/* * Copyright (c) 2000-2022 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * XXX * KAME 970409 note: * BSD/OS version heavily modifies this code, related to llinfo. * Since we don't have BSD/OS version of net/route.c in our hand, * I left the code mostly as it was in 970310. -- itojun */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "loop.h" #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0) /* timer values */ int nd6_prune = 1; /* walk list every 1 seconds */ int nd6_prune_lazy = 5; /* lazily walk list every 5 seconds */ int nd6_delay = 5; /* delay first probe time 5 second */ int nd6_umaxtries = 3; /* maximum unicast query */ int nd6_mmaxtries = 3; /* maximum multicast query */ int nd6_useloopback = 1; /* use loopback interface for local traffic */ int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ /* preventing too many loops in ND option parsing */ int nd6_maxndopt = 10; /* max # of ND options allowed */ int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ #if ND6_DEBUG int nd6_debug = 1; #else int nd6_debug = 0; #endif int nd6_optimistic_dad = ND6_OPTIMISTIC_DAD_DEFAULT; /* for debugging? */ static int nd6_inuse, nd6_allocated; /* * Synchronization notes: * * The global list of ND entries are stored in llinfo_nd6; an entry * gets inserted into the list when the route is created and gets * removed from the list when it is deleted; this is done as part * of RTM_ADD/RTM_RESOLVE/RTM_DELETE in nd6_rtrequest(). * * Because rnh_lock and rt_lock for the entry are held during those * operations, the same locks (and thus lock ordering) must be used * elsewhere to access the relevant data structure fields: * * ln_next, ln_prev, ln_rt * * - Routing lock (rnh_lock) * * ln_hold, ln_asked, ln_expire, ln_state, ln_router, ln_flags, * ln_llreach, ln_lastused * * - Routing entry lock (rt_lock) * * Due to the dependency on rt_lock, llinfo_nd6 has the same lifetime * as the route entry itself. When a route is deleted (RTM_DELETE), * it is simply removed from the global list but the memory is not * freed until the route itself is freed. */ struct llinfo_nd6 llinfo_nd6 = { .ln_next = &llinfo_nd6, .ln_prev = &llinfo_nd6, }; static LCK_GRP_DECLARE(nd_if_lock_grp, "nd_if_lock"); static LCK_ATTR_DECLARE(nd_if_lock_attr, 0, 0); /* Protected by nd6_mutex */ struct nd_drhead nd_defrouter_list; struct nd_prhead nd_prefix = { .lh_first = 0 }; struct nd_rtihead nd_rti_list; /* * nd6_timeout() is scheduled on a demand basis. nd6_timeout_run is used * to indicate whether or not a timeout has been scheduled. The rnh_lock * mutex is used to protect this scheduling; it is a natural choice given * the work done in the timer callback. Unfortunately, there are cases * when nd6_timeout() needs to be scheduled while rnh_lock cannot be easily * held, due to lock ordering. In those cases, we utilize a "demand" counter * nd6_sched_timeout_want which can be atomically incremented without * having to hold rnh_lock. On places where we acquire rnh_lock, such as * nd6_rtrequest(), we check this counter and schedule the timer if it is * non-zero. The increment happens on various places when we allocate * new ND entries, default routers, prefixes and addresses. */ static int nd6_timeout_run; /* nd6_timeout is scheduled to run */ static void nd6_timeout(void *); int nd6_sched_timeout_want; /* demand count for timer to be sched */ static boolean_t nd6_fast_timer_on = FALSE; /* Serialization variables for nd6_service(), protected by rnh_lock */ static boolean_t nd6_service_busy; static void *nd6_service_wc = &nd6_service_busy; static int nd6_service_waiters = 0; int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; static struct sockaddr_in6 all1_sa; static int regen_tmpaddr(struct in6_ifaddr *); static struct llinfo_nd6 *nd6_llinfo_alloc(zalloc_flags_t); static void nd6_llinfo_free(void *); static void nd6_llinfo_purge(struct rtentry *); static void nd6_llinfo_get_ri(struct rtentry *, struct rt_reach_info *); static void nd6_llinfo_get_iflri(struct rtentry *, struct ifnet_llreach_info *); static void nd6_llinfo_refresh(struct rtentry *); static uint64_t ln_getexpire(struct llinfo_nd6 *); static void nd6_service(void *); static void nd6_slowtimo(void *); static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, struct ifnet *); static int nd6_siocgdrlst(void *, int); static int nd6_siocgprlst(void *, int); static void nd6_router_select_rti_entries(struct ifnet *); static void nd6_purge_interface_default_routers(struct ifnet *); static void nd6_purge_interface_rti_entries(struct ifnet *); static void nd6_purge_interface_prefixes(struct ifnet *); static void nd6_purge_interface_llinfo(struct ifnet *); static int nd6_sysctl_drlist SYSCTL_HANDLER_ARGS; static int nd6_sysctl_prlist SYSCTL_HANDLER_ARGS; /* * Insertion and removal from llinfo_nd6 must be done with rnh_lock held. */ #define LN_DEQUEUE(_ln) do { \ LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); \ RT_LOCK_ASSERT_HELD((_ln)->ln_rt); \ (_ln)->ln_next->ln_prev = (_ln)->ln_prev; \ (_ln)->ln_prev->ln_next = (_ln)->ln_next; \ (_ln)->ln_prev = (_ln)->ln_next = NULL; \ (_ln)->ln_flags &= ~ND6_LNF_IN_USE; \ } while (0) #define LN_INSERTHEAD(_ln) do { \ LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); \ RT_LOCK_ASSERT_HELD((_ln)->ln_rt); \ (_ln)->ln_next = llinfo_nd6.ln_next; \ llinfo_nd6.ln_next = (_ln); \ (_ln)->ln_prev = &llinfo_nd6; \ (_ln)->ln_next->ln_prev = (_ln); \ (_ln)->ln_flags |= ND6_LNF_IN_USE; \ } while (0) static KALLOC_TYPE_DEFINE(llinfo_nd6_zone, struct llinfo_nd6, NET_KT_DEFAULT); extern int tvtohz(struct timeval *); static int nd6_init_done; SYSCTL_DECL(_net_inet6_icmp6); SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, nd6_sysctl_drlist, "S,in6_defrouter", ""); SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, nd6_sysctl_prlist, "S,in6_defrouter", ""); SYSCTL_DECL(_net_inet6_ip6); static int ip6_maxchainsent = 0; SYSCTL_INT(_net_inet6_ip6, OID_AUTO, maxchainsent, CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxchainsent, 0, "use dlil_output_list"); SYSCTL_DECL(_net_inet6_icmp6); int nd6_process_rti = ND6_PROCESS_RTI_DEFAULT; SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_process_rti, CTLFLAG_RW | CTLFLAG_LOCKED, &nd6_process_rti, 0, "Enable/disable processing of Route Information Option in the " "IPv6 Router Advertisement."); void nd6_init(void) { int i; VERIFY(!nd6_init_done); all1_sa.sin6_family = AF_INET6; all1_sa.sin6_len = sizeof(struct sockaddr_in6); for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) { all1_sa.sin6_addr.s6_addr[i] = 0xff; } /* initialization of the default router list */ TAILQ_INIT(&nd_defrouter_list); TAILQ_INIT(&nd_rti_list); nd6_nbr_init(); nd6_rtr_init(); nd6_init_done = 1; /* start timer */ timeout(nd6_slowtimo, NULL, ND6_SLOWTIMER_INTERVAL * hz); } static struct llinfo_nd6 * nd6_llinfo_alloc(zalloc_flags_t how) { return zalloc_flags(llinfo_nd6_zone, how | Z_ZERO); } static void nd6_llinfo_free(void *arg) { struct llinfo_nd6 *ln = arg; if (ln->ln_next != NULL || ln->ln_prev != NULL) { panic("%s: trying to free %p when it is in use", __func__, ln); /* NOTREACHED */ } /* Just in case there's anything there, free it */ if (ln->ln_hold != NULL) { m_freem_list(ln->ln_hold); ln->ln_hold = NULL; } /* Purge any link-layer info caching */ VERIFY(ln->ln_rt->rt_llinfo == ln); if (ln->ln_rt->rt_llinfo_purge != NULL) { ln->ln_rt->rt_llinfo_purge(ln->ln_rt); } zfree(llinfo_nd6_zone, ln); } static void nd6_llinfo_purge(struct rtentry *rt) { struct llinfo_nd6 *ln = rt->rt_llinfo; RT_LOCK_ASSERT_HELD(rt); VERIFY(rt->rt_llinfo_purge == nd6_llinfo_purge && ln != NULL); if (ln->ln_llreach != NULL) { RT_CONVERT_LOCK(rt); ifnet_llreach_free(ln->ln_llreach); ln->ln_llreach = NULL; } ln->ln_lastused = 0; } static void nd6_llinfo_get_ri(struct rtentry *rt, struct rt_reach_info *ri) { struct llinfo_nd6 *ln = rt->rt_llinfo; struct if_llreach *lr = ln->ln_llreach; if (lr == NULL) { bzero(ri, sizeof(*ri)); ri->ri_rssi = IFNET_RSSI_UNKNOWN; ri->ri_lqm = IFNET_LQM_THRESH_OFF; ri->ri_npm = IFNET_NPM_THRESH_UNKNOWN; } else { IFLR_LOCK(lr); /* Export to rt_reach_info structure */ ifnet_lr2ri(lr, ri); /* Export ND6 send expiration (calendar) time */ ri->ri_snd_expire = ifnet_llreach_up2calexp(lr, ln->ln_lastused); IFLR_UNLOCK(lr); } } static void nd6_llinfo_get_iflri(struct rtentry *rt, struct ifnet_llreach_info *iflri) { struct llinfo_nd6 *ln = rt->rt_llinfo; struct if_llreach *lr = ln->ln_llreach; if (lr == NULL) { bzero(iflri, sizeof(*iflri)); iflri->iflri_rssi = IFNET_RSSI_UNKNOWN; iflri->iflri_lqm = IFNET_LQM_THRESH_OFF; iflri->iflri_npm = IFNET_NPM_THRESH_UNKNOWN; } else { IFLR_LOCK(lr); /* Export to ifnet_llreach_info structure */ ifnet_lr2iflri(lr, iflri); /* Export ND6 send expiration (uptime) time */ iflri->iflri_snd_expire = ifnet_llreach_up2upexp(lr, ln->ln_lastused); IFLR_UNLOCK(lr); } } static void nd6_llinfo_refresh(struct rtentry *rt) { struct llinfo_nd6 *ln = rt->rt_llinfo; uint64_t timenow = net_uptime(); struct ifnet *ifp = rt->rt_ifp; /* * Can't refresh permanent, static or entries that are * not direct host entries. Also skip if the entry is for * host over an interface that has alternate neighbor cache * management mechanisms (AWDL/NAN) */ if (!ln || ln->ln_expire == 0 || (rt->rt_flags & RTF_STATIC) || !(rt->rt_flags & RTF_LLINFO) || !ifp || (ifp->if_eflags & IFEF_IPV6_ND6ALT)) { return; } if ((ln->ln_state > ND6_LLINFO_INCOMPLETE) && (ln->ln_state < ND6_LLINFO_PROBE)) { if (ln->ln_expire > timenow) { ln_setexpire(ln, timenow); ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PROBE); } } return; } const char * ndcache_state2str(short ndp_state) { const char *ndp_state_str = "UNKNOWN"; switch (ndp_state) { case ND6_LLINFO_PURGE: ndp_state_str = "ND6_LLINFO_PURGE"; break; case ND6_LLINFO_NOSTATE: ndp_state_str = "ND6_LLINFO_NOSTATE"; break; case ND6_LLINFO_INCOMPLETE: ndp_state_str = "ND6_LLINFO_INCOMPLETE"; break; case ND6_LLINFO_REACHABLE: ndp_state_str = "ND6_LLINFO_REACHABLE"; break; case ND6_LLINFO_STALE: ndp_state_str = "ND6_LLINFO_STALE"; break; case ND6_LLINFO_DELAY: ndp_state_str = "ND6_LLINFO_DELAY"; break; case ND6_LLINFO_PROBE: ndp_state_str = "ND6_LLINFO_PROBE"; break; default: /* Init'd to UNKNOWN */ break; } return ndp_state_str; } void ln_setexpire(struct llinfo_nd6 *ln, uint64_t expiry) { ln->ln_expire = expiry; } static uint64_t ln_getexpire(struct llinfo_nd6 *ln) { struct timeval caltime; uint64_t expiry; if (ln->ln_expire != 0) { struct rtentry *rt = ln->ln_rt; VERIFY(rt != NULL); /* account for system time change */ getmicrotime(&caltime); rt->base_calendartime += NET_CALCULATE_CLOCKSKEW(caltime, rt->base_calendartime, net_uptime(), rt->base_uptime); expiry = rt->base_calendartime + ln->ln_expire - rt->base_uptime; } else { expiry = 0; } return expiry; } void nd6_ifreset(struct ifnet *ifp) { struct nd_ifinfo *ndi = ND_IFINFO(ifp); VERIFY(NULL != ndi); VERIFY(ndi->initialized); LCK_MTX_ASSERT(&ndi->lock, LCK_MTX_ASSERT_OWNED); ndi->linkmtu = ifp->if_mtu; ndi->chlim = IPV6_DEFHLIM; ndi->basereachable = REACHABLE_TIME; ndi->reachable = ND_COMPUTE_RTIME(ndi->basereachable); ndi->retrans = RETRANS_TIMER; } void nd6_ifattach(struct ifnet *ifp) { struct nd_ifinfo *ndi = ND_IFINFO(ifp); VERIFY(NULL != ndi); if (!ndi->initialized) { lck_mtx_init(&ndi->lock, &nd_if_lock_grp, &nd_if_lock_attr); ndi->flags = ND6_IFF_PERFORMNUD; ndi->flags |= ND6_IFF_DAD; ndi->initialized = TRUE; } lck_mtx_lock(&ndi->lock); if (!(ifp->if_flags & IFF_MULTICAST)) { ndi->flags |= ND6_IFF_IFDISABLED; } nd6_ifreset(ifp); lck_mtx_unlock(&ndi->lock); nd6_setmtu(ifp); nd6log0(info, "Reinit'd ND information for interface %s\n", if_name(ifp)); return; } #if 0 /* * XXX Look more into this. Especially since we recycle ifnets and do delayed * cleanup */ void nd6_ifdetach(struct nd_ifinfo *nd) { /* XXX destroy nd's lock? */ FREE(nd, M_IP6NDP); } #endif void nd6_setmtu(struct ifnet *ifp) { struct nd_ifinfo *ndi = ND_IFINFO(ifp); u_int32_t oldmaxmtu, maxmtu; if ((NULL == ndi) || (FALSE == ndi->initialized)) { return; } lck_mtx_lock(&ndi->lock); oldmaxmtu = ndi->maxmtu; /* * The ND level maxmtu is somewhat redundant to the interface MTU * and is an implementation artifact of KAME. Instead of hard- * limiting the maxmtu based on the interface type here, we simply * take the if_mtu value since SIOCSIFMTU would have taken care of * the sanity checks related to the maximum MTU allowed for the * interface (a value that is known only by the interface layer), * by sending the request down via ifnet_ioctl(). The use of the * ND level maxmtu and linkmtu are done via IN6_LINKMTU() which * does further checking against if_mtu. */ maxmtu = ndi->maxmtu = ifp->if_mtu; /* * Decreasing the interface MTU under IPV6 minimum MTU may cause * undesirable situation. We thus notify the operator of the change * explicitly. The check for oldmaxmtu is necessary to restrict the * log to the case of changing the MTU, not initializing it. */ if (oldmaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { log(LOG_NOTICE, "nd6_setmtu: " "new link MTU on %s (%u) is too small for IPv6\n", if_name(ifp), (uint32_t)ndi->maxmtu); } ndi->linkmtu = ifp->if_mtu; lck_mtx_unlock(&ndi->lock); /* also adjust in6_maxmtu if necessary. */ if (maxmtu > in6_maxmtu) { in6_setmaxmtu(); } } void nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) { bzero(ndopts, sizeof(*ndopts)); ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; ndopts->nd_opts_last = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); if (icmp6len == 0) { ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } } /* * Take one ND option. */ struct nd_opt_hdr * nd6_option(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int olen; if (!ndopts) { panic("ndopts == NULL in nd6_option"); } if (!ndopts->nd_opts_last) { panic("uninitialized ndopts in nd6_option"); } if (!ndopts->nd_opts_search) { return NULL; } if (ndopts->nd_opts_done) { return NULL; } nd_opt = ndopts->nd_opts_search; /* make sure nd_opt_len is inside the buffer */ if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { bzero(ndopts, sizeof(*ndopts)); return NULL; } olen = nd_opt->nd_opt_len << 3; if (olen == 0) { /* * Message validation requires that all included * options have a length that is greater than zero. */ bzero(ndopts, sizeof(*ndopts)); return NULL; } ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); if (ndopts->nd_opts_search > ndopts->nd_opts_last) { /* option overruns the end of buffer, invalid */ bzero(ndopts, sizeof(*ndopts)); return NULL; } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { /* reached the end of options chain */ ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } return nd_opt; } /* * Parse multiple ND options. * This function is much easier to use, for ND routines that do not need * multiple options of the same type. */ int nd6_options(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int i = 0; if (ndopts == NULL) { panic("ndopts == NULL in nd6_options"); } if (ndopts->nd_opts_last == NULL) { panic("uninitialized ndopts in nd6_options"); } if (ndopts->nd_opts_search == NULL) { return 0; } while (1) { nd_opt = nd6_option(ndopts); if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { /* * Message validation requires that all included * options have a length that is greater than zero. */ icmp6stat.icp6s_nd_badopt++; bzero(ndopts, sizeof(*ndopts)); return -1; } if (nd_opt == NULL) { goto skip1; } switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LINKADDR: case ND_OPT_TARGET_LINKADDR: case ND_OPT_MTU: case ND_OPT_REDIRECTED_HEADER: case ND_OPT_NONCE: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { nd6log(error, "duplicated ND6 option found (type=%d)\n", nd_opt->nd_opt_type); /* XXX bark? */ } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFORMATION: if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } ndopts->nd_opts_pi_end = (struct nd_opt_prefix_info *)nd_opt; break; case ND_OPT_RDNSS: case