/* * Copyright (c) 2008-2023 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* $FreeBSD: src/sys/netkey/key.c,v 1.16.2.13 2002/07/24 18:17:40 ume Exp $ */ /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This code is referd to RFC 2367 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if IPSEC_ESP #include #include #endif /* randomness */ #include #include #if SKYWALK #include #endif /* SKYWALK */ #define FULLMASK 0xff static LCK_GRP_DECLARE(sadb_mutex_grp, "sadb"); LCK_MTX_DECLARE(sadb_mutex_data, &sadb_mutex_grp); /* * Note on SA reference counting: * - SAs that are not in DEAD state will have (total external reference + 1) * following value in reference count field. they cannot be freed and are * referenced from SA header. * - SAs that are in DEAD state will have (total external reference) * in reference count field. they are ready to be freed. reference from * SA header will be removed in key_delsav(), when the reference count * field hits 0 (= no external reference other than from SA header. */ u_int32_t key_debug_level = 0; //### our sysctl is not dynamic static int key_timehandler_running = 0; static u_int key_spi_trycnt = 1000; static u_int32_t key_spi_minval = 0x100; static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ static u_int32_t policy_id = 0; static u_int32_t key_int_random = 60; /*interval to initialize randseed,1(m)*/ static u_int32_t key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ static u_int32_t key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ static u_int32_t key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ static int key_preferred_oldsa = 0; /* preferred old sa rather than new sa.*/ __private_extern__ int natt_keepalive_interval = 20; /* interval between natt keepalives.*/ static u_int32_t ipsec_policy_count = 0; static u_int32_t ipsec_sav_count = 0; static u_int32_t acq_seq = 0; static int key_tick_init_random = 0; static u_int64_t up_time = 0; __private_extern__ u_int64_t natt_now = 0; static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; static LIST_HEAD(_custom_sahtree, secashead) custom_sahtree; /* registed list */ #define SPIHASHSIZE 128 #define SPIHASH(x) (((x) ^ ((x) >> 16)) % SPIHASHSIZE) static LIST_HEAD(_spihash, secasvar) spihash[SPIHASHSIZE]; #ifndef IPSEC_NONBLOCK_ACQUIRE static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ #endif static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ struct key_cb key_cb; /* search order for SAs */ static const u_int saorder_state_valid_prefer_old[] = { SADB_SASTATE_DYING, SADB_SASTATE_MATURE, }; static const u_int saorder_state_valid_prefer_new[] = { SADB_SASTATE_MATURE, SADB_SASTATE_DYING, }; static const u_int saorder_state_alive[] = { /* except DEAD */ SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL }; static const u_int saorder_state_any[] = { SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD }; static const int minsize[] = { sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ sizeof(struct sadb_sa), /* SADB_EXT_SA */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 0, /* SADB_X_EXT_KMPRIVATE */ sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ sizeof(struct sadb_session_id), /* SADB_EXT_SESSION_ID */ sizeof(struct sadb_sastat), /* SADB_EXT_SASTAT */ sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_IPSECIF */ sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_SRC_START */ sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_SRC_END */ sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_DST_START */ sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_DST_END */ sizeof(struct sadb_address), /* SADB_EXT_MIGRATE_ADDRESS_SRC */ sizeof(struct sadb_address), /* SADB_EXT_MIGRATE_ADDRESS_DST */ sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_MIGRATE_IPSECIF */ }; static const int maxsize[] = { sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ sizeof(struct sadb_sa_2), /* SADB_EXT_SA */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 0, /* SADB_EXT_ADDRESS_SRC */ 0, /* SADB_EXT_ADDRESS_DST */ 0, /* SADB_EXT_ADDRESS_PROXY */ 0, /* SADB_EXT_KEY_AUTH */ 0, /* SADB_EXT_KEY_ENCRYPT */ 0, /* SADB_EXT_IDENTITY_SRC */ 0, /* SADB_EXT_IDENTITY_DST */ 0, /* SADB_EXT_SENSITIVITY */ 