/* * Copyright (c) 2011-2020 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Prefix-based Neighbor Discovery Proxy * * When an interface is marked with the ND6_IFF_PROXY_PREFIXES flag, all * of current and future non-scoped on-link prefixes configured on the * interface will be shared with the scoped variant of such prefixes on * other interfaces. This allows for one or more prefixes to be shared * across multiple links, with full support for Duplicate Addres Detection, * Address Resolution and Neighbor Unreachability Detection. * * A non-scoped prefix may be configured statically, or dynamically via * Router Advertisement. An interface is said to be an "upstream" interface * when it is marked with ND6_IFF_PROXY_PREFIXES and has at least one prefix * that is non-scoped (global, not scoped.) Such prefixes are marked with * the NDPRF_PRPROXY flag. * * A scoped prefix typically gets configured by way of adding an address * to a "downstream" interface, when the added address is part of an existing * prefix that is allowed to be shared (i.e. NDPRF_PRPROXY prefixes.) Unlike * non-scoped prefixes, however, scoped prefixes will never be marked with * the NDPRF_PRPROXY flag. * * The setting of NDPRF_PRPROXY depends on whether the prefix is on-link; * an off-link prefix on an interface marked with ND6_IFF_PROXY_PREFIXES * will not cause NDPRF_PRPROXY to be set (it will only happen when that * prefix goes on-link.) Likewise, a previously on-link prefix that has * transitioned to off-link will cause its NDPRF_PRPROXY flag to be cleared. * * Prefix proxying relies on IPv6 Scoped Routing to be in effect, as it would * otherwise be impossible to install scoped prefix route entries in the * routing table. By default, such cloning prefix routes will generate cloned * routes that are scoped according to their interfaces. Because prefix * proxying is essentially creating a larger network comprised of multiple * links sharing a prefix, we need to treat the cloned routes as if they * weren't scoped route entries. This requires marking such cloning prefix * routes with the RTF_PROXY flag, which serves as an indication that the * route entry (and its clones) are part of a proxied prefix, and that the * entries are non-scoped. * * In order to handle solicited-node destined ND packets (Address Resolution, * Neighbor Unreachability Detection), prefix proxying also requires that the * "upstream" and "downstream" interfaces be configured for all-multicast mode. * * The setting and clearing of RTF_PROXY flag, as well as the entering and * exiting of all-multicast mode on those interfaces happen when a prefix * transitions between on-link and off-link (vice versa.) * * Note that this is not a strict implementation of RFC 4389, but rather a * derivative based on similar concept. In particular, we only proxy NS and * NA packets; RA packets are never proxied. Care should be taken to enable * prefix proxying only on non-looping network topology. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct nd6_prproxy_prelist { SLIST_ENTRY(nd6_prproxy_prelist) ndprl_le; struct nd_prefix *ndprl_pr; /* prefix */ struct nd_prefix *ndprl_up; /* non-NULL for upstream */ struct ifnet *ndprl_fwd_ifp; /* outgoing interface */ boolean_t ndprl_sol; /* unicast solicitor? */ struct in6_addr ndprl_sol_saddr; /* solicitor's address */ }; /* * Soliciting node (source) record. */ struct nd6_prproxy_solsrc { TAILQ_ENTRY(nd6_prproxy_solsrc) solsrc_tqe; struct in6_addr solsrc_saddr; /* soliciting (src) address */ struct ifnet *solsrc_ifp; /* iface where NS arrived on */ }; /* * Solicited node (target) record. */ struct nd6_prproxy_soltgt { RB_ENTRY(nd6_prproxy_soltgt) soltgt_link; /* RB tree links */ struct soltgt_key_s { struct in6_addr taddr; /* solicited (tgt) address */ } soltgt_key; u_int64_t soltgt_expire; /* expiration time */ u_int32_t soltgt_cnt; /* total # of solicitors */ TAILQ_HEAD(, nd6_prproxy_solsrc) soltgt_q; }; SLIST_HEAD(nd6_prproxy_prelist_head, nd6_prproxy_prelist); static void nd6_prproxy_prelist_setroute(boolean_t enable, struct nd6_prproxy_prelist_head *, struct nd6_prproxy_prelist_head *); static struct nd6_prproxy_prelist *nd6_ndprl_alloc(zalloc_flags_t); static void nd6_ndprl_free(struct nd6_prproxy_prelist *); static struct nd6_prproxy_solsrc *nd6_solsrc_alloc(int); static void nd6_solsrc_free(struct nd6_prproxy_solsrc *); static boolean_t nd6_solsrc_enq(struct nd_prefix *, struct ifnet *, struct in6_addr *, struct in6_addr *); static boolean_t nd6_solsrc_deq(struct nd_prefix *, struct in6_addr *, struct in6_addr *, struct ifnet **); static struct nd6_prproxy_soltgt *nd6_soltgt_alloc(int); static void nd6_soltgt_free(struct nd6_prproxy_soltgt *); static void nd6_soltgt_prune(struct nd6_prproxy_soltgt *, u_int32_t); static __inline int soltgt_cmp(const struct nd6_prproxy_soltgt *, const struct nd6_prproxy_soltgt *); static void nd6_prproxy_sols_purge(struct nd_prefix *, u_int64_t); RB_PROTOTYPE_SC_PREV(__private_extern__, prproxy_sols_tree, nd6_prproxy_soltgt, soltgt_link, soltgt_cmp); /* * Time (in seconds) before a target record expires (is idle). */ #define ND6_TGT_SOLS_EXPIRE 5 /* * Maximum number of queued soliciting (source) records per target. */ #define ND6_MAX_SRC_SOLS_DEFAULT 4 /* * Maximum number of queued solicited (target) records per prefix. */ #define ND6_MAX_TGT_SOLS_DEFAULT 8 static u_int32_t nd6_max_tgt_sols = ND6_MAX_TGT_SOLS_DEFAULT; static u_int32_t nd6_max_src_sols = ND6_MAX_SRC_SOLS_DEFAULT; static KALLOC_TYPE_DEFINE(ndprl_zone, struct nd6_prproxy_prelist, NET_KT_DEFAULT); /* nd6_prproxy_prelist zone */ static KALLOC_TYPE_DEFINE(solsrc_zone, struct nd6_prproxy_solsrc, NET_KT_DEFAULT); /* nd6_prproxy_solsrc zone */ static KALLOC_TYPE_DEFINE(soltgt_zone, struct nd6_prproxy_soltgt, NET_KT_DEFAULT); /* nd6_prproxy_soltgt zone */ /* The following is protected by ndpr_lock */ RB_GENERATE_PREV(prproxy_sols_tree, nd6_prproxy_soltgt, soltgt_link, soltgt_cmp); /* The following is protected by proxy6_lock (for updates) */ u_int32_t nd6_prproxy; SYSCTL_DECL(_net_inet6_icmp6); SYSCTL_UINT(_net_inet6_icmp6, OID_AUTO, nd6_maxsolstgt, CTLFLAG_RW | CTLFLAG_LOCKED, &nd6_max_tgt_sols, ND6_MAX_TGT_SOLS_DEFAULT, "maximum number of outstanding solicited targets per prefix"); SYSCTL_UINT(_net_inet6_icmp6, OID_AUTO, nd6_maxproxiedsol, CTLFLAG_RW | CTLFLAG_LOCKED, &nd6_max_src_sols, ND6_MAX_SRC_SOLS_DEFAULT, "maximum number of outstanding solicitations per target"); SYSCTL_UINT(_net_inet6_icmp6, OID_AUTO, prproxy_cnt, CTLFLAG_RD | CTLFLAG_LOCKED, &nd6_prproxy, 0, "total number of proxied prefixes"); static struct nd6_prproxy_prelist * nd6_ndprl_alloc(zalloc_flags_t how) { return zalloc_flags(ndprl_zone, how | Z_ZERO); } static void nd6_ndprl_free(struct nd6_prproxy_prelist *ndprl) { zfree(ndprl_zone, ndprl); } /* * Apply routing function on the affected upstream and downstream prefixes, * i.e. either set or clear RTF_PROXY on the cloning prefix route; all route * entries that were cloned off these prefixes will be blown away. Caller * must have acquired proxy6_lock and must not be holding nd6_mutex. */ static void nd6_prproxy_prelist_setroute(boolean_t enable, struct nd6_prproxy_prelist_head *up_head, struct nd6_prproxy_prelist_head *down_head) { struct nd6_prproxy_prelist *up, *down, *ndprl_tmp; struct nd_prefix *pr; LCK_MTX_ASSERT(&proxy6_lock, LCK_MTX_ASSERT_OWNED); LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); SLIST_FOREACH_SAFE(up, up_head, ndprl_le, ndprl_tmp) { struct rtentry *rt; boolean_t prproxy, set_allmulti = FALSE; int allmulti_sw = FALSE; struct ifnet *ifp = NULL; SLIST_REMOVE(up_head, up, nd6_prproxy_prelist, ndprl_le); pr = up->ndprl_pr; VERIFY(up->ndprl_up == NULL); NDPR_LOCK(pr); ifp = pr->ndpr_ifp; prproxy = (pr->ndpr_stateflags & NDPRF_PRPROXY); VERIFY(!prproxy || ((pr->ndpr_stateflags & NDPRF_ONLINK) && !(pr->ndpr_stateflags & NDPRF_IFSCOPE))); nd6_prproxy_sols_reap(pr); VERIFY(pr->ndpr_prproxy_sols_cnt == 0); VERIFY(RB_EMPTY(&pr->ndpr_prproxy_sols)); if (enable && pr->ndpr_allmulti_cnt == 0) { nd6_prproxy++; pr->ndpr_allmulti_cnt++; set_allmulti = TRUE; allmulti_sw = TRUE; } else if (!enable && pr->ndpr_allmulti_cnt > 0) { nd6_prproxy--; pr->ndpr_allmulti_cnt--; set_allmulti = TRUE; allmulti_sw = FALSE; } if ((rt = pr->ndpr_rt) != NULL) { if ((enable && prproxy) || (!enable && !prproxy)) { RT_ADDREF(rt); } else { rt = NULL; } NDPR_UNLOCK(pr); } else { NDPR_UNLOCK(pr); } /* Call the following ioctl after releasing NDPR lock */ if (set_allmulti && ifp != NULL) { if_allmulti(ifp, allmulti_sw); } NDPR_REMREF(pr); if (rt != NULL) { rt_set_proxy(rt, enable); rtfree(rt); } nd6_ndprl_free(up); } SLIST_FOREACH_SAFE(down, down_head, ndprl_le, ndprl_tmp) { struct nd_prefix *pr_up; struct rtentry *rt; boolean_t prproxy, set_allmulti = FALSE; int allmulti_sw = FALSE; struct ifnet *ifp = NULL; SLIST_REMOVE(down_head, down, nd6_prproxy_prelist, ndprl_le); pr = down->ndprl_pr; pr_up = down->ndprl_up; VERIFY(pr_up != NULL); NDPR_LOCK(pr_up); ifp = pr->ndpr_ifp; prproxy = (pr_up->ndpr_stateflags & NDPRF_PRPROXY); VERIFY(!prproxy || ((pr_up->ndpr_stateflags & NDPRF_ONLINK) && !