ND_OPT_DNSSL: case ND_OPT_CAPTIVE_PORTAL: /* ignore */ break; case ND_OPT_ROUTE_INFO: if (nd6_process_rti) { if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } ndopts->nd_opts_rti_end = (struct nd_opt_route_info *)nd_opt; break; } OS_FALLTHROUGH; default: /* * Unknown options must be silently ignored, * to accomodate future extension to the protocol. */ nd6log(debug, "nd6_options: unsupported option %d - " "option ignored\n", nd_opt->nd_opt_type); } skip1: i++; if (i > nd6_maxndopt) { icmp6stat.icp6s_nd_toomanyopt++; nd6log(info, "too many loop in nd opt\n"); break; } if (ndopts->nd_opts_done) { break; } } return 0; } struct nd6svc_arg { int draining; uint32_t killed; uint32_t aging_lazy; uint32_t aging; uint32_t sticky; uint32_t found; }; static void nd6_service_neighbor_cache(struct nd6svc_arg *ap, uint64_t timenow) { struct llinfo_nd6 *ln; struct ifnet *ifp = NULL; boolean_t send_nc_failure_kev = FALSE; struct radix_node_head *rnh = rt_tables[AF_INET6]; LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); again: /* * send_nc_failure_kev gets set when default router's IPv6 address * can't be resolved. * That can happen either: * 1. When the entry has resolved once but can't be * resolved later and the neighbor cache entry for gateway is deleted * after max probe attempts. * * 2. When the entry is in ND6_LLINFO_INCOMPLETE but can not be resolved * after max neighbor address resolution attempts. * * Both set send_nc_failure_kev to true. ifp is also set to the previous * neighbor cache entry's route's ifp. * Once we are done sending the notification, set send_nc_failure_kev * to false to stop sending false notifications for non default router * neighbors. * * We may to send more information like Gateway's IP that could not be * resolved, however right now we do not install more than one default * route per interface in the routing table. */ if (send_nc_failure_kev && ifp != NULL && ifp->if_addrlen == IF_LLREACH_MAXLEN) { struct kev_msg ev_msg; struct kev_nd6_ndfailure nd6_ndfailure; bzero(&ev_msg, sizeof(ev_msg)); bzero(&nd6_ndfailure, sizeof(nd6_ndfailure)); ev_msg.vendor_code = KEV_VENDOR_APPLE; ev_msg.kev_class = KEV_NETWORK_CLASS; ev_msg.kev_subclass = KEV_ND6_SUBCLASS; ev_msg.event_code = KEV_ND6_NDFAILURE; nd6_ndfailure.link_data.if_family = ifp->if_family; nd6_ndfailure.link_data.if_unit = ifp->if_unit; strlcpy(nd6_ndfailure.link_data.if_name, ifp->if_name, sizeof(nd6_ndfailure.link_data.if_name)); ev_msg.dv[0].data_ptr = &nd6_ndfailure; ev_msg.dv[0].data_length = sizeof(nd6_ndfailure); dlil_post_complete_msg(NULL, &ev_msg); } send_nc_failure_kev = FALSE; ifp = NULL; /* * The global list llinfo_nd6 is modified by nd6_request() and is * therefore protected by rnh_lock. For obvious reasons, we cannot * hold rnh_lock across calls that might lead to code paths which * attempt to acquire rnh_lock, else we deadlock. Hence for such * cases we drop rt_lock and rnh_lock, make the calls, and repeat the * loop. To ensure that we don't process the same entry more than * once in a single timeout, we mark the "already-seen" entries with * ND6_LNF_TIMER_SKIP flag. At the end of the loop, we do a second * pass thru the entries and clear the flag so they can be processed * during the next timeout. */ LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); ln = llinfo_nd6.ln_next; while (ln != NULL && ln != &llinfo_nd6) { struct rtentry *rt; struct sockaddr_in6 *dst; struct llinfo_nd6 *next; u_int32_t retrans, flags; struct nd_ifinfo *ndi = NULL; boolean_t is_router = FALSE; /* ln_next/prev/rt is protected by rnh_lock */ next = ln->ln_next; rt = ln->ln_rt; RT_LOCK(rt); /* We've seen this already; skip it */ if (ln->ln_flags & ND6_LNF_TIMER_SKIP) { RT_UNLOCK(rt); ln = next; continue; } ap->found++; /* rt->rt_ifp should never be NULL */ if ((ifp = rt->rt_ifp) == NULL) { panic("%s: ln(%p) rt(%p) rt_ifp == NULL", __func__, ln, rt); /* NOTREACHED */ } /* rt_llinfo must always be equal to ln */ if ((struct llinfo_nd6 *)rt->rt_llinfo != ln) { panic("%s: rt_llinfo(%p) is not equal to ln(%p)", __func__, rt->rt_llinfo, ln); /* NOTREACHED */ } /* rt_key should never be NULL */ dst = SIN6(rt_key(rt)); if (dst == NULL) { panic("%s: rt(%p) key is NULL ln(%p)", __func__, rt, ln); /* NOTREACHED */ } /* Set the flag in case we jump to "again" */ ln->ln_flags |= ND6_LNF_TIMER_SKIP; /* * Do not touch neighbor cache entries that are permanent, * static or are for interfaces that manage neighbor cache * entries via alternate NDP means. */ if (ln->ln_expire == 0 || (rt->rt_flags & RTF_STATIC) || (rt->rt_ifp->if_eflags & IFEF_IPV6_ND6ALT)) { ap->sticky++; } else if (ap->draining && (rt->rt_refcnt == 0)) { /* * If we are draining, immediately purge non-static * entries without oustanding route refcnt. */ if (ln->ln_state > ND6_LLINFO_INCOMPLETE) { ND6_CACHE_STATE_TRANSITION(ln, (short)ND6_LLINFO_STALE); } else { ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PURGE); } ln_setexpire(ln, timenow); } /* * If the entry has not expired, skip it. Take note on the * state, as entries that are in the STALE state are simply * waiting to be garbage collected, in which case we can * relax the callout scheduling (use nd6_prune_lazy). */ if (ln->ln_expire > timenow) { switch (ln->ln_state) { case ND6_LLINFO_STALE: ap->aging_lazy++; break; default: ap->aging++; break; } RT_UNLOCK(rt); ln = next; continue; } ndi = ND_IFINFO(ifp); /* * The IPv6 initialization of the loopback interface * may happen after another interface gets assigned * an IPv6 address */ if (ndi == NULL && ifp == lo_ifp) { RT_UNLOCK(rt); ln = next; continue; } VERIFY(ndi->initialized); retrans = ndi->retrans; flags = ndi->flags; RT_LOCK_ASSERT_HELD(rt); is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE; switch (ln->ln_state) { case ND6_LLINFO_INCOMPLETE: if (ln->ln_asked < nd6_mmaxtries) { struct ifnet *exclifp = ln->ln_exclifp; ln->ln_asked++; ln_setexpire(ln, timenow + retrans / 1000); RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); if (ip6_forwarding) { nd6_prproxy_ns_output(ifp, exclifp, NULL, &dst->sin6_addr, ln); } else { nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, NULL); } RT_REMREF(rt); ap->aging++; lck_mtx_lock(rnh_lock); } else { struct mbuf *m = ln->ln_hold; ln->ln_hold = NULL; send_nc_failure_kev = is_router; if (m != NULL) { RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); struct mbuf *mnext; while (m) { mnext = m->m_nextpkt; m->m_nextpkt = NULL; m->m_pkthdr.rcvif = ifp; icmp6_error_flag(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 0, 0); m = mnext; } } else { RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); } /* * Enqueue work item to invoke callback for * this route entry */ route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_LLENTRY_UNREACH, NULL, FALSE); defrouter_set_reachability(&SIN6(rt_key(rt))->sin6_addr, rt->rt_ifp, FALSE); nd6_free(rt); ap->killed++; lck_mtx_lock(rnh_lock); /* * nd6_free above would flush out the routing table of * any cloned routes with same next-hop. * Walk the tree anyways as there could be static routes * left. * * We also already have a reference to rt that gets freed right * after the block below executes. Don't need an extra reference * on rt here. */ if (is_router) { struct route_event rt_ev; route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_UNREACH); (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev); } rtfree_locked(rt); } LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); goto again; case ND6_LLINFO_REACHABLE: if (ln->ln_expire != 0) { ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); ln_setexpire(ln, timenow + nd6_gctimer); ap->aging_lazy++; /* * Enqueue work item to invoke callback for * this route entry */ route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_LLENTRY_STALE, NULL, TRUE); RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); if (is_router) { struct route_event rt_ev; route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_STALE); (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev); } rtfree_locked(rt); } else { RT_UNLOCK(rt); } break; case ND6_LLINFO_STALE: case ND6_LLINFO_PURGE: /* Garbage Collection(RFC 4861 5.3) */ if (ln->ln_expire != 0) { RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); nd6_free(rt); ap->killed++; lck_mtx_lock(rnh_lock); rtfree_locked(rt); goto again; } else { RT_UNLOCK(rt); } break; case ND6_LLINFO_DELAY: if ((flags & ND6_IFF_PERFORMNUD) != 0) { /* We need NUD */ ln->ln_asked = 1; ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PROBE); ln_setexpire(ln, timenow + retrans / 1000); RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); nd6_ns_output(ifp, &dst->sin6_addr, &dst->sin6_addr, ln, NULL); RT_REMREF(rt); ap->aging++; lck_mtx_lock(rnh_lock); goto again; } ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); /* XXX */ ln_setexpire(ln, timenow + nd6_gctimer); RT_UNLOCK(rt); ap->aging_lazy++; break; case ND6_LLINFO_PROBE: if (ln->ln_asked < nd6_umaxtries) { ln->ln_asked++; ln_setexpire(ln, timenow + retrans / 1000); RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); nd6_ns_output(ifp, &dst->sin6_addr, &dst->sin6_addr, ln, NULL); RT_REMREF(rt); ap->aging++; lck_mtx_lock(rnh_lock); } else { is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE; send_nc_failure_kev = is_router; RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); nd6_free(rt); ap->killed++; /* * Enqueue work item to invoke callback for * this route entry */ route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_LLENTRY_UNREACH, NULL, FALSE); defrouter_set_reachability(&SIN6(rt_key(rt))->sin6_addr, rt->rt_ifp, FALSE); lck_mtx_lock(rnh_lock); /* * nd6_free above would flush out the routing table of * any cloned routes with same next-hop. * Walk the tree anyways as there could be static routes * left. * * We also already have a reference to rt that gets freed right * after the block below executes. Don't need an extra reference * on rt here. */ if (is_router) { struct route_event rt_ev; route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_UNREACH); (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev); } rtfree_locked(rt); } LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); goto again; default: RT_UNLOCK(rt); break; } ln = next; } LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); /* Now clear the flag from all entries */ ln = llinfo_nd6.ln_next; while (ln != NULL && ln != &llinfo_nd6) { struct rtentry *rt = ln->ln_rt; struct llinfo_nd6 *next = ln->ln_next; RT_LOCK_SPIN(rt); if (ln->ln_flags & ND6_LNF_TIMER_SKIP) { ln->ln_flags &= ~ND6_LNF_TIMER_SKIP; } RT_UNLOCK(rt); ln = next; } } static void nd6_service_expired_default_router(struct nd6svc_arg *ap, uint64_t timenow) { struct nd_defrouter *dr = NULL; struct nd_defrouter *ndr = NULL; struct nd_drhead nd_defrouter_tmp; /* expire default router list */ TAILQ_INIT(&nd_defrouter_tmp); LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(nd6_mutex); TAILQ_FOREACH_SAFE(dr, &nd_defrouter_list, dr_entry, ndr) { ap->found++; if (dr->expire != 0 && dr->expire < timenow) { VERIFY(dr->ifp != NULL); in6_ifstat_inc(dr->ifp, ifs6_defrtr_expiry_cnt); if ((dr->stateflags & NDDRF_INELIGIBLE) == 0) { in6_event_enqueue_nwk_wq_entry(IN6_NDP_RTR_EXPIRY, dr->ifp, &dr->rtaddr, dr->rtlifetime); } if (dr->ifp != NULL && dr->ifp->if_type == IFT_CELLULAR) { /* * Some buggy cellular gateways may not send * periodic router advertisements. * Or they may send it with router lifetime * value that is less than the configured Max and Min * Router Advertisement interval. * To top that an idle device may not wake up * when periodic RA is received on cellular * interface. * We could send RS on every wake but RFC * 4861 precludes that. * The addresses are of infinite lifetimes * and are tied to the lifetime of the bearer, * so keeping the addresses and just getting rid of * the router does not help us anyways. * If there's network renumbering, a lifetime with * value 0 would remove the default router. * Also it will get deleted as part of purge when * the PDP context is torn down and configured again. * For that reason, do not expire the default router * learned on cellular interface. Ever. */ dr->expire += dr->rtlifetime; nd6log2(debug, "%s: Refreshing expired default router entry " "%s for interface %s\n", __func__, ip6_sprintf(&dr->rtaddr), if_name(dr->ifp)); } else { ap->killed++; /* * Remove the entry from default router list * and add it to the temp list. * nd_defrouter_tmp will be a local temporary * list as no one else can get the same * removed entry once it is removed from default * router list. * Remove the reference after calling defrtrlist_del */ TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry); TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); } } else { if (dr->expire == 0 || (dr->stateflags & NDDRF_STATIC)) { ap->sticky++; } else { ap->aging_lazy++; } } } /* * Keep the following separate from the above * iteration of nd_defrouter because it's not safe * to call defrtrlist_del while iterating global default * router list. Global list has to be traversed * while holding nd6_mutex throughout. * * The following call to defrtrlist_del should be * safe as we are iterating a local list of * default routers. */ TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, ndr) { TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry); defrtrlist_del(dr, NULL); NDDR_REMREF(dr); /* remove list reference */ } /* XXX TBD: Also iterate through RTI router lists */ /* * Also check if default router selection needs to be triggered * for default interface, to avoid an issue with co-existence of * static un-scoped default route configuration and default router * discovery/selection. */ if (trigger_v6_defrtr_select) { defrouter_select(NULL, NULL); trigger_v6_defrtr_select = FALSE; } lck_mtx_unlock(nd6_mutex); } static void nd6_service_expired_route_info(struct nd6svc_arg *ap, uint64_t timenow) { struct nd_route_info *rti = NULL; struct nd_route_info *rti_next = NULL; LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(nd6_mutex); nd6_rti_list_wait(__func__); TAILQ_FOREACH_SAFE(rti, &nd_rti_list, nd_rti_entry, rti_next) { struct nd_defrouter *dr = NULL; struct nd_defrouter *ndr = NULL; struct nd_route_info rti_tmp = {}; rti_tmp.nd_rti_prefix = rti->nd_rti_prefix; rti_tmp.nd_rti_prefixlen = rti->nd_rti_prefixlen; TAILQ_INIT(&rti_tmp.nd_rti_router_list); TAILQ_FOREACH_SAFE(dr, &rti->nd_rti_router_list, dr_entry, ndr) { ap->found++; if (dr->expire != 0 && dr->expire < timenow) { VERIFY(dr->ifp != NULL); if (dr->ifp != NULL && dr->ifp->if_type == IFT_CELLULAR) { /* * Don't expire these routes over cellular. * XXX Should we change this for non default routes? */ dr->expire += dr->rtlifetime; nd6log2(debug, "%s: Refreshing expired default router entry " "%s for interface %s\n", __func__, ip6_sprintf(&dr->rtaddr), if_name(dr->ifp)); } else { ap->killed++; /* * Remove the entry from rti entry's router list * and add it to the temp list. * Remove the reference after calling defrtrlist_del */ TAILQ_REMOVE(&rti->nd_rti_router_list, dr, dr_entry); TAILQ_INSERT_TAIL(&rti_tmp.nd_rti_router_list, dr, dr_entry); } } else { if (dr->expire == 0 || (dr->stateflags & NDDRF_STATIC)) { ap->sticky++; } else { ap->aging_lazy++; } } } /* * Keep the following separate from the above * iteration of nd_defrouter because it's not safe * to call defrtrlist_del while iterating global default * router list. Global list has to be traversed * while holding nd6_mutex throughout. * * The following call to defrtrlist_del should be * safe as we are iterating a local list of * default routers. */ TAILQ_FOREACH_SAFE(dr, &rti_tmp.nd_rti_router_list, dr_entry, ndr) { TAILQ_REMOVE(&rti_tmp.nd_rti_router_list, dr, dr_entry); defrtrlist_del(dr, &rti->nd_rti_router_list); NDDR_REMREF(dr); /* remove list reference */ } /* * The above may have removed an entry from default router list. * If it did and the list is now empty, remove