/* * Copyright (c) 2000-2022 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* $FreeBSD: src/sys/netinet6/udp6_usrreq.c,v 1.6.2.6 2001/07/29 19:32:40 ume Exp $ */ /* $KAME: udp6_usrreq.c,v 1.27 2001/05/21 05:45:10 jinmei Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_var.h 8.1 (Berkeley) 6/10/93 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if IPSEC #include #include #include #include extern int ipsec_bypass; extern int esp_udp_encap_port; #endif /* IPSEC */ #if NECP #include #endif /* NECP */ #if FLOW_DIVERT #include #endif /* FLOW_DIVERT */ #if CONTENT_FILTER #include #endif /* CONTENT_FILTER */ #if SKYWALK #include #endif /* SKYWALK */ #include /* * UDP protocol inplementation. * Per RFC 768, August, 1980. */ static int udp6_abort(struct socket *); static int udp6_attach(struct socket *, int, struct proc *); static int udp6_bind(struct socket *, struct sockaddr *, struct proc *); static int udp6_connectx(struct socket *, struct sockaddr *, struct sockaddr *, struct proc *, uint32_t, sae_associd_t, sae_connid_t *, uint32_t, void *, uint32_t, struct uio *, user_ssize_t *); static int udp6_detach(struct socket *); static int udp6_disconnect(struct socket *); static int udp6_disconnectx(struct socket *, sae_associd_t, sae_connid_t); static int udp6_send(struct socket *, int, struct mbuf *, struct sockaddr *, struct mbuf *, struct proc *); static void udp6_append(struct inpcb *, struct ip6_hdr *, struct sockaddr_in6 *, struct mbuf *, int, struct ifnet *); static int udp6_input_checksum(struct mbuf *, struct udphdr *, int, int); static int udp6_defunct(struct socket *); struct pr_usrreqs udp6_usrreqs = { .pru_abort = udp6_abort, .pru_attach = udp6_attach, .pru_bind = udp6_bind, .pru_connect = udp6_connect, .pru_connectx = udp6_connectx, .pru_control = in6_control, .pru_detach = udp6_detach, .pru_disconnect = udp6_disconnect, .pru_disconnectx = udp6_disconnectx, .pru_peeraddr = in6_mapped_peeraddr, .pru_send = udp6_send, .pru_shutdown = udp_shutdown, .pru_sockaddr = in6_mapped_sockaddr, .pru_sosend = sosend, .pru_soreceive = soreceive, .pru_defunct = udp6_defunct, }; /* * subroutine of udp6_input(), mainly for source code readability. */ static void udp6_append(struct inpcb *last, struct ip6_hdr *ip6, struct sockaddr_in6 *udp_in6, struct mbuf *n, int off, struct ifnet *ifp) { #pragma unused(ip6) struct mbuf *opts = NULL; int ret = 0; boolean_t cell = IFNET_IS_CELLULAR(ifp); boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); if ((last->in6p_flags & INP_CONTROLOPTS) != 0 || SOFLOW_ENABLED(last->in6p_socket) || SO_RECV_CONTROL_OPTS(last->in6p_socket)) { ret = ip6_savecontrol(last, n, &opts); if (ret != 0) { m_freem(n); m_freem(opts); return; } } m_adj(n, off); if (nstat_collect) { INP_ADD_STAT(last, cell, wifi, wired, rxpackets, 1); INP_ADD_STAT(last, cell, wifi, wired, rxbytes, n->m_pkthdr.len); inp_set_activity_bitmap(last); } so_recv_data_stat(last->in6p_socket, n, 0); if (sbappendaddr(&last->in6p_socket->so_rcv, SA(udp_in6), n, opts, NULL) == 0) { udpstat.udps_fullsock++; } else { sorwakeup(last->in6p_socket); } } int udp6_input(struct mbuf **mp, int *offp, int proto) { #pragma unused(proto) struct mbuf *m = *mp; struct ifnet *ifp; struct ip6_hdr *ip6; struct udphdr *uh; struct inpcb *in6p; struct mbuf *opts = NULL; int off = *offp; int plen, ulen, ret = 0; boolean_t cell, wifi, wired; struct sockaddr_in6 udp_in6; struct inpcbinfo *pcbinfo = &udbinfo; struct sockaddr_in6 fromsa; u_int16_t pf_tag = 0; boolean_t is_wake_pkt = false; IP6_EXTHDR_CHECK(m, off, sizeof(struct udphdr), return IPPROTO_DONE); /* Expect 32-bit aligned data pointer on strict-align platforms */ MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); ifp = m->m_pkthdr.rcvif; ip6 = mtod(m, struct ip6_hdr *); cell = IFNET_IS_CELLULAR(ifp); wifi = (!cell && IFNET_IS_WIFI(ifp)); wired = (!wifi && IFNET_IS_WIRED(ifp)); if (m->m_flags & M_PKTHDR) { pf_tag = m_pftag(m)->pftag_tag; if (m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT) { is_wake_pkt = true; } } udpstat.udps_ipackets++; plen = ntohs(ip6->ip6_plen) - off + sizeof(*ip6); uh = (struct udphdr *)(void *)((caddr_t)ip6 + off); ulen = ntohs((u_short)uh->uh_ulen); if (plen != ulen) { udpstat.udps_badlen++; IF_UDP_STATINC(ifp, badlength); goto bad; } /* destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) { IF_UDP_STATINC(ifp, port0); goto bad; } /* * Checksum extended UDP header and data. */ if (udp6_input_checksum(m, uh, off, ulen)) { goto bad; } /* * Construct sockaddr format source address. */ init_sin6(&fromsa, m); fromsa.sin6_port = uh->uh_sport; if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { int reuse_sock = 0, mcast_delivered = 0; struct ip6_moptions *imo; /* * Deliver a multicast datagram to all sockets * for which the local and remote addresses and ports match * those of the incoming datagram. This allows more than * one process to receive multicasts on the same port. * (This really ought to be done for unicast datagrams as * well, but that would cause problems with existing * applications that open both address-specific sockets and * a wildcard socket listening to the same port -- they would * end up receiving duplicates of every unicast datagram. * Those applications open the multiple sockets to overcome an * inadequacy of the UDP socket interface, but for backwards * compatibility we avoid the problem here rather than * fixing the interface. Maybe 4.5BSD will remedy this?) */ /* * In a case that laddr should be set to the link-local * address (this happens in RIPng), the multicast address * specified in the received packet does not match with * laddr. To cure this situation, the matching is relaxed * if the receiving interface is the same as one specified * in the socket and if the destination multicast address * matches one of the multicast groups specified in the socket. */ /* * Construct sockaddr format source address. */ init_sin6(&udp_in6, m); /* general init */ udp_in6.sin6_port = uh->uh_sport; /* * KAME note: usually we drop udphdr from mbuf here. * We need udphdr for IPsec processing so we do that later. */ /* * Locate pcb(s) for datagram. * (Algorithm copied from raw_intr().) */ lck_rw_lock_shared(&pcbinfo->ipi_lock); LIST_FOREACH(in6p, &udb, inp_list) { #if IPSEC int skipit; #endif /* IPSEC */ if ((in6p->inp_vflag & INP_IPV6) == 0) { continue; } if (inp_restricted_recv(in6p, ifp)) { continue; } /* * Skip unbound sockets before taking the lock on the socket as * the test with the destination port in the header will fail */ if (in6p->in6p_lport == 0) { continue; } if (in_pcb_checkstate(in6p, WNT_ACQUIRE, 0) == WNT_STOPUSING) { continue; } udp_lock(in6p->in6p_socket, 1, 0); if (in_pcb_checkstate(in6p, WNT_RELEASE, 1) == WNT_STOPUSING) { udp_unlock(in6p->in6p_socket, 1, 0); continue; } if (in6p->in6p_lport != uh->uh_dport) { udp_unlock(in6p->in6p_socket, 1, 0); continue; } /* * Handle socket delivery policy for any-source * and source-specific multicast. [RFC3678] */ imo = in6p->in6p_moptions; if (imo && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { struct sockaddr_in6 mcaddr; int blocked; IM6O_LOCK(imo); SOCKADDR_ZERO(&mcaddr, sizeof(struct sockaddr_in6)); mcaddr.sin6_len = sizeof(struct sockaddr_in6); mcaddr.sin6_family = AF_INET6; mcaddr.sin6_addr = ip6->ip6_dst; blocked = im6o_mc_filter(imo, ifp, &mcaddr, &fromsa); IM6O_UNLOCK(imo); if (blocked != MCAST_PASS) { udp_unlock(in6p->in6p_socket, 1, 0); if (blocked == MCAST_NOTSMEMBER || blocked == MCAST_MUTED) { udpstat.udps_filtermcast++; } continue; } } if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr) && (!in6_are_addr_equal_scoped(&in6p->in6p_faddr, &ip6->ip6_src, in6p->inp_fifscope, ifp->if_index) || in6p->in6p_fport != uh->uh_sport)) { udp_unlock(in6p->in6p_socket, 1, 0); continue; } reuse_sock = in6p->inp_socket->so_options & (SO_REUSEPORT | SO_REUSEADDR); #if NECP skipit = 0; if (!necp_socket_is_allowed_to_send_recv_v6(in6p, uh->uh_dport, uh->uh_sport, &ip6->ip6_dst, &ip6->ip6_src, ifp, pf_tag, NULL, NULL, NULL, NULL)) { /* do not inject data to pcb */ skipit = 1; } if (skipit == 0) #endif /* NECP */ { struct mbuf *n = NULL; /* * KAME NOTE: do not * m_copy(m, offset, ...) below. * sbappendaddr() expects M_PKTHDR, * and m_copy() will copy M_PKTHDR * only if offset is 0. */ if (reuse_sock) { n = m_copy(m, 0, M_COPYALL); } udp6_append(in6p, ip6, &udp_in6, m, off + sizeof(struct udphdr), ifp); mcast_delivered++; m = n; } if (is_wake_pkt) { soevent(in6p->in6p_socket, SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT); } udp_unlock(in6p->in6p_socket, 1, 0); /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids searching * through all pcbs in the common case of a non-shared * port. It assumes that an application will never * clear these options after setting them. */ if (reuse_sock == 0 || m == NULL) { break; } /* * Expect 32-bit aligned data pointer on strict-align * platforms. */ MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); /* * Recompute IP and UDP header pointers for new mbuf */ ip6 = mtod(m, struct ip6_hdr *); uh = (struct udphdr *)(void *)((caddr_t)ip6 + off); } lck_rw_done(&pcbinfo->ipi_lock); if (mcast_delivered == 0) { /* * No matching pcb found; discard datagram. * (No need to send an ICMP Port Unreachable * for a broadcast or multicast datgram.) */ udpstat.udps_noport++; udpstat.udps_noportmcast++; IF_UDP_STATINC(ifp, port_unreach); goto bad; } /* free the extra copy of mbuf or skipped by NECP */ if (m != NULL) { m_freem(m); } return IPPROTO_DONE; } #if IPSEC /* * UDP to port 4500 with a payload where the first four bytes are * not zero is a UDP encapsulated IPsec packet. Packets where * the payload is one byte and that byte is 0xFF are NAT keepalive * packets. Decapsulate the ESP packet and carry on with IPsec input * or discard the NAT keep-alive. */ if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 && (uh->uh_dport == ntohs((u_short)esp_udp_encap_port) || uh->uh_sport == ntohs((u_short)esp_udp_encap_port))) { /* * Check if ESP or keepalive: * 1. If the destination port of the incoming packet is 4500. * 2. If the source port of the incoming packet is 4500, * then check the SADB to match IP address and port. */ bool check_esp = true; if (uh->uh_dport != ntohs((u_short)esp_udp_encap_port)) { check_esp = key_checksa_present(AF_INET6, (caddr_t)&ip6->ip6_dst, (caddr_t)&ip6->ip6_src, uh->uh_dport, uh->uh_sport, ip6_input_getdstifscope(m), ip6_input_getsrcifscope(m)); } if (check_esp) { int payload_len = ulen - sizeof(struct udphdr) > 4 ? 