0, /* SADB_EXT_PROPOSAL */ 0, /* SADB_EXT_SUPPORTED_AUTH */ 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 0, /* SADB_X_EXT_KMPRIVATE */ 0, /* SADB_X_EXT_POLICY */ sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 0, /* SADB_EXT_SESSION_ID */ 0, /* SADB_EXT_SASTAT */ sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_IPSECIF */ 0, /* SADB_X_EXT_ADDR_RANGE_SRC_START */ 0, /* SADB_X_EXT_ADDR_RANGE_SRC_END */ 0, /* SADB_X_EXT_ADDR_RANGE_DST_START */ 0, /* SADB_X_EXT_ADDR_RANGE_DST_END */ 0, /* SADB_EXT_MIGRATE_ADDRESS_SRC */ 0, /* SADB_EXT_MIGRATE_ADDRESS_DST */ sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_MIGRATE_IPSECIF */ }; static int ipsec_esp_keymin = 256; static int ipsec_esp_auth = 0; static int ipsec_ah_keymin = 128; SYSCTL_DECL(_net_key); /* Thread safe: no accumulated state */ SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW | CTLFLAG_LOCKED, \ &key_debug_level, 0, ""); /* max count of trial for the decision of spi value */ SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW | CTLFLAG_LOCKED, \ &key_spi_trycnt, 0, ""); /* minimum spi value to allocate automatically. */ SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW | CTLFLAG_LOCKED, \ &key_spi_minval, 0, ""); /* maximun spi value to allocate automatically. */ SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW | CTLFLAG_LOCKED, \ &key_spi_maxval, 0, ""); /* interval to initialize randseed */ SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW | CTLFLAG_LOCKED, \ &key_int_random, 0, ""); /* lifetime for larval SA; thread safe due to > compare */ SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED, \ &key_larval_lifetime, 0, ""); /* counter for blocking to send SADB_ACQUIRE to IKEd */ SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW | CTLFLAG_LOCKED, \ &key_blockacq_count, 0, ""); /* lifetime for blocking to send SADB_ACQUIRE to IKEd: Thread safe, > compare */ SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED, \ &key_blockacq_lifetime, 0, ""); /* ESP auth */ SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW | CTLFLAG_LOCKED, \ &ipsec_esp_auth, 0, ""); /* minimum ESP key length */ SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW | CTLFLAG_LOCKED, \ &ipsec_esp_keymin, 0, ""); /* minimum AH key length */ SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW | CTLFLAG_LOCKED, \ &ipsec_ah_keymin, 0, ""); /* perfered old SA rather than new SA */ SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW | CTLFLAG_LOCKED, \ &key_preferred_oldsa, 0, ""); /* time between NATT keepalives in seconds, 0 disabled */ SYSCTL_INT(_net_key, KEYCTL_NATT_KEEPALIVE_INTERVAL, natt_keepalive_interval, CTLFLAG_RW | CTLFLAG_LOCKED, \ &natt_keepalive_interval, 0, ""); /* PF_KEY statistics */ SYSCTL_STRUCT(_net_key, KEYCTL_PFKEYSTAT, pfkeystat, CTLFLAG_RD | CTLFLAG_LOCKED, \ &pfkeystat, pfkeystat, ""); #ifndef LIST_FOREACH #define LIST_FOREACH(elm, head, field) \ for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field)) #endif #define __LIST_CHAINED(elm) \ (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) #define LIST_INSERT_TAIL(head, elm, type, field) \ do {\ struct type *curelm = LIST_FIRST(head); \ if (curelm == NULL) {\ LIST_INSERT_HEAD(head, elm, field); \ } else { \ while (LIST_NEXT(curelm, field)) \ curelm = LIST_NEXT(curelm, field);\ LIST_INSERT_AFTER(curelm, elm, field);\ }\ } while (0) #define KEY_CHKSASTATE(head, sav, name) \ if ((head) != (sav)) { \ ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ (name), (head), (sav))); \ continue; \ } \ #define KEY_CHKSPDIR(head, sp, name) \ do { \ if ((head) != (sp)) { \ ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ "anyway continue.