the rti as well. */ if (TAILQ_EMPTY(&rti->nd_rti_router_list)) { TAILQ_REMOVE(&nd_rti_list, rti, nd_rti_entry); ndrti_free(rti); } } LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); nd6_rti_list_signal_done(); lck_mtx_unlock(nd6_mutex); } /* * @function nd6_handle_duplicated_ip6_addr * * @brief * Handle a duplicated IPv6 secured non-termporary address * * @discussion * If the collision count hasn't been exceeded, removes the old * conflicting IPv6 address, increments the collision count, * and allocates a new address. * * Returns TRUE if the old address was removed, and the locks * (in6_ifaddr_rwlock, ia6->ia_ifa) were unlocked. */ static boolean_t nd6_handle_duplicated_ip6_addr(struct in6_ifaddr *ia6) { uint8_t collision_count; int error = 0; struct in6_ifaddr *new_ia6; struct nd_prefix *pr; struct ifnet *ifp; LCK_RW_ASSERT(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE); IFA_LOCK_ASSERT_HELD(&ia6->ia_ifa); /* don't retry too many times */ collision_count = ia6->ia6_cga_collision_count; if (collision_count >= ip6_cga_conflict_retries) { return FALSE; } /* need the prefix to allocate a new address */ pr = ia6->ia6_ndpr; if (pr == NULL) { return FALSE; } NDPR_ADDREF(pr); ifp = pr->ndpr_ifp; log(LOG_DEBUG, "%s: %s duplicated (collision count %d)\n", ifp->if_xname, ip6_sprintf(&ia6->ia_addr.sin6_addr), collision_count); /* remove the old address */ IFA_UNLOCK(&ia6->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); in6_purgeaddr(&ia6->ia_ifa); /* allocate a new address with new collision count */ collision_count++; new_ia6 = in6_pfx_newpersistaddr(pr, 1, &error, FALSE, collision_count); if (new_ia6 != NULL) { log(LOG_DEBUG, "%s: %s new (collision count %d)\n", ifp->if_xname, ip6_sprintf(&new_ia6->ia_addr.sin6_addr), collision_count); IFA_LOCK(&new_ia6->ia_ifa); NDPR_LOCK(pr); new_ia6->ia6_ndpr = pr; NDPR_ADDREF(pr); /* for addr reference */ pr->ndpr_addrcnt++; VERIFY(pr->ndpr_addrcnt != 0); NDPR_UNLOCK(pr); IFA_UNLOCK(&new_ia6->ia_ifa); ifa_remref(&new_ia6->ia_ifa); } else { log(LOG_ERR, "%s: in6_pfx_newpersistaddr failed %d\n", __func__, error); } /* release extra prefix reference */ NDPR_REMREF(pr); return TRUE; } static boolean_t secured_address_is_duplicated(int flags) { #define _IN6_IFF_DUPLICATED_AUTOCONF_SECURED \ (IN6_IFF_DUPLICATED | IN6_IFF_AUTOCONF | IN6_IFF_SECURED) return (flags & _IN6_IFF_DUPLICATED_AUTOCONF_SECURED) == _IN6_IFF_DUPLICATED_AUTOCONF_SECURED; } static void nd6_service_ip6_addr(struct nd6svc_arg *ap, uint64_t timenow) { struct in6_ifaddr *ia6 = NULL; struct in6_ifaddr *nia6 = NULL; /* * expire interface addresses. * in the past the loop was inside prefix expiry processing. * However, from a stricter spec-conformance standpoint, we should * rather separate address lifetimes and prefix lifetimes. */ addrloop: lck_rw_lock_exclusive(&in6_ifaddr_rwlock); TAILQ_FOREACH_SAFE(ia6, &in6_ifaddrhead, ia6_link, nia6) { int oldflags = ia6->ia6_flags; ap->found++; IFA_LOCK(&ia6->ia_ifa); /* * Extra reference for ourselves; it's no-op if * we don't have to regenerate temporary address, * otherwise it protects the address from going * away since we drop in6_ifaddr_rwlock below. */ ifa_addref(&ia6->ia_ifa); /* * Check for duplicated secured address * * nd6_handle_duplicated_ip6_addr attempts to regenerate * secure address in the event of a collision. * On successful generation this returns success * and we restart the loop. * * When we hit the maximum attempts, this returns * false. */ if (secured_address_is_duplicated(ia6->ia6_flags) && nd6_handle_duplicated_ip6_addr(ia6)) { /* * nd6_handle_duplicated_ip6_addr() unlocked * (in6_ifaddr_rwlock, ia6->ia_ifa) already. * Still need to release extra reference on * ia6->ia_ifa taken above. */ ifa_remref(&ia6->ia_ifa); goto addrloop; } /* check address lifetime */ if (IFA6_IS_INVALID(ia6, timenow)) { /* * If the expiring address is temporary, try * regenerating a new one. This would be useful when * we suspended a laptop PC, then turned it on after a * period that could invalidate all temporary * addresses. Although we may have to restart the * loop (see below), it must be after purging the * address. Otherwise, we'd see an infinite loop of * regeneration. */ if (ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { /* * NOTE: We have to drop the lock here * because regen_tmpaddr() eventually calls * in6_update_ifa(), which must take the lock * and would otherwise cause a hang. This is * safe because the goto addrloop leads to a * re-evaluation of the in6_ifaddrs list */ IFA_UNLOCK(&ia6->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); (void) regen_tmpaddr(ia6); } else { IFA_UNLOCK(&ia6->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); } /* * Purging the address would have caused * in6_ifaddr_rwlock to be dropped and reacquired; * therefore search again from the beginning * of in6_ifaddrs list. */ in6_purgeaddr(&ia6->ia_ifa); ap->killed++; if ((ia6->ia6_flags & IN6_IFF_TEMPORARY) == 0) { in6_ifstat_inc(ia6->ia_ifa.ifa_ifp, ifs6_addr_expiry_cnt); in6_event_enqueue_nwk_wq_entry(IN6_NDP_ADDR_EXPIRY, ia6->ia_ifa.ifa_ifp, &ia6->ia_addr.sin6_addr, 0); } /* Release extra reference taken above */ ifa_remref(&ia6->ia_ifa); goto addrloop; } /* * The lazy timer runs every nd6_prune_lazy seconds with at * most "2 * nd6_prune_lazy - 1" leeway. We consider the worst * case here and make sure we schedule the regular timer if an * interface address is about to expire. */ if (IFA6_IS_INVALID(ia6, timenow + 3 * nd6_prune_lazy)) { ap->aging++; } else { ap->aging_lazy++; } IFA_LOCK_ASSERT_HELD(&ia6->ia_ifa); if (IFA6_IS_DEPRECATED(ia6, timenow)) { ia6->ia6_flags |= IN6_IFF_DEPRECATED; if ((oldflags & IN6_IFF_DEPRECATED) == 0) { #if SKYWALK SK_NXS_MS_IF_ADDR_GENCNT_INC(ia6->ia_ifp); #endif /* SKYWALK */ /* * Only enqueue the Deprecated event when the address just * becomes deprecated. * Keep it limited to the stable address as it is common for * older temporary addresses to get deprecated while we generate * new ones. */ if ((ia6->ia6_flags & IN6_IFF_TEMPORARY) == 0) { in6_event_enqueue_nwk_wq_entry(IN6_ADDR_MARKED_DEPRECATED, ia6->ia_ifa.ifa_ifp, &ia6->ia_addr.sin6_addr, 0); } } /* * If a temporary address has just become deprecated, * regenerate a new one if possible. */ if (ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && (oldflags & IN6_IFF_DEPRECATED) == 0) { /* see NOTE above */ IFA_UNLOCK(&ia6->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); if (regen_tmpaddr(ia6) == 0) { /* * A new temporary address is * generated. * XXX: this means the address chain * has changed while we are still in * the loop. Although the change * would not cause disaster (because * it's not a deletion, but an * addition,) we'd rather restart the * loop just for safety. Or does this * significantly reduce performance?? */ /* Release extra reference */ ifa_remref(&ia6->ia_ifa); goto addrloop; } lck_rw_lock_exclusive(&in6_ifaddr_rwlock); } else { IFA_UNLOCK(&ia6->ia_ifa); } } else { /* * A new RA might have made a deprecated address * preferred. */ ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; #if SKYWALK if ((oldflags & IN6_IFF_DEPRECATED) != 0) { SK_NXS_MS_IF_ADDR_GENCNT_INC(ia6->ia_ifp); } #endif /* SKYWALK */ IFA_UNLOCK(&ia6->ia_ifa); } LCK_RW_ASSERT(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE); /* Release extra reference taken above */ ifa_remref(&ia6->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); } static void nd6_service_expired_prefix(struct nd6svc_arg *ap, uint64_t timenow) { struct nd_prefix *pr = NULL; LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(nd6_mutex); /* expire prefix list */ pr = nd_prefix.lh_first; while (pr != NULL) { ap->found++; /* * Skip already processed or defunct prefixes * We may iterate the prefix list from head again * so, we are trying to not revisit the same prefix * for the same instance of nd6_service */ NDPR_LOCK(pr); if (pr->ndpr_stateflags & NDPRF_PROCESSED_SERVICE || pr->ndpr_stateflags & NDPRF_DEFUNCT) { pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE; NDPR_UNLOCK(pr); pr = pr->ndpr_next; continue; } /* * If there are still manual addresses configured in the system * that are associated with the prefix, ignore prefix expiry */ if (pr->ndpr_manual_addrcnt != 0) { pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE; NDPR_UNLOCK(pr); pr = pr->ndpr_next; continue; } /* * check prefix lifetime. * since pltime is just for autoconf, pltime processing for * prefix is not necessary. */ if (pr->ndpr_expire != 0 && pr->ndpr_expire < timenow) { /* * address expiration and prefix expiration are * separate. NEVER perform in6_purgeaddr here. */ pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE; NDPR_ADDREF(pr); prelist_remove(pr); NDPR_UNLOCK(pr); in6_ifstat_inc(pr->ndpr_ifp, ifs6_pfx_expiry_cnt); in6_event_enqueue_nwk_wq_entry(IN6_NDP_PFX_EXPIRY, pr->ndpr_ifp, &pr->ndpr_prefix.sin6_addr, 0); NDPR_REMREF(pr); pfxlist_onlink_check(); pr = nd_prefix.lh_first; ap->killed++; } else { if (pr->ndpr_expire == 0 || (pr->ndpr_stateflags & NDPRF_STATIC)) { ap->sticky++; } else { ap->aging_lazy++; } pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE; NDPR_UNLOCK(pr); pr = pr->ndpr_next; } } LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { NDPR_LOCK(pr); pr->ndpr_stateflags &= ~NDPRF_PROCESSED_SERVICE; NDPR_UNLOCK(pr); } lck_mtx_unlock(nd6_mutex); } /* * ND6 service routine to expire default route list and prefix list */ static void nd6_service(void *arg) { struct nd6svc_arg *ap = arg; uint64_t timenow; LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); /* * Since we may drop rnh_lock and nd6_mutex below, we want * to run this entire operation single threaded. */ while (nd6_service_busy) { nd6log2(debug, "%s: %s is blocked by %d waiters\n", __func__, ap->draining ? "drainer" : "timer", nd6_service_waiters); nd6_service_waiters++; (void) msleep(nd6_service_wc, rnh_lock, (PZERO - 1), __func__, NULL); LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); } /* We are busy now; tell everyone else to go away */ nd6_service_busy = TRUE; net_update_uptime(); timenow = net_uptime(); /* Iterate and service neighbor cache entries */ nd6_service_neighbor_cache(ap, timenow); /* * There is lock ordering requirement and rnh_lock * has to be released before acquiring nd6_mutex. */ lck_mtx_unlock(rnh_lock); /* Iterate and service expired default router */ nd6_service_expired_default_router(ap, timenow); /* Iterate and service expired route information entries */ nd6_service_expired_route_info(ap, timenow); /* Iterate and service expired/duplicated IPv6 address */ nd6_service_ip6_addr(ap, timenow); /* Iterate and service expired IPv6 prefixes */ nd6_service_expired_prefix(ap, timenow); lck_mtx_lock(rnh_lock); /* We're done; let others enter */ nd6_service_busy = FALSE; if (nd6_service_waiters > 0) { nd6_service_waiters = 0; wakeup(nd6_service_wc); } } static int nd6_need_draining = 0; void nd6_drain(void *arg) { #pragma unused(arg) nd6log2(debug, "%s: draining ND6 entries\n", __func__); lck_mtx_lock(rnh_lock); nd6_need_draining = 1; nd6_sched_timeout(NULL, NULL); lck_mtx_unlock(rnh_lock); } /* * We use the ``arg'' variable to decide whether or not the timer we're * running is the fast timer. We do this to reset the nd6_fast_timer_on * variable so that later we don't end up ignoring a ``fast timer'' * request if the 5 second timer is running (see nd6_sched_timeout). */ static void nd6_timeout(void *arg) { struct nd6svc_arg sarg; uint32_t buf; lck_mtx_lock(rnh_lock); bzero(&sarg, sizeof(sarg)); if (nd6_need_draining != 0) { nd6_need_draining = 0; sarg.draining = 1; } nd6_service(&sarg); nd6log2(debug, "%s: found %u, aging_lazy %u, aging %u, " "sticky %u, killed %u\n", __func__, sarg.found, sarg.aging_lazy, sarg.aging, sarg.sticky, sarg.killed); /* re-arm the timer if there's work to do */ nd6_timeout_run--; VERIFY(nd6_timeout_run >= 0 && nd6_timeout_run < 2); if (arg == &nd6_fast_timer_on) { nd6_fast_timer_on = FALSE; } if (sarg.aging_lazy > 0 || sarg.aging > 0 || nd6_sched_timeout_want) { struct timeval atv, ltv, *leeway; int lazy = nd6_prune_lazy; if (sarg.aging > 0 || lazy < 1) { atv.tv_usec = 0; atv.tv_sec = nd6_prune; leeway = NULL; } else { VERIFY(lazy >= 1); atv.tv_usec = 0; atv.tv_sec = MAX(nd6_prune, lazy); ltv.tv_usec = 0; read_frandom(&buf, sizeof(buf)); ltv.tv_sec = MAX(buf % lazy, 1) * 2; leeway = <v; } nd6_sched_timeout(&atv, leeway); } else if (nd6_debug) { nd6log2(debug, "%s: not rescheduling timer\n", __func__); } lck_mtx_unlock(rnh_lock); } void nd6_sched_timeout(struct timeval *atv, struct timeval *ltv) { struct timeval tv; LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); if (atv == NULL) { tv.tv_usec = 0; tv.tv_sec = MAX(nd6_prune, 1); atv = &tv; ltv = NULL; /* ignore leeway */ } /* see comments on top of this file */ if (nd6_timeout_run == 0) { if (ltv == NULL) { nd6log2(debug, "%s: timer scheduled in " "T+%llus.%lluu (demand %d)\n", __func__, (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec, nd6_sched_timeout_want); nd6_fast_timer_on = TRUE; timeout(nd6_timeout, &nd6_fast_timer_on, tvtohz(atv)); } else { nd6log2(debug, "%s: timer scheduled in " "T+%llus.%lluu with %llus.%lluu leeway " "(demand %d)\n", __func__, (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec, (uint64_t)ltv->tv_sec, (uint64_t)ltv->tv_usec, nd6_sched_timeout_want); nd6_fast_timer_on = FALSE; timeout_with_leeway(nd6_timeout, NULL, tvtohz(atv), tvtohz(ltv)); } nd6_timeout_run++; nd6_sched_timeout_want = 0; } else if (nd6_timeout_run == 1 && ltv == NULL && nd6_fast_timer_on == FALSE) { nd6log2(debug, "%s: fast timer scheduled in " "T+%llus.%lluu (demand %d)\n", __func__, (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec, nd6_sched_timeout_want); nd6_fast_timer_on = TRUE; nd6_sched_timeout_want = 0; nd6_timeout_run++; timeout(nd6_timeout, &nd6_fast_timer_on, tvtohz(atv)); } else { if (ltv == NULL) { nd6log2(debug, "%s: not scheduling timer: " "timers %d, fast_timer %d, T+%llus.%lluu\n", __func__, nd6_timeout_run, nd6_fast_timer_on, (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec); } else { nd6log2(debug, "%s: not scheduling timer: " "timers %d, fast_timer %d, T+%llus.%lluu " "with %llus.