD query for lookup * whilst we don't hold other locks (due to KAME locking lameness). */ if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { (void)in6_setscope(&mld->mld_addr, ifp, NULL); } /* * MLDv1 report suppression. * If we are a member of this group, and our membership should be * reported, and our group timer is pending or about to be reset, * stop our group timer by transitioning to the 'lazy' state. */ in6_multihead_lock_shared(); IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm); in6_multihead_lock_done(); if (inm != NULL) { struct mld_ifinfo *mli; IN6M_LOCK(inm); mli = inm->in6m_mli; VERIFY(mli != NULL); MLI_LOCK(mli); /* * If we are in MLDv2 host mode, do not allow the * other host's MLDv1 report to suppress our reports. */ if (mli->mli_version == MLD_VERSION_2) { MLI_UNLOCK(mli); IN6M_UNLOCK(inm); IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */ goto out; } MLI_UNLOCK(mli); inm->in6m_timer = 0; switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_SLEEPING_MEMBER: break; case MLD_REPORTING_MEMBER: case MLD_IDLE_MEMBER: case MLD_AWAKENING_MEMBER: MLD_PRINTF(("%s: report suppressed for %s on " "ifp 0x%llx(%s)\n", __func__, ip6_sprintf(&mld->mld_addr), (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp))); OS_FALLTHROUGH; case MLD_LAZY_MEMBER: inm->in6m_state = MLD_LAZY_MEMBER; break; case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: case MLD_LEAVING_MEMBER: break; } IN6M_UNLOCK(inm); IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */ } out: /* XXX Clear embedded scope ID as userland won't expect it. */ in6_clearscope(&mld->mld_addr); return 0; } /* * MLD input path. * * Assume query messages which fit in a single ICMPv6 message header * have been pulled up. * Assume that userland will want to see the message, even if it * otherwise fails kernel input validation; do not free it. * Pullup may however free the mbuf chain m if it fails. * * Return IPPROTO_DONE if we freed m. Otherwise, return 0. */ int mld_input(struct mbuf *m, int off, int icmp6len) { struct ifnet *ifp = NULL; struct ip6_hdr *ip6 = NULL; struct mld_hdr *mld = NULL; int mldlen = 0; MLD_PRINTF(("%s: called w/mbuf (0x%llx,%d)\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(m), off)); ifp = m->m_pkthdr.rcvif; /* Pullup to appropriate size. */ mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); if (mld->mld_type == MLD_LISTENER_QUERY && icmp6len >= sizeof(struct mldv2_query)) { mldlen = sizeof(struct mldv2_query); } else { mldlen = sizeof(struct mld_hdr); } // check if mldv2_query/mld_hdr fits in the first mbuf IP6_EXTHDR_CHECK(m, off, mldlen, return IPPROTO_DONE); IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); if (mld == NULL) { icmp6stat.icp6s_badlen++; return IPPROTO_DONE; } ip6 = mtod(m, struct ip6_hdr *); /* * Userland needs to see all of this traffic for implementing * the endpoint discovery portion of multicast routing. */ switch (mld->mld_type) { case MLD_LISTENER_QUERY: icmp6_ifstat_inc(ifp, ifs6_in_mldquery); if (icmp6len == sizeof(struct mld_hdr)) { if (mld_v1_input_query(ifp, ip6, mld) != 0) { return 0; } } else if (icmp6len >= sizeof(struct mldv2_query)) { if (mld_v2_input_query(ifp, ip6, m, off, icmp6len) != 0) { return 0; } } break; case MLD_LISTENER_REPORT: icmp6_ifstat_inc(ifp, ifs6_in_mldreport); if (mld_v1_input_report(ifp, m, ip6, mld) != 0) { return 0; } break; case MLDV2_LISTENER_REPORT: icmp6_ifstat_inc(ifp, ifs6_in_mldreport); break; case MLD_LISTENER_DONE: icmp6_ifstat_inc(ifp, ifs6_in_mlddone); break; default: break; } return 0; } /* * Schedule MLD timer based on various parameters; caller must ensure that * lock ordering is maintained as this routine acquires MLD global lock. */ void mld_set_timeout(struct mld_tparams *mtp) { MLD_LOCK_ASSERT_NOTHELD(); VERIFY(mtp != NULL); if (mtp->qpt != 0 || mtp->it != 0 || mtp->cst != 0 || mtp->sct != 0) { MLD_LOCK(); if (mtp->qpt != 0) { querier_present_timers_running6 = 1; } if (mtp->it != 0) { interface_timers_running6 = 1; } if (mtp->cst != 0) { current_state_timers_running6 = 1; } if (mtp->sct != 0) { state_change_timers_running6 = 1; } if (mtp->fast) { mld_sched_fast_timeout(); } else { mld_sched_timeout(); } MLD_UNLOCK(); } } void mld_set_fast_timeout(struct mld_tparams *mtp) { VERIFY(mtp != NULL); mtp->fast = true; mld_set_timeout(mtp); } /* * MLD6 timer handler (per 1 second). */ static void mld_timeout(thread_call_param_t arg0, thread_call_param_t arg1 __unused) { struct ifqueue scq; /* State-change packets */ struct ifqueue qrq; /* Query response packets */ struct ifnet *ifp; struct mld_ifinfo *mli; struct in6_multi *inm; int uri_sec = 0; unsigned int genid = mld_mli_list_genid; bool fast = arg0 != NULL; SLIST_HEAD(, in6_multi) in6m_dthead; SLIST_INIT(&in6m_dthead); /* * Update coarse-grained networking timestamp (in sec.); the idea * is to piggy-back on the timeout callout to update the counter * returnable via net_uptime(). */ net_update_uptime(); MLD_LOCK(); MLD_PRINTF(("%s: qpt %d, it %d, cst %d, sct %d, fast %d\n", __func__, querier_present_timers_running6, interface_timers_running6, current_state_timers_running6, state_change_timers_running6, fast)); if (fast) { /* * When running the fast timer, skip processing * of "querier present" timers since they are * based on 1-second intervals. */ goto skip_query_timers; } /* * MLDv1 querier present timer processing. */ if (querier_present_timers_running6) { querier_present_timers_running6 = 0; LIST_FOREACH(mli, &mli_head, mli_link) { MLI_LOCK(mli); mld_v1_process_querier_timers(mli); if (mli->mli_v1_timer > 0) { querier_present_timers_running6 = 1; } MLI_UNLOCK(mli); } } /* * MLDv2 General Query response timer processing. */ if (interface_timers_running6) { MLD_PRINTF(("%s: interface timers running\n", __func__)); interface_timers_running6 = 0; mli = LIST_FIRST(&mli_head); while (mli != NULL) { if (mli->mli_flags & MLIF_PROCESSED) { mli = LIST_NEXT(mli, mli_link); continue; } MLI_LOCK(mli); if (mli->mli_version != MLD_VERSION_2) { MLI_UNLOCK(mli); mli = LIST_NEXT(mli, mli_link); continue; } /* * XXX The logic below ends up calling * mld_dispatch_packet which can unlock mli * and the global MLD lock. * Therefore grab a reference on MLI and also * check for generation count to see if we should * iterate the list again. */ MLI_ADDREF_LOCKED(mli); if (mli->mli_v2_timer == 0) { /* Do nothing. */ } else if (--mli->mli_v2_timer == 0) { if (mld_v2_dispatch_general_query(mli) > 0) { interface_timers_running6 = 1; } } else { interface_timers_running6 = 1; } mli->mli_flags |= MLIF_PROCESSED; MLI_UNLOCK(mli); MLI_REMREF(mli); if (genid != mld_mli_list_genid) { MLD_PRINTF(("%s: MLD information list changed " "in the middle of iteration! Restart iteration.