(pr_up->ndpr_stateflags & NDPRF_IFSCOPE))); NDPR_UNLOCK(pr_up); NDPR_LOCK(pr); if (enable && pr->ndpr_allmulti_cnt == 0) { pr->ndpr_allmulti_cnt++; set_allmulti = TRUE; allmulti_sw = TRUE; } else if (!enable && pr->ndpr_allmulti_cnt > 0) { pr->ndpr_allmulti_cnt--; set_allmulti = TRUE; allmulti_sw = FALSE; } if ((rt = pr->ndpr_rt) != NULL) { if ((enable && prproxy) || (!enable && !prproxy)) { RT_ADDREF(rt); } else { rt = NULL; } NDPR_UNLOCK(pr); } else { NDPR_UNLOCK(pr); } if (set_allmulti && ifp != NULL) { if_allmulti(ifp, allmulti_sw); } NDPR_REMREF(pr); NDPR_REMREF(pr_up); if (rt != NULL) { rt_set_proxy(rt, enable); rtfree(rt); } nd6_ndprl_free(down); } } /* * Enable/disable prefix proxying on an interface; typically called * as part of handling SIOCSIFINFO_FLAGS[SETROUTERMODE_IN6] */ int nd6_if_prproxy(struct ifnet *ifp, boolean_t enable) { SLIST_HEAD(, nd6_prproxy_prelist) up_head; SLIST_HEAD(, nd6_prproxy_prelist) down_head; struct nd6_prproxy_prelist *up, *down; struct nd_prefix *pr; /* Can't be enabled if we are an advertising router on the interface */ ifnet_lock_shared(ifp); if (enable && (ifp->if_ipv6_router_mode == IPV6_ROUTER_MODE_EXCLUSIVE)) { ifnet_lock_done(ifp); return EBUSY; } ifnet_lock_done(ifp); SLIST_INIT(&up_head); SLIST_INIT(&down_head); /* * Serialize the clearing/setting of NDPRF_PRPROXY. */ lck_mtx_lock(&proxy6_lock); /* * First build a list of upstream prefixes on this interface for * which we need to enable/disable prefix proxy functionality. */ lck_mtx_lock(nd6_mutex); for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { NDPR_LOCK(pr); if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr) || (!enable && !(pr->ndpr_stateflags & NDPRF_PRPROXY)) || (enable && (pr->ndpr_stateflags & NDPRF_PRPROXY)) || (pr->ndpr_stateflags & NDPRF_IFSCOPE) || pr->ndpr_ifp != ifp) { NDPR_UNLOCK(pr); continue; } /* * At present, in order for the prefix to be eligible * as a proxying/proxied prefix, we require that the * prefix route entry be marked as a cloning route with * RTF_PROXY; i.e. nd6_need_cache() needs to return * true for the interface type. */ if (enable && (pr->ndpr_stateflags & NDPRF_ONLINK) && nd6_need_cache(ifp)) { pr->ndpr_stateflags |= NDPRF_PRPROXY; NDPR_ADDREF(pr); NDPR_UNLOCK(pr); } else if (!enable) { pr->ndpr_stateflags &= ~NDPRF_PRPROXY; NDPR_ADDREF(pr); NDPR_UNLOCK(pr); } else { NDPR_UNLOCK(pr); pr = NULL; /* don't go further */ } if (pr == NULL) { break; } up = nd6_ndprl_alloc(Z_WAITOK); if (up == NULL) { NDPR_REMREF(pr); continue; } up->ndprl_pr = pr; /* keep reference from above */ SLIST_INSERT_HEAD(&up_head, up, ndprl_le); } /* * Now build a list of matching (scoped) downstream prefixes on other * interfaces which need to be enabled/disabled accordingly. Note that * the NDPRF_PRPROXY is never set/cleared on the downstream prefixes. */ SLIST_FOREACH(up, &up_head, ndprl_le) { struct nd_prefix *fwd; struct in6_addr pr_addr; uint32_t pr_ifscope; u_char pr_len; pr = up->ndprl_pr; NDPR_LOCK(pr); bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr)); pr_len = pr->ndpr_plen; pr_ifscope = pr->ndpr_prefix.sin6_scope_id; NDPR_UNLOCK(pr); for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) { NDPR_LOCK(fwd); if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) || !(fwd->ndpr_stateflags & NDPRF_IFSCOPE) || fwd->ndpr_plen != pr_len || !in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr, fwd->ndpr_prefix.sin6_scope_id, &pr_addr, pr_ifscope, pr_len)) { NDPR_UNLOCK(fwd); continue; } NDPR_UNLOCK(fwd); down = nd6_ndprl_alloc(Z_WAITOK); if (down == NULL) { continue; } NDPR_ADDREF(fwd); down->ndprl_pr = fwd; NDPR_ADDREF(pr); down->ndprl_up = pr; SLIST_INSERT_HEAD(&down_head, down, ndprl_le); } } lck_mtx_unlock(nd6_mutex); /* * Apply routing function on prefixes; callee will free resources. */ nd6_prproxy_prelist_setroute(enable, (struct nd6_prproxy_prelist_head *)&up_head, (struct nd6_prproxy_prelist_head *)&down_head); VERIFY(SLIST_EMPTY(&up_head)); VERIFY(SLIST_EMPTY(&down_head)); lck_mtx_unlock(&proxy6_lock); return 0; } /* * Called from the input path to determine whether the packet is destined * to a proxied node; if so, mark the mbuf with PKTFF_PROXY_DST so that * icmp6_input() knows that this is not to be delivered to socket(s). */ boolean_t nd6_prproxy_isours(struct mbuf *m, struct ip6_hdr *ip6, struct route_in6 *ro6, unsigned int ifscope) { struct rtentry *rt; boolean_t ours = FALSE; if (ip6->ip6_hlim != IPV6_MAXHLIM || ip6->ip6_nxt != IPPROTO_ICMPV6) { goto done; } if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst) || IN6_IS_ADDR_MC_LINKLOCAL(&ip6->ip6_dst)) { VERIFY(ro6 == NULL); ours = TRUE; goto done; } else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { goto done; } if (ro6 == NULL) { goto done; } if ((rt = ro6->ro_rt) != NULL) { RT_LOCK(rt); } if (ROUTE_UNUSABLE(ro6)) { if (rt != NULL) { RT_UNLOCK(rt); } ROUTE_RELEASE(ro6); /* Caller must have ensured this condition (not srcrt) */ VERIFY(in6_are_addr_equal_scoped(&ip6->ip6_dst, &ro6->ro_dst.sin6_addr, ip6_input_getdstifscope(m), ro6->ro_dst.sin6_scope_id)); rtalloc_scoped_ign((struct route *)ro6, RTF_PRCLONING, ifscope); if ((rt = ro6->ro_rt) == NULL) { goto done; } RT_LOCK(rt); } ours = (rt->rt_flags & RTF_PROXY) ? TRUE : FALSE; RT_UNLOCK(rt); done: if (ours) { m->m_pkthdr.pkt_flags |= PKTF_PROXY_DST; } return ours; } /* * Called from the input path to determine whether or not the proxy * route entry is pointing to the correct interface, and to perform * the necessary route fixups otherwise. */ void nd6_proxy_find_fwdroute(struct ifnet *ifp, struct route_in6 *ro6) { struct in6_addr *dst6 = &ro6->ro_dst.sin6_addr; uint32_t dst_ifscope = ro6->ro_dst.sin6_scope_id; struct ifnet *fwd_ifp = NULL; struct nd_prefix *pr; struct rtentry *rt; if ((rt = ro6->ro_rt) != NULL) { RT_LOCK(rt); if (!