%lluu leeway\n", __func__, nd6_timeout_run, nd6_fast_timer_on, (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec, (uint64_t)ltv->tv_sec, (uint64_t)ltv->tv_usec); } } } /* * ND6 router advertisement kernel notification */ void nd6_post_msg(u_int32_t code, struct nd_prefix_list *prefix_list, u_int32_t list_length, u_int32_t mtu) { struct kev_msg ev_msg; struct kev_nd6_ra_data nd6_ra_msg_data; struct nd_prefix_list *itr = prefix_list; bzero(&ev_msg, sizeof(struct kev_msg)); ev_msg.vendor_code = KEV_VENDOR_APPLE; ev_msg.kev_class = KEV_NETWORK_CLASS; ev_msg.kev_subclass = KEV_ND6_SUBCLASS; ev_msg.event_code = code; bzero(&nd6_ra_msg_data, sizeof(nd6_ra_msg_data)); if (mtu > 0 && mtu >= IPV6_MMTU) { nd6_ra_msg_data.mtu = mtu; nd6_ra_msg_data.flags |= KEV_ND6_DATA_VALID_MTU; } if (list_length > 0 && prefix_list != NULL) { nd6_ra_msg_data.list_length = list_length; nd6_ra_msg_data.flags |= KEV_ND6_DATA_VALID_PREFIX; } while (itr != NULL && nd6_ra_msg_data.list_index < list_length) { SOCKADDR_COPY(&itr->pr.ndpr_prefix, &nd6_ra_msg_data.prefix.prefix, sizeof(nd6_ra_msg_data.prefix.prefix)); nd6_ra_msg_data.prefix.raflags = itr->pr.ndpr_raf; nd6_ra_msg_data.prefix.prefixlen = itr->pr.ndpr_plen; nd6_ra_msg_data.prefix.origin = PR_ORIG_RA; nd6_ra_msg_data.prefix.vltime = itr->pr.ndpr_vltime; nd6_ra_msg_data.prefix.pltime = itr->pr.ndpr_pltime; nd6_ra_msg_data.prefix.expire = ndpr_getexpire(&itr->pr); nd6_ra_msg_data.prefix.flags = itr->pr.ndpr_stateflags; nd6_ra_msg_data.prefix.refcnt = itr->pr.ndpr_addrcnt; nd6_ra_msg_data.prefix.if_index = itr->pr.ndpr_ifp->if_index; /* send the message up */ ev_msg.dv[0].data_ptr = &nd6_ra_msg_data; ev_msg.dv[0].data_length = sizeof(nd6_ra_msg_data); ev_msg.dv[1].data_length = 0; dlil_post_complete_msg(NULL, &ev_msg); /* clean up for the next prefix */ bzero(&nd6_ra_msg_data.prefix, sizeof(nd6_ra_msg_data.prefix)); itr = itr->next; nd6_ra_msg_data.list_index++; } } /* * Regenerate deprecated/invalidated temporary address */ static int regen_tmpaddr(struct in6_ifaddr *ia6) { struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *public_ifa6 = NULL; uint64_t timenow = net_uptime(); ifp = ia6->ia_ifa.ifa_ifp; ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { struct in6_ifaddr *it6; IFA_LOCK(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } it6 = (struct in6_ifaddr *)ifa; /* ignore no autoconf addresses. */ if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) { IFA_UNLOCK(ifa); continue; } /* ignore autoconf addresses with different prefixes. */ if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) { IFA_UNLOCK(ifa); continue; } /* * Now we are looking at an autoconf address with the same * prefix as ours. If the address is temporary and is still * preferred, do not create another one. It would be rare, but * could happen, for example, when we resume a laptop PC after * a long period. */ if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && !IFA6_IS_DEPRECATED(it6, timenow)) { IFA_UNLOCK(ifa); if (public_ifa6 != NULL) { ifa_remref(&public_ifa6->ia_ifa); } public_ifa6 = NULL; break; } /* * This is a public autoconf address that has the same prefix * as ours. If it is preferred, keep it. We can't break the * loop here, because there may be a still-preferred temporary * address with the prefix. */ if (!IFA6_IS_DEPRECATED(it6, timenow)) { ifa_addref(ifa); /* for public_ifa6 */ IFA_UNLOCK(ifa); if (public_ifa6 != NULL) { ifa_remref(&public_ifa6->ia_ifa); } public_ifa6 = it6; } else { IFA_UNLOCK(ifa); } } ifnet_lock_done(ifp); if (public_ifa6 != NULL) { int e; if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" " tmp addr,errno=%d\n", e); ifa_remref(&public_ifa6->ia_ifa); return -1; } ifa_remref(&public_ifa6->ia_ifa); return 0; } return -1; } static void nd6_purge_interface_default_routers(struct ifnet *ifp) { struct nd_defrouter *dr = NULL; struct nd_defrouter *ndr = NULL; struct nd_drhead nd_defrouter_tmp = {}; TAILQ_INIT(&nd_defrouter_tmp); LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); TAILQ_FOREACH_SAFE(dr, &nd_defrouter_list, dr_entry, ndr) { if (dr->ifp != ifp) { continue; } /* * Remove the entry from default router list * and add it to the temp list. * nd_defrouter_tmp will be a local temporary * list as no one else can get the same * removed entry once it is removed from default * router list. * Remove the reference after calling defrtrlist_del. * * The uninstalled entries have to be iterated first * when we call defrtrlist_del. * This is to ensure that we don't end up calling * default router selection when there are other * uninstalled candidate default routers on * the interface. * If we don't respect that order, we may end * up missing out on some entries. * * For that reason, installed ones must be inserted * at the tail and uninstalled ones at the head */ TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry); if (dr->stateflags & NDDRF_INSTALLED) { TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); } else { TAILQ_INSERT_HEAD(&nd_defrouter_tmp, dr, dr_entry); } } /* * The following call to defrtrlist_del should be * safe as we are iterating a local list of * default routers. * * We don't really need nd6_mutex here but keeping * it as it is to avoid changing assertios held in * the functions in the call-path. */ TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, ndr) { TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry); defrtrlist_del(dr, NULL); NDDR_REMREF(dr); /* remove list reference */ } } static void nd6_purge_interface_prefixes(struct ifnet *ifp) { boolean_t removed = FALSE; struct nd_prefix *pr = NULL; struct nd_prefix *npr = NULL; LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); /* Nuke prefix list entries toward ifp */ for (pr = nd_prefix.lh_first; pr; pr = npr) { NDPR_LOCK(pr); npr = pr->ndpr_next; if (pr->ndpr_ifp == ifp && !(pr->ndpr_stateflags & NDPRF_DEFUNCT)) { /* * Because if_detach() does *not* release prefixes * while purging addresses the reference count will * still be above zero. We therefore reset it to * make sure that the prefix really gets purged. */ pr->ndpr_addrcnt = 0; /* * Previously, pr->ndpr_addr is removed as well, * but I strongly believe we don't have to do it. * nd6_purge() is only called from in6_ifdetach(), * which removes all the associated interface addresses * by itself. * (jinmei@kame.net 20010129) */ NDPR_ADDREF(pr); prelist_remove(pr); NDPR_UNLOCK(pr); NDPR_REMREF(pr); removed = TRUE; npr = nd_prefix.lh_first; } else { NDPR_UNLOCK(pr); } } if (removed) { pfxlist_onlink_check(); } } static void nd6_router_select_rti_entries(struct ifnet *ifp) { struct nd_route_info *rti = NULL; struct nd_route_info *rti_next = NULL; nd6_rti_list_wait(__func__); TAILQ_FOREACH_SAFE(rti, &nd_rti_list, nd_rti_entry, rti_next) { defrouter_select(ifp, &rti->nd_rti_router_list); } nd6_rti_list_signal_done(); } static void nd6_purge_interface_rti_entries(struct ifnet *ifp) { struct nd_route_info *rti = NULL; struct nd_route_info *rti_next = NULL; nd6_rti_list_wait(__func__); TAILQ_FOREACH_SAFE(rti, &nd_rti_list, nd_rti_entry, rti_next) { struct nd_route_info rti_tmp = {}; struct nd_defrouter *dr = NULL; struct nd_defrouter *ndr = NULL; rti_tmp.nd_rti_prefix = rti->nd_rti_prefix; rti_tmp.nd_rti_prefixlen = rti->nd_rti_prefixlen; TAILQ_INIT(&rti_tmp.nd_rti_router_list); TAILQ_FOREACH_SAFE(dr, &rti->nd_rti_router_list, dr_entry, ndr) { /* * If ifp is provided, skip the entries that don't match. * Else it is treated as a purge. */ if (ifp != NULL && dr->ifp != ifp) { continue; } /* * Remove the entry from rti's router list * and add it to the temp list. * Remove the reference after calling defrtrlist_del. * * The uninstalled entries have to be iterated first * when we call defrtrlist_del. * This is to ensure that we don't end up calling * router selection when there are other * uninstalled candidate default routers on * the interface. * If we don't respect that order, we may end * up missing out on some entries. * * For that reason, installed ones must be inserted * at the tail and uninstalled ones at the head */ TAILQ_REMOVE(&rti->nd_rti_router_list, dr, dr_entry); if (dr->stateflags & NDDRF_INSTALLED) { TAILQ_INSERT_TAIL(&rti_tmp.nd_rti_router_list, dr, dr_entry); } else { TAILQ_INSERT_HEAD(&rti_tmp.nd_rti_router_list, dr, dr_entry); } } /* * The following call to defrtrlist_del should be * safe as we are iterating a local list of * routers. * * We don't really need nd6_mutex here but keeping * it as it is to avoid changing assertios held in * the functions in the call-path. */ TAILQ_FOREACH_SAFE(dr, &rti_tmp.nd_rti_router_list, dr_entry, ndr) { TAILQ_REMOVE(&rti_tmp.nd_rti_router_list, dr, dr_entry); defrtrlist_del(dr, &rti->nd_rti_router_list); NDDR_REMREF(dr); /* remove list reference */ } /* * The above may have removed an entry from default router list. * If it did and the list is now empty, remove the rti as well. */ if (TAILQ_EMPTY(&rti->nd_rti_router_list)) { TAILQ_REMOVE(&nd_rti_list, rti, nd_rti_entry); ndrti_free(rti); } } nd6_rti_list_signal_done(); } static void nd6_purge_interface_llinfo(struct ifnet *ifp) { struct llinfo_nd6 *ln = NULL; /* Note that rt->rt_ifp may not be the same as ifp, * due to KAME goto ours hack. See RTM_RESOLVE case in * nd6_rtrequest(), and ip6_input(). */ again: lck_mtx_lock(rnh_lock); ln = llinfo_nd6.ln_next; while (ln != NULL && ln != &llinfo_nd6) { struct rtentry *rt; struct llinfo_nd6 *nln; nln = ln->ln_next; rt = ln->ln_rt; RT_LOCK(rt); if (rt->rt_gateway != NULL && rt->rt_gateway->sa_family == AF_LINK && SDL(rt->rt_gateway)->sdl_index == ifp->if_index) { RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); /* * See comments on nd6_service() for reasons why * this loop is repeated; we bite the costs of * going thru the same llinfo_nd6 more than once * here, since this purge happens during detach, * and that unlike the timer case, it's possible * there's more than one purges happening at the * same time (thus a flag wouldn't buy anything). */ nd6_free(rt); RT_REMREF(rt); LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); goto again; } else { RT_UNLOCK(rt); } ln = nln; } lck_mtx_unlock(rnh_lock); } /* * Nuke neighbor cache/prefix/default router management table, right before * ifp goes away. */ void nd6_purge(struct ifnet *ifp) { LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(nd6_mutex); /* Nuke default router list entries toward ifp */ nd6_purge_interface_default_routers(ifp); /* Nuke prefix list entries toward ifp */ nd6_purge_interface_prefixes(ifp); /* Nuke route info option entries toward ifp */ nd6_purge_interface_rti_entries(ifp); lck_mtx_unlock(nd6_mutex); /* cancel default outgoing interface setting */ if (nd6_defifindex == ifp->if_index) { nd6_setdefaultiface(0); } /* * Perform default router selection even when we are a router, * if Scoped Routing is enabled. * XXX ?Should really not be needed since when defrouter_select * was changed to work on interface. */ lck_mtx_lock(nd6_mutex); /* refresh default router list */ defrouter_select(ifp, NULL); lck_mtx_unlock(nd6_mutex); /* Nuke neighbor cache entries for the ifp. */ nd6_purge_interface_llinfo(ifp); } /* * Upon success, the returned route will be locked and the caller is * responsible for releasing the reference and doing RT_UNLOCK(rt). * This routine does not require rnh_lock to be held by the caller, * although it needs to be indicated of such a case in order to call * the correct variant of the relevant routing routines. */ struct rtentry * nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp, int rt_locked) { struct rtentry *rt __single; struct sockaddr_in6 sin6; unsigned int ifscope; SOCKADDR_ZERO(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6; ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE; if (rt_locked) { LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); rt = rtalloc1_scoped_locked(SA(&sin6), create, 0, ifscope); } else { rt = rtalloc1_scoped(SA(&sin6), create, 0, ifscope); } if (rt != NULL) { RT_LOCK(rt); if ((rt->rt_flags & RTF_LLINFO) == 0) { /* * This is the case for the default route. * If we want to create a neighbor cache for the * address, we should free the route for the * destination and allocate an interface route. */ if (create) { RT_UNLOCK(rt); if (rt_locked) { rtfree_locked(rt); } else { rtfree(rt); } rt = NULL; } } } if (rt == NULL) { if (create && ifp) { struct ifaddr *ifa; u_int32_t ifa_flags; int e; /* * If no route is available and create is set, * we allocate a host route for the destination * and treat it like an interface route. * This hack is necessary for a neighbor which can't * be covered by our own prefix. */ ifa = ifaof_ifpforaddr(SA(&sin6), ifp); if (ifa == NULL) { return NULL; } /* * Create a new route. RTF_LLINFO is necessary * to create a Neighbor Cache entry for the * destination in nd6_rtrequest which will be * called in rtrequest via ifa->ifa_rtrequest. */ if (!rt_locked) { lck_mtx_lock(rnh_lock); } IFA_LOCK_SPIN(ifa); ifa_flags = ifa->ifa_flags; IFA_UNLOCK(ifa); e = rtrequest_scoped_locked(RTM_ADD, SA(&sin6), ifa->ifa_addr, SA(&all1_sa), (ifa_flags | RTF_HOST | RTF_LLINFO) & ~RTF_CLONING, &rt, ifscope); if (e != 0) { if (e != EEXIST) { log(LOG_ERR, "%s: failed to add route " "for a neighbor(%s), errno=%d\n", __func__, ip6_sprintf(addr6), e); } } if (!rt_locked) { lck_mtx_unlock(rnh_lock); } ifa_remref(ifa); if (rt == NULL) { return NULL; } RT_LOCK(rt); if (rt->rt_llinfo) { struct llinfo_nd6 *ln = rt->rt_llinfo; boolean_t nud_enabled = FALSE; /* * The IPv6 initialization of the loopback interface * may happen after another interface gets assigned * an IPv6 address. * To avoid asserting treat local routes as special * case. */ if (rt->rt_ifp != lo_ifp) { struct nd_ifinfo *ndi = ND_IFINFO(rt->rt_ifp); VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); nud_enabled = !!(ndi->flags & ND6_IFF_PERFORMNUD); } /* * For interface's that do not perform NUD * neighbor cache entres must always be marked * reachable with no expiry */ if (nud_enabled) { ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_NOSTATE); } else { ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); ln_setexpire(ln, 0); } } } else { return NULL; } } RT_LOCK_ASSERT_HELD(rt); /* * Validation for the entry. * Note that the check for rt_llinfo is necessary because a cloned * route from a parent route that has the L flag (e.g. the default * route to a p2p interface) may have the flag, too, while the * destination is not actually a neighbor. * XXX: we can't use rt->rt_ifp to check for the interface, since * it might be the loopback interface if the entry is for our * own address on a non-loopback interface. Instead, we should * use rt->rt_ifa->ifa_ifp, which would specify the REAL * interface. * Note also that ifa_ifp and ifp may differ when we connect two * interfaces to a same link, install a link prefix to an interface, * and try to install a neighbor cache on an interface that does not * have a route to the prefix. * * If the address is from a proxied prefix, the ifa_ifp and ifp might * not match, because nd6_na_input() could have modified the ifp * of the route to point to the interface where the NA arrived on, * hence the test for RTF_PROXY. */ if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || (ifp && rt->rt_ifa->ifa_ifp != ifp && !(rt->rt_flags & RTF_PROXY))) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); if (create) { log(LOG_DEBUG, "%s: failed to lookup %s " "(if = %s)\n", __func__, ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec"); /* xxx more logs... kazu */ } return NULL; } /* * Caller needs to release reference and call RT_UNLOCK(rt). */ return rt; } /* * Test whether a given IPv6 address is a neighbor or not, ignoring * the actual neighbor cache. The neighbor cache is ignored in order * to not reenter the routing code from within itself. */ static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) { struct nd_prefix *pr; struct ifaddr *dstaddr; LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); /* * A link-local address is always a neighbor. * XXX: a link does not necessarily specify a single interface. */ if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { struct sockaddr_in6 sin6_copy; u_int32_t zone; /* * We need sin6_copy since sa6_recoverscope() may modify the * content (XXX). */ sin6_copy = *addr; if (sa6_recoverscope(&sin6_copy, FALSE)) { return 0; /* XXX: should be impossible */ } if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) { return 0; } if (sin6_copy.sin6_scope_id == zone) { return 1; } else { return 0; } } /* * If the address matches one of our addresses, * it should be a neighbor. * If the address matches one of our on-link prefixes, it should be a * neighbor. */ for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { NDPR_LOCK(pr); if (pr->ndpr_ifp != ifp) { NDPR_UNLOCK(pr); continue; } if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { NDPR_UNLOCK(pr); continue; } if (in6_are_masked_addr_scope_equal(&pr->ndpr_prefix.sin6_addr, pr->ndpr_prefix.sin6_scope_id, &addr->sin6_addr, addr->sin6_scope_id, &pr->ndpr_mask)) { NDPR_UNLOCK(pr); return 1; } NDPR_UNLOCK(pr); } /* * If the address is assigned on the node of the other side of * a p2p interface, the address should be a neighbor. */ dstaddr = ifa_ifwithdstaddr(SA(addr)); if (dstaddr != NULL) { if (dstaddr->ifa_ifp == ifp) { ifa_remref(dstaddr); return 1; } ifa_remref(dstaddr); dstaddr = NULL; } return 0; } /* * Detect if a given IPv6 address identifies a neighbor on a given link. * XXX: should take care of the destination of a p2p link? */ int nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp, int rt_locked) { struct rtentry *rt; LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(nd6_mutex); if (nd6_is_new_addr_neighbor(addr, ifp)) { lck_mtx_unlock(nd6_mutex); return 1; } lck_mtx_unlock(nd6_mutex); /* * Even if the address matches none of our addresses, it might be * in the neighbor cache. */ if ((rt = nd6_lookup(&addr->sin6_addr, 0, ifp, rt_locked)) != NULL) { RT_LOCK_ASSERT_HELD(rt); RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); return 1; } return 0; } /* * Free an nd6 llinfo entry. * Since the function would cause significant changes in the kernel, DO NOT * make it global, unless you have a strong reason for the change, and are sure * that the change is safe. */ void nd6_free(struct rtentry *rt) { struct llinfo_nd6 *ln = NULL; struct in6_addr in6 = {}; struct nd_defrouter *dr = NULL; LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); RT_LOCK_ASSERT_NOTHELD(rt); lck_mtx_lock(nd6_mutex); RT_LOCK(rt); RT_ADDREF_LOCKED(rt); /* Extra ref */ ln = rt->rt_llinfo; in6 = SIN6(rt_key(rt))->sin6_addr; /* * Prevent another thread from modifying rt_key, rt_gateway * via rt_setgate() after the rt_lock is dropped by marking * the route as defunct. */ rt->rt_flags |= RTF_CONDEMNED; /* * We used to have pfctlinput(PRC_HOSTDEAD) here. Even though it is * not harmful, it was not really necessary. Perform default router * selection even when we are a router, if Scoped Routing is enabled. */ /* XXX TDB Handle lists in route information option as well */ dr = defrouter_lookup(NULL, &SIN6(rt_key(rt))->sin6_addr, rt->rt_ifp); if ((ln && ln->ln_router) || dr) { /* * rt6_flush must be called whether or not the neighbor * is in the Default Router List. * See a corresponding comment in nd6_na_input(). */ RT_UNLOCK(rt); lck_mtx_unlock(nd6_mutex); rt6_flush(&in6, rt->rt_ifp); lck_mtx_lock(nd6_mutex); } else { RT_UNLOCK(rt); } if (dr) { NDDR_REMREF(dr); /* * Unreachablity of a router might affect the default * router selection and on-link detection of advertised * prefixes. */ /* * Temporarily fake the state to choose a new default * router and to perform on-link determination of * prefixes correctly. * Below the state will be set correctly, * or the entry itself will be deleted. */ RT_LOCK_SPIN(rt); ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_INCOMPLETE); /* * Since defrouter_select() does not affect the * on-link determination and MIP6 needs the check * before the default router selection, we perform * the check now. */ RT_UNLOCK(rt); pfxlist_onlink_check(); /* * refresh default router list */ defrouter_select(rt->rt_ifp, NULL); /* Loop through all RTI's as well and trigger router selection. */ nd6_router_select_rti_entries(rt->rt_ifp); } RT_LOCK_ASSERT_NOTHELD(rt); lck_mtx_unlock(nd6_mutex); /* * Detach the route from the routing tree and the list of neighbor * caches, and disable the route entry not to be used in already * cached routes. */ (void) rtrequest(RTM_DELETE, rt_key(rt), NULL, rt_mask(rt), 0, NULL); /* Extra ref held above; now free it */ rtfree(rt); } void nd6_rtrequest(int req, struct rtentry *rt, struct sockaddr *sa) { #pragma unused(sa) struct sockaddr *gate = rt->rt_gateway; struct llinfo_nd6 *ln = rt->rt_llinfo; static struct sockaddr_dl null_sdl = { .sdl_len = sizeof(null_sdl), .sdl_family = AF_LINK }; struct ifnet *ifp = rt->rt_ifp; struct ifaddr *ifa; uint64_t timenow; char buf[MAX_IPv6_STR_LEN]; boolean_t nud_enabled = FALSE; /* * The IPv6 initialization of the loopback interface * may happen after another interface gets assigned * an IPv6 address. * To avoid asserting treat local routes as special * case. */ if (rt->rt_ifp != lo_ifp) { struct nd_ifinfo *ndi = ND_IFINFO(rt->rt_ifp); VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); nud_enabled = !!(ndi->flags & ND6_IFF_PERFORMNUD); } VERIFY(nd6_init_done); LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); RT_LOCK_ASSERT_HELD(rt); /* * We have rnh_lock held, see if we need to schedule the timer; * we might do this again below during RTM_RESOLVE, but doing it * now handles all other cases. */ if (nd6_sched_timeout_want) { nd6_sched_timeout(NULL, NULL); } if (rt->rt_flags & RTF_GATEWAY) { return; } if (!nd6_need_cache(ifp) && !(rt->rt_flags & RTF_HOST)) { /* * This is probably an interface direct route for a link * which does not need neighbor caches (e.g. fe80::%lo0/64). * We do not need special treatment below for such a route. * Moreover, the RTF_LLINFO flag which would be set below * would annoy the ndp(8) command. */ return; } if (req == RTM_RESOLVE) { int no_nd_cache; if (!nd6_need_cache(ifp)) { /* stf case */ no_nd_cache = 1; } else { struct sockaddr_in6 sin6; rtkey_to_sa6(rt, &sin6); /* * nd6_is_addr_neighbor() may call nd6_lookup(), * therefore we drop rt_lock to avoid deadlock * during the lookup. */ RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); no_nd_cache = !nd6_is_addr_neighbor(&sin6, ifp, 1); RT_LOCK(rt); RT_REMREF_LOCKED(rt); } /* * FreeBSD and BSD/OS often make a cloned host route based * on a less-specific route (e.g. the default route). * If the less specific route does not have a "gateway" * (this is the case when the route just goes to a p2p or an * stf interface), we'll mistakenly make a neighbor cache for * the host route, and will see strange neighbor solicitation * for the corresponding destination. In order to avoid the * confusion, we check if the destination of the route is * a neighbor in terms of neighbor discovery, and stop the * process if not. Additionally, we remove the LLINFO flag * so that ndp(8) will not try to get the neighbor information * of the destination. */ if (no_nd_cache) { rt->rt_flags &= ~RTF_LLINFO; return; } } timenow = net_uptime(); switch (req) { case RTM_ADD: /* * There is no backward compatibility :) * * if ((rt->rt_flags & RTF_HOST) == 0 && * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) * rt->rt_flags |= RTF_CLONING; */ if ((rt->rt_flags & RTF_CLONING) || ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) { /* * Case 1: This route should come from a route to * interface (RTF_CLONING case) or the route should be * treated as on-link but is currently not * (RTF_LLINFO && ln == NULL case). */ if (rt_setgate(rt, rt_key(rt), SA(&null_sdl)) == 0) { gate = rt->rt_gateway; SDL(gate)->sdl_type = ifp->if_type; SDL(gate)->sdl_index = ifp->if_index; /* * In case we're called before 1.0 sec. * has elapsed. */ if (ln != NULL) { ln_setexpire(ln, (ifp->if_eflags & IFEF_IPV6_ND6ALT) ? 0 : MAX(timenow, 1)); } } if (rt->rt_flags & RTF_CLONING) { break; } } /* * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. * We don't do that here since llinfo is not ready yet. * * There are also couple of other things to be discussed: * - unsolicited NA code needs improvement beforehand * - RFC4861 says we MAY send multicast unsolicited NA * (7.2.6 paragraph 4), however, it also says that we * SHOULD provide a mechanism to prevent multicast NA storm. * we don't have anything like it right now. * note that the mechanism needs a mutual agreement * between proxies, which means that we need to implement * a new protocol, or a new kludge. * - from RFC4861 6.2.4, host MUST NOT send an unsolicited RA. * we need to check ip6forwarding before sending it. * (or should we allow proxy ND configuration only for * routers? there's no mention about proxy ND from hosts) */ OS_FALLTHROUGH; case RTM_RESOLVE: if (!(ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK))) { /* * Address resolution isn't necessary for a point to * point link, so we can skip this test for a p2p link. */ if (gate->sa_family != AF_LINK || gate->sa_len < sizeof(null_sdl)) { /* Don't complain in case of RTM_ADD */ if (req == RTM_RESOLVE) { log(LOG_ERR, "%s: route to %s has bad " "gateway address (sa_family %u " "sa_len %u) on %s\n", __func__, inet_ntop(AF_INET6, &SIN6(rt_key(rt))->sin6_addr, buf, sizeof(buf)), gate->sa_family, gate->sa_len, if_name(ifp)); } break; } SDL(gate)->sdl_type = ifp->if_type; SDL(gate)->sdl_index = ifp->if_index; } if (ln != NULL) { break; /* This happens on a route change */ } /* * Case 2: This route may come from cloning, or a manual route * add with a LL address. */ rt->rt_llinfo = ln = nd6_llinfo_alloc(Z_WAITOK); nd6_allocated++; rt->rt_llinfo_get_ri = nd6_llinfo_get_ri; rt->rt_llinfo_get_iflri = nd6_llinfo_get_iflri; rt->rt_llinfo_purge = nd6_llinfo_purge; rt->rt_llinfo_free = nd6_llinfo_free; rt->rt_llinfo_refresh = nd6_llinfo_refresh; rt->rt_flags |= RTF_LLINFO; ln->ln_rt = rt; /* this is required for "ndp" command. - shin */ /* * For interface's that do not perform NUD * neighbor cache entries must always be marked * reachable with no expiry */ if ((req == RTM_ADD) || !nud_enabled) { /* * gate should have some valid AF_LINK entry, * and ln->ln_expire should have some lifetime * which is specified by ndp command. */ ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); ln_setexpire(ln, 0); } else { /* * When req == RTM_RESOLVE, rt is created and * initialized in rtrequest(), so rt_expire is 0. */ ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_NOSTATE); /* In case we're called before 1.0 sec. has elapsed */ ln_setexpire(ln, (ifp->if_eflags & IFEF_IPV6_ND6ALT) ? 0 : MAX(timenow, 1)); } LN_INSERTHEAD(ln); nd6_inuse++; /* We have at least one entry; arm the timer if not already */ nd6_sched_timeout(NULL, NULL); /* * If we have too many cache entries, initiate immediate * purging for some "less recently used" entries. Note that * we cannot directly call nd6_free() here because it would * cause re-entering rtable related routines triggering an LOR * problem. */ if (ip6_neighborgcthresh > 0 && nd6_inuse >= ip6_neighborgcthresh) { int i; for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) { struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev; struct rtentry *rt_end = ln_end->ln_rt; /* Move this entry to the head */ RT_LOCK(rt_end); LN_DEQUEUE(ln_end); LN_INSERTHEAD(ln_end); if (ln_end->ln_expire == 0) { RT_UNLOCK(rt_end); continue; } if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE) { ND6_CACHE_STATE_TRANSITION(ln_end, ND6_LLINFO_STALE); } else { ND6_CACHE_STATE_TRANSITION(ln_end, ND6_LLINFO_PURGE); } ln_setexpire(ln_end, timenow); RT_UNLOCK(rt_end); } } /* * check if rt_key(rt) is one of my address assigned * to the interface. */ ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, &SIN6(rt_key(rt))->sin6_addr); if (ifa != NULL) { caddr_t macp = nd6_ifptomac(ifp); ln_setexpire(ln, 0); ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); if (macp != NULL) { Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); SDL(gate)->sdl_alen = ifp->if_addrlen; } if (nd6_useloopback) { if (rt->rt_ifp != lo_ifp) { /* * Purge any link-layer info caching. */ if (rt->rt_llinfo_purge != NULL) { rt->rt_llinfo_purge(rt); } /* * Adjust route ref count for the * interfaces. */ if (rt->rt_if_ref_fn != NULL) { rt->rt_if_ref_fn(lo_ifp, 1); rt->rt_if_ref_fn(rt->rt_ifp, -1); } } rt->rt_ifp = lo_ifp; /* * If rmx_mtu is not locked, update it * to the MTU used by the new interface. */ if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) { rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu; } /* * Make sure rt_ifa be equal to the ifaddr * corresponding to the address. * We need this because when we refer * rt_ifa->ia6_flags in ip6_input, we assume * that the rt_ifa points to the address instead * of the loopback address. */ if (ifa != rt->rt_ifa) { rtsetifa(rt, ifa); } } ifa_remref(ifa); } else if (rt->rt_flags & RTF_ANNOUNCE) { ln_setexpire(ln, 0); ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); /* join solicited node multicast for proxy ND */ if (ifp->if_flags & IFF_MULTICAST) { struct in6_addr llsol; struct in6_multi *in6m; int error; llsol = SIN6(rt_key(rt))->sin6_addr; llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr8[12] = 0xff; if (in6_setscope(&llsol, ifp, NULL)) { break; } error = in6_mc_join(ifp, &llsol, NULL, &in6m, 0); if (error) { nd6log(error, "%s: failed to join " "%s (errno=%d)\n", if_name(ifp), ip6_sprintf(&llsol), error); } else { IN6M_REMREF(in6m); } } } break; case RTM_DELETE: if (ln == NULL) { break; } /* leave from solicited node multicast for proxy ND */ if ((rt->rt_flags & RTF_ANNOUNCE) && (ifp->if_flags & IFF_MULTICAST)) { struct in6_addr llsol; struct in6_multi *in6m; llsol = SIN6(rt_key(rt))->sin6_addr; llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr8[12] = 0xff; if (in6_setscope(&llsol, ifp, NULL) == 0) { in6_multihead_lock_shared(); IN6_LOOKUP_MULTI(&llsol, ifp, in6m); in6_multihead_lock_done(); if (in6m != NULL) { in6_mc_leave(in6m, NULL); IN6M_REMREF(in6m); } } } nd6_inuse--; /* * Unchain it but defer the actual freeing until the route * itself is to be freed. rt->rt_llinfo still points to * llinfo_nd6, and likewise, ln->ln_rt stil points to this * route entry, except that RTF_LLINFO is now cleared. */ if (ln->ln_flags & ND6_LNF_IN_USE) { LN_DEQUEUE(ln); } /* * Purge any link-layer info caching. */ if (rt->rt_llinfo_purge != NULL) { rt->rt_llinfo_purge(rt); } rt->rt_flags &= ~RTF_LLINFO; if (ln->ln_hold != NULL) { m_freem_list(ln->ln_hold); ln->ln_hold = NULL; } } } static int nd6_siocgdrlst(void *data, int data_is_64) { struct in6_drlist_32 *drl_32; struct nd_defrouter *dr; int i = 0; LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); dr = TAILQ_FIRST(&nd_defrouter_list); /* XXX Handle mapped defrouter entries */ /* For 64-bit process */ if (data_is_64) { struct in6_drlist_64 *drl_64; drl_64 = kalloc_type(struct in6_drlist_64, Z_WAITOK | Z_ZERO | Z_NOFAIL); /* preserve the interface name */ bcopy(data, drl_64, sizeof(drl_64->ifname)); while (dr && i < DRLSTSIZ) { drl_64->defrouter[i].rtaddr = dr->rtaddr; if (IN6_IS_ADDR_LINKLOCAL( &drl_64->defrouter[i].rtaddr)) { /* XXX: need to this hack for KAME stack */ drl_64->defrouter[i].rtaddr.s6_addr16[1] = 0; } else { log(LOG_ERR, "default router list contains a " "non-linklocal address(%s)\n", ip6_sprintf(&drl_64->defrouter[i].rtaddr)); } drl_64->defrouter[i].flags = dr->flags; drl_64->defrouter[i].rtlifetime = (u_short)dr->rtlifetime; drl_64->defrouter[i].expire = (u_long)nddr_getexpire(dr); drl_64->defrouter[i].if_index = dr->ifp->if_index; i++; dr = TAILQ_NEXT(dr, dr_entry); } bcopy(drl_64, data, sizeof(*drl_64)); kfree_type(struct in6_drlist_64, drl_64); return 0; } /* For 32-bit process */ drl_32 = kalloc_type(struct in6_drlist_32, Z_WAITOK | Z_ZERO | Z_NOFAIL); /* preserve the interface name */ bcopy(data, drl_32, sizeof(drl_32->ifname)); while (dr != NULL && i < DRLSTSIZ) { drl_32->defrouter[i].rtaddr = dr->rtaddr; if (IN6_IS_ADDR_LINKLOCAL(&drl_32->defrouter[i].rtaddr)) { /* XXX: need to this hack for KAME stack */ drl_32->defrouter[i].rtaddr.s6_addr16[1] = 0; } else { log(LOG_ERR, "default router list contains a " "non-linklocal address(%s)\n", ip6_sprintf(&drl_32->defrouter[i].rtaddr)); } drl_32->defrouter[i].flags = dr->flags; drl_32->defrouter[i].rtlifetime = (u_short)dr->rtlifetime; drl_32->defrouter[i].expire = (u_int32_t)nddr_getexpire(dr); drl_32->defrouter[i].if_index = dr->ifp->if_index; i++; dr = TAILQ_NEXT(dr, dr_entry); } bcopy(drl_32, data, sizeof(*drl_32)); kfree_type(struct in6_drlist_32, drl_32); return 0; } /* * XXX meaning of fields, especialy "raflags", is very * differnet between RA prefix list and RR/static prefix list. * how about separating ioctls into two? */ static int nd6_siocgprlst(void *data, int data_is_64) { struct in6_prlist_32 *prl_32; struct nd_prefix *pr; int i = 0; LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); pr = nd_prefix.lh_first; /* XXX Handle mapped defrouter entries */ /* For 64-bit process */ if (data_is_64) { struct in6_prlist_64 *prl_64; prl_64 = kalloc_type(struct in6_prlist_64, Z_WAITOK | Z_ZERO | Z_NOFAIL); /* preserve the interface name */ bcopy(data, prl_64, sizeof(prl_64->ifname)); while (pr && i < PRLSTSIZ) { struct nd_pfxrouter *pfr; int j; uint32_t ifscope; NDPR_LOCK(pr); (void) in6_embedscope(&prl_64->prefix[i].prefix, &pr->ndpr_prefix, NULL, NULL, NULL, &ifscope); prl_64->prefix[i].prefix.s6_addr16[1] = htons((uint16_t)ifscope); prl_64->prefix[i].raflags = pr->ndpr_raf; prl_64->prefix[i].prefixlen = pr->ndpr_plen; prl_64->prefix[i].vltime = pr->ndpr_vltime; prl_64->prefix[i].pltime = pr->ndpr_pltime; prl_64->prefix[i].if_index = pr->ndpr_ifp->if_index; prl_64->prefix[i].expire = (u_long)ndpr_getexpire(pr); pfr = pr->ndpr_advrtrs.lh_first; j = 0; while (pfr) { if (j < DRLSTSIZ) { #define RTRADDR prl_64->prefix[i].advrtr[j] RTRADDR = pfr->router->rtaddr; if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { /* XXX: hack for KAME */ RTRADDR.s6_addr16[1] = 0; } else { log(LOG_ERR, "a router(%s) advertises " "a prefix with " "non-link local address\n", ip6_sprintf(&RTRADDR)); } #undef RTRADDR } j++; pfr = pfr->pfr_next; } ASSERT(j <= USHRT_MAX); prl_64->prefix[i].advrtrs = (u_short)j; prl_64->prefix[i].origin = PR_ORIG_RA; NDPR_UNLOCK(pr); i++; pr = pr->ndpr_next; } bcopy(prl_64, data, sizeof(*prl_64)); kfree_type(struct in6_prlist_64, prl_64); return 0; } /* For 32-bit process */ prl_32 = kalloc_type(struct in6_prlist_32, Z_WAITOK | Z_ZERO | Z_NOFAIL); /* preserve the interface name */ bcopy(data, prl_32, sizeof(prl_32->ifname)); while (pr && i < PRLSTSIZ) { struct nd_pfxrouter *pfr; int j; uint32_t ifscope; NDPR_LOCK(pr); (void) in6_embedscope(&prl_32->prefix[i].prefix, &pr->ndpr_prefix, NULL, NULL, NULL, &ifscope); prl_32->prefix[i].prefix.s6_addr16[1] = htons((uint16_t)ifscope); prl_32->prefix[i].raflags = pr->ndpr_raf; prl_32->prefix[i].prefixlen = pr->ndpr_plen; prl_32->prefix[i].vltime = pr->ndpr_vltime; prl_32->prefix[i].pltime = pr->ndpr_pltime; prl_32->prefix[i].if_index = pr->ndpr_ifp->if_index; prl_32->prefix[i].expire = (u_int32_t)ndpr_getexpire(pr); pfr = pr->ndpr_advrtrs.lh_first; j = 0; while (pfr) { if (j < DRLSTSIZ) { #define RTRADDR prl_32->prefix[i].advrtr[j] RTRADDR = pfr->router->rtaddr; if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { /* XXX: hack for KAME */ RTRADDR.s6_addr16[1] = 0; } else { log(LOG_ERR, "a router(%s) advertises " "a prefix with " "non-link local address\n", ip6_sprintf(&RTRADDR)); } #undef RTRADDR } j++; pfr = pfr->pfr_next; } ASSERT(j <= USHRT_MAX); prl_32->prefix[i].advrtrs = (u_short)j; prl_32->prefix[i].origin = PR_ORIG_RA; NDPR_UNLOCK(pr); i++; pr = pr->ndpr_next; } bcopy(prl_32, data, sizeof(*prl_32)); kfree_type(struct in6_prlist_32, prl_32); return 0; } int nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) { struct nd_defrouter *dr; struct nd_prefix *pr; struct rtentry *rt; int error = 0; VERIFY(ifp != NULL); switch (cmd) { case SIOCGDRLST_IN6_32: /* struct in6_drlist_32 */ case SIOCGDRLST_IN6_64: /* struct in6_drlist_64 */ /* * obsolete API, use sysctl under net.inet6.icmp6 */ lck_mtx_lock(nd6_mutex); error = nd6_siocgdrlst(data, cmd == SIOCGDRLST_IN6_64); lck_mtx_unlock(nd6_mutex); break; case SIOCGPRLST_IN6_32: /* struct in6_prlist_32 */ case SIOCGPRLST_IN6_64: /* struct in6_prlist_64 */ /* * obsolete API, use sysctl under net.inet6.icmp6 */ lck_mtx_lock(nd6_mutex); error = nd6_siocgprlst(data, cmd == SIOCGPRLST_IN6_64); lck_mtx_unlock(nd6_mutex); break; case OSIOCGIFINFO_IN6: /* struct in6_ondireq */ case SIOCGIFINFO_IN6: { /* struct in6_ondireq */ u_int32_t linkmtu; struct in6_ondireq *ondi = (struct in6_ondireq *)(void *)data; struct nd_ifinfo *ndi; /* * SIOCGIFINFO_IN6 ioctl is encoded with in6_ondireq * instead of in6_ndireq, so we treat it as such. */ ndi = ND_IFINFO(ifp); if ((NULL == ndi) || (FALSE == ndi->initialized)) { error = EINVAL; break; } lck_mtx_lock(&ndi->lock); linkmtu = IN6_LINKMTU(ifp); bcopy(&linkmtu, &ondi->ndi.linkmtu, sizeof(linkmtu)); bcopy(&ndi->maxmtu, &ondi->ndi.maxmtu, sizeof(u_int32_t)); bcopy(&ndi->basereachable, &ondi->ndi.basereachable, sizeof(u_int32_t)); bcopy(&ndi->reachable, &ondi->ndi.reachable, sizeof(u_int32_t)); bcopy(&ndi->retrans, &ondi->ndi.retrans, sizeof(u_int32_t)); bcopy(&ndi->flags, &ondi->ndi.flags, sizeof(u_int32_t)); bcopy(&ndi->recalctm, &ondi->ndi.recalctm, sizeof(int)); ondi->ndi.chlim = ndi->chlim; /* * The below truncation is fine as we mostly use it for * debugging purpose. */ ondi->ndi.receivedra = (uint8_t)ndi->ndefrouters; ondi->ndi.collision_count = (uint8_t)ndi->cga_collision_count; lck_mtx_unlock(&ndi->lock); break; } case SIOCSIFINFO_FLAGS: { /* struct in6_ndireq */ /* * XXX BSD has a bunch of checks here to ensure * that interface disabled flag is not reset if * link local address has failed DAD. * Investigate that part. */ struct in6_ndireq *cndi = (struct in6_ndireq *)(void *)data; u_int32_t oflags, flags; struct nd_ifinfo *ndi = ND_IFINFO(ifp); /* XXX: almost all other fields of cndi->ndi is unused */ if ((NULL == ndi) || !ndi->initialized) { error = EINVAL; break; } lck_mtx_lock(&ndi->lock); oflags = ndi->flags; bcopy(&cndi->ndi.flags, &(ndi->flags), sizeof(flags)); flags = ndi->flags; lck_mtx_unlock(&ndi->lock); if (oflags == flags) { break; } error = nd6_setifinfo(ifp, oflags, flags); break; } case SIOCSNDFLUSH_IN6: /* struct in6_ifreq */ /* flush default router list */ /* * xxx sumikawa: should not delete route if default * route equals to the top of default router list * * XXX TODO: Needs to be done for RTI as well * Is very specific flush command with ndp for default routers. */ lck_mtx_lock(nd6_mutex); defrouter_reset(); defrouter_select(ifp, NULL); lck_mtx_unlock(nd6_mutex); /* xxx sumikawa: flush prefix list */ break; case SIOCSPFXFLUSH_IN6: { /* struct in6_ifreq */ /* flush all the prefix advertised by routers */ struct nd_prefix *next = NULL; lck_mtx_lock(nd6_mutex); for (pr = nd_prefix.lh_first; pr; pr = next) { struct in6_ifaddr *ia = NULL; bool iterate_pfxlist_again = false; next = pr->ndpr_next; NDPR_LOCK(pr); if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) { NDPR_UNLOCK(pr); continue; /* XXX */ } if (ifp != lo_ifp && pr->ndpr_ifp != ifp) { NDPR_UNLOCK(pr); continue; } /* do we really have to remove addresses as well? */ NDPR_ADDREF(pr); NDPR_UNLOCK(pr); lck_rw_lock_exclusive(&in6_ifaddr_rwlock); bool from_begining = true; while (from_begining) { from_begining = false; TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) { IFA_LOCK(&ia->ia_ifa); if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) { IFA_UNLOCK(&ia->ia_ifa); continue; } if (ia->ia6_ndpr == pr) { ifa_addref(&ia->ia_ifa); IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); lck_mtx_unlock(nd6_mutex); in6_purgeaddr(&ia->ia_ifa); ifa_remref(&ia->ia_ifa); lck_mtx_lock(nd6_mutex); lck_rw_lock_exclusive( &in6_ifaddr_rwlock); /* * Purging the address caused * in6_ifaddr_rwlock to be * dropped and * reacquired; therefore search again * from the beginning of in6_ifaddrs. * The same applies for the prefix list. */ iterate_pfxlist_again = true; from_begining = true; break; } IFA_UNLOCK(&ia->ia_ifa); } } lck_rw_done(&in6_ifaddr_rwlock); NDPR_LOCK(pr); prelist_remove(pr); NDPR_UNLOCK(pr); pfxlist_onlink_check(); NDPR_REMREF(pr); if (iterate_pfxlist_again) { next = nd_prefix.lh_first; } } lck_mtx_unlock(nd6_mutex); break; } case SIOCSRTRFLUSH_IN6: { /* struct in6_ifreq */ /* flush all the default routers */ struct nd_defrouter *next; struct nd_drhead nd_defrouter_tmp; TAILQ_INIT(&nd_defrouter_tmp); lck_mtx_lock(nd6_mutex); if ((dr = TAILQ_FIRST(&nd_defrouter_list)) != NULL) { /* * The first entry of the list may be stored in * the routing table, so we'll delete it later. */ for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { next = TAILQ_NEXT(dr, dr_entry); if (ifp == lo_ifp || dr->ifp == ifp) { /* * Remove the entry from default router list * and add it to the temp list. * nd_defrouter_tmp will be a local temporary * list as no one else can get the same * removed entry once it is removed from default * router list. * Remove the reference after calling defrtrlist_de */ TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry); TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); } } dr = TAILQ_FIRST(&nd_defrouter_list); if (ifp == lo_ifp || dr->ifp == ifp) { TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry); TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); } } /* * Keep the following separate from the above iteration of * nd_defrouter because it's not safe to call * defrtrlist_del while iterating global default * router list. Global list has to be traversed * while holding nd6_mutex throughout. * * The following call to defrtrlist_del should be * safe as we are iterating a local list of * default routers. */ TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, next) { TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry); defrtrlist_del(dr, NULL); NDDR_REMREF(dr); /* remove list reference */ } /* For now flush RTI routes here as well to avoid any regressions */ nd6_purge_interface_rti_entries((ifp == lo_ifp) ? NULL : ifp); lck_mtx_unlock(nd6_mutex); break; } case SIOCGNBRINFO_IN6_32: { /* struct in6_nbrinfo_32 */ struct llinfo_nd6 *ln; struct in6_nbrinfo_32 nbi_32; struct in6_addr nb_addr; /* make local for safety */ bcopy(data, &nbi_32, sizeof(nbi_32)); nb_addr = nbi_32.addr; /* * XXX: KAME specific hack for scoped addresses * XXXX: for other scopes than link-local? */ if (in6_embedded_scope && (IN6_IS_ADDR_LINKLOCAL(&nbi_32.addr) || IN6_IS_ADDR_MC_LINKLOCAL(&nbi_32.addr))) { u_int16_t *idp = (u_int16_t *)(void *)&nb_addr.s6_addr[2]; if (*idp == 0) { *idp = htons(ifp->if_index); } } /* Callee returns a locked route upon success */ if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) { error = EINVAL; break; } RT_LOCK_ASSERT_HELD(rt); ln = rt->rt_llinfo; nbi_32.state = ln->ln_state; nbi_32.asked = ln->ln_asked; nbi_32.isrouter = ln->ln_router; nbi_32.expire = (int)ln_getexpire(ln); RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); bcopy(&nbi_32, data, sizeof(nbi_32)); break; } case SIOCGNBRINFO_IN6_64: { /* struct in6_nbrinfo_64 */ struct llinfo_nd6 *ln; struct in6_nbrinfo_64 nbi_64; struct in6_addr nb_addr; /* make local for safety */ bcopy(data, &nbi_64, sizeof(nbi_64)); nb_addr = nbi_64.addr; /* * XXX: KAME specific hack for scoped addresses * XXXX: for other scopes than link-local? */ if (in6_embedded_scope && (IN6_IS_ADDR_LINKLOCAL(&nbi_64.addr) || IN6_IS_ADDR_MC_LINKLOCAL(&nbi_64.addr))) { u_int16_t *idp = (u_int16_t *)(void *)&nb_addr.s6_addr[2]; if (*idp == 0) { *idp = htons(ifp->if_index); } } /* Callee returns a locked route upon success */ if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) { error = EINVAL; break; } RT_LOCK_ASSERT_HELD(rt); ln = rt->rt_llinfo; nbi_64.state = ln->ln_state; nbi_64.asked = ln->ln_asked; nbi_64.isrouter = ln->ln_router; nbi_64.expire = (int)ln_getexpire(ln); RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); bcopy(&nbi_64, data, sizeof(nbi_64)); break; } case SIOCGDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ case SIOCGDEFIFACE_IN6_64: { /* struct in6_ndifreq_64 */ struct in6_ndifreq_64 *ndif_64 = (struct in6_ndifreq_64 *)(void *)data; struct in6_ndifreq_32 *ndif_32 = (struct in6_ndifreq_32 *)(void *)data; if (cmd == SIOCGDEFIFACE_IN6_64) { u_int64_t j = nd6_defifindex; __nochk_bcopy(&j, &ndif_64->ifindex, sizeof(j)); } else { bcopy(&nd6_defifindex, &ndif_32->ifindex, sizeof(u_int32_t)); } break; } case SIOCSDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ case SIOCSDEFIFACE_IN6_64: { /* struct in6_ndifreq_64 */ struct in6_ndifreq_64 *ndif_64 = (struct in6_ndifreq_64 *)(void *)data; struct in6_ndifreq_32 *ndif_32 = (struct in6_ndifreq_32 *)(void *)data; u_int32_t idx; if (cmd == SIOCSDEFIFACE_IN6_64) { u_int64_t j; __nochk_bcopy(&ndif_64->ifindex, &j, sizeof(j)); idx = (u_int32_t)j; } else { bcopy(&ndif_32->ifindex, &idx, sizeof(idx)); } error = nd6_setdefaultiface(idx); return error; /* NOTREACHED */ } case SIOCGIFCGAPREP_IN6_32: case SIOCGIFCGAPREP_IN6_64: { /* get CGA parameters */ union { struct in6_cgareq_32 *cga32; struct in6_cgareq_64 *cga64; void *data; } cgareq_u; struct nd_ifinfo *ndi; struct in6_cga_modifier *ndi_cga_mod; struct in6_cga_modifier *req_cga_mod; ndi = ND_IFINFO(ifp); if ((NULL == ndi) || !ndi->initialized) { error = EINVAL; break; } cgareq_u.data = data; req_cga_mod = (cmd == SIOCGIFCGAPREP_IN6_64) ? &(cgareq_u.cga64->cgar_cgaprep.cga_modifier) : &(cgareq_u.cga32->cgar_cgaprep.cga_modifier); lck_mtx_lock(&ndi->lock); ndi_cga_mod = &(ndi->local_cga_modifier); bcopy(ndi_cga_mod, req_cga_mod, sizeof(*req_cga_mod)); lck_mtx_unlock(&ndi->lock); break; } case SIOCSIFCGAPREP_IN6_32: case SIOCSIFCGAPREP_IN6_64: { /* set CGA parameters */ struct in6_cgareq cgareq; int is64; struct nd_ifinfo *ndi; struct in6_cga_modifier *ndi_cga_mod; struct in6_cga_modifier *req_cga_mod; ndi = ND_IFINFO(ifp); if ((NULL == ndi) || !ndi->initialized) { error = EINVAL; break; } is64 = (cmd == SIOCSIFCGAPREP_IN6_64); in6_cgareq_copy_from_user(data, is64, &cgareq); req_cga_mod = &cgareq.cgar_cgaprep.cga_modifier; lck_mtx_lock(&ndi->lock); ndi_cga_mod = &(ndi->local_cga_modifier); bcopy(req_cga_mod, ndi_cga_mod, sizeof(*ndi_cga_mod)); ndi->cga_initialized = TRUE; ndi->cga_collision_count = 0; lck_mtx_unlock(&ndi->lock); break; } default: break; } return error; } /* * Create neighbor cache entry and cache link-layer address, * on reception of inbound ND6 packets. (RS/RA/NS/redirect) */ void nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, int lladdrlen, int type, int code, int *did_update) { #pragma unused(lladdrlen) struct rtentry *rt = NULL; struct llinfo_nd6 *ln = NULL; int is_newentry; struct sockaddr_dl *sdl = NULL; int do_update; int olladdr; int llchange; short newstate = 0; uint64_t timenow; boolean_t sched_timeout = FALSE; struct nd_ifinfo *ndi = NULL; if (ifp == NULL) { panic("ifp == NULL in nd6_cache_lladdr"); } if (from == NULL) { panic("from == NULL in nd6_cache_lladdr"); } if (did_update != NULL) { did_update = 0; } /* nothing must be updated for unspecified address */ if (IN6_IS_ADDR_UNSPECIFIED(from)) { return; } /* * Validation about ifp->if_addrlen and lladdrlen must be done in * the caller. */ timenow = net_uptime(); rt = nd6_lookup(from, 0, ifp, 0); if (rt == NULL) { if ((rt = nd6_lookup(from, 1, ifp, 0)) == NULL) { return; } RT_LOCK_ASSERT_HELD(rt); is_newentry = 1; } else { RT_LOCK_ASSERT_HELD(rt); /* do nothing if static ndp is set */ if (rt->rt_flags & RTF_STATIC) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); return; } is_newentry = 0; } if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { fail: RT_UNLOCK(rt); nd6_free(rt); rtfree(rt); return; } ln = (struct llinfo_nd6 *)rt->rt_llinfo; if (ln == NULL) { goto fail; } if (rt->rt_gateway == NULL) { goto fail; } if (rt->rt_gateway->sa_family != AF_LINK) { goto fail; } sdl = SDL(rt->rt_gateway); olladdr = (sdl->sdl_alen) ? 1 : 0; if (olladdr && lladdr) { if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) { llchange = 1; } else { llchange = 0; } } else { llchange = 0; } /* * newentry olladdr lladdr llchange (*=record) * 0 n n -- (1) * 0 y n -- (2) * 0 n y -- (3) * STALE * 0 y y n (4) * * 0 y y y (5) * STALE * 1 -- n -- (6) NOSTATE(= PASSIVE) * 1 -- y -- (7) * STALE */ if (lladdr != NULL) { /* (3-5) and (7) */ /* * Record source link-layer address * XXX is it dependent to ifp->if_type? */ sdl->sdl_alen = ifp->if_addrlen; bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); /* cache the gateway (sender HW) address */ nd6_llreach_alloc(rt, ifp, LLADDR(sdl), sdl->sdl_alen, FALSE); } if (is_newentry == 0) { if ((!olladdr && lladdr != NULL) || /* (3) */ (olladdr && lladdr != NULL && llchange)) { /* (5) */ do_update = 1; newstate = ND6_LLINFO_STALE; } else { /* (1-2,4) */ do_update = 0; } } else { do_update = 1; if (lladdr == NULL) { /* (6) */ newstate = ND6_LLINFO_NOSTATE; } else { /* (7) */ newstate = ND6_LLINFO_STALE; } } /* * For interface's that do not perform NUD or NDP * neighbor cache entres must always be marked * reachable with no expiry */ ndi = ND_IFINFO(ifp); VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); if ((ndi && !