\n", __func__)); mli = LIST_FIRST(&mli_head); genid = mld_mli_list_genid; } else { mli = LIST_NEXT(mli, mli_link); } } LIST_FOREACH(mli, &mli_head, mli_link) mli->mli_flags &= ~MLIF_PROCESSED; } skip_query_timers: if (!current_state_timers_running6 && !state_change_timers_running6) { goto out_locked; } current_state_timers_running6 = 0; state_change_timers_running6 = 0; MLD_PRINTF(("%s: state change timers running\n", __func__)); memset(&qrq, 0, sizeof(struct ifqueue)); qrq.ifq_maxlen = MLD_MAX_G_GS_PACKETS; memset(&scq, 0, sizeof(struct ifqueue)); scq.ifq_maxlen = MLD_MAX_STATE_CHANGE_PACKETS; /* * MLD host report and state-change timer processing. * Note: Processing a v2 group timer may remove a node. */ mli = LIST_FIRST(&mli_head); while (mli != NULL) { struct in6_multistep step; if (mli->mli_flags & MLIF_PROCESSED) { mli = LIST_NEXT(mli, mli_link); continue; } MLI_LOCK(mli); ifp = mli->mli_ifp; uri_sec = MLD_RANDOM_DELAY(mli->mli_uri); MLI_UNLOCK(mli); in6_multihead_lock_shared(); IN6_FIRST_MULTI(step, inm); while (inm != NULL) { IN6M_LOCK(inm); if (inm->in6m_ifp != ifp) { goto next; } MLI_LOCK(mli); switch (mli->mli_version) { case MLD_VERSION_1: mld_v1_process_group_timer(inm, mli->mli_version); break; case MLD_VERSION_2: mld_v2_process_group_timers(mli, &qrq, &scq, inm, uri_sec); break; } MLI_UNLOCK(mli); next: IN6M_UNLOCK(inm); IN6_NEXT_MULTI(step, inm); } in6_multihead_lock_done(); /* * XXX The logic below ends up calling * mld_dispatch_packet which can unlock mli * and the global MLD lock. * Therefore grab a reference on MLI and also * check for generation count to see if we should * iterate the list again. */ MLI_LOCK(mli); MLI_ADDREF_LOCKED(mli); if (mli->mli_version == MLD_VERSION_1) { mld_dispatch_queue_locked(mli, &mli->mli_v1q, 0); } else if (mli->mli_version == MLD_VERSION_2) { MLI_UNLOCK(mli); mld_dispatch_queue_locked(NULL, &qrq, 0); mld_dispatch_queue_locked(NULL, &scq, 0); VERIFY(qrq.ifq_len == 0); VERIFY(scq.ifq_len == 0); MLI_LOCK(mli); } /* * In case there are still any pending membership reports * which didn't get drained at version change time. */ IF_DRAIN(&mli->mli_v1q); /* * Release all deferred inm records, and drain any locally * enqueued packets; do it even if the current MLD version * for the link is no longer MLDv2, in order to handle the * version change case. */ mld_flush_relq(mli, (struct mld_in6m_relhead *)&in6m_dthead); mli->mli_flags |= MLIF_PROCESSED; MLI_UNLOCK(mli); MLI_REMREF(mli); IF_DRAIN(&qrq); IF_DRAIN(&scq); if (genid != mld_mli_list_genid) { MLD_PRINTF(("%s: MLD information list changed " "in the middle of iteration! Restart iteration.\n", __func__)); mli = LIST_FIRST(&mli_head); genid = mld_mli_list_genid; } else { mli = LIST_NEXT(mli, mli_link); } } LIST_FOREACH(mli, &mli_head, mli_link) mli->mli_flags &= ~MLIF_PROCESSED; out_locked: /* re-arm the timer if there's work to do */ if (fast) { mld_fast_timeout_run = false; } else { mld_timeout_run = false; } mld_sched_timeout(); MLD_UNLOCK(); /* Now that we're dropped all locks, release detached records */ MLD_REMOVE_DETACHED_IN6M(&in6m_dthead); } static void mld_sched_timeout(void) { static thread_call_t mld_timeout_tcall; uint64_t deadline = 0, leeway = 0; MLD_LOCK_ASSERT_HELD(); if (mld_timeout_tcall == NULL) { mld_timeout_tcall = thread_call_allocate_with_options(mld_timeout, NULL, THREAD_CALL_PRIORITY_KERNEL, THREAD_CALL_OPTIONS_ONCE); } if (!mld_timeout_run && (querier_present_timers_running6 || current_state_timers_running6 || interface_timers_running6 || state_change_timers_running6)) { mld_timeout_run = true; clock_interval_to_deadline(mld_timeout_delay, NSEC_PER_MSEC, &deadline); clock_interval_to_absolutetime_interval(mld_timeout_leeway, NSEC_PER_MSEC, &leeway); thread_call_enter_delayed_with_leeway(mld_timeout_tcall, NULL, deadline, leeway, THREAD_CALL_DELAY_LEEWAY); } } static void mld_sched_fast_timeout(void) { static thread_call_t mld_fast_timeout_tcall; MLD_LOCK_ASSERT_HELD(); if (mld_fast_timeout_tcall == NULL) { mld_fast_timeout_tcall = thread_call_allocate_with_options(mld_timeout, mld_sched_fast_timeout, THREAD_CALL_PRIORITY_KERNEL, THREAD_CALL_OPTIONS_ONCE); } if (!mld_fast_timeout_run && (current_state_timers_running6 || state_change_timers_running6)) { mld_fast_timeout_run = true; thread_call_enter(mld_fast_timeout_tcall); } } /* * Appends an in6_multi to the list to be released later. * * Caller must be holding mli_lock. */ static void mld_append_relq(struct mld_ifinfo *mli, struct in6_multi *inm) { MLI_LOCK_ASSERT_HELD(mli); if (inm->in6m_in_nrele) { os_log_debug(OS_LOG_DEFAULT, "%s: inm %llx already on relq ifp %s\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm), mli->mli_ifp != NULL ? if_name(mli->mli_ifp) : ""); return; } os_log_debug(OS_LOG_DEFAULT, "%s: adding inm %llx on relq ifp %s\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm), mli->mli_ifp != NULL ? if_name(mli->mli_ifp) : ""); inm->in6m_in_nrele = true; SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, in6m_nrele); } /* * Free the in6_multi reference(s) for this MLD lifecycle. * * Caller must be holding mli_lock. */ static void mld_flush_relq(struct mld_ifinfo *mli, struct mld_in6m_relhead *in6m_dthead) { struct in6_multi *inm; SLIST_HEAD(, in6_multi) temp_relinmhead; /* * Before dropping the mli_lock, copy all the items in the * release list to a temporary list to prevent other threads * from changing mli_relinmhead while we are traversing it. */ MLI_LOCK_ASSERT_HELD(mli); SLIST_INIT(&temp_relinmhead); while ((inm = SLIST_FIRST(&mli->mli_relinmhead)) != NULL) { SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); SLIST_INSERT_HEAD(&temp_relinmhead, inm, in6m_nrele); } MLI_UNLOCK(mli); in6_multihead_lock_exclusive(); while ((inm = SLIST_FIRST(&temp_relinmhead)) != NULL) { int lastref; SLIST_REMOVE_HEAD(&temp_relinmhead, in6m_nrele); IN6M_LOCK(inm); os_log_debug(OS_LOG_DEFAULT, "%s: flushing inm %llx on relq ifp %s\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm), inm->in6m_ifp != NULL ? if_name(inm->in6m_ifp) : ""); VERIFY(inm->in6m_in_nrele == true); inm->in6m_in_nrele = false; VERIFY(inm->in6m_nrelecnt != 0); inm->in6m_nrelecnt--; lastref = in6_multi_detach(inm); VERIFY(!lastref || (!(inm->in6m_debug & IFD_ATTACHED) && inm->in6m_reqcnt == 0)); IN6M_UNLOCK(inm); /* from mli_relinmhead */ IN6M_REMREF(inm); /* from in6_multihead_list */ if (lastref) { /* * Defer releasing our final reference, as we * are holding the MLD lock at this point, and * we could end up with locking issues later on * (while issuing SIOCDELMULTI) when this is the * final reference count. Let the caller do it * when it is safe. */ MLD_ADD_DETACHED_IN6M(in6m_dthead, inm); } } in6_multihead_lock_done(); MLI_LOCK(mli); } /* * Update host report group timer. * Will update the global pending timer flags. */ static void mld_v1_process_group_timer(struct in6_multi *inm, const int mld_version) { #pragma unused(mld_version) int report_timer_expired; MLD_LOCK_ASSERT_HELD(); IN6M_LOCK_ASSERT_HELD(inm); MLI_LOCK_ASSERT_HELD(inm->in6m_mli); if (inm->in6m_timer == 0) { report_timer_expired = 0; } else if (--inm->in6m_timer == 0) { report_timer_expired = 1; } else { current_state_timers_running6 = 1; /* caller will schedule timer */ return; } switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_IDLE_MEMBER: case MLD_LAZY_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_AWAKENING_MEMBER: break; case MLD_REPORTING_MEMBER: if (report_timer_expired) { inm->in6m_state = MLD_IDLE_MEMBER; (void) mld_v1_transmit_report(inm, MLD_LISTENER_REPORT); IN6M_LOCK_ASSERT_HELD(inm); MLI_LOCK_ASSERT_HELD(inm->in6m_mli); } break; case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: case MLD_LEAVING_MEMBER: break; } } /* * Update a group's timers for MLDv2. * Will update the global pending timer flags. * Note: Unlocked read from mli. */ static void mld_v2_process_group_timers(struct mld_ifinfo *mli, struct ifqueue *qrq, struct ifqueue *scq, struct in6_multi *inm, const int uri_sec) { int query_response_timer_expired; int state_change_retransmit_timer_expired; MLD_LOCK_ASSERT_HELD(); IN6M_LOCK_ASSERT_HELD(inm); MLI_LOCK_ASSERT_HELD(mli); VERIFY(mli == inm->in6m_mli); query_response_timer_expired = 0; state_change_retransmit_timer_expired = 0; /* * During a transition from compatibility mode back to MLDv2, * a group record in REPORTING state may still have its group * timer active. This is a no-op in this function; it is easier * to deal