(rt->rt_flags & RTF_PROXY) || rt->rt_ifp == ifp) { nd6log2(debug, "%s: found incorrect prefix " "proxy route for dst %s on %s\n", if_name(ifp), ip6_sprintf(dst6), if_name(rt->rt_ifp)); RT_UNLOCK(rt); /* look it up below */ } else { RT_UNLOCK(rt); /* * The route is already marked with RTF_PRPROXY and * it isn't pointing back to the inbound interface; * optimistically return (see notes below). */ return; } } /* * Find out where we should forward this packet to, by searching * for another interface that is proxying for the prefix. Our * current implementation assumes that the proxied prefix is shared * to no more than one downstream interfaces (typically a bridge * interface). */ lck_mtx_lock(nd6_mutex); for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { struct in6_addr pr_addr; struct nd_prefix *fwd; uint32_t pr_ifscope = pr->ndpr_prefix.sin6_scope_id; u_char pr_len; NDPR_LOCK(pr); if (!(pr->ndpr_stateflags & NDPRF_ONLINK) || !(pr->ndpr_stateflags & NDPRF_PRPROXY) || !in6_are_masked_addr_scope_equal(&pr->ndpr_prefix.sin6_addr, pr_ifscope, dst6, dst_ifscope, &pr->ndpr_mask)) { NDPR_UNLOCK(pr); continue; } VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE)); bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr)); pr_len = pr->ndpr_plen; NDPR_UNLOCK(pr); for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) { NDPR_LOCK(fwd); if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) || fwd->ndpr_ifp == ifp || fwd->ndpr_plen != pr_len || !in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr, fwd->ndpr_prefix.sin6_scope_id, &pr_addr, pr_ifscope, pr_len)) { NDPR_UNLOCK(fwd); continue; } fwd_ifp = fwd->ndpr_ifp; NDPR_UNLOCK(fwd); break; } break; } lck_mtx_unlock(nd6_mutex); lck_mtx_lock(rnh_lock); ROUTE_RELEASE_LOCKED(ro6); /* * Lookup a forwarding route; delete the route if it's incorrect, * or return to caller if the correct one got created prior to * our acquiring the rnh_lock. */ if ((rt = rtalloc1_scoped_locked(SA(&ro6->ro_dst), 0, RTF_CLONING | RTF_PRCLONING, IFSCOPE_NONE)) != NULL) { RT_LOCK(rt); if (rt->rt_ifp != fwd_ifp || !(rt->rt_flags & RTF_PROXY)) { rt->rt_flags |= RTF_CONDEMNED; RT_UNLOCK(rt); (void) rtrequest_locked(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); rtfree_locked(rt); rt = NULL; } else { nd6log2(debug, "%s: found prefix proxy route " "for dst %s\n", if_name(rt->rt_ifp), ip6_sprintf(dst6)); RT_UNLOCK(rt); ro6->ro_rt = rt; /* refcnt held by rtalloc1 */ lck_mtx_unlock(rnh_lock); return; } } VERIFY(rt == NULL && ro6->ro_rt == NULL); /* * Clone a route from the correct parent prefix route and return it. */ if (fwd_ifp != NULL && (rt = rtalloc1_scoped_locked(SA(&ro6->ro_dst), 1, RTF_PRCLONING, fwd_ifp->if_index)) != NULL) { RT_LOCK(rt); if (!(rt->rt_flags & RTF_PROXY)) { RT_UNLOCK(rt); rtfree_locked(rt); rt = NULL; } else { nd6log2(debug, "%s: allocated prefix proxy " "route for dst %s\n", if_name(rt->rt_ifp), ip6_sprintf(dst6)); RT_UNLOCK(rt); ro6->ro_rt = rt; /* refcnt held by rtalloc1 */ } } VERIFY(rt != NULL || ro6->ro_rt == NULL); if (fwd_ifp == NULL || rt == NULL) { nd6log2(error, "%s: failed to find forwarding prefix " "proxy entry for dst %s\n", if_name(ifp), ip6_sprintf(dst6)); } lck_mtx_unlock(rnh_lock); } /* * Called when a prefix transitions between on-link and off-link. Perform * routing (RTF_PROXY) and interface (all-multicast) related operations on * the affected prefixes. */ void nd6_prproxy_prelist_update(struct nd_prefix *pr_cur, struct nd_prefix *pr_up) { SLIST_HEAD(, nd6_prproxy_prelist) up_head; SLIST_HEAD(, nd6_prproxy_prelist) down_head; struct nd6_prproxy_prelist *up, *down; struct nd_prefix *pr; struct in6_addr pr_addr; boolean_t enable; u_char pr_len; uint32_t pr_ifscope; SLIST_INIT(&up_head); SLIST_INIT(&down_head); VERIFY(pr_cur != NULL); LCK_MTX_ASSERT(&proxy6_lock, LCK_MTX_ASSERT_OWNED); /* * Upstream prefix. If caller did not specify one, search for one * based on the information in current prefix. Caller is expected * to have held an extra reference for the passed-in prefixes. */ lck_mtx_lock(nd6_mutex); if (pr_up == NULL) { NDPR_LOCK(pr_cur); bcopy(&pr_cur->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr)); pr_len = pr_cur->ndpr_plen; pr_ifscope = pr_cur->ndpr_prefix.sin6_scope_id; NDPR_UNLOCK(pr_cur); for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { NDPR_LOCK(pr); if (!(pr->ndpr_stateflags & NDPRF_ONLINK) || !