(ndi->flags & ND6_IFF_PERFORMNUD)) || (ifp->if_eflags & IFEF_IPV6_ND6ALT)) { newstate = ND6_LLINFO_REACHABLE; ln_setexpire(ln, 0); } if (do_update) { /* * Update the state of the neighbor cache. */ ND6_CACHE_STATE_TRANSITION(ln, newstate); if ((ln->ln_state == ND6_LLINFO_STALE) || (ln->ln_state == ND6_LLINFO_REACHABLE)) { struct mbuf *m = ln->ln_hold; /* * XXX: since nd6_output() below will cause * state tansition to DELAY and reset the timer, * we must set the timer now, although it is actually * meaningless. */ if (ln->ln_state == ND6_LLINFO_STALE) { ln_setexpire(ln, timenow + nd6_gctimer); } ln->ln_hold = NULL; if (m != NULL) { struct sockaddr_in6 sin6; rtkey_to_sa6(rt, &sin6); /* * we assume ifp is not a p2p here, so just * set the 2nd argument as the 1st one. */ RT_UNLOCK(rt); nd6_output_list(ifp, ifp, m, &sin6, rt, NULL); RT_LOCK(rt); } } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { /* probe right away */ ln_setexpire(ln, timenow); sched_timeout = TRUE; } } /* * ICMP6 type dependent behavior. * * NS: clear IsRouter if new entry * RS: clear IsRouter * RA: set IsRouter if there's lladdr * redir: clear IsRouter if new entry * * RA case, (1): * The spec says that we must set IsRouter in the following cases: * - If lladdr exist, set IsRouter. This means (1-5). * - If it is old entry (!newentry), set IsRouter. This means (7). * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. * A quetion arises for (1) case. (1) case has no lladdr in the * neighbor cache, this is similar to (6). * This case is rare but we figured that we MUST NOT set IsRouter. * * newentry olladdr lladdr llchange NS RS RA redir * D R * 0 n n -- (1) c ? s * 0 y n -- (2) c s s * 0 n y -- (3) c s s * 0 y y n (4) c s s * 0 y y y (5) c s s * 1 -- n -- (6) c c c s * 1 -- y -- (7) c c s c s * * (c=clear s=set) */ switch (type & 0xff) { case ND_NEIGHBOR_SOLICIT: /* * New entry must have is_router flag cleared. */ if (is_newentry) { /* (6-7) */ ln->ln_router = 0; } break; case ND_REDIRECT: /* * If the ICMP message is a Redirect to a better router, always * set the is_router flag. Otherwise, if the entry is newly * created, then clear the flag. [RFC 4861, sec 8.3] */ if (code == ND_REDIRECT_ROUTER) { ln->ln_router = 1; } else if (is_newentry) { /* (6-7) */ ln->ln_router = 0; } break; case ND_ROUTER_SOLICIT: /* * is_router flag must always be cleared. */ ln->ln_router = 0; break; case ND_ROUTER_ADVERT: /* * Mark an entry with lladdr as a router. */ if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ (is_newentry && lladdr)) { /* (7) */ ln->ln_router = 1; } break; } if (do_update) { int route_ev_code = 0; if (llchange) { route_ev_code = ROUTE_LLENTRY_CHANGED; } else { route_ev_code = ROUTE_LLENTRY_RESOLVED; } /* Enqueue work item to invoke callback for this route entry */ route_event_enqueue_nwk_wq_entry(rt, NULL, route_ev_code, NULL, TRUE); if (ln->ln_router || (rt->rt_flags & RTF_ROUTER)) { struct radix_node_head *rnh = NULL; struct in6_addr rt_addr = SIN6(rt_key(rt))->sin6_addr; struct ifnet *rt_ifp = rt->rt_ifp; struct route_event rt_ev; route_event_init(&rt_ev, rt, NULL, llchange ? ROUTE_LLENTRY_CHANGED : ROUTE_LLENTRY_RESOLVED); /* * We already have a valid reference on rt. * The function frees that before returning. * We therefore don't need an extra reference here */ RT_UNLOCK(rt); defrouter_set_reachability(&rt_addr, rt_ifp, TRUE); lck_mtx_lock(rnh_lock); rnh = rt_tables[AF_INET6]; if (rnh != NULL) { (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev); } lck_mtx_unlock(rnh_lock); RT_LOCK(rt); } } if (did_update != NULL) { *did_update = do_update; } /* * When the link-layer address of a router changes, select the * best router again. In particular, when the neighbor entry is newly * created, it might affect the selection policy. * Question: can we restrict the first condition to the "is_newentry" * case? * * Note: Perform default router selection even when we are a router, * if Scoped Routing is enabled. */ if (do_update && ln->ln_router) { /* * XXX TODO: This should also be iterated over router list * for route information option's router lists as well. */ RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_lock(nd6_mutex); defrouter_select(ifp, NULL); nd6_router_select_rti_entries(ifp); lck_mtx_unlock(nd6_mutex); } else { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } if (sched_timeout) { lck_mtx_lock(rnh_lock); nd6_sched_timeout(NULL, NULL); lck_mtx_unlock(rnh_lock); } } static void nd6_slowtimo(void *arg) { #pragma unused(arg) struct nd_ifinfo *nd6if = NULL; struct ifnet *ifp = NULL; ifnet_head_lock_shared(); for (ifp = ifnet_head.tqh_first; ifp; ifp = ifp->if_link.tqe_next) { nd6if = ND_IFINFO(ifp); if ((NULL == nd6if) || (FALSE == nd6if->initialized)) { continue; } lck_mtx_lock(&nd6if->lock); if (nd6if->basereachable && /* already initialized */ (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { /* * Since reachable time rarely changes by router * advertisements, we SHOULD insure that a new random * value gets recomputed at least once every few hours. * (RFC 4861, 6.3.4) */ nd6if->recalctm = nd6_recalc_reachtm_interval; nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); } lck_mtx_unlock(&nd6if->lock); } ifnet_head_done(); timeout(nd6_slowtimo, NULL, ND6_SLOWTIMER_INTERVAL * hz); } int nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, struct sockaddr_in6 *dst, struct rtentry *hint0, struct flowadv *adv) { return nd6_output_list(ifp, origifp, m0, dst, hint0, adv); } /* * nd6_output_list() * * Assumption: route determination for first packet can be correctly applied to * all packets in the chain. */ #define senderr(e) { error = (e); goto bad; } int nd6_output_list(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, struct sockaddr_in6 *dst, struct rtentry *hint0, struct flowadv *adv) { struct rtentry *rt = hint0, *hint = hint0; struct llinfo_nd6 *ln = NULL; int error = 0; uint64_t timenow; struct rtentry *rtrele = NULL; struct nd_ifinfo *ndi = NULL; if (rt != NULL) { RT_LOCK_SPIN(rt); RT_ADDREF_LOCKED(rt); } if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr) || !nd6_need_cache(ifp)) { if (rt != NULL) { RT_UNLOCK(rt); } goto sendpkt; } /* * Next hop determination. Because we may involve the gateway route * in addition to the original route, locking is rather complicated. * The general concept is that regardless of whether the route points * to the original route or to the gateway route, this routine takes * an extra reference on such a route. This extra reference will be * released at the end. * * Care must be taken to ensure that the "hint0" route never gets freed * via rtfree(), since the caller may have stored it inside a struct * route with a reference held for that placeholder. * * This logic is similar to, though not exactly the same as the one * used by route_to_gwroute(). */ if (rt != NULL) { /* * We have a reference to "rt" by now (or below via rtalloc1), * which will either be released or freed at the end of this * routine. */ RT_LOCK_ASSERT_HELD(rt); if (!(rt->rt_flags & RTF_UP)) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); if ((hint = rt = rtalloc1_scoped(SA(dst), 1, 0, ifp->if_index)) != NULL) { RT_LOCK_SPIN(rt); if (rt->rt_ifp != ifp) { /* XXX: loop care? */ RT_UNLOCK(rt); error = nd6_output_list(ifp, origifp, m0, dst, rt, adv); rtfree(rt); return error; } } else { senderr(EHOSTUNREACH); } } if (rt->rt_flags & RTF_GATEWAY) { struct rtentry *gwrt; struct in6_ifaddr *ia6 = NULL; struct sockaddr_in6 gw6; rtgw_to_sa6(rt, &gw6); /* * Must drop rt_lock since nd6_is_addr_neighbor() * calls nd6_lookup() and acquires rnh_lock. */ RT_UNLOCK(rt); /* * We skip link-layer address resolution and NUD * if the gateway is not a neighbor from ND point * of view, regardless of the value of nd_ifinfo.flags. * The second condition is a bit tricky; we skip * if the gateway is our own address, which is * sometimes used to install a route to a p2p link. */ if (!nd6_is_addr_neighbor(&gw6, ifp, 0) || (ia6 = in6ifa_ifpwithaddr(ifp, &gw6.sin6_addr))) { /* * We allow this kind of tricky route only * when the outgoing interface is p2p. * XXX: we may need a more generic rule here. */ if (ia6 != NULL) { ifa_remref(&ia6->ia_ifa); } if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { senderr(EHOSTUNREACH); } goto sendpkt; } RT_LOCK_SPIN(rt); gw6 = *(SIN6(rt->rt_gateway)); /* If hint is now down, give up */ if (!(rt->rt_flags & RTF_UP)) { RT_UNLOCK(rt); senderr(EHOSTUNREACH); } /* If there's no gateway route, look it up */ if ((gwrt = rt->rt_gwroute) == NULL) { RT_UNLOCK(rt); goto lookup; } /* Become a regular mutex */ RT_CONVERT_LOCK(rt); /* * Take gwrt's lock while holding route's lock; * this is okay since gwrt never points back * to rt, so no lock ordering issues. */ RT_LOCK_SPIN(gwrt); if (!(gwrt->rt_flags & RTF_UP)) { rt->rt_gwroute = NULL; RT_UNLOCK(gwrt); RT_UNLOCK(rt); rtfree(gwrt); lookup: lck_mtx_lock(rnh_lock); gwrt = rtalloc1_scoped_locked(SA(&gw6), 1, 0, ifp->if_index); RT_LOCK(rt); /* * Bail out if the route is down, no route * to gateway, circular route, or if the * gateway portion of "rt" has changed. */ if (!(rt->rt_flags & RTF_UP) || gwrt == NULL || gwrt == rt || !equal(SA(&gw6), rt->rt_gateway)) { if (gwrt == rt) { RT_REMREF_LOCKED(gwrt); gwrt = NULL; } RT_UNLOCK(rt); if (gwrt != NULL) { rtfree_locked(gwrt); } lck_mtx_unlock(rnh_lock); senderr(EHOSTUNREACH); } VERIFY(gwrt != NULL); /* * Set gateway route; callee adds ref to gwrt; * gwrt has an extra ref from rtalloc1() for * this routine. */ rt_set_gwroute(rt, rt_key(rt), gwrt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); /* Remember to release/free "rt" at the end */ rtrele = rt; rt = gwrt; } else { RT_ADDREF_LOCKED(gwrt); RT_UNLOCK(gwrt); RT_UNLOCK(rt); /* Remember to release/free "rt" at the end */ rtrele = rt; rt = gwrt; } VERIFY(rt == gwrt); /* * This is an opportunity to revalidate the parent * route's gwroute, in case it now points to a dead * route entry. Parent route won't go away since the * clone (hint) holds a reference to it. rt == gwrt. */ RT_LOCK_SPIN(hint); if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) == (RTF_WASCLONED | RTF_UP)) { struct rtentry *prt = hint->rt_parent; VERIFY(prt != NULL); RT_CONVERT_LOCK(hint); RT_ADDREF(prt); RT_UNLOCK(hint); rt_revalidate_gwroute(prt, rt); RT_REMREF(prt); } else { RT_UNLOCK(hint); } RT_LOCK_SPIN(rt); /* rt == gwrt; if it is now down, give up */ if (!(rt->rt_flags & RTF_UP)) { RT_UNLOCK(rt); rtfree(rt); rt = NULL; /* "rtrele" == original "rt" */ senderr(EHOSTUNREACH); } } /* Become a regular mutex */ RT_CONVERT_LOCK(rt); } /* * Address resolution or Neighbor Unreachability Detection * for the next hop. * At this point, the destination of the packet must be a unicast * or an anycast address(i.e. not a multicast). */ /* Look up the neighbor cache for the nexthop */ if (rt && (rt->rt_flags & RTF_LLINFO) != 0) { ln = rt->rt_llinfo; } else { struct sockaddr_in6 sin6; /* * Clear out Scope ID field in case it is set. */ sin6 = *dst; if (in6_embedded_scope) { sin6.sin6_scope_id = 0; } /* * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), * the condition below is not very efficient. But we believe * it is tolerable, because this should be a rare case. * Must drop rt_lock since nd6_is_addr_neighbor() calls * nd6_lookup() and acquires rnh_lock. */ if (rt != NULL) { RT_UNLOCK(rt); } if (nd6_is_addr_neighbor(&sin6, ifp, 0)) { /* "rtrele" may have been used, so clean up "rt" now */ if (rt != NULL) { /* Don't free "hint0" */ if (rt == hint0) { RT_REMREF(rt); } else { rtfree(rt); } } /* Callee returns a locked route upon success */ rt = nd6_lookup(&dst->sin6_addr, 1, ifp, 0); if (rt != NULL) { RT_LOCK_ASSERT_HELD(rt); ln = rt->rt_llinfo; } } else if (rt != NULL) { RT_LOCK(rt); } } if (!ln || !rt) { if (rt != NULL) { RT_UNLOCK(rt); } ndi = ND_IFINFO(ifp); VERIFY(ndi != NULL && ndi->initialized); lck_mtx_lock(&ndi->lock); if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && !(ndi->flags & ND6_IFF_PERFORMNUD)) { lck_mtx_unlock(&ndi->lock); log(LOG_DEBUG, "nd6_output: can't allocate llinfo for %s " "(ln=0x%llx, rt=0x%llx)\n", ip6_sprintf(&dst->sin6_addr), (uint64_t)VM_KERNEL_ADDRPERM(ln), (uint64_t)VM_KERNEL_ADDRPERM(rt)); senderr(EIO); /* XXX: good error? */ } lck_mtx_unlock(&ndi->lock); goto sendpkt; /* send anyway */ } net_update_uptime(); timenow = net_uptime(); /* We don't have to do link-layer address resolution on a p2p link. */ if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && ln->ln_state < ND6_LLINFO_REACHABLE) { ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); ln_setexpire(ln, timenow + nd6_gctimer); } /* * The first time we send a packet to a neighbor whose entry is * STALE, we have to change the state to DELAY and a sets a timer to * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do * neighbor unreachability detection on expiration. * (RFC 4861 7.3.3) */ if (ln->ln_state == ND6_LLINFO_STALE) { ln->ln_asked = 0; ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_DELAY); ln_setexpire(ln, timenow + nd6_delay); /* N.B.: we will re-arm the timer below. */ _CASSERT(ND6_LLINFO_DELAY > ND6_LLINFO_INCOMPLETE); } /* * If the neighbor cache entry has a state other than INCOMPLETE * (i.e. its link-layer address is already resolved), just * send the packet. */ if (ln->ln_state > ND6_LLINFO_INCOMPLETE) { RT_UNLOCK(rt); /* * Move this entry to the head of the queue so that it is * less likely for this entry to be a target of forced * garbage collection (see nd6_rtrequest()). Do this only * if the entry is non-permanent (as permanent ones will * never be purged), and if the number of active entries * is at least half of the threshold. */ if (ln->ln_state == ND6_LLINFO_DELAY || (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 && nd6_inuse >= (ip6_neighborgcthresh >> 1))) { lck_mtx_lock(rnh_lock); if (ln->ln_state == ND6_LLINFO_DELAY) { nd6_sched_timeout(NULL, NULL); } if (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 && nd6_inuse >= (ip6_neighborgcthresh >> 1)) { RT_LOCK_SPIN(rt); if (ln->ln_flags & ND6_LNF_IN_USE) { LN_DEQUEUE(ln); LN_INSERTHEAD(ln); } RT_UNLOCK(rt); } lck_mtx_unlock(rnh_lock); } goto sendpkt; } /* * If this is a prefix proxy route, record the inbound interface * so that it can be excluded from the list of interfaces eligible * for forwarding the proxied NS in nd6_prproxy_ns_output(). */ if (rt->rt_flags & RTF_PROXY) { ln->ln_exclifp = ((origifp == ifp) ? NULL : origifp); } /* * There is a neighbor cache entry, but no ethernet address * response yet. Replace the held mbuf (if any) with this * latest one. * * This code conforms to the rate-limiting rule described in Section * 7.2.2 of RFC 4861, because the timer is set correctly after sending * an NS below. */ if (ln->ln_state == ND6_LLINFO_NOSTATE) { ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_INCOMPLETE); } if (ln->ln_hold) { m_freem_list(ln->ln_hold); } ln->ln_hold = m0; if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { ln->ln_asked++; ndi = ND_IFINFO(ifp); VERIFY(ndi != NULL && ndi->initialized); lck_mtx_lock(&ndi->lock); ln_setexpire(ln, timenow + ndi->retrans / 1000); lck_mtx_unlock(&ndi->lock); RT_UNLOCK(rt); /* We still have a reference on rt (for ln) */ if (ip6_forwarding) { nd6_prproxy_ns_output(ifp, origifp, NULL, &dst->sin6_addr, ln); } else { nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, NULL); } lck_mtx_lock(rnh_lock); nd6_sched_timeout(NULL, NULL); lck_mtx_unlock(rnh_lock); } else { RT_UNLOCK(rt); } /* * Move this entry to the head of the queue so that it is * less likely for this entry to be a target of forced * garbage collection (see nd6_rtrequest()). Do this only * if the entry is non-permanent (as permanent ones will * never be purged), and if the number of active entries * is at least half of the threshold. */ if (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 && nd6_inuse >= (ip6_neighborgcthresh >> 1)) { lck_mtx_lock(rnh_lock); RT_LOCK_SPIN(rt); if (ln->ln_flags & ND6_LNF_IN_USE) { LN_DEQUEUE(ln); LN_INSERTHEAD(ln); } /* Clean up "rt" now