\n", \ (name), (head), (sp))); \ } \ } while (0) /* * set parameters into secpolicyindex buffer. * Must allocate secpolicyindex buffer passed to this function. */ #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, ifp, s_s, s_e, d_s, d_e, idx) \ do { \ bzero((idx), sizeof(struct secpolicyindex)); \ (idx)->dir = (_dir); \ (idx)->prefs = (ps); \ (idx)->prefd = (pd); \ (idx)->ul_proto = (ulp); \ (idx)->internal_if = (ifp); \ if (s) bcopy((s), &(idx)->src, ((struct sockaddr *)(s))->sa_len); \ if (d) bcopy((d), &(idx)->dst, ((struct sockaddr *)(d))->sa_len); \ if (s_s) bcopy((s_s), &(idx)->src_range.start, ((struct sockaddr *)(s_s))->sa_len); \ if (s_e) bcopy((s_e), &(idx)->src_range.end, ((struct sockaddr *)(s_e))->sa_len); \ if (d_s) bcopy((d_s), &(idx)->dst_range.start, ((struct sockaddr *)(d_s))->sa_len); \ if (d_e) bcopy((d_e), &(idx)->dst_range.end, ((struct sockaddr *)(d_e))->sa_len); \ } while (0) /* * set parameters into secasindex buffer. * Must allocate secasindex buffer before calling this function. */ #define KEY_SETSECASIDX(p, m, r, s, d, ifi, idx) \ do { \ bzero((idx), sizeof(struct secasindex)); \ (idx)->proto = (p); \ (idx)->mode = (m); \ (idx)->reqid = (r); \ bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ (idx)->ipsec_ifindex = (ifi); \ } while (0) /* key statistics */ struct _keystat { u_int32_t getspi_count; /* the avarage of count to try to get new SPI */ } keystat; struct sadb_msghdr { struct sadb_msg *msg; struct sadb_ext *ext[SADB_EXT_MAX + 1]; int extoff[SADB_EXT_MAX + 1]; int extlen[SADB_EXT_MAX + 1]; }; static struct secpolicy *__key_getspbyid(u_int32_t id); static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int, u_int16_t); static int key_do_get_translated_port(struct secashead *, struct secasvar *, u_int); static void key_delsp(struct secpolicy *); static struct secpolicy *key_getsp(struct secpolicyindex *); static u_int16_t key_newreqid(void); static struct mbuf *key_gather_mbuf(struct mbuf *, const struct sadb_msghdr *, int, int, int *); static int key_spdadd(struct socket *, struct mbuf *, const struct sadb_msghdr *); static u_int32_t key_getnewspid(void); static int key_spddelete(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spddelete2(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spdenable(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spddisable(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spdget(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spdflush(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spddump(struct socket *, struct mbuf *, const struct sadb_msghdr *); static struct mbuf *key_setdumpsp(struct secpolicy *, u_int8_t, u_int32_t, u_int32_t); static u_int key_getspreqmsglen(struct secpolicy *); static int key_spdexpire(struct secpolicy *); static struct secashead *key_newsah(struct secasindex *, ifnet_t, u_int, u_int8_t, u_int16_t); static struct secasvar *key_newsav(struct mbuf *, const struct sadb_msghdr *, struct secashead *, int *, struct socket *); static struct secashead *key_getsah(struct secasindex *, u_int16_t); static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); static void key_setspi __P((struct secasvar *, u_int32_t)); static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); static int key_setsaval(struct secasvar *, struct mbuf *, const struct sadb_msghdr *); static int key_mature(struct secasvar *); static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, u_int8_t, u_int32_t, u_int32_t); static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, u_int32_t, pid_t, u_int16_t); static struct mbuf *key_setsadbsa(struct secasvar *); static struct mbuf *key_setsadbaddr(u_int16_t, struct sockaddr *, size_t, u_int8_t); static struct mbuf *key_setsadbipsecif(ifnet_t, ifnet_t, ifnet_t, u_int8_t); static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t, u_int16_t); static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, u_int32_t); static struct mbuf *key_setsalifecurr(struct sadb_lifetime *); static void *key_newbuf(const void *, u_int); static int key_ismyaddr6(struct sockaddr_in6 *); static void key_update_natt_keepalive_timestamp(struct secasvar *, struct secasvar *); /* flags for key_cmpsaidx() */ #define CMP_HEAD 0x1 /* protocol, addresses. */ #define CMP_PORT 0x2 /* additionally HEAD, reqid, mode. */ #define CMP_REQID 0x4 /* additionally HEAD, reqid. */ #define CMP_MODE 0x8 /* additionally mode. */ #define CMP_EXACTLY 0xF /* all elements. */ static int key_cmpsaidx(struct secasindex *, struct secasindex *, int); static int key_cmpspidx_exactly(struct secpolicyindex *, struct secpolicyindex *); static int key_cmpspidx_withmask(struct secpolicyindex *, struct secpolicyindex *); static int key_sockaddrcmp(struct sockaddr *, struct sockaddr *, int); static int