with it here than to complicate the timeout path. */ if (inm->in6m_timer == 0) { query_response_timer_expired = 0; } else if (--inm->in6m_timer == 0) { query_response_timer_expired = 1; } else { current_state_timers_running6 = 1; /* caller will schedule timer */ } if (inm->in6m_sctimer == 0) { state_change_retransmit_timer_expired = 0; } else if (--inm->in6m_sctimer == 0) { state_change_retransmit_timer_expired = 1; } else { state_change_timers_running6 = 1; /* caller will schedule timer */ } /* We are in timer callback, so be quick about it. */ if (!state_change_retransmit_timer_expired && !query_response_timer_expired) { return; } switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_LAZY_MEMBER: case MLD_AWAKENING_MEMBER: case MLD_IDLE_MEMBER: break; case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: /* * Respond to a previously pending Group-Specific * or Group-and-Source-Specific query by enqueueing * the appropriate Current-State report for * immediate transmission. */ if (query_response_timer_expired) { int retval; retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 0); MLD_PRINTF(("%s: enqueue record = %d\n", __func__, retval)); inm->in6m_state = MLD_REPORTING_MEMBER; in6m_clear_recorded(inm); } OS_FALLTHROUGH; case MLD_REPORTING_MEMBER: case MLD_LEAVING_MEMBER: if (state_change_retransmit_timer_expired) { /* * State-change retransmission timer fired. * If there are any further pending retransmissions, * set the global pending state-change flag, and * reset the timer. */ if (--inm->in6m_scrv > 0) { inm->in6m_sctimer = (uint16_t)uri_sec; state_change_timers_running6 = 1; /* caller will schedule timer */ } /* * Retransmit the previously computed state-change * report. If there are no further pending * retransmissions, the mbuf queue will be consumed. * Update T0 state to T1 as we have now sent * a state-change. */ (void) mld_v2_merge_state_changes(inm, scq); in6m_commit(inm); MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__, ip6_sprintf(&inm->in6m_addr), if_name(inm->in6m_ifp))); /* * If we are leaving the group for good, make sure * we release MLD's reference to it. * This release must be deferred using a SLIST, * as we are called from a loop which traverses * the in_ifmultiaddr TAILQ. */ if (inm->in6m_state == MLD_LEAVING_MEMBER && inm->in6m_scrv == 0) { inm->in6m_state = MLD_NOT_MEMBER; /* * A reference has already been held in * mld_final_leave() for this inm, so * no need to hold another one. We also * bumped up its request count then, so * that it stays in in6_multihead. Both * of them will be released when it is * dequeued later on. */ VERIFY(inm->in6m_nrelecnt != 0); mld_append_relq(mli, inm); } } break; } } /* * Switch to a different version on the given interface, * as per Section 9.12. */ static uint32_t mld_set_version(struct mld_ifinfo *mli, const int mld_version) { int old_version_timer; MLI_LOCK_ASSERT_HELD(mli); os_log(OS_LOG_DEFAULT, "%s: switching to v%d on ifp %s\n", __func__, mld_version, if_name(mli->mli_ifp)); if (mld_version == MLD_VERSION_1) { /* * Compute the "Older Version Querier Present" timer as per * Section 9.12, in seconds. */ old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; mli->mli_v1_timer = old_version_timer; } if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { mli->mli_version = MLD_VERSION_1; mld_v2_cancel_link_timers(mli); } MLI_LOCK_ASSERT_HELD(mli); return mli->mli_v1_timer; } /* * Cancel pending MLDv2 timers for the given link and all groups * joined on it; state-change, general-query, and group-query timers. * * Only ever called on a transition from v2 to Compatibility mode. Kill * the timers stone dead (this may be expensive for large N groups), they * will be restarted if Compatibility Mode deems that they must be due to * query processing. */ static void mld_v2_cancel_link_timers(struct mld_ifinfo *mli) { struct ifnet *ifp; struct in6_multi *inm; struct in6_multistep step; MLI_LOCK_ASSERT_HELD(mli); MLD_PRINTF(("%s: cancel v2 timers on ifp 0x%llx(%s)\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(mli->mli_ifp), if_name(mli->mli_ifp))); /* * Stop the v2 General Query Response on this link stone dead. * If timer is woken up due to interface_timers_running6, * the flag will be cleared if there are no pending link timers. */ mli->mli_v2_timer = 0; /* * Now clear the current-state and state-change report timers * for all memberships scoped to this link. */ ifp = mli->mli_ifp; MLI_UNLOCK(mli); in6_multihead_lock_shared(); IN6_FIRST_MULTI(step, inm); while (inm != NULL) { IN6M_LOCK(inm); if (inm->in6m_ifp != ifp) { goto next; } switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_IDLE_MEMBER: case MLD_LAZY_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_AWAKENING_MEMBER: /* * These states are either not relevant in v2 mode, * or are unreported. Do nothing. */ break; case MLD_LEAVING_MEMBER: /* * If we are leaving the group and switching * version, we need to release the final * reference held for issuing the INCLUDE {}. * During mld_final_leave(), we bumped up both the * request and reference counts. Since we cannot * call in6_multi_detach() here, defer this task to * the timer routine. */ VERIFY(inm->in6m_nrelecnt != 0); MLI_LOCK(mli); mld_append_relq(mli, inm); MLI_UNLOCK(mli); OS_FALLTHROUGH; case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: in6m_clear_recorded(inm); OS_FALLTHROUGH; case MLD_REPORTING_MEMBER: inm->in6m_state = MLD_REPORTING_MEMBER; break; } /* * Always clear state-change and group report timers. * Free any pending MLDv2 state-change records. */ inm->in6m_sctimer = 0; inm->in6m_timer = 0; IF_DRAIN(&inm->in6m_scq); next: IN6M_UNLOCK(inm); IN6_NEXT_MULTI(step, inm); } in6_multihead_lock_done(); MLI_LOCK(mli); } /* * Update the Older Version Querier Present timers for a link. * See Section 9.12 of RFC 3810. */ static void mld_v1_process_querier_timers(struct mld_ifinfo *mli) { MLI_LOCK_ASSERT_HELD(mli); if (mld_v2enable && mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { /* * MLDv1 Querier Present timer expired; revert to MLDv2. */ os_log(OS_LOG_DEFAULT, "%s: transition from v%d -> v%d on %s\n", __func__, mli->mli_version, MLD_VERSION_2, if_name(mli->mli_ifp)); mli->mli_version = MLD_VERSION_2; } } /* * Transmit an MLDv1 report immediately. */ static int mld_v1_transmit_report(struct in6_multi *in6m, const uint8_t type) { struct ifnet *ifp; struct in6_ifaddr *ia; struct ip6_hdr *ip6; struct mbuf *mh, *md; struct mld_hdr *mld; int error = 0; IN6M_LOCK_ASSERT_HELD(in6m); MLI_LOCK_ASSERT_HELD(in6m->in6m_mli); ifp = in6m->in6m_ifp; /* ia may be NULL if link-local address is tentative. */ ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY | IN6_IFF_ANYCAST); MGETHDR(mh, M_DONTWAIT, MT_HEADER); if (mh == NULL) { if (ia != NULL) { ifa_remref(&ia->ia_ifa); } return ENOMEM; } MGET(md, M_DONTWAIT, MT_DATA); if (md == NULL) { m_free(mh); if (ia != NULL) { ifa_remref(&ia->ia_ifa); } return ENOMEM; } mh->m_next = md; /* * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so * that ether_output() does not need to allocate another mbuf * for the header in the most common case. */ MH_ALIGN(mh, sizeof(struct ip6_hdr)); mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); mh->m_len = sizeof(struct ip6_hdr); ip6 = mtod(mh, struct ip6_hdr *); ip6->ip6_flow = 0; ip6->ip6_vfc &= ~IPV6_VERSION_MASK; ip6->ip6_vfc |= IPV6_VERSION; ip6->ip6_nxt = IPPROTO_ICMPV6; if (ia != NULL) { IFA_LOCK(&ia->ia_ifa); } ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; ip6_output_setsrcifscope(mh, IFSCOPE_NONE, ia); if (ia != NULL) { IFA_UNLOCK(&ia->ia_ifa); ifa_remref(&ia->ia_ifa); ia = NULL; } ip6->ip6_dst = in6m->in6m_addr; ip6_output_setdstifscope(mh, in6m->ifscope, NULL); md->m_len = sizeof(struct mld_hdr); mld = mtod(md, struct mld_hdr *); mld->mld_type = type; mld->mld_code = 0; mld->mld_cksum = 0; mld->mld_maxdelay = 0; mld->mld_reserved = 0; mld->mld_addr = in6m->in6m_addr; in6_clearscope(&mld->mld_addr); mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); mld_save_context(mh, ifp); mh->m_flags |= M_MLDV1; /* * Due to the fact that at this point we are possibly holding * in6_multihead_lock in shared or exclusive mode, we can't call * mld_dispatch_packet() here since that will eventually call * ip6_output(), which will try to lock in6_multihead_lock and cause * a deadlock. * Instead we defer the work to the mld_timeout() thread, thus * avoiding unlocking in_multihead_lock here. */ if (IF_QFULL(&in6m->in6m_mli->mli_v1q)) { os_log_error(OS_LOG_DEFAULT, "%s: v1 outbound queue full\n", __func__); error = ENOMEM; m_freem(mh); } else { IF_ENQUEUE(&in6m->in6m_mli->mli_v1q, mh); VERIFY(error == 0); } return error; } /* * Process a state change from the upper layer for the given IPv6 group. * * Each socket holds a reference on the in6_multi in its own ip_moptions. * The socket layer will have made the necessary updates to.the group * state, it is now up to MLD to issue a state change report if there * has been any change between T0 (when the last state-change was issued) * and T1 (now). * * We use the MLDv2 state machine at group level. The MLd module * however makes the decision as to which MLD protocol version to speak. * A state change *from* INCLUDE {} always means an initial join. * A state change *to* INCLUDE {} always means a final leave. * * If delay is non-zero, and the state change is an initial multicast * join, the state change report will be delayed by 'delay' ticks * in units of seconds if MLDv1 is active on the link; otherwise * the initial MLDv2 state change report will be delayed by whichever * is sooner, a pending state-change timer or delay itself. */ int mld_change_state(struct in6_multi *inm, struct mld_tparams *mtp, const int delay) { struct mld_ifinfo *mli; struct ifnet *ifp; int error = 0; VERIFY(mtp != NULL); bzero(mtp, sizeof(*mtp)); IN6M_LOCK_ASSERT_HELD(inm); VERIFY(inm->in6m_mli != NULL); MLI_LOCK_ASSERT_NOTHELD(inm->in6m_mli); /* * Try to detect if the upper layer just asked us to change state * for an interface which has now gone away. */ VERIFY(inm->in6m_ifma != NULL); ifp = inm->in6m_ifma->ifma_ifp; /* * Sanity check that netinet6's notion of ifp is the same as net's. */ VERIFY(inm->in6m_ifp == ifp); mli = MLD_IFINFO(ifp); VERIFY(mli != NULL); /* * If we detect a state transition to or from MCAST_UNDEFINED * for this group, then we are starting or finishing an MLD * life cycle for this group. */ if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { MLD_PRINTF(("%s: inm transition %d -> %d\n", __func__, inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode)); if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { MLD_PRINTF(("%s: initial join\n", __func__)); error = mld_initial_join(inm, mli, mtp, delay); goto out; } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { MLD_PRINTF(("%s: final leave\n", __func__)); mld_final_leave(inm, mli, mtp); goto out; } } else { MLD_PRINTF(("%s: filter set change\n", __func__)); } error = mld_handle_state_change(inm, mli, mtp); out: return error; } /* * Perform the initial join for an MLD group. * * When joining a group: * If the group should have its MLD traffic suppressed, do nothing. * MLDv1 starts sending MLDv1 host membership reports. * MLDv2 will schedule an MLDv2 state-change report containing the * initial state of the membership. * * If the delay argument is non-zero, then we must delay sending the * initial state change for delay ticks (in units of seconds). */ static int mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli, struct mld_tparams *mtp, const int delay) { struct ifnet *ifp; struct ifqueue *ifq; int error, retval, syncstates; int odelay; IN6M_LOCK_ASSERT_HELD(inm); MLI_LOCK_ASSERT_NOTHELD(mli); VERIFY(mtp != NULL); MLD_PRINTF(("%s: initial join %s on ifp 0x%llx(%s)\n", __func__, ip6_sprintf(&inm->in6m_addr), (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp), if_name(inm->in6m_ifp))); error = 0; syncstates = 1; ifp = inm->in6m_ifp; MLI_LOCK(mli); VERIFY(mli->mli_ifp == ifp); /* * Avoid MLD if group is : * 1. Joined on loopback, OR * 2. On a link that is marked MLIF_SILENT * 3. rdar://problem/19227650 Is link local scoped and * on cellular interface * 4. Is a type that should not be reported (node local * or all node link local multicast. * All other groups enter the appropriate state machine * for the version in use on this link. */ if ((ifp->if_flags & IFF_LOOPBACK) || (mli->mli_flags & MLIF_SILENT) || (IFNET_IS_CELLULAR(ifp) && (IN6_IS_ADDR_MC_LINKLOCAL(&inm->in6m_addr) || IN6_IS_ADDR_MC_UNICAST_BASED_LINKLOCAL(&inm->in6m_addr))) || !mld_is_addr_reported(&inm->in6m_addr)) { MLD_PRINTF(("%s: not kicking state machine for silent group\n", __func__)); inm->in6m_state = MLD_SILENT_MEMBER; inm->in6m_timer = 0; } else { /* * Deal with overlapping in6_multi lifecycle. * If this group was LEAVING, then make sure * we drop the reference we picked up to keep the * group around for the final INCLUDE {} enqueue. * Since we cannot call in6_multi_detach() here, * defer this task to the timer routine. */ if (mli->mli_version == MLD_VERSION_2 && inm->in6m_state == MLD_LEAVING_MEMBER) { VERIFY(inm->in6m_nrelecnt != 0); mld_append_relq(mli, inm); } inm->in6m_state = MLD_REPORTING_MEMBER; switch (mli->mli_version) { case MLD_VERSION_1: /* * If a delay was provided, only use it if * it is greater than the delay normally * used for an MLDv1 state change report, * and delay sending the initial MLDv1 report * by not transitioning to the IDLE state. */ odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI); if (delay) { inm->in6m_timer = max(delay, odelay); mtp->cst = 1; } else { inm->in6m_state = MLD_IDLE_MEMBER; error = mld_v1_transmit_report(inm, MLD_LISTENER_REPORT); IN6M_LOCK_ASSERT_HELD(inm); MLI_LOCK_ASSERT_HELD(mli); if (error == 0) { inm->in6m_timer = odelay; mtp->cst = 1; } } break; case MLD_VERSION_2: /* * Defer update of T0 to T1, until the first copy * of the state change has been transmitted. */ syncstates = 0; /* * Immediately enqueue a State-Change Report for * this interface, freeing any previous reports. * Don't kick the timers if there is nothing to do, * or if an error occurred. */ ifq = &inm->in6m_scq; IF_DRAIN(ifq); retval = mld_v2_enqueue_group_record(ifq, inm, 1, 0, 0, (mli->mli_flags & MLIF_USEALLOW)); mtp->cst = (ifq->ifq_len > 0); MLD_PRINTF(("%s: enqueue record = %d\n", __func__, retval)); if (retval <= 0) { error = retval * -1; break; } /* * Schedule transmission of pending state-change * report up to RV times for this link. The timer * will fire at the next mld_timeout (1 second)), * giving us an opportunity to merge the reports. * * If a delay was provided to this function, only * use this delay if sooner than the existing one. */ VERIFY(mli->mli_rv > 1); inm->in6m_scrv = (uint16_t)mli->mli_rv; if (delay) { if (inm->in6m_sctimer > 1) { inm->in6m_sctimer = MIN(inm->in6m_sctimer, (uint16_t)delay); } else { inm->in6m_sctimer = (uint16_t)delay; } } else { inm->in6m_sctimer = 1; } mtp->sct = 1; error = 0; break; } } MLI_UNLOCK(mli); /* * Only update the T0 state if state change is atomic, * i.e. we don't need to wait for a timer to fire before we * can consider the