while we can */ if (rt == hint0) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } else { RT_UNLOCK(rt); rtfree_locked(rt); } rt = NULL; /* "rt" has been taken care of */ lck_mtx_unlock(rnh_lock); } error = 0; goto release; sendpkt: if (rt != NULL) { RT_LOCK_ASSERT_NOTHELD(rt); } /* discard the packet if IPv6 operation is disabled on the interface */ if (ifp->if_eflags & IFEF_IPV6_DISABLED) { error = ENETDOWN; /* better error? */ goto bad; } if (ifp->if_flags & IFF_LOOPBACK) { /* forwarding rules require the original scope_id */ m0->m_pkthdr.rcvif = origifp; error = dlil_output(origifp, PF_INET6, m0, (caddr_t)rt, SA(dst), 0, adv); goto release; } else { /* Do not allow loopback address to wind up on a wire */ struct ip6_hdr *ip6 = mtod(m0, struct ip6_hdr *); if ((IN6_IS_ADDR_LOOPBACK(&ip6->ip6_src) || IN6_IS_ADDR_LOOPBACK(&ip6->ip6_dst))) { ip6stat.ip6s_badscope++; error = EADDRNOTAVAIL; goto bad; } } if (rt != NULL) { RT_LOCK_SPIN(rt); /* Mark use timestamp */ if (rt->rt_llinfo != NULL) { nd6_llreach_use(rt->rt_llinfo); } RT_UNLOCK(rt); } struct mbuf *mcur = m0; uint32_t pktcnt = 0; while (mcur) { if (hint != NULL && nstat_collect) { int scnt; if ((mcur->m_pkthdr.csum_flags & CSUM_TSO_IPV6) && (mcur->m_pkthdr.tso_segsz > 0)) { scnt = mcur->m_pkthdr.len / mcur->m_pkthdr.tso_segsz; } else { scnt = 1; } nstat_route_tx(hint, scnt, mcur->m_pkthdr.len, 0); } pktcnt++; mcur->m_pkthdr.rcvif = NULL; mcur = mcur->m_nextpkt; } if (pktcnt > ip6_maxchainsent) { ip6_maxchainsent = pktcnt; } error = dlil_output(ifp, PF_INET6, m0, (caddr_t)rt, SA(dst), 0, adv); goto release; bad: if (m0 != NULL) { m_freem_list(m0); } release: /* Clean up "rt" unless it's already been done */ if (rt != NULL) { RT_LOCK_SPIN(rt); if (rt == hint0) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } else { RT_UNLOCK(rt); rtfree(rt); } } /* And now clean up "rtrele" if there is any */ if (rtrele != NULL) { RT_LOCK_SPIN(rtrele); if (rtrele == hint0) { RT_REMREF_LOCKED(rtrele); RT_UNLOCK(rtrele); } else { RT_UNLOCK(rtrele); rtfree(rtrele); } } return error; } #undef senderr int nd6_need_cache(struct ifnet *ifp) { /* * XXX: we currently do not make neighbor cache on any interface * other than ARCnet, Ethernet, FDDI and GIF. * * RFC2893 says: * - unidirectional tunnels needs no ND */ switch (ifp->if_type) { case IFT_ARCNET: case IFT_ETHER: case IFT_FDDI: case IFT_IEEE1394: case IFT_L2VLAN: case IFT_IEEE8023ADLAG: #if IFT_IEEE80211 case IFT_IEEE80211: #endif case IFT_GIF: /* XXX need more cases? */ case IFT_PPP: #if IFT_TUNNEL case IFT_TUNNEL: #endif case IFT_BRIDGE: case IFT_CELLULAR: return 1; default: return 0; } } int nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt, struct mbuf *m, struct sockaddr *dst, u_char *desten) { int i; struct sockaddr_dl *sdl; if (m->m_flags & M_MCAST) { switch (ifp->if_type) { case IFT_ETHER: case IFT_FDDI: case IFT_L2VLAN: case IFT_IEEE8023ADLAG: #if IFT_IEEE80211 case IFT_IEEE80211: #endif case IFT_BRIDGE: ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, desten); return 1; case IFT_IEEE1394: for (i = 0; i < ifp->if_addrlen; i++) { desten[i] = ~0; } return 1; case IFT_ARCNET: *desten = 0; return 1; default: return 0; /* caller will free mbuf */ } } if (rt == NULL) { /* this could happen, if we could not allocate memory */ return 0; /* caller will free mbuf */ } RT_LOCK(rt); if (rt->rt_gateway->sa_family != AF_LINK) { printf("nd6_storelladdr: something odd happens\n"); RT_UNLOCK(rt); return 0; /* caller will free mbuf */ } sdl = SDL(rt->rt_gateway); if (sdl->sdl_alen == 0) { /* this should be impossible, but we bark here for debugging */ printf("nd6_storelladdr: sdl_alen == 0\n"); RT_UNLOCK(rt); return 0; /* caller will free mbuf */ } bcopy(LLADDR(sdl), desten, sdl->sdl_alen); RT_UNLOCK(rt); return 1; } /* * This is the ND pre-output routine; care must be taken to ensure that * the "hint" route never gets freed via rtfree(), since the caller may * have stored it inside a struct route with a reference held for that * placeholder. */ errno_t nd6_lookup_ipv6(ifnet_t ifp, const struct sockaddr_in6 *ip6_dest, struct sockaddr_dl *ll_dest, size_t ll_dest_len, route_t hint, mbuf_t packet) { route_t route __single = hint; errno_t result = 0; struct sockaddr_dl *sdl = NULL; size_t copy_len; if (ifp == NULL || ip6_dest == NULL) { return EINVAL; } if (ip6_dest->sin6_family != AF_INET6) { return EAFNOSUPPORT; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) { return ENETDOWN; } if (hint != NULL) { /* * Callee holds a reference on the route and returns * with the route entry locked, upon success. */ result = route_to_gwroute(SA(ip6_dest), hint, &route); if (result != 0) { return result; } if (route != NULL) { RT_LOCK_ASSERT_HELD(route); } } if ((packet != NULL && (packet->m_flags & M_MCAST) != 0) || ((ifp->if_flags & IFF_MULTICAST) && IN6_IS_ADDR_MULTICAST(&ip6_dest->sin6_addr))) { if (route != NULL) { RT_UNLOCK(route); } result = dlil_resolve_multi(ifp, SA(ip6_dest), SA(ll_dest), ll_dest_len); if (route != NULL) { RT_LOCK(route); } goto release; } else if (route == NULL) { /* * rdar://24596652 * For unicast, lookup existing ND6 entries but * do not trigger a resolution */ lck_mtx_lock(rnh_lock); route = rt_lookup(TRUE, __DECONST(struct sockaddr *, ip6_dest), NULL, rt_tables[AF_INET6], ifp->if_index); lck_mtx_unlock(rnh_lock); if (route != NULL) { RT_LOCK(route); } } if (route == NULL) { /* * This could happen, if we could not allocate memory or * if route_to_gwroute() didn't return a route. */ result = ENOBUFS; goto release; } if (route->rt_gateway->sa_family != AF_LINK) { nd6log0(error, "%s: route %s on %s%d gateway address not AF_LINK\n", __func__, ip6_sprintf(&ip6_dest->sin6_addr), route->rt_ifp->if_name, route->rt_ifp->if_unit); result = EADDRNOTAVAIL; goto release; } sdl = SDL(route->rt_gateway); if (sdl->sdl_alen == 0) { /* this should be impossible, but we bark here for debugging */ nd6log(error, "%s: route %s on %s%d sdl_alen == 0\n", __func__, ip6_sprintf(&ip6_dest->sin6_addr), route->rt_ifp->if_name, route->rt_ifp->if_unit); result = EHOSTUNREACH; goto release; } copy_len = sdl->sdl_len <= ll_dest_len ? sdl->sdl_len : ll_dest_len; SOCKADDR_COPY(sdl, ll_dest, copy_len); release: if (route != NULL) { if (route == hint) { RT_REMREF_LOCKED(route); RT_UNLOCK(route); } else { RT_UNLOCK(route); rtfree(route); } } return result; } #if (DEVELOPMENT || DEBUG) static int sysctl_nd6_lookup_ipv6 SYSCTL_HANDLER_ARGS; SYSCTL_PROC(_net_inet6_icmp6, OID_AUTO, nd6_lookup_ipv6, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_nd6_lookup_ipv6, "S", ""); int sysctl_nd6_lookup_ipv6 SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int error = 0; struct nd6_lookup_ipv6_args nd6_lookup_ipv6_args; ifnet_t ifp = NULL; /* * Only root can lookup MAC addresses */ error = proc_suser(current_proc()); if (error != 0) { nd6log0(error, "%s: proc_suser() error %d\n", __func__, error); goto done; } if (req->oldptr == USER_ADDR_NULL) { req->oldidx = sizeof(struct nd6_lookup_ipv6_args); } if (req->newptr == USER_ADDR_NULL) { goto done; } if (req->oldlen != sizeof(struct nd6_lookup_ipv6_args) || req->newlen != sizeof(struct nd6_lookup_ipv6_args)) { error = EINVAL; nd6log0(error, "%s: bad req, error %d\n", __func__, error); goto done; } error = SYSCTL_IN(req, &nd6_lookup_ipv6_args, sizeof(struct nd6_lookup_ipv6_args)); if (error != 0) { nd6log0(error, "%s: SYSCTL_IN() error %d\n", __func__, error); goto done; } if (nd6_lookup_ipv6_args.ll_dest_len > sizeof(nd6_lookup_ipv6_args.ll_dest_)) { error = EINVAL; nd6log0(error, "%s: bad ll_dest_len, error %d\n", __func__, error); goto done; } /* Make sure to terminate the string */ nd6_lookup_ipv6_args.ifname[IFNAMSIZ - 1] = 0; error = ifnet_find_by_name(nd6_lookup_ipv6_args.ifname, &ifp); if (error != 0) { nd6log0(error, "%s: ifnet_find_by_name() error %d\n", __func__, error); goto done; } error = nd6_lookup_ipv6(ifp, &nd6_lookup_ipv6_args.ip6_dest, &nd6_lookup_ipv6_args.ll_dest_._sdl, nd6_lookup_ipv6_args.ll_dest_len, NULL, NULL); if (error != 0) { nd6log0(error, "%s: nd6_lookup_ipv6() error %d\n", __func__, error); goto done; } error = SYSCTL_OUT(req, &nd6_lookup_ipv6_args, sizeof(struct nd6_lookup_ipv6_args)); if (error != 0) { nd6log0(error, "%s: SYSCTL_OUT() error %d\n", __func__, error); goto done; } done: return error; } #endif /* (DEVELOPEMENT || DEBUG) */ int nd6_setifinfo(struct ifnet *ifp, u_int32_t before, u_int32_t after) { uint32_t b, a; int err = 0; /* * Handle ND6_IFF_IFDISABLED */ if ((before & ND6_IFF_IFDISABLED) || (after & ND6_IFF_IFDISABLED)) { b = (before & ND6_IFF_IFDISABLED); a = (after & ND6_IFF_IFDISABLED); if (b != a && (err = nd6_if_disable(ifp, ((int32_t)(a - b) > 0))) != 0) { goto done; } } /* * Handle ND6_IFF_PROXY_PREFIXES */ if ((before & ND6_IFF_PROXY_PREFIXES) || (after & ND6_IFF_PROXY_PREFIXES)) { b = (before & ND6_IFF_PROXY_PREFIXES); a = (after & ND6_IFF_PROXY_PREFIXES); if (b != a && (err = nd6_if_prproxy(ifp, ((int32_t)(a - b) > 0))) != 0) { goto done; } } done: return err; } /* * Enable/disable IPv6 on an interface, called as part of * setting/clearing ND6_IFF_IFDISABLED, or during DAD failure. */ int nd6_if_disable(struct ifnet *ifp, boolean_t enable) { if (enable) { if_set_eflags(ifp, IFEF_IPV6_DISABLED); } else { if_clear_eflags(ifp, IFEF_IPV6_DISABLED); } return 0; } static int nd6_sysctl_drlist SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) char pbuf[MAX_IPv6_STR_LEN]; struct nd_defrouter *dr; int error = 0; if (req->newptr != USER_ADDR_NULL) { return EPERM; } /* XXX Handle mapped defrouter entries */ lck_mtx_lock(nd6_mutex); if (proc_is64bit(req->p)) { struct in6_defrouter_64 d; bzero(&d, sizeof(d)); d.rtaddr.sin6_family = AF_INET6; d.rtaddr.sin6_len = sizeof(d.rtaddr); TAILQ_FOREACH(dr, &nd_defrouter_list, dr_entry) { d.rtaddr.sin6_addr = dr->rtaddr; if (in6_recoverscope(&d.rtaddr, &dr->rtaddr, dr->ifp) != 0) { log(LOG_ERR, "scope error in default router " "list (%s)\n", inet_ntop(AF_INET6, &dr->rtaddr, pbuf, sizeof(pbuf))); } d.flags = dr->flags; d.stateflags = dr->stateflags; d.rtlifetime = (u_short)dr->rtlifetime; d.expire = (int)nddr_getexpire(dr); d.if_index = dr->ifp->if_index; error = SYSCTL_OUT(req, &d, sizeof(d)); if (error != 0) { break; } } } else { struct in6_defrouter_32 d; bzero(&d, sizeof(d)); d.rtaddr.sin6_family = AF_INET6; d.rtaddr.sin6_len = sizeof(d.rtaddr); TAILQ_FOREACH(dr, &nd_defrouter_list, dr_entry) { d.rtaddr.sin6_addr = dr->rtaddr; if (in6_recoverscope(&d.rtaddr, &dr->rtaddr, dr->ifp) != 0) { log(LOG_ERR, "scope error in default router " "list (%s)\n", inet_ntop(AF_INET6, &dr->rtaddr, pbuf, sizeof(pbuf))); } d.flags = dr->flags; d.stateflags = dr->stateflags; d.rtlifetime = (u_short)dr->rtlifetime; d.expire = (int)nddr_getexpire(dr); d.if_index = dr->ifp->if_index; error = SYSCTL_OUT(req, &d, sizeof(d)); if (error != 0) { break; } } } lck_mtx_unlock(nd6_mutex); return error; } static int nd6_sysctl_prlist SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) char pbuf[MAX_IPv6_STR_LEN]; struct nd_pfxrouter *pfr; struct sockaddr_in6 s6; struct nd_prefix *pr; int error = 0; if (req->newptr != USER_ADDR_NULL) { return EPERM; } SOCKADDR_ZERO(&s6, sizeof(s6)); s6.sin6_family = AF_INET6; s6.sin6_len = sizeof(s6); /* XXX Handle mapped defrouter entries */ lck_mtx_lock(nd6_mutex); if (proc_is64bit(req->p)) { struct in6_prefix_64 p; bzero(&p, sizeof(p)); p.origin = PR_ORIG_RA; LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { NDPR_LOCK(pr); p.prefix = pr->ndpr_prefix; if (in6_recoverscope(&p.prefix, &pr->ndpr_prefix.sin6_addr, pr->ndpr_ifp) != 0) { log(LOG_ERR, "scope error in " "prefix list (%s)\n", inet_ntop(AF_INET6, &p.prefix.sin6_addr, pbuf, sizeof(pbuf))); } p.raflags = pr->ndpr_raf; p.prefixlen = pr->ndpr_plen; p.vltime = pr->ndpr_vltime; p.pltime = pr->ndpr_pltime; p.if_index = pr->ndpr_ifp->if_index; p.expire = (u_long)ndpr_getexpire(pr); p.refcnt = pr->ndpr_addrcnt; p.flags = pr->ndpr_stateflags; p.advrtrs = 0; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) p.advrtrs++; error = SYSCTL_OUT(req, &p, sizeof(p)); if (error != 0) { NDPR_UNLOCK(pr); break; } LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { s6.sin6_addr = pfr->router->rtaddr; if (in6_recoverscope(&s6, &pfr->router->rtaddr, pfr->router->ifp) != 0) { log(LOG_ERR, "scope error in prefix list (%s)\n", inet_ntop(AF_INET6, &s6.sin6_addr, pbuf, sizeof(pbuf))); } error = SYSCTL_OUT(req, &s6, sizeof(s6)); if (error != 0) { break; } } NDPR_UNLOCK(pr); if (error != 0) { break; } } } else { struct in6_prefix_32 p; bzero(&p, sizeof(p)); p.origin = PR_ORIG_RA; LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { NDPR_LOCK(pr); p.prefix = pr->ndpr_prefix; if (in6_recoverscope(&p.prefix, &pr->ndpr_prefix.sin6_addr, pr->ndpr_ifp) != 0) { log(LOG_ERR, "scope error in prefix list (%s)\n", inet_ntop(AF_INET6, &p.prefix.sin6_addr, pbuf, sizeof(pbuf))); } p.raflags = pr->ndpr_raf; p.prefixlen = pr->ndpr_plen; p.vltime = pr->ndpr_vltime; p.pltime = pr->ndpr_pltime; p.if_index = pr->ndpr_ifp->if_index; p.expire = (u_int32_t)ndpr_getexpire(pr); p.refcnt = pr->ndpr_addrcnt; p.flags = pr->ndpr_stateflags; p.advrtrs = 0; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) p.advrtrs++; error = SYSCTL_OUT(req, &p, sizeof(p)); if (error != 0) { NDPR_UNLOCK(pr); break; } LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { s6.sin6_addr = pfr->router->rtaddr; if (in6_recoverscope(&s6, &pfr->router->rtaddr, pfr->router->ifp) != 0) { log(LOG_ERR, "scope error in prefix list (%s)\n", inet_ntop(AF_INET6, &s6.sin6_addr, pbuf, sizeof(pbuf))); } error = SYSCTL_OUT(req, &s6, sizeof(s6)); if (error != 0) { break; } } NDPR_UNLOCK(pr); if (error != 0) { break; } } } lck_mtx_unlock(nd6_mutex); return error; } void in6_ifaddr_set_dadprogress(struct in6_ifaddr *ia) { struct ifnet* ifp = ia->ia_ifp; uint32_t flags = IN6_IFF_TENTATIVE; uint32_t optdad = nd6_optimistic_dad; struct nd_ifinfo *ndi = NULL; ndi = ND_IFINFO(ifp); VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); if (!(ndi->flags & ND6_IFF_DAD)) { return; } if (optdad) { if (ifp->if_ipv6_router_mode == IPV6_ROUTER_MODE_EXCLUSIVE) { optdad = 0; } else { lck_mtx_lock(&ndi->lock); if ((ndi->flags & ND6_IFF_REPLICATED) != 0) { optdad = 0; } lck_mtx_unlock(&ndi->lock); } } if (optdad) { if ((optdad & ND6_OPTIMISTIC_DAD_LINKLOCAL) && IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) { flags = IN6_IFF_OPTIMISTIC; } else if ((optdad & ND6_OPTIMISTIC_DAD_AUTOCONF) && (ia->ia6_flags & IN6_IFF_AUTOCONF)) { if (ia->ia6_flags & IN6_IFF_TEMPORARY) { if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) { flags = IN6_IFF_OPTIMISTIC; } } else if (ia->ia6_flags & IN6_IFF_SECURED) { if (optdad & ND6_OPTIMISTIC_DAD_SECURED) { flags = IN6_IFF_OPTIMISTIC; } } else { /* * Keeping the behavior for temp and CGA * SLAAC addresses to have a knob for optimistic * DAD. * Other than that if ND6_OPTIMISTIC_DAD_AUTOCONF * is set, we should default to optimistic * DAD. * For now this means SLAAC addresses with interface * identifier derived from modified EUI-64 bit * identifiers. */ flags = IN6_IFF_OPTIMISTIC; } } else if ((optdad & ND6_OPTIMISTIC_DAD_DYNAMIC) && (ia->ia6_flags & IN6_IFF_DYNAMIC)) { if (ia->ia6_flags & IN6_IFF_TEMPORARY) { if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) { flags = IN6_IFF_OPTIMISTIC; } } else { flags = IN6_IFF_OPTIMISTIC; } } else if ((optdad & ND6_OPTIMISTIC_DAD_MANUAL) && (ia->ia6_flags & IN6_IFF_OPTIMISTIC)) { /* * rdar://17483438 * Bypass tentative for address assignments * not covered above (e.g. manual) upon request */ if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr) && !(ia->ia6_flags & IN6_IFF_AUTOCONF) && !(ia->ia6_flags & IN6_IFF_DYNAMIC)) { flags = IN6_IFF_OPTIMISTIC; } } } ia->ia6_flags &= ~(IN6_IFF_DUPLICATED | IN6_IFF_DADPROGRESS); ia->ia6_flags |= flags; nd6log2(debug, "%s - %s ifp %s ia6_flags 0x%x\n", __func__, ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ia->ia_ifp), ia->ia6_flags); }