(pr->ndpr_stateflags & NDPRF_PRPROXY) || pr->ndpr_plen != pr_len || !in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr, pr->ndpr_prefix.sin6_scope_id, &pr_addr, pr_ifscope, pr_len)) { NDPR_UNLOCK(pr); continue; } NDPR_UNLOCK(pr); break; } if ((pr_up = pr) == NULL) { lck_mtx_unlock(nd6_mutex); goto done; } NDPR_LOCK(pr_up); } else { NDPR_LOCK(pr_up); bcopy(&pr_up->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr)); pr_ifscope = pr_up->ndpr_prefix.sin6_scope_id; pr_len = pr_up->ndpr_plen; } NDPR_LOCK_ASSERT_HELD(pr_up); /* * Upstream prefix could be offlink by now; therefore we cannot * assert that NDPRF_PRPROXY is set; however, we can insist that * it must not be a scoped prefix. */ VERIFY(!(pr_up->ndpr_stateflags & NDPRF_IFSCOPE)); enable = (pr_up->ndpr_stateflags & NDPRF_PRPROXY); NDPR_UNLOCK(pr_up); up = nd6_ndprl_alloc(Z_WAITOK); if (up == NULL) { lck_mtx_unlock(nd6_mutex); goto done; } NDPR_ADDREF(pr_up); up->ndprl_pr = pr_up; SLIST_INSERT_HEAD(&up_head, up, ndprl_le); /* * Now build a list of matching (scoped) downstream prefixes on other * interfaces which need to be enabled/disabled accordingly. Note that * the NDPRF_PRPROXY is never set/cleared on the downstream prefixes. */ for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { NDPR_LOCK(pr); if (!(pr->ndpr_stateflags & NDPRF_ONLINK) || !(pr->ndpr_stateflags & NDPRF_IFSCOPE) || pr->ndpr_plen != pr_len || !in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr, pr->ndpr_prefix.sin6_scope_id, &pr_addr, pr_ifscope, pr_len)) { NDPR_UNLOCK(pr); continue; } NDPR_UNLOCK(pr); down = nd6_ndprl_alloc(Z_WAITOK); if (down == NULL) { continue; } NDPR_ADDREF(pr); down->ndprl_pr = pr; NDPR_ADDREF(pr_up); down->ndprl_up = pr_up; SLIST_INSERT_HEAD(&down_head, down, ndprl_le); } lck_mtx_unlock(nd6_mutex); /* * Apply routing function on prefixes; callee will free resources. */ nd6_prproxy_prelist_setroute(enable, (struct nd6_prproxy_prelist_head *)&up_head, (struct nd6_prproxy_prelist_head *)&down_head); done: VERIFY(SLIST_EMPTY(&up_head)); VERIFY(SLIST_EMPTY(&down_head)); } /* * Given an interface address, determine whether or not the address * is part of of a proxied prefix. */ boolean_t nd6_prproxy_ifaddr(struct in6_ifaddr *ia) { struct nd_prefix *pr; struct in6_addr addr; u_int32_t pr_len; uint32_t pr_scope_id; boolean_t proxied = FALSE; LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); IFA_LOCK(&ia->ia_ifa); bcopy(&ia->ia_addr.sin6_addr, &addr, sizeof(addr)); pr_len = ia->ia_plen; pr_scope_id = IA6_SIN6_SCOPE(ia); IFA_UNLOCK(&ia->ia_ifa); lck_mtx_lock(nd6_mutex); for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { NDPR_LOCK(pr); if ((pr->ndpr_stateflags & NDPRF_ONLINK) && (pr->ndpr_stateflags & NDPRF_PRPROXY) && in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr, pr->ndpr_prefix.sin6_scope_id, &addr, pr_scope_id, pr_len)) { NDPR_UNLOCK(pr); proxied = TRUE; break; } NDPR_UNLOCK(pr); } lck_mtx_unlock(nd6_mutex); return proxied; } /* * Perform automatic proxy function with NS output. * * If the target address matches a global prefix obtained from a router * advertisement received on an interface with the ND6_IFF_PROXY_PREFIXES * flag set, then we send solicitations for the target address to all other * interfaces where a matching prefix is currently on-link, in addition to * the original interface. */ void nd6_prproxy_ns_output(struct ifnet *ifp, struct ifnet *exclifp, struct in6_addr *daddr, struct in6_addr *taddr, struct llinfo_nd6 *ln) { SLIST_HEAD(, nd6_prproxy_prelist) ndprl_head; struct nd6_prproxy_prelist *ndprl, *ndprl_tmp; struct nd_prefix *pr, *fwd; struct ifnet *fwd_ifp; struct in6_addr pr_addr; u_char pr_len; uint32_t pr_scope_id; uint32_t taddr_ifscope = ifp->if_index; /* * Ignore excluded interface if it's the same as the original; * we always send a NS on the original interface down below. */ if (exclifp != NULL && exclifp == ifp) { exclifp = NULL; } if (exclifp == NULL) { nd6log2(debug, "%s: sending NS who has %s on ALL\n", if_name(ifp), ip6_sprintf(taddr)); } else { nd6log2(debug, "%s: sending NS who has %s on ALL " "(except %s)\n", if_name(ifp), ip6_sprintf(taddr), if_name(exclifp)); } SLIST_INIT(&ndprl_head); lck_mtx_lock(nd6_mutex); for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { NDPR_LOCK(pr); pr_scope_id = pr->ndpr_prefix.sin6_scope_id; if (!(pr->ndpr_stateflags & NDPRF_ONLINK) || !