state change to have been communicated. */ if (syncstates) { in6m_commit(inm); MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__, ip6_sprintf(&inm->in6m_addr), if_name(inm->in6m_ifp))); } return error; } /* * Issue an intermediate state change during the life-cycle. */ static int mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli, struct mld_tparams *mtp) { struct ifnet *ifp; int retval = 0; IN6M_LOCK_ASSERT_HELD(inm); MLI_LOCK_ASSERT_NOTHELD(mli); VERIFY(mtp != NULL); MLD_PRINTF(("%s: state change for %s on ifp 0x%llx(%s)\n", __func__, ip6_sprintf(&inm->in6m_addr), (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp), if_name(inm->in6m_ifp))); ifp = inm->in6m_ifp; MLI_LOCK(mli); VERIFY(mli->mli_ifp == ifp); if ((ifp->if_flags & IFF_LOOPBACK) || (mli->mli_flags & MLIF_SILENT) || !mld_is_addr_reported(&inm->in6m_addr) || (mli->mli_version != MLD_VERSION_2)) { MLI_UNLOCK(mli); if (!mld_is_addr_reported(&inm->in6m_addr)) { MLD_PRINTF(("%s: not kicking state machine for silent " "group\n", __func__)); } MLD_PRINTF(("%s: nothing to do\n", __func__)); in6m_commit(inm); MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__, ip6_sprintf(&inm->in6m_addr), if_name(inm->in6m_ifp))); goto done; } IF_DRAIN(&inm->in6m_scq); retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, (mli->mli_flags & MLIF_USEALLOW)); mtp->cst = (inm->in6m_scq.ifq_len > 0); MLD_PRINTF(("%s: enqueue record = %d\n", __func__, retval)); if (retval <= 0) { MLI_UNLOCK(mli); retval *= -1; goto done; } else { retval = 0; } /* * If record(s) were enqueued, start the state-change * report timer for this group. */ inm->in6m_scrv = (uint16_t)mli->mli_rv; inm->in6m_sctimer = 1; mtp->sct = 1; MLI_UNLOCK(mli); done: return retval; } /* * Perform the final leave for a multicast address. * * When leaving a group: * MLDv1 sends a DONE message, if and only if we are the reporter. * MLDv2 enqueues a state-change report containing a transition * to INCLUDE {} for immediate transmission. */ static void mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli, struct mld_tparams *mtp) { int syncstates = 1; IN6M_LOCK_ASSERT_HELD(inm); MLI_LOCK_ASSERT_NOTHELD(mli); VERIFY(mtp != NULL); MLD_PRINTF(("%s: final leave %s on ifp 0x%llx(%s)\n", __func__, ip6_sprintf(&inm->in6m_addr), (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp), if_name(inm->in6m_ifp))); switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_LEAVING_MEMBER: /* Already leaving or left; do nothing. */ MLD_PRINTF(("%s: not kicking state machine for silent group\n", __func__)); break; case MLD_REPORTING_MEMBER: case MLD_IDLE_MEMBER: case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: MLI_LOCK(mli); if (mli->mli_version == MLD_VERSION_1) { if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { panic("%s: MLDv2 state reached, not MLDv2 " "mode\n", __func__); /* NOTREACHED */ } /* scheduler timer if enqueue is successful */ mtp->cst = (mld_v1_transmit_report(inm, MLD_LISTENER_DONE) == 0); IN6M_LOCK_ASSERT_HELD(inm); MLI_LOCK_ASSERT_HELD(mli); inm->in6m_state = MLD_NOT_MEMBER; } else if (mli->mli_version == MLD_VERSION_2) { /* * Stop group timer and all pending reports. * Immediately enqueue a state-change report * TO_IN {} to be sent on the next timeout, * giving us an opportunity to merge reports. */ IF_DRAIN(&inm->in6m_scq); inm->in6m_timer = 0; inm->in6m_scrv = (uint16_t)mli->mli_rv; MLD_PRINTF(("%s: Leaving %s/%s with %d " "pending retransmissions.\n", __func__, ip6_sprintf(&inm->in6m_addr), if_name(inm->in6m_ifp), inm->in6m_scrv)); if (inm->in6m_scrv == 0) { inm->in6m_state = MLD_NOT_MEMBER; inm->in6m_sctimer = 0; } else { int retval; /* * Stick around in the in6_multihead list; * the final detach will be issued by * mld_v2_process_group_timers() when * the retransmit timer expires. */ IN6M_ADDREF_LOCKED(inm); VERIFY(inm->in6m_debug & IFD_ATTACHED); inm->in6m_reqcnt++; VERIFY(inm->in6m_reqcnt >= 1); inm->in6m_nrelecnt++; VERIFY(inm->in6m_nrelecnt != 0); retval = mld_v2_enqueue_group_record( &inm->in6m_scq, inm, 1, 0, 0, (mli->mli_flags & MLIF_USEALLOW)); mtp->cst = (inm->in6m_scq.ifq_len > 0); KASSERT(retval != 0, ("%s: enqueue record = %d\n", __func__, retval)); inm->in6m_state = MLD_LEAVING_MEMBER; inm->in6m_sctimer = 1; mtp->sct = 1; syncstates = 0; } } MLI_UNLOCK(mli); break; case MLD_LAZY_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_AWAKENING_MEMBER: /* Our reports are suppressed; do nothing. */ break; } if (syncstates) { in6m_commit(inm); MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__, ip6_sprintf(&inm->in6m_addr), if_name(inm->in6m_ifp))); inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; MLD_PRINTF(("%s: T1 now MCAST_UNDEFINED for 0x%llx/%s\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(&inm->in6m_addr), if_name(inm->in6m_ifp))); } } /* * Enqueue an MLDv2 group record to the given output queue. * * If is_state_change is zero, a current-state record is appended. * If is_state_change is non-zero, a state-change report is appended. * * If is_group_query is non-zero, an mbuf packet chain is allocated. * If is_group_query is zero, and if there is a packet with free space * at the tail of the queue, it will be appended to providing there * is enough free space. * Otherwise a new mbuf packet chain is allocated. * * If is_source_query is non-zero, each source is checked to see if * it was recorded for a Group-Source query, and will be omitted if * it is not both in-mode and recorded. * * If use_block_allow is non-zero, state change reports for initial join * and final leave, on an inclusive mode group with a source list, will be * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. * * The function will attempt to allocate leading space in the packet * for the IPv6+ICMP headers to be prepended without fragmenting the chain. * * If successful the size of all data appended to the queue is returned, * otherwise an error code less than zero is returned, or zero if * no record(s) were appended. */ static int mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm, const int is_state_change, const int is_group_query, const int is_source_query, const int use_block_allow) { struct mldv2_record mr; struct mldv2_record *pmr; struct ifnet *ifp; struct ip6_msource *ims, *nims; mbuf_ref_t m0, m, md; int error, is_filter_list_change; int minrec0len, m0srcs, msrcs, nbytes, off; int record_has_sources; int now; uint8_t type; uint8_t mode; IN6M_LOCK_ASSERT_HELD(inm); MLI_LOCK_ASSERT_HELD(inm->in6m_mli); error = 0; ifp = inm->in6m_ifp; is_filter_list_change = 0; m = NULL; m0 = NULL; m0srcs = 0; msrcs = 0; nbytes = 0; nims = NULL; record_has_sources = 1; pmr = NULL; type = MLD_DO_NOTHING; mode = (uint8_t)inm->in6m_st[1].iss_fmode; /* * If we did not transition out of ASM mode during t0->t1, * and there are no source nodes to process, we can skip * the generation of source records. */ if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && inm->in6m_nsrc == 0) { record_has_sources = 0; } if (is_state_change) { /* * Queue a state change record. * If the mode did not change, and there are non-ASM * listeners or source filters present, * we potentially need to issue two records for the group. * If there are ASM listeners, and there was no filter * mode transition of any kind, do nothing. * * If we are transitioning to MCAST_UNDEFINED, we need * not send any sources. A transition to/from this state is * considered inclusive with some special treatment. * * If we are rewriting initial joins/leaves to use * ALLOW/BLOCK, and the group's membership is inclusive, * we need to send sources in all