key_is_addr_in_range(struct sockaddr_storage *, struct secpolicyaddrrange *); static int key_bbcmp(caddr_t, caddr_t, u_int); static void key_srandom(void); static u_int8_t key_satype2proto(u_int8_t); static u_int8_t key_proto2satype(u_int16_t); static int key_getspi(struct socket *, struct mbuf *, const struct sadb_msghdr *); static u_int32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); static int key_update(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_add(struct socket *, struct mbuf *, const struct sadb_msghdr *); static struct mbuf *key_getmsgbuf_x1(struct mbuf *, const struct sadb_msghdr *); static int key_delete(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_get(struct socket *, struct mbuf *, const struct sadb_msghdr *); static void key_getcomb_setlifetime(struct sadb_comb *); #if IPSEC_ESP static struct mbuf *key_getcomb_esp(void); #endif static struct mbuf *key_getcomb_ah(void); static struct mbuf *key_getprop(const struct secasindex *); static int key_acquire(struct secasindex *, struct secpolicy *); #ifndef IPSEC_NONBLOCK_ACQUIRE static struct secacq *key_newacq(struct secasindex *); static struct secacq *key_getacq(struct secasindex *); static struct secacq *key_getacqbyseq(u_int32_t); #endif static struct secspacq *key_newspacq(struct secpolicyindex *); static struct secspacq *key_getspacq(struct secpolicyindex *); static int key_acquire2(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_register(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_expire(struct secasvar *); static int key_flush(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_dump(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_promisc(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_senderror(struct socket *, struct mbuf *, int); static int key_validate_ext(const struct sadb_ext *, int); static int key_align(struct mbuf *, struct sadb_msghdr *); static struct mbuf *key_alloc_mbuf(int); static int key_getsastat(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_migrate(struct socket *, struct mbuf *, const struct sadb_msghdr *); static void bzero_keys(const struct sadb_msghdr *); extern int ipsec_bypass; extern int esp_udp_encap_port; int ipsec_send_natt_keepalive(struct secasvar *sav); bool ipsec_fill_offload_frame(ifnet_t ifp, struct secasvar *sav, struct ifnet_keepalive_offload_frame *frame, size_t frame_data_offset); void key_init(struct protosw *, struct domain *); static u_int64_t key_get_continuous_time_ns(void) { u_int64_t current_time_ns = 0; absolutetime_to_nanoseconds(mach_continuous_time(), ¤t_time_ns); return current_time_ns; } static u_int64_t key_convert_continuous_time_ns(u_int64_t time_value) { // Pass through 0 as it indicates value is not set if (time_value == 0) { return 0; } // Get current time clock_sec_t time_sec; clock_usec_t time_usec; clock_get_calendar_microtime(&time_sec, &time_usec); // Get time offset const u_int64_t time_offset_ns = key_get_continuous_time_ns() - time_value; const clock_sec_t time_offset_sec = time_offset_ns / NSEC_PER_SEC; const clock_usec_t time_offset_usec = (u_int32_t)(time_offset_ns - (time_offset_sec * NSEC_PER_SEC)) / NSEC_PER_USEC; // Subtract offset from current time time_sec -= time_offset_sec; if (time_offset_usec > time_usec) { time_sec--; time_usec = USEC_PER_SEC - (time_offset_usec - time_usec); } else { time_usec -= time_offset_usec; } // Return result rounded to nearest second return time_sec + ((time_usec >= (USEC_PER_SEC / 2)) ? 1 : 0); } static void key_get_flowid(struct secasvar *sav) { #if SKYWALK struct flowidns_flow_key fk; struct secashead *sah = sav->sah; if ((sah->dir != IPSEC_DIR_OUTBOUND) && (sah->dir != IPSEC_DIR_ANY)) { return; } bzero(&fk, sizeof(fk)); ASSERT(sah->saidx.src.ss_family == sah->saidx.dst.ss_family); switch (sah->saidx.src.ss_family) { case AF_INET: ASSERT(sah->saidx.src.ss_len == sizeof(struct sockaddr_in)); ASSERT(sah->saidx.dst.ss_len == sizeof(struct sockaddr_in)); fk.ffk_laddr_v4 = ((struct sockaddr_in *)&(sah->saidx.src))->sin_addr; fk.ffk_raddr_v4 = ((struct sockaddr_in *)&(sah->saidx.dst))->sin_addr; break; case AF_INET6: ASSERT(sah->saidx.src.ss_len == sizeof(struct sockaddr_in6)); ASSERT(sah->saidx.dst.ss_len == sizeof(struct