(pr->ndpr_stateflags & NDPRF_PRPROXY) || !in6_are_masked_addr_scope_equal(&pr->ndpr_prefix.sin6_addr, pr_scope_id, taddr, taddr_ifscope, &pr->ndpr_mask)) { NDPR_UNLOCK(pr); continue; } VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE)); bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr)); pr_len = pr->ndpr_plen; NDPR_UNLOCK(pr); for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) { NDPR_LOCK(fwd); if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) || fwd->ndpr_ifp == ifp || fwd->ndpr_ifp == exclifp || fwd->ndpr_plen != pr_len || !in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr, fwd->ndpr_prefix.sin6_scope_id, &pr_addr, pr_scope_id, pr_len)) { NDPR_UNLOCK(fwd); continue; } fwd_ifp = fwd->ndpr_ifp; NDPR_UNLOCK(fwd); ndprl = nd6_ndprl_alloc(Z_WAITOK); if (ndprl == NULL) { continue; } NDPR_ADDREF(fwd); ndprl->ndprl_pr = fwd; ndprl->ndprl_fwd_ifp = fwd_ifp; SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le); } break; } lck_mtx_unlock(nd6_mutex); SLIST_FOREACH_SAFE(ndprl, &ndprl_head, ndprl_le, ndprl_tmp) { SLIST_REMOVE(&ndprl_head, ndprl, nd6_prproxy_prelist, ndprl_le); pr = ndprl->ndprl_pr; fwd_ifp = ndprl->ndprl_fwd_ifp; if ((fwd_ifp->if_eflags & IFEF_IPV6_ND6ALT) != 0) { NDPR_REMREF(pr); nd6_ndprl_free(ndprl); continue; } NDPR_LOCK(pr); if (pr->ndpr_stateflags & NDPRF_ONLINK) { NDPR_UNLOCK(pr); nd6log2(debug, "%s: Sending cloned NS who has %s, originally " "on %s\n", if_name(fwd_ifp), ip6_sprintf(taddr), if_name(ifp)); nd6_ns_output(fwd_ifp, daddr, taddr, NULL, NULL); } else { NDPR_UNLOCK(pr); } NDPR_REMREF(pr); nd6_ndprl_free(ndprl); } VERIFY(SLIST_EMPTY(&ndprl_head)); nd6_ns_output(ifp, daddr, taddr, ln, NULL); } /* * Perform automatic proxy function with NS input. * * If the target address matches a global prefix obtained from a router * advertisement received on an interface with the ND6_IFF_PROXY_PREFIXES * flag set, then we send solicitations for the target address to all other * interfaces where a matching prefix is currently on-link. */ void nd6_prproxy_ns_input(struct ifnet *ifp, struct in6_addr *saddr, char *lladdr, int lladdrlen, struct in6_addr *daddr, struct in6_addr *taddr, uint8_t *nonce) { SLIST_HEAD(, nd6_prproxy_prelist) ndprl_head; struct nd6_prproxy_prelist *ndprl, *ndprl_tmp; struct nd_prefix *pr, *fwd; struct ifnet *fwd_ifp; struct in6_addr pr_addr; u_char pr_len; boolean_t solrec = FALSE; uint32_t pr_scope_id; uint32_t taddr_ifscope = ifp->if_index; SLIST_INIT(&ndprl_head); lck_mtx_lock(nd6_mutex); for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { NDPR_LOCK(pr); pr_scope_id = pr->ndpr_prefix.sin6_scope_id; if (!(pr->ndpr_stateflags & NDPRF_ONLINK) || !(pr->ndpr_stateflags & NDPRF_PRPROXY) || !in6_are_masked_addr_scope_equal(&pr->ndpr_prefix.sin6_addr, pr_scope_id, taddr, taddr_ifscope, &pr->ndpr_mask)) { NDPR_UNLOCK(pr); continue; } VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE)); bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr)); pr_len = pr->ndpr_plen; /* * If this is a NS for NUD/AR, record it so that we know * how to forward the NA reply later on (if/when it arrives.) * Give up if we fail to save the NS info. */ if ((solrec = !IN6_IS_ADDR_UNSPECIFIED(saddr)) && !nd6_solsrc_enq(pr, ifp, saddr, taddr)) { NDPR_UNLOCK(pr); solrec = FALSE; break; /* bail out */ } else { NDPR_UNLOCK(pr); } for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) { NDPR_LOCK(fwd); if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) || fwd->ndpr_ifp == ifp || fwd->ndpr_plen != pr_len || !in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr, fwd->ndpr_prefix.sin6_scope_id, &pr_addr, pr_scope_id, pr_len)) { NDPR_UNLOCK(fwd); continue; } fwd_ifp = fwd->ndpr_ifp; NDPR_UNLOCK(fwd); ndprl = nd6_ndprl_alloc(Z_WAITOK); if (ndprl == NULL) { continue; } NDPR_ADDREF(fwd); ndprl->ndprl_pr = fwd; ndprl->ndprl_fwd_ifp = fwd_ifp; ndprl->ndprl_sol = solrec; SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le); } break; } lck_mtx_unlock(nd6_mutex); /* * If this is a recorded solicitation (NS for NUD/AR), create * or update the neighbor cache entry for the soliciting node. * Later on, when the NA reply arrives, we will need this cache * entry in order to send the NA back to the original solicitor. * Without a neighbor cache entry, we'd end up with an endless * cycle of NS ping-pong between the us (the proxy) and the node * which is soliciting for the address. */ if (solrec) { VERIFY(!IN6_IS_ADDR_UNSPECIFIED(saddr)); nd6_cache_lladdr(ifp, saddr, lladdr, lladdrlen, ND_NEIGHBOR_SOLICIT, 0, NULL); } SLIST_FOREACH_SAFE(ndprl, &ndprl_head, ndprl_le, ndprl_tmp) { SLIST_REMOVE(&ndprl_head, ndprl, nd6_prproxy_prelist, ndprl_le); pr = ndprl->ndprl_pr; fwd_ifp = ndprl->ndprl_fwd_ifp; if ((fwd_ifp->if_eflags & IFEF_IPV6_ND6ALT) != 0) { NDPR_REMREF(pr); nd6_ndprl_free(ndprl); continue; } NDPR_LOCK(pr); if (pr->ndpr_stateflags & NDPRF_ONLINK) { NDPR_UNLOCK(pr); nd6log2(debug, "%s: Forwarding NS (%s) from %s to %s who " "has %s, originally on %s\n", if_name(fwd_ifp), ndprl->ndprl_sol ? "NUD/AR" : "DAD", ip6_sprintf(saddr), ip6_sprintf(daddr), ip6_sprintf(taddr), if_name(ifp)); nd6_ns_output(fwd_ifp, ndprl->ndprl_sol ? taddr : NULL, taddr, NULL, nonce); } else { NDPR_UNLOCK(pr); } NDPR_REMREF(pr); nd6_ndprl_free(ndprl); } VERIFY(SLIST_EMPTY(&ndprl_head)); } /* * Perform