cases. */ if (mode != inm->in6m_st[0].iss_fmode) { if (mode == MCAST_EXCLUDE) { MLD_PRINTF(("%s: change to EXCLUDE\n", __func__)); type = MLD_CHANGE_TO_EXCLUDE_MODE; } else { MLD_PRINTF(("%s: change to INCLUDE\n", __func__)); if (use_block_allow) { /* * XXX * Here we're interested in state * edges either direction between * MCAST_UNDEFINED and MCAST_INCLUDE. * Perhaps we should just check * the group state, rather than * the filter mode. */ if (mode == MCAST_UNDEFINED) { type = MLD_BLOCK_OLD_SOURCES; } else { type = MLD_ALLOW_NEW_SOURCES; } } else { type = MLD_CHANGE_TO_INCLUDE_MODE; if (mode == MCAST_UNDEFINED) { record_has_sources = 0; } } } } else { if (record_has_sources) { is_filter_list_change = 1; } else { type = MLD_DO_NOTHING; } } } else { /* * Queue a current state record. */ if (mode == MCAST_EXCLUDE) { type = MLD_MODE_IS_EXCLUDE; } else if (mode == MCAST_INCLUDE) { type = MLD_MODE_IS_INCLUDE; VERIFY(inm->in6m_st[1].iss_asm == 0); } } /* * Generate the filter list changes using a separate function. */ if (is_filter_list_change) { return mld_v2_enqueue_filter_change(ifq, inm); } if (type == MLD_DO_NOTHING) { MLD_PRINTF(("%s: nothing to do for %s/%s\n", __func__, ip6_sprintf(&inm->in6m_addr), if_name(inm->in6m_ifp))); return 0; } /* * If any sources are present, we must be able to fit at least * one in the trailing space of the tail packet's mbuf, * ideally more. */ minrec0len = sizeof(struct mldv2_record); if (record_has_sources) { minrec0len += sizeof(struct in6_addr); } MLD_PRINTF(("%s: queueing %s for %s/%s\n", __func__, mld_rec_type_to_str(type), ip6_sprintf(&inm->in6m_addr), if_name(inm->in6m_ifp))); /* * Check if we have a packet in the tail of the queue for this * group into which the first group record for this group will fit. * Otherwise allocate a new packet. * Always allocate leading space for IP6+RA+ICMPV6+REPORT. * Note: Group records for G/GSR query responses MUST be sent * in their own packet. */ m0 = ifq->ifq_tail; if (!is_group_query && m0 != NULL && (m0->m_pkthdr.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && (m0->m_pkthdr.len + minrec0len) < (ifp->if_mtu - MLD_MTUSPACE)) { m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - sizeof(struct mldv2_record)) / sizeof(struct in6_addr); m = m0; MLD_PRINTF(("%s: use existing packet\n", __func__)); } else { if (IF_QFULL(ifq)) { os_log_error(OS_LOG_DEFAULT, "%s: outbound queue full\n", __func__); return -ENOMEM; } m = NULL; m0srcs = (ifp->if_mtu - MLD_MTUSPACE - sizeof(struct mldv2_record)) / sizeof(struct in6_addr); if (!is_state_change && !is_group_query) { m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); } if (m == NULL) { m = m_gethdr(M_DONTWAIT, MT_DATA); } if (m == NULL) { return -ENOMEM; } mld_save_context(m, ifp); MLD_PRINTF(("%s: allocated first packet\n", __func__)); } /* * Append group record. * If we have sources, we don't know how many yet. */ mr.mr_type = type; mr.mr_datalen = 0; mr.mr_numsrc = 0; mr.mr_addr = inm->in6m_addr; in6_clearscope(&mr.mr_addr); if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { if (m != m0) { m_freem(m); } os_log_error(OS_LOG_DEFAULT, "%s: m_append() failed.\n", __func__); return -ENOMEM; } nbytes += sizeof(struct mldv2_record); /* * Append as many sources as will fit in the first packet. * If we are appending to a new packet, the chain allocation * may potentially use clusters; use m_getptr() in this case. * If we are appending to an existing packet, we need to obtain * a pointer to the group record after m_append(), in case a new * mbuf was allocated. * * Only append sources which are in-mode at t1. If we are * transitioning to MCAST_UNDEFINED state on the group, and * use_block_allow is zero, do not include source entries. * Otherwise, we need to include this source in the report. * * Only report recorded sources in our filter set when responding * to a group-source query. */ if (record_has_sources) { if (m == m0) { md = m_last(m); pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + md->m_len - nbytes); } else { md = m_getptr(m, 0, &off); pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); } msrcs = 0; RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, nims) { MLD_PRINTF(("%s: visit node %s\n", __func__, ip6_sprintf(&ims->im6s_addr))); now = im6s_get_mode(inm, ims, 1); MLD_PRINTF(("%s: node is %d\n", __func__, now)); if ((now != mode) || (now == mode && (!use_block_allow && mode == MCAST_UNDEFINED))) { MLD_PRINTF(("%s: skip node\n", __func__)); continue; } if (is_source_query && ims->im6s_stp == 0) { MLD_PRINTF(("%s: skip unrecorded node\n", __func__)); continue; } MLD_PRINTF(("%s: append node\n", __func__)); if (!m_append(m, sizeof(struct in6_addr), (void *)&ims->im6s_addr)) { if (m != m0) { m_freem(m); } os_log_error(OS_LOG_DEFAULT, "%s: m_append() failed\n", __func__); return -ENOMEM; } nbytes += sizeof(struct in6_addr); ++msrcs; if (msrcs == m0srcs) { break; } } MLD_PRINTF(("%s: msrcs is %d this packet\n", __func__, msrcs)); pmr->mr_numsrc = htons((uint16_t)msrcs); nbytes += (msrcs * sizeof(struct in6_addr)); } if (is_source_query && msrcs == 0) { MLD_PRINTF(("%s: no recorded sources to report\n", __func__)); if (m != m0) { m_freem(m); } return 0; } /* * We are good to go with first packet. */ if (m != m0) { MLD_PRINTF(("%s: enqueueing first packet\n", __func__)); m->m_pkthdr.vt_nrecs = 1; IF_ENQUEUE(ifq, m); } else { m->m_pkthdr.vt_nrecs++; } /* * No further work needed if no source list in packet(s). */ if (!record_has_sources) { return nbytes; } /* * Whilst sources remain to be announced, we need to allocate * a new packet and fill out as many sources as will fit. * Always try for a cluster first. */ while (nims != NULL) { if (IF_QFULL(ifq)) { os_log_error(OS_LOG_DEFAULT, "%s: outbound queue full\n", __func__); return -ENOMEM; } m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { m = m_gethdr(M_DONTWAIT, MT_DATA); } if (m == NULL) { return -ENOMEM; } mld_save_context(m, ifp); md = m_getptr(m, 0, &off); pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); MLD_PRINTF(("%s: allocated next packet\n", __func__)); if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { if (m != m0) { m_freem(m); } os_log_error(OS_LOG_DEFAULT, "%s: m_append() failed.\n", __func__); return -ENOMEM; } m->m_pkthdr.vt_nrecs = 1; nbytes += sizeof(struct mldv2_record); m0srcs = (ifp->if_mtu - MLD_MTUSPACE - sizeof(struct mldv2_record)) / sizeof(struct in6_addr); msrcs = 0; RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { MLD_PRINTF(("%s: visit node %s\n", __func__, ip6_sprintf(&ims->im6s_addr))); now = im6s_get_mode(inm, ims, 1); if ((now != mode) || (now == mode && (!use_block_allow && mode == MCAST_UNDEFINED))) { MLD_PRINTF(("%s: skip node\n", __func__)); continue; } if (is_source_query && ims->im6s_stp == 0) { MLD_PRINTF(("%s: skip unrecorded node\n", __func__)); continue; } MLD_PRINTF(("%s: append node\n", __func__)); if (!m_append(m, sizeof(struct in6_addr), (void *)&ims->im6s_addr)) { if (m != m0) { m_freem(m); } os_log_error(OS_LOG_DEFAULT, "%s: m_append() failed\n", __func__); return -ENOMEM; } ++msrcs; if (msrcs == m0srcs) { break; } } pmr->mr_numsrc = htons((uint16_t)msrcs); nbytes += (msrcs * sizeof(struct in6_addr)); MLD_PRINTF(("%s: enqueueing next packet\n", __func__)); IF_ENQUEUE(ifq, m); } return nbytes; } /* * Type used to mark record pass completion. * We exploit the fact we can cast to this easily from the * current filter modes on each ip_msource node. */ typedef enum { REC_NONE = 0x00, /* MCAST_UNDEFINED */ REC_ALLOW = 0x01, /* MCAST_INCLUDE */ REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ REC_FULL = REC_ALLOW | REC_BLOCK } rectype_t; /* * Enqueue an MLDv2 filter list change to the given output queue. * * Source list filter state is held in an RB-tree. When the filter list * for a group is changed without changing its mode, we need to compute * the deltas between T0 and T1 for each source in the filter set, * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. * * As we may potentially queue two record types, and the entire R-B tree * needs to be walked at once, we break this out into its own function * so we can generate a tightly packed queue of packets. * * XXX This could be written to only use one tree walk, although that makes * serializing into the mbuf chains a bit harder. For now we do two walks * which makes things easier on us, and it may or may not be harder on * the L2 cache. * * If successful the size of all data appended to the queue is returned, * otherwise an error code less than zero is returned, or zero if * no record(s) were appended. */ static int mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm) { static const int MINRECLEN = sizeof(struct mldv2_record) + sizeof(struct in6_addr); struct ifnet *ifp; struct mldv2_record mr; struct mldv2_record *pmr; struct ip6_msource *ims, *nims; mbuf_ref_t m, m0, md; int m0srcs, nbytes, npbytes, off, rsrcs, schanged; int nallow, nblock; uint8_t mode, now, then; rectype_t crt, drt, nrt; IN6M_LOCK_ASSERT_HELD(inm); if (inm->in6m_nsrc == 0 || (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) { return 0; } ifp = inm->in6m_ifp; /* interface */ mode = (uint8_t)inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ crt = REC_NONE; /* current group record type */ drt = REC_NONE; /* mask of completed group record types */ nrt = REC_NONE; /* record type for current node */ m0srcs = 0; /* # source which will fit in current mbuf chain */ npbytes = 0; /* # of bytes appended this packet */ nbytes = 0; /* # of bytes appended to group's state-change queue */ rsrcs = 0; /* # sources encoded in current record */ schanged = 0; /* # nodes encoded in overall filter change */ nallow = 0; /* # of source entries in ALLOW_NEW */ nblock = 0; /* # of source entries in BLOCK_OLD */ nims = NULL; /* next tree node pointer */ /* * For each possible filter record mode. * The first kind of source we encounter tells us which * is the first kind of record we start appending. * If a node transitioned to UNDEFINED at t1, its mode is treated * as the inverse of the group's filter mode. */ while (drt != REC_FULL) { do { m0 = ifq->ifq_tail; if (m0 != NULL && (m0->m_pkthdr.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && (m0->m_pkthdr.len + MINRECLEN) < (ifp->if_mtu - MLD_MTUSPACE)) { m = m0; m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - sizeof(struct mldv2_record)) / sizeof(struct in6_addr); MLD_PRINTF(("%s: use previous packet\n", __func__)); } else { m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { m = m_gethdr(M_DONTWAIT, MT_DATA); } if (m == NULL) { os_log_error(OS_LOG_DEFAULT, "%s: m_get*() failed\n", __func__); return -ENOMEM; } m->m_pkthdr.vt_nrecs = 0; mld_save_context(m, ifp); m0srcs = (ifp->if_mtu - MLD_MTUSPACE - sizeof(struct mldv2_record)) / sizeof(struct in6_addr); npbytes = 0; MLD_PRINTF(("%s: allocated new packet\n", __func__)); } /* * Append the MLD group record header to the * current packet's data area. * Recalculate pointer to free space for next * group record, in case m_append() allocated * a new mbuf or cluster. */ memset(&mr, 0, sizeof(mr)); mr.mr_addr = inm->in6m_addr; in6_clearscope(&mr.mr_addr); if (!m_append(m, sizeof(mr), (void *)&mr)) { if (m != m0) { m_freem(m); } os_log_error(OS_LOG_DEFAULT, "%s: m_append() failed\n", __func__); return -ENOMEM; } npbytes += sizeof(struct mldv2_record); if (m != m0) { /* new packet; offset in chain */ md = m_getptr(m, npbytes - sizeof(struct mldv2_record), &off); pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); } else { /* current packet; offset from last append */ md = m_last(m); pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + md->m_len - sizeof(struct mldv2_record)); } /* * Begin walking the tree for this record type * pass, or continue from where we left off * previously if we had to allocate a new packet. * Only report deltas in-mode at t1. * We need not report included sources as allowed * if we are in inclusive mode on the group, * however the converse is not true. */ rsrcs = 0; if (nims == NULL) { nims = RB_MIN(ip6_msource_tree, &inm->in6m_srcs); } RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { MLD_PRINTF(("%s: visit node %s\n", __func__, ip6_sprintf(&ims->im6s_addr))); now = im6s_get_mode(inm, ims, 1); then = im6s_get_mode(inm, ims, 0); MLD_PRINTF(("%s: mode: t0 %d, t1 %d\n", __func__, then, now)); if (now == then) { MLD_PRINTF(("%s: skip unchanged\n", __func__)); continue; } if (mode == MCAST_EXCLUDE && now == MCAST_INCLUDE) { MLD_PRINTF(("%s: skip IN src on EX " "group\n", __func__)); continue; } nrt = (rectype_t)now; if (nrt == REC_NONE) { nrt = (rectype_t)(~mode & REC_FULL); } if (schanged++ == 0) { crt = nrt; } else if (crt != nrt) { continue; } if (!m_append(m, sizeof(struct in6_addr), (void *)&ims->im6s_addr)) { if (m != m0) { m_freem(m); } os_log_error(OS_LOG_DEFAULT, "%s: m_append() failed\n", __func__); return -ENOMEM; } nallow += !!(crt == REC_ALLOW); nblock += !!(crt == REC_BLOCK); if (++rsrcs == m0srcs) { break; } } /* * If we did not append any tree nodes on this * pass, back out of allocations. */ if (rsrcs == 0) { npbytes -= sizeof(struct mldv2_record); if (m != m0) { MLD_PRINTF(("%s: m_free(m)\n", __func__)); m_freem(m); } else { MLD_PRINTF(("%s: m_adj(m, -mr)\n", __func__)); m_adj(m, -((int)sizeof( struct mldv2_record))); } continue; } npbytes += (rsrcs * sizeof(struct in6_addr)); if (crt == REC_ALLOW) { pmr->mr_type = MLD_ALLOW_NEW_SOURCES; } else if (crt == REC_BLOCK) { pmr->mr_type = MLD_BLOCK_OLD_SOURCES; } pmr->mr_numsrc = htons((uint16_t)rsrcs); /* * Count the new group record, and enqueue this * packet if it wasn't already queued. */ m->m_pkthdr.vt_nrecs++; if (m != m0) { IF_ENQUEUE(ifq, m); } nbytes += npbytes; } while (nims != NULL); drt |= crt; crt = (~crt & REC_FULL); } MLD_PRINTF(("%s: queued %d ALLOW_NEW, %d BLOCK_OLD\n", __func__, nallow, nblock)); return nbytes; } static int mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq) { struct ifqueue *gq; mbuf_ref_t m; /* pending state-change */ mbuf_ref_t m0; /* copy of pending state-change */ mbuf_ref_t mt; /* last state-change in packet */ mbuf_ref_t n; int docopy, domerge; u_int recslen; IN6M_LOCK_ASSERT_HELD(inm); docopy = 0; domerge = 0; recslen = 0; /* * If there are further pending retransmissions, make a writable * copy of each queued state-change message before merging. */ if (inm->in6m_scrv > 0) { docopy = 1; } gq = &inm->in6m_scq; #ifdef MLD_DEBUG if (gq->ifq_head == NULL) { MLD_PRINTF(("%s: WARNING: queue for inm 0x%llx is empty\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm))); } #endif /* * Use IF_REMQUEUE() instead of IF_DEQUEUE() below, since the * packet might not always be at the head of the ifqueue. */ m = gq->ifq_head; while (m != NULL) { /* * Only merge the report into the current packet if * there is sufficient space to do so; an MLDv2 report * packet may only contain 65,535 group records. * Always use a simple mbuf chain concatentation to do this, * as large state changes for single groups may have * allocated clusters. */ domerge = 0; mt = ifscq->ifq_tail; if (mt != NULL) { recslen = m_length(m); if ((mt->m_pkthdr.vt_nrecs + m->m_pkthdr.vt_nrecs <= MLD_V2_REPORT_MAXRECS) && (mt->m_pkthdr.len + recslen <= (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) { domerge = 1; } } if (!domerge && IF_QFULL(gq)) { os_log_info(OS_LOG_DEFAULT, "%s: outbound queue full", __func__); n = m->m_nextpkt; if (!docopy) { IF_REMQUEUE(gq, m); m_freem(m); } m = n; continue; } if (!docopy) { MLD_PRINTF(("%s: dequeueing 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(m))); n = m->m_nextpkt; IF_REMQUEUE(gq, m); m0 = m; m = n; } else { MLD_PRINTF(("%s: copying 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(m))); m0 = m_dup(m, M_NOWAIT); if (m0 == NULL) { return ENOMEM; } m0->m_nextpkt = NULL; m = m->m_nextpkt; } if (!domerge) { MLD_PRINTF(("%s: queueing 0x%llx to ifscq 0x%llx)\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(m0), (uint64_t)VM_KERNEL_ADDRPERM(ifscq))); IF_ENQUEUE(ifscq, m0); } else { struct mbuf *mtl; /* last mbuf of packet mt */ MLD_PRINTF(("%s: merging 0x%llx with ifscq tail " "0x%llx)\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(m0), (uint64_t)VM_KERNEL_ADDRPERM(mt))); mtl = m_last(mt); m0->m_flags &= ~M_PKTHDR; mt->m_pkthdr.len += recslen; mt->m_pkthdr.vt_nrecs += m0->m_pkthdr.vt_nrecs; mtl->m_next = m0; } } return 0; } /* * Respond to a pending MLDv2 General Query. */ static uint32_t mld_v2_dispatch_general_query(struct mld_ifinfo *mli) { struct ifnet *ifp; struct in6_multi *inm; struct in6_multistep step; int retval; MLI_LOCK_ASSERT_HELD(mli); VERIFY(mli->mli_version == MLD_VERSION_2); ifp = mli->mli_ifp; MLI_UNLOCK(mli); in6_multihead_lock_shared(); IN6_FIRST_MULTI(step, inm); while (inm != NULL) { IN6M_LOCK(inm); if (inm->in6m_ifp != ifp) { goto next; } switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: break; case MLD_REPORTING_MEMBER: case MLD_IDLE_MEMBER: case MLD_LAZY_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_AWAKENING_MEMBER: inm->in6m_state = MLD_REPORTING_MEMBER; MLI_LOCK(mli); retval = mld_v2_enqueue_group_record(&mli->mli_gq, inm, 0, 0, 0, 0); MLI_UNLOCK(mli); MLD_PRINTF(("%s: enqueue record = %d\n", __func__, retval)); break; case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: case MLD_LEAVING_MEMBER: break; } next: IN6M_UNLOCK(inm); IN6_NEXT_MULTI(step, inm); } in6_multihead_lock_done(); MLI_LOCK(mli); mld_dispatch_queue_locked(mli, &mli->mli_gq, MLD_MAX_RESPONSE_BURST); MLI_LOCK_ASSERT_HELD(mli); /* * Slew transmission of bursts over 1 second intervals. */ if (mli->mli_gq.ifq_head != NULL) { mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( MLD_RESPONSE_BURST_INTERVAL); } return mli->mli_v2_timer; } /* * Transmit the next pending message in the output queue. * * Must not be called with in6m_lockm or mli_lock held. */ __attribute__((noinline)) static void mld_dispatch_packet(struct mbuf *m) { struct ip6_moptions *im6o; struct ifnet *ifp; struct ifnet *__single oifp = NULL; mbuf_ref_t m0, md; struct ip6_hdr *ip6; struct icmp6_hdr *icmp6; int error; int off; int type; MLD_PRINTF(("%s: transmit 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(m))); /* * Check if the ifnet is still attached. */ ifp = mld_restore_context(m); if (ifp == NULL || !ifnet_is_attached(ifp, 0)) { os_log_error(OS_LOG_DEFAULT, "%s: dropped 0x%llx as interface went away\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(m)); m_freem(m); ip6stat.ip6s_noroute++; return; } im6o = ip6_allocmoptions(Z_WAITOK); if (im6o == NULL) { m_freem(m); return; } im6o->im6o_multicast_hlim = 1; im6o->im6o_multicast_loop = 0; im6o->im6o_multicast_ifp = ifp; if (m->m_flags & M_MLDV1) { m0 = m; } else { m0 = mld_v2_encap_report(ifp, m); if (m0 == NULL) { os_log_error(OS_LOG_DEFAULT, "%s: dropped 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(m)); /* * mld_v2_encap_report() has already freed our mbuf. */ IM6O_REMREF(im6o); ip6stat.ip6s_odropped++; return; } } mld_scrub_context(m0); m->m_flags &= ~(M_PROTOFLAGS); m0->m_pkthdr.rcvif = lo_ifp; ip6 = mtod(m0, struct ip6_hdr *); (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); ip6_output_setdstifscope(m0, ifp->if_index, NULL); /* * Retrieve the ICMPv6 type before handoff to ip6_output(), * so we can bump the stats. */ md = m_getptr(m0, sizeof(struct ip6_hdr), &off); icmp6 = (struct icmp6_hdr *)(mtod(md, uint8_t *) + off); type = icmp6->icmp6_type; if (ifp->if_eflags & IFEF_TXSTART) { /* * Use control service class if the outgoing * interface supports transmit-start model. */ (void) m_set_service_class(m0, MBUF_SC_CTL); } error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, im6o, &oifp, NULL); IM6O_REMREF(im6o); if (error) { os_log_error(OS_LOG_DEFAULT, "%s: ip6_output(0x%llx) = %d\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(m0), error); if (oifp != NULL) { ifnet_release(oifp); } return; } icmp6stat.icp6s_outhist[type]++; if (oifp != NULL) { icmp6_ifstat_inc(oifp, ifs6_out_msg); switch (type) { case MLD_LISTENER_REPORT: case MLDV2_LISTENER_REPORT: icmp6_ifstat_inc(oifp, ifs6_out_mldreport); break; case MLD_LISTENER_DONE: icmp6_ifstat_inc(oifp, ifs6_out_mlddone); break; } ifnet_release(oifp); } } /* * Encapsulate an MLDv2 report. * * KAME IPv6 requires that hop-by-hop options be passed separately, * and that the IPv6 header be prepended in a separate mbuf. * * Returns a pointer to the new mbuf chain head, or NULL if the * allocation failed. */ static struct mbuf * mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) { struct mbuf *mh; struct mldv2_report *mld; struct ip6_hdr *ip6; struct in6_ifaddr *ia; int mldreclen; VERIFY(m->m_flags & M_PKTHDR); /* * RFC3590: OK to send as :: or tentative during DAD. */ ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY | IN6_IFF_ANYCAST); if (ia == NULL) { MLD_PRINTF(("%s: warning: ia is NULL\n", __func__)); } MGETHDR(mh, M_DONTWAIT, MT_HEADER); if (mh == NULL) { if (ia != NULL) { ifa_remref(&ia->ia_ifa); } m_freem(m); return NULL; } MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); mldreclen = m_length(m); MLD_PRINTF(("%s: mldreclen is %d\n", __func__, mldreclen)); mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report) + mldreclen; ip6 = mtod(mh, struct ip6_hdr *); ip6->ip6_flow = 0; ip6->ip6_vfc &= ~IPV6_VERSION_MASK; ip6->ip6_vfc |= IPV6_VERSION; ip6->ip6_nxt = IPPROTO_ICMPV6; if (ia != NULL) { IFA_LOCK(&ia->ia_ifa); } ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; ip6_output_setsrcifscope(mh, IFSCOPE_NONE, ia); if (ia != NULL) { IFA_UNLOCK(&ia->ia_ifa); ifa_remref(&ia->ia_ifa); ia = NULL; } ip6->ip6_dst = in6addr_linklocal_allv2routers; ip6_output_setdstifscope(mh, ifp->if_index, NULL); /* scope ID will be set in netisr */ mld = (struct mldv2_report *)(ip6 + 1); mld->mld_type = MLDV2_LISTENER_REPORT; mld->mld_code = 0; mld->mld_cksum = 0; mld->mld_v2_reserved = 0; mld->mld_v2_numrecs = htons(m->m_pkthdr.vt_nrecs); m->m_pkthdr.vt_nrecs = 0; m->m_flags &= ~M_PKTHDR; mh->m_next = m; mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); return mh; } #ifdef MLD_DEBUG static const char * mld_rec_type_to_str(const int type) { switch (type) { case MLD_CHANGE_TO_EXCLUDE_MODE: return "TO_EX"; case MLD_CHANGE_TO_INCLUDE_MODE: return "TO_IN"; case MLD_MODE_IS_EXCLUDE: return "MODE_EX"; case MLD_MODE_IS_INCLUDE: return "MODE_IN"; case MLD_ALLOW_NEW_SOURCES: return "ALLOW_NEW"; case MLD_BLOCK_OLD_SOURCES: return "BLOCK_OLD"; default: break; } return "unknown"; } #endif void mld_init(void) { os_log(OS_LOG_DEFAULT, "%s: initializing\n", __func__); ip6_initpktopts(&mld_po); mld_po.ip6po_hlim = 1; mld_po.ip6po_hbh = &mld_ra.hbh; mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; mld_po.ip6po_flags = IP6PO_DONTFRAG; LIST_INIT(&mli_head); }