4 : ulen - sizeof(struct udphdr); if (m->m_len < off + sizeof(struct udphdr) + payload_len) { if ((m = m_pullup(m, off + sizeof(struct udphdr) + payload_len)) == NULL) { udpstat.udps_hdrops++; goto bad; } /* * Expect 32-bit aligned data pointer on strict-align * platforms. */ MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); ip6 = mtod(m, struct ip6_hdr *); uh = (struct udphdr *)(void *)((caddr_t)ip6 + off); } /* Check for NAT keepalive packet */ if (payload_len == 1 && *(u_int8_t*) ((caddr_t)uh + sizeof(struct udphdr)) == 0xFF) { goto bad; } else if (payload_len == 4 && *(u_int32_t*)(void *) ((caddr_t)uh + sizeof(struct udphdr)) != 0) { /* UDP encapsulated IPsec packet to pass through NAT */ /* preserve the udp header */ *offp = off + sizeof(struct udphdr); return esp6_input(mp, offp, IPPROTO_UDP); } } } #endif /* IPSEC */ /* * Locate pcb for datagram. */ in6p = in6_pcblookup_hash(&udbinfo, &ip6->ip6_src, uh->uh_sport, ip6_input_getsrcifscope(m), &ip6->ip6_dst, uh->uh_dport, ip6_input_getdstifscope(m), 1, m->m_pkthdr.rcvif); if (in6p == NULL) { IF_UDP_STATINC(ifp, port_unreach); if (udp_log_in_vain) { char buf[INET6_ADDRSTRLEN]; strlcpy(buf, ip6_sprintf(&ip6->ip6_dst), sizeof(buf)); if (udp_log_in_vain < 3) { log(LOG_INFO, "Connection attempt to UDP " "%s:%d from %s:%d\n", buf, ntohs(uh->uh_dport), ip6_sprintf(&ip6->ip6_src), ntohs(uh->uh_sport)); } else if (!(m->m_flags & (M_BCAST | M_MCAST)) && !in6_are_addr_equal_scoped(&ip6->ip6_dst, &ip6->ip6_src, ip6_input_getdstifscope(m), ip6_input_getsrcifscope(m))) { log(LOG_INFO, "Connection attempt " "to UDP %s:%d from %s:%d\n", buf, ntohs(uh->uh_dport), ip6_sprintf(&ip6->ip6_src), ntohs(uh->uh_sport)); } } udpstat.udps_noport++; if (m->m_flags & M_MCAST) { printf("UDP6: M_MCAST is set in a unicast packet.\n"); udpstat.udps_noportmcast++; IF_UDP_STATINC(ifp, badmcast); goto bad; } icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0); return IPPROTO_DONE; } /* * Construct sockaddr format source address. * Stuff source address and datagram in user buffer. */ udp_lock(in6p->in6p_socket, 1, 0); #if NECP if (!necp_socket_is_allowed_to_send_recv_v6(in6p, uh->uh_dport, uh->uh_sport, &ip6->ip6_dst, &ip6->ip6_src, ifp, pf_tag, NULL, NULL, NULL, NULL)) { in_pcb_checkstate(in6p, WNT_RELEASE, 1); udp_unlock(in6p->in6p_socket, 1, 0); IF_UDP_STATINC(ifp, badipsec); goto bad; } #endif /* NECP */ if (in_pcb_checkstate(in6p, WNT_RELEASE, 1) == WNT_STOPUSING) { udp_unlock(in6p->in6p_socket, 1, 0); IF_UDP_STATINC(ifp, cleanup); goto bad; } init_sin6(&udp_in6, m); /* general init */ udp_in6.sin6_port = uh->uh_sport; if ((in6p->in6p_flags & INP_CONTROLOPTS) != 0 || SOFLOW_ENABLED(in6p->in6p_socket) || SO_RECV_CONTROL_OPTS(in6p->in6p_socket)) { ret = ip6_savecontrol(in6p, m, &opts); if (ret != 0) { udp_unlock(in6p->in6p_socket, 1, 0); goto bad; } } m_adj(m, off + sizeof(struct udphdr)); if (nstat_collect) { INP_ADD_STAT(in6p, cell, wifi, wired, rxpackets, 1); INP_ADD_STAT(in6p, cell, wifi, wired, rxbytes, m->m_pkthdr.len); inp_set_activity_bitmap(in6p); } so_recv_data_stat(in6p->in6p_socket, m, 0); if (sbappendaddr(&in6p->in6p_socket->so_rcv, SA(&udp_in6), m, opts, NULL) == 0) { m = NULL; opts = NULL; udpstat.udps_fullsock++; udp_unlock(in6p->in6p_socket, 1, 0); goto bad; } if (is_wake_pkt) { soevent(in6p->in6p_socket, SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT); } sorwakeup(in6p->in6p_socket); udp_unlock(in6p->in6p_socket, 1, 0); return IPPROTO_DONE; bad: if (m != NULL) { m_freem(m); } if (opts != NULL) { m_freem(opts); } return IPPROTO_DONE; } void udp6_ctlinput(int cmd, struct sockaddr *sa, void *d, __unused struct ifnet *ifp) { struct udphdr uh; struct ip6_hdr *ip6; struct mbuf *m; int off = 0; struct ip6ctlparam *ip6cp = NULL; struct icmp6_hdr *icmp6 = NULL; const struct sockaddr_in6 *sa6_src = NULL; void *cmdarg = NULL; void (*notify)(struct inpcb *, int) = udp_notify; struct inpcb *in6p; struct udp_portonly { u_int16_t uh_sport; u_int16_t uh_dport; } *uhp; if (sa->sa_family != AF_INET6 || sa->sa_len != sizeof(struct sockaddr_in6)) { return; } if ((unsigned)cmd >= PRC_NCMDS) { return; } if (PRC_IS_REDIRECT(cmd)) { notify = in6_rtchange; d = NULL; } else if (cmd == PRC_HOSTDEAD) { d = NULL; } else if (inet6ctlerrmap[cmd] == 0) { return; } /* if the parameter is from icmp6, decode it. */ if (d != NULL) { ip6cp = (struct ip6ctlparam *)d; icmp6 = ip6cp->ip6c_icmp6; m = ip6cp->ip6c_m; ip6 = ip6cp->ip6c_ip6; off = ip6cp->ip6c_off; cmdarg = ip6cp->ip6c_cmdarg; sa6_src = ip6cp->ip6c_src; } else { m = NULL; ip6 = NULL; cmdarg = NULL; sa6_src = &sa6_any; } if (ip6 != NULL) { #if SKYWALK union sockaddr_in_4_6 sock_laddr; struct protoctl_ev_val prctl_ev_val; #endif /* SKYWALK */ /* * XXX: We assume that when IPV6 is non NULL, * M and OFF are valid. */ /* check if we can safely examine src and dst ports */ if (m->m_pkthdr.len < off + sizeof(*uhp)) { return; } bzero(&uh, sizeof(uh)); m_copydata(m, off, sizeof(*uhp), (caddr_t)&uh); in6p = in6_pcblookup_hash(&udbinfo, &ip6->ip6_dst, uh.uh_dport, ip6_input_getdstifscope(m), &ip6->ip6_src, uh.uh_sport, ip6_input_getsrcifscope(m), 0, NULL); if (cmd == PRC_MSGSIZE && in6p != NULL && !uuid_is_null(in6p->necp_client_uuid)) { uuid_t null_uuid; uuid_clear(null_uuid); necp_update_flow_protoctl_event(null_uuid, in6p->necp_client_uuid, PRC_MSGSIZE, ntohl(icmp6->icmp6_mtu), 0); /* * Avoid setting so_error when using Network.framework * since the notification of PRC_MSGSIZE has been delivered * through NECP. */ in6_pcbnotify(&udbinfo, sa, uh.uh_dport, SA(ip6cp->ip6c_src), uh.uh_sport, cmd, cmdarg, NULL); } else { in6_pcbnotify(&udbinfo, sa, uh.uh_dport, SA(ip6cp->ip6c_src), uh.uh_sport, cmd, cmdarg, notify); } #if SKYWALK bzero(&prctl_ev_val, sizeof(prctl_ev_val)); bzero(&sock_laddr, sizeof(sock_laddr)); if (cmd == PRC_MSGSIZE && icmp6 != NULL) { prctl_ev_val.val = ntohl(icmp6->icmp6_mtu); } sock_laddr.sin6.sin6_family = AF_INET6; sock_laddr.sin6.sin6_len = sizeof(sock_laddr.sin6); sock_laddr.sin6.sin6_addr = ip6->ip6_src; protoctl_event_enqueue_nwk_wq_entry(ifp, SA(&sock_laddr), sa, uh.uh_sport, uh.uh_dport, IPPROTO_UDP, cmd, &prctl_ev_val); #endif /* SKYWALK */ } /* * XXX The else condition here was broken for a long time. * Fixing it made us deliver notification correctly but broke * some frameworks that didn't handle it well. * For now we have removed it and will revisit it later. */ } static int udp6_abort(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == NULL) { panic("%s: so=%p null inp", __func__, so); /* NOTREACHED */ } soisdisconnected(so); in6_pcbdetach(inp); return 0; } static int udp6_attach(struct socket *so, int proto, struct proc *p) { #pragma unused(proto) struct inpcb *inp; int error; if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, udp_sendspace, udp_recvspace); if (error) { return error; } } inp = sotoinpcb(so); if (inp != NULL) { return EINVAL; } error = in_pcballoc(so, &udbinfo, p); if (error) { return error; } inp = (struct inpcb *)so->so_pcb; inp->inp_vflag |= INP_IPV6; if (ip6_mapped_addr_on) { inp->inp_vflag |= INP_IPV4; } inp->in6p_hops = -1; /* use kernel default */ inp->in6p_cksum = -1; /* just to be sure */ /* * XXX: ugly!! * IPv4 TTL initialization is necessary for an IPv6 socket as well, * because the socket may be bound to an IPv6 wildcard address, * which may match an IPv4-mapped IPv6 address. */ inp->inp_ip_ttl = (u_char)ip_defttl; if (nstat_collect) { nstat_udp_new_pcb(inp); } return 0; } static int udp6_bind(struct socket *so, struct sockaddr *nam, struct proc *p) { struct inpcb *inp; int error; inp = sotoinpcb(so); if (inp == NULL) { return EINVAL; } /* * Another thread won the binding race so do not change inp_vflag */ if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) { return EINVAL; } const uint8_t old_flags = inp->inp_vflag; inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { struct sockaddr_in6 *sin6_p; sin6_p = SIN6(nam); if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) { inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_V4MAPPEDV6; } else if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6_p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; inp->inp_vflag |= INP_V4MAPPEDV6; error = in_pcbbind(inp, SA(&sin), p); if (error != 0) { inp->inp_vflag = old_flags; } return error; } } error = in6_pcbbind(inp, nam, p); if (error != 0) { inp->inp_vflag = old_flags; } UDP_LOG_BIND(inp, error); return error; } int udp6_connect(struct socket *so, struct sockaddr *nam, struct proc *p) { struct inpcb *inp; int error; struct sockaddr_in6 *sin6_p = SIN6(nam); #if defined(NECP) && defined(FLOW_DIVERT) int should_use_flow_divert = 0; #endif /* defined(NECP) && defined(FLOW_DIVERT) */ inp = sotoinpcb(so); if (inp == NULL) { return EINVAL; } #if defined(NECP) && defined(FLOW_DIVERT) should_use_flow_divert = necp_socket_should_use_flow_divert(inp); #endif /* defined(NECP) && defined(FLOW_DIVERT) */ /* * It is possible that the socket is bound to v4 mapped v6 address. * Post that do not allow connect to a v6 endpoint. */ if (inp->inp_vflag & INP_V4MAPPEDV6 && !IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) { sin6_p->sin6_addr.s6_addr[10] = 0xff; sin6_p->sin6_addr.s6_addr[11] = 0xff; } else { return EINVAL; } } if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { struct sockaddr_in sin; const uint8_t old_flags = inp->inp_vflag; if (inp->inp_faddr.s_addr != INADDR_ANY) { return EISCONN; } if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) { so->so_flags1 |= SOF1_CONNECT_COUNTED; INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected); } in6_sin6_2_sin(&sin, sin6_p); #if defined(NECP) && defined(FLOW_DIVERT) if (should_use_flow_divert) { goto do_flow_divert; } #endif /* defined(NECP) && defined(FLOW_DIVERT) */ inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; inp->inp_vflag |= INP_V4MAPPEDV6; error = in_pcbconnect(inp, SA(&sin), p, IFSCOPE_NONE, NULL); if (error == 0) { #if NECP /* Update NECP client with connected five-tuple */ if (!uuid_is_null(inp->necp_client_uuid)) { socket_unlock(so, 0); necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp); socket_lock(so, 0); } #endif /* NECP */ soisconnected(so); } else { inp->inp_vflag = old_flags; } UDP_LOG_CONNECT(inp, error); return error; } } if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { return EISCONN; } if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) { so->so_flags1 |= SOF1_CONNECT_COUNTED; INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet6_dgram_connected); } #if defined(NECP) && defined(FLOW_DIVERT) do_flow_divert: if (should_use_flow_divert) { error = flow_divert_pcb_init(so); if (error == 0) { error = flow_divert_connect_out(so, nam, p); } return error; } #endif /* defined(NECP) && defined(FLOW_DIVERT) */ error = in6_pcbconnect(inp, nam, p); if (error == 0) { /* should be non mapped addr */ if (ip6_mapped_addr_on || (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; } #if NECP /* Update NECP client with connected five-tuple */ if (!uuid_is_null(inp->necp_client_uuid)) { socket_unlock(so, 0); necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp); socket_lock(so, 0); } #endif /* NECP */ soisconnected(so); if (inp->inp_flowhash == 0) { inp_calc_flowhash(inp); ASSERT(inp->inp_flowhash != 0); } /* update flowinfo - RFC 6437 */ if (inp->inp_flow == 0 && inp->in6p_flags & IN6P_AUTOFLOWLABEL) { inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; inp->inp_flow |= (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK); } inp->inp_connect_timestamp = mach_continuous_time(); } UDP_LOG_CONNECT(inp, error); return error; } static int udp6_connectx(struct socket *so, struct sockaddr *src, struct sockaddr *dst, struct proc *p, uint32_t ifscope, sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg, uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written) { return udp_connectx_common(so, AF_INET6, src, dst, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written); } static int udp6_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == NULL) { return EINVAL; } UDP_LOG_CONNECTION_SUMMARY(inp); in6_pcbdetach(inp); return 0; } static int udp6_disconnect(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == NULL #if NECP || (necp_socket_should_use_flow_divert(inp)) #endif /* NECP */ ) { return inp == NULL ? EINVAL : EPROTOTYPE; } if (inp->inp_vflag & INP_IPV4) { struct pr_usrreqs *pru; pru = ip_protox[IPPROTO_UDP]->pr_usrreqs; return (*pru->pru_disconnect)(so); } if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { return ENOTCONN; } UDP_LOG_CONNECTION_SUMMARY(inp); in6_pcbdisconnect(inp); /* reset flow-controlled state, just in case */ inp_reset_fc_state(inp); inp->in6p_laddr = in6addr_any; inp->inp_lifscope = IFSCOPE_NONE; inp->in6p_last_outifp = NULL; #if SKYWALK if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { netns_set_ifnet(&inp->inp_netns_token, NULL); } #endif /* SKYWALK */ so->so_state &= ~SS_ISCONNECTED; /* XXX */ return 0; } static int udp6_disconnectx(struct socket *so, sae_associd_t aid, sae_connid_t cid) { #pragma unused(cid) if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) { return EINVAL; } return udp6_disconnect(so); } static int udp6_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct proc *p) { struct inpcb *inp; int error = 0; #if defined(NECP) && defined(FLOW_DIVERT) int should_use_flow_divert = 0; #endif /* defined(NECP) && defined(FLOW_DIVERT) */ #if CONTENT_FILTER struct m_tag *cfil_tag = NULL; struct sockaddr *cfil_faddr = NULL; #endif inp = sotoinpcb(so); if (inp == NULL) { error = EINVAL; goto bad; } #if CONTENT_FILTER //If socket is subject to UDP Content Filter and unconnected, get addr from tag. if (CFIL_DGRAM_FILTERED(so) && !addr && IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { cfil_tag = cfil_dgram_get_socket_state(m, NULL, NULL, &cfil_faddr, NULL); if (cfil_tag) { addr = SA(cfil_faddr); } } #endif #if defined(NECP) && defined(FLOW_DIVERT) should_use_flow_divert = necp_socket_should_use_flow_divert(inp); #endif /* defined(NECP) && defined(FLOW_DIVERT) */ if (addr != NULL) { if (addr->sa_len != sizeof(struct sockaddr_in6)) { error = EINVAL; goto bad; } if (addr->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto bad; } } if (ip6_mapped_addr_on || (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { int hasv4addr; struct sockaddr_in6 *sin6 = NULL; if (addr == NULL) { hasv4addr = (inp->inp_vflag & INP_IPV4); } else { sin6 = SIN6(addr); hasv4addr = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 1 : 0; } if (hasv4addr) { struct pr_usrreqs *pru; if (sin6 != NULL) { in6_sin6_2_sin_in_sock(addr); } #if defined(NECP) && defined(FLOW_DIVERT) if (should_use_flow_divert) { goto do_flow_divert; } #endif /* defined(NECP) && defined(FLOW_DIVERT) */ pru = ip_protox[IPPROTO_UDP]->pr_usrreqs; error = ((*pru->pru_send)(so, flags, m, addr, control, p)); #if CONTENT_FILTER if (cfil_tag) { m_tag_free(cfil_tag); } #endif /* addr will just be freed in sendit(). */ return error; } } #if defined(NECP) && defined(FLOW_DIVERT) do_flow_divert: if (should_use_flow_divert) { /* Implicit connect */ error = flow_divert_implicit_data_out(so, flags, m, addr, control, p); #if CONTENT_FILTER if (cfil_tag) { m_tag_free(cfil_tag); } #endif return error; } #endif /* defined(NECP) && defined(FLOW_DIVERT) */ #if SKYWALK sk_protect_t protect = sk_async_transmit_protect(); #endif /* SKYWALK */ error = udp6_output(inp, m, addr, control, p); #if SKYWALK sk_async_transmit_unprotect(protect); #endif /* SKYWALK */ #if CONTENT_FILTER if (cfil_tag) { m_tag_free(cfil_tag); } #endif return error; bad: VERIFY(error != 0); if (m != NULL) { m_freem(m); } if (control != NULL) { m_freem(control); } #if CONTENT_FILTER if (cfil_tag) { m_tag_free(cfil_tag); } #endif return error; } /* * Checksum extended UDP header and data. */ static int udp6_input_checksum(struct mbuf *m, struct udphdr *uh, int off, int ulen) { struct ifnet *ifp = m->m_pkthdr.rcvif; struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); if (!(m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && uh->uh_sum == 0) { /* UDP/IPv6 checksum is mandatory (RFC2460) */ /* * If checksum was already validated, ignore this check. * This is necessary for transport-mode ESP, which may be * getting UDP payloads without checksums when the network * has a NAT64. */ udpstat.udps_nosum++; goto badsum; } if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) || (m->m_pkthdr.pkt_flags & PKTF_LOOP)) && (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { uh->uh_sum = m->m_pkthdr.csum_rx_val; } else { uint32_t sum = m->m_pkthdr.csum_rx_val; uint32_t start = m->m_pkthdr.csum_rx_start; int32_t trailer = (m_pktlen(m) - (off + ulen)); /* * Perform 1's complement adjustment of octets * that got included/excluded in the hardware- * calculated checksum value. Also take care * of any trailing bytes and subtract out * their partial sum. */ ASSERT(trailer >= 0); if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) && (start != off || trailer != 0)) { uint32_t swbytes = (uint32_t)trailer; uint16_t s = 0, d = 0; if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { s = ip6->ip6_src.s6_addr16[1]; ip6->ip6_src.s6_addr16[1] = 0; } if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { d = ip6->ip6_dst.s6_addr16[1]; ip6->ip6_dst.s6_addr16[1] = 0; } /* callee folds in sum */ sum = m_adj_sum16(m, start, off, ulen, sum); if (off > start) { swbytes += (off - start); } else { swbytes += (start - off); } if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { ip6->ip6_src.s6_addr16[1] = s; } if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { ip6->ip6_dst.s6_addr16[1] = d; } if (swbytes != 0) { udp_in_cksum_stats(swbytes); } if (trailer != 0) { m_adj(m, -trailer); } } uh->uh_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst, sum + htonl(ulen + IPPROTO_UDP)); } uh->uh_sum ^= 0xffff; } else { udp_in6_cksum_stats(ulen); uh->uh_sum = in6_cksum(m, IPPROTO_UDP, off, ulen); } if (uh->uh_sum != 0) { badsum: udpstat.udps_badsum++; IF_UDP_STATINC(ifp, badchksum); return -1; } return 0; } int udp6_defunct(struct socket *so) { struct ip_moptions *imo; struct ip6_moptions *im6o; struct inpcb *inp; inp = sotoinpcb(so); if (inp == NULL) { return EINVAL; } im6o = inp->in6p_moptions; inp->in6p_moptions = NULL; if (im6o != NULL) { struct proc *p = current_proc(); SODEFUNCTLOG("%s[%d, %s]: defuncting so 0x%llu drop ipv6 multicast memberships", __func__, proc_pid(p), proc_best_name(p), so->so_gencnt); IM6O_REMREF(im6o); } imo = inp->inp_moptions; if (imo != NULL) { struct proc *p = current_proc(); SODEFUNCTLOG("%s[%d, %s]: defuncting so 0x%llu drop ipv4 multicast memberships", __func__, proc_pid(p), proc_best_name(p), so->so_gencnt); inp->inp_moptions = NULL; IMO_REMREF(imo); } return 0; }