automatic proxy function with NA input. * * If the target address matches a global prefix obtained from a router * advertisement received on an interface with the ND6_IFF_PROXY_PREFIXES flag * set, then we send neighbor advertisements for the target address on all * other interfaces where a matching prefix is currently on link. */ void nd6_prproxy_na_input(struct ifnet *ifp, struct in6_addr *saddr, struct in6_addr *daddr0, struct in6_addr *taddr, int flags) { SLIST_HEAD(, nd6_prproxy_prelist) ndprl_head; struct nd6_prproxy_prelist *ndprl, *ndprl_tmp; struct nd_prefix *pr; struct ifnet *fwd_ifp; struct in6_addr daddr; uint32_t pr_scope_id; uint32_t taddr_ifscope = ifp->if_index; SLIST_INIT(&ndprl_head); lck_mtx_lock(nd6_mutex); for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { NDPR_LOCK(pr); pr_scope_id = pr->ndpr_prefix.sin6_scope_id; if (!(pr->ndpr_stateflags & NDPRF_ONLINK) || !(pr->ndpr_stateflags & NDPRF_PRPROXY) || !in6_are_masked_addr_scope_equal(&pr->ndpr_prefix.sin6_addr, pr_scope_id, taddr, taddr_ifscope, &pr->ndpr_mask)) { NDPR_UNLOCK(pr); continue; } VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE)); /* * If this is a NA for NUD, see if there is a record created * for the corresponding NS; upon success, we get back the * interface where the NS originally arrived on, as well as * the soliciting node's address. Give up if we can't find it. */ if (!IN6_IS_ADDR_MULTICAST(daddr0)) { fwd_ifp = NULL; bzero(&daddr, sizeof(daddr)); if (!nd6_solsrc_deq(pr, taddr, &daddr, &fwd_ifp)) { NDPR_UNLOCK(pr); break; /* bail out */ } VERIFY(!IN6_IS_ADDR_UNSPECIFIED(&daddr) && fwd_ifp); NDPR_UNLOCK(pr); ndprl = nd6_ndprl_alloc(Z_WAITOK); if (ndprl == NULL) { break; /* bail out */ } ndprl->ndprl_fwd_ifp = fwd_ifp; ndprl->ndprl_sol = TRUE; ndprl->ndprl_sol_saddr = *(&daddr); SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le); } else { struct nd_prefix *fwd; struct in6_addr pr_addr; u_char pr_len; bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr)); pr_len = pr->ndpr_plen; NDPR_UNLOCK(pr); for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) { NDPR_LOCK(fwd); if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) || fwd->ndpr_ifp == ifp || fwd->ndpr_plen != pr_len || !in6_are_prefix_equal( &fwd->ndpr_prefix.sin6_addr, fwd->ndpr_prefix.sin6_scope_id, &pr_addr, pr_scope_id, pr_len)) { NDPR_UNLOCK(fwd); continue; } fwd_ifp = fwd->ndpr_ifp; NDPR_UNLOCK(fwd); ndprl = nd6_ndprl_alloc(Z_WAITOK); if (ndprl == NULL) { continue; } NDPR_ADDREF(fwd); ndprl->ndprl_pr = fwd; ndprl->ndprl_fwd_ifp = fwd_ifp; SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le); } } break; } lck_mtx_unlock(nd6_mutex); SLIST_FOREACH_SAFE(ndprl, &ndprl_head, ndprl_le, ndprl_tmp) { boolean_t send_na; SLIST_REMOVE(&ndprl_head, ndprl, nd6_prproxy_prelist, ndprl_le); pr = ndprl->ndprl_pr; fwd_ifp = ndprl->ndprl_fwd_ifp; if (ndprl->ndprl_sol) { VERIFY(pr == NULL); daddr = *(&ndprl->ndprl_sol_saddr); VERIFY(!IN6_IS_ADDR_UNSPECIFIED(&daddr)); send_na = (in6_setscope(&daddr, fwd_ifp, NULL) == 0); } else { VERIFY(pr != NULL); daddr = *daddr0; NDPR_LOCK(pr); send_na = ((pr->ndpr_stateflags & NDPRF_ONLINK) && in6_setscope(&daddr, fwd_ifp, NULL) == 0); NDPR_UNLOCK(pr); } if (send_na) { if (!ndprl->ndprl_sol) { nd6log2(debug, "%s: Forwarding NA (DAD) from %s to %s " "tgt is %s, originally on %s\n", if_name(fwd_ifp), ip6_sprintf(saddr), ip6_sprintf(&daddr), ip6_sprintf(taddr), if_name(ifp)); } else { nd6log2(debug, "%s: Forwarding NA (NUD/AR) from %s to " "%s (was %s) tgt is %s, originally on " "%s\n", if_name(fwd_ifp), ip6_sprintf(saddr), ip6_sprintf(&daddr), ip6_sprintf(daddr0), ip6_sprintf(taddr), if_name(ifp)); } nd6_na_output(fwd_ifp, &daddr, taddr, flags, 1, NULL); } if (pr != NULL) { NDPR_REMREF(pr); } nd6_ndprl_free(ndprl); } VERIFY(SLIST_EMPTY(&ndprl_head)); } static struct nd6_prproxy_solsrc * nd6_solsrc_alloc(int how) { return zalloc_flags(solsrc_zone, how | Z_ZERO); } static void nd6_solsrc_free(struct nd6_prproxy_solsrc *ssrc) { zfree(solsrc_zone, ssrc); } static void nd6_prproxy_sols_purge(struct nd_prefix *pr, u_int64_t max_stgt) { struct nd6_prproxy_soltgt *soltgt, *tmp; u_int64_t expire = (max_stgt > 0) ? net_uptime() : 0; NDPR_LOCK_ASSERT_HELD(pr); /* Either trim all or those that have expired or are idle */ RB_FOREACH_SAFE(soltgt, prproxy_sols_tree, &pr->ndpr_prproxy_sols, tmp) { VERIFY(pr->ndpr_prproxy_sols_cnt > 0); if (expire == 0 || soltgt->soltgt_expire <= expire || soltgt->soltgt_cnt == 0) { pr->ndpr_prproxy_sols_cnt--; RB_REMOVE(prproxy_sols_tree, &pr->ndpr_prproxy_sols, soltgt); nd6_soltgt_free(soltgt); } } if (max_stgt == 0 || pr->ndpr_prproxy_sols_cnt < max_stgt) { VERIFY(max_stgt != 0 || (pr->ndpr_prproxy_sols_cnt == 0 && RB_EMPTY(&pr->ndpr_prproxy_sols))); return; } /* Brute force; mercilessly evict entries until we are under limit */ RB_FOREACH_SAFE(soltgt, prproxy_sols_tree, &pr->ndpr_prproxy_sols, tmp) { VERIFY(pr->ndpr_prproxy_sols_cnt > 0); pr->ndpr_prproxy_sols_cnt--; RB_REMOVE(prproxy_sols_tree, &pr->ndpr_prproxy_sols, soltgt); nd6_soltgt_free(soltgt); if (pr->ndpr_prproxy_sols_cnt < max_stgt) { break; } } } /* * Purges all solicitation records on a given prefix. * Caller is responsible for holding prefix lock. */ void nd6_prproxy_sols_reap(struct nd_prefix *pr) { nd6_prproxy_sols_purge(pr, 0); } /* * Purges expired or idle solicitation records on a given prefix. * Caller is responsible for holding prefix lock. */ void nd6_prproxy_sols_prune(struct nd_prefix *pr, u_int32_t max_stgt) { nd6_prproxy_sols_purge(pr, max_stgt); } /* * Enqueue a soliciation record in the target record of a prefix. */ static boolean_t nd6_solsrc_enq(struct nd_prefix *pr, struct ifnet *ifp, struct in6_addr *saddr, struct in6_addr *taddr) { struct nd6_prproxy_soltgt find, *soltgt; struct nd6_prproxy_solsrc *ssrc; u_int32_t max_stgt = nd6_max_tgt_sols; u_int32_t max_ssrc = nd6_max_src_sols; NDPR_LOCK_ASSERT_HELD(pr); VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE)); VERIFY((pr->ndpr_stateflags & (NDPRF_ONLINK | NDPRF_PRPROXY)) == (NDPRF_ONLINK | NDPRF_PRPROXY)); VERIFY(!IN6_IS_ADDR_UNSPECIFIED(saddr)); ssrc = nd6_solsrc_alloc(M_WAITOK); if (ssrc == NULL) { return FALSE; } ssrc->solsrc_saddr = *saddr; ssrc->solsrc_ifp = ifp; find.soltgt_key.taddr = *taddr; /* search key */ soltgt = RB_FIND(prproxy_sols_tree, &pr->ndpr_prproxy_sols, &find); if (soltgt == NULL) { if (max_stgt != 0 && pr->ndpr_prproxy_sols_cnt >= max_stgt) { VERIFY(!RB_EMPTY(&pr->ndpr_prproxy_sols)); nd6_prproxy_sols_prune(pr, max_stgt); VERIFY(pr->ndpr_prproxy_sols_cnt < max_stgt); } soltgt = nd6_soltgt_alloc(M_WAITOK); if (soltgt == NULL) { nd6_solsrc_free(ssrc); return FALSE; } soltgt->soltgt_key.taddr = *taddr; VERIFY(soltgt->soltgt_cnt == 0); VERIFY(TAILQ_EMPTY(&soltgt->soltgt_q)); pr->ndpr_prproxy_sols_cnt++; VERIFY(pr->ndpr_prproxy_sols_cnt != 0); RB_INSERT(prproxy_sols_tree, &pr->ndpr_prproxy_sols, soltgt); } if (max_ssrc != 0 && soltgt->soltgt_cnt >= max_ssrc) { VERIFY(!TAILQ_EMPTY(&soltgt->soltgt_q)); nd6_soltgt_prune(soltgt, max_ssrc); VERIFY(soltgt->soltgt_cnt < max_ssrc); } soltgt->soltgt_cnt++; VERIFY(soltgt->soltgt_cnt != 0); TAILQ_INSERT_TAIL(&soltgt->soltgt_q, ssrc, solsrc_tqe); if (soltgt->soltgt_cnt == 1) { soltgt->soltgt_expire = net_uptime() + ND6_TGT_SOLS_EXPIRE; } return TRUE; } /* * Dequeue a solicitation record from a target record of a prefix. */ static boolean_t nd6_solsrc_deq(struct nd_prefix *pr, struct in6_addr *taddr, struct in6_addr *daddr, struct ifnet **ifp) { struct nd6_prproxy_soltgt find, *soltgt; struct nd6_prproxy_solsrc *ssrc; NDPR_LOCK_ASSERT_HELD(pr); VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE)); VERIFY((pr->ndpr_stateflags & (NDPRF_ONLINK | NDPRF_PRPROXY)) == (NDPRF_ONLINK | NDPRF_PRPROXY)); bzero(daddr, sizeof(*daddr)); *ifp = NULL; find.soltgt_key.taddr = *taddr; /* search key */ soltgt = RB_FIND(prproxy_sols_tree, &pr->ndpr_prproxy_sols, &find); if (soltgt == NULL || soltgt->soltgt_cnt == 0) { VERIFY(soltgt == NULL || TAILQ_EMPTY(&soltgt->soltgt_q)); return FALSE; } VERIFY(soltgt->soltgt_cnt != 0); --soltgt->soltgt_cnt; ssrc = TAILQ_FIRST(&soltgt->soltgt_q); VERIFY(ssrc != NULL); TAILQ_REMOVE(&soltgt->soltgt_q, ssrc, solsrc_tqe); *daddr = *(&ssrc->solsrc_saddr); *ifp = ssrc->solsrc_ifp; nd6_solsrc_free(ssrc); return TRUE; } static struct nd6_prproxy_soltgt * nd6_soltgt_alloc(int how) { struct nd6_prproxy_soltgt *soltgt; soltgt = zalloc_flags(soltgt_zone, how | Z_ZERO); if (soltgt != NULL) { TAILQ_INIT(&soltgt->soltgt_q); } return soltgt; } static void nd6_soltgt_free(struct nd6_prproxy_soltgt *soltgt) { struct nd6_prproxy_solsrc *ssrc, *tssrc; TAILQ_FOREACH_SAFE(ssrc, &soltgt->soltgt_q, solsrc_tqe, tssrc) { VERIFY(soltgt->soltgt_cnt > 0); soltgt->soltgt_cnt--; TAILQ_REMOVE(&soltgt->soltgt_q, ssrc, solsrc_tqe); nd6_solsrc_free(ssrc); } VERIFY(soltgt->soltgt_cnt == 0); VERIFY(TAILQ_EMPTY(&soltgt->soltgt_q)); zfree(soltgt_zone, soltgt); } static void nd6_soltgt_prune(struct nd6_prproxy_soltgt *soltgt, u_int32_t max_ssrc) { while (soltgt->soltgt_cnt >= max_ssrc) { struct nd6_prproxy_solsrc *ssrc; VERIFY(soltgt->soltgt_cnt != 0); --soltgt->soltgt_cnt; ssrc = TAILQ_FIRST(&soltgt->soltgt_q); VERIFY(ssrc != NULL); TAILQ_REMOVE(&soltgt->soltgt_q, ssrc, solsrc_tqe); nd6_solsrc_free(ssrc); } } /* * Solicited target tree comparison function. * * An ordered predicate is necessary; bcmp() is not documented to return * an indication of order, memcmp() is, and is an ISO C99 requirement. */ static __inline int soltgt_cmp(const struct nd6_prproxy_soltgt *a, const struct nd6_prproxy_soltgt *b) { return memcmp(&a->soltgt_key, &b->soltgt_key, sizeof(a->soltgt_key)); }