sockaddr_in6)); fk.ffk_laddr_v6 = ((struct sockaddr_in6 *)&(sah->saidx.src))->sin6_addr; fk.ffk_raddr_v6 = ((struct sockaddr_in6 *)&(sah->saidx.dst))->sin6_addr; break; default: VERIFY(0); break; } ASSERT(sav->spi != 0); fk.ffk_spi = sav->spi;; fk.ffk_af = sah->saidx.src.ss_family; fk.ffk_proto = (uint8_t)(sah->saidx.proto); flowidns_allocate_flowid(FLOWIDNS_DOMAIN_IPSEC, &fk, &sav->flowid); #else /* !SKYWALK */ sav->flowid = 0; #endif /* !SKYWALK */ } static void key_release_flowid(struct secasvar *sav) { #if SKYWALK if (sav->flowid != 0) { flowidns_release_flowid(sav->flowid); sav->flowid = 0; } #else /* !SKYWALK */ VERIFY(sav->flowid == 0); #endif /* !SKYWALK */ } /* * PF_KEY init * setup locks, and then init timer and associated data */ void key_init(struct protosw *pp, struct domain *dp __unused) { static int key_initialized = 0; int i; VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED); _CASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= _MHLEN); _CASSERT(MAX_REPLAY_WINDOWS == MBUF_TC_MAX); if (key_initialized) { return; } key_initialized = 1; for (i = 0; i < SPIHASHSIZE; i++) { LIST_INIT(&spihash[i]); } bzero((caddr_t)&key_cb, sizeof(key_cb)); for (i = 0; i < IPSEC_DIR_MAX; i++) { LIST_INIT(&sptree[i]); } ipsec_policy_count = 0; LIST_INIT(&sahtree); LIST_INIT(&custom_sahtree); for (i = 0; i <= SADB_SATYPE_MAX; i++) { LIST_INIT(®tree[i]); } ipsec_sav_count = 0; #ifndef IPSEC_NONBLOCK_ACQUIRE LIST_INIT(&acqtree); #endif LIST_INIT(&spacqtree); /* system default */ #if INET ip4_def_policy.policy = IPSEC_POLICY_NONE; ip4_def_policy.refcnt++; /*never reclaim this*/ #endif ip6_def_policy.policy = IPSEC_POLICY_NONE; ip6_def_policy.refcnt++; /*never reclaim this*/ key_timehandler_running = 0; /* initialize key statistics */ keystat.getspi_count = 1; esp_init(); #ifndef __APPLE__ printf("IPsec: Initialized Security Association Processing.\n"); #endif } static void key_start_timehandler(void) { /* must be called while locked */ LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); if (key_timehandler_running == 0) { key_timehandler_running = 1; (void)timeout((void *)key_timehandler, (void *)0, hz); } /* Turn off the ipsec bypass */ if (ipsec_bypass != 0) { ipsec_bypass = 0; } } /* %%% IPsec policy management */ /* * allocating a SP for OUTBOUND or INBOUND packet. * Must call key_freesp() later. * OUT: NULL: not found * others: found and return the pointer. */ struct secpolicy * key_allocsp( struct secpolicyindex *spidx, u_int dir) { struct secpolicy *sp; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (spidx == NULL) { panic("key_allocsp: NULL pointer is passed."); } /* check direction */ switch (dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: panic("key_allocsp: Invalid direction is passed."); } /* get a SP entry */ KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("*** objects\n"); kdebug_secpolicyindex(spidx)); lck_mtx_lock(sadb_mutex); LIST_FOREACH(sp, &sptree[dir], chain) { KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("*** in SPD\n"); kdebug_secpolicyindex(&sp->spidx)); if (sp->state == IPSEC_SPSTATE_DEAD) { continue; } /* If the policy is disabled, skip */ if (sp->disabled > 0) { continue; } /* If the incoming spidx specifies bound if, * ignore unbound policies*/ if (spidx->internal_if != NULL && (sp->spidx.internal_if == NULL || sp->ipsec_if == NULL)) { continue; } if (key_cmpspidx_withmask(&sp->spidx, spidx)) { goto found; } } lck_mtx_unlock(sadb_mutex); return NULL; found: /* found a SPD entry */ sp->lastused = key_get_continuous_time_ns(); sp->refcnt++; lck_mtx_unlock(sadb_mutex); /* sanity check */ KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp"); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP key_allocsp cause refcnt++:%d SP:0x%llx\n", sp->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sp))); return sp; } /* * return a policy that matches this particular inbound packet. * XXX slow */ struct secpolicy * key_gettunnel( struct sockaddr *osrc, struct sockaddr *odst, struct sockaddr *isrc, struct sockaddr *idst) { struct secpolicy *sp; const int dir = IPSEC_DIR_INBOUND; struct ipsecrequest *r1, *r2, *p; struct sockaddr *os, *od, *is, *id; struct secpolicyindex spidx; if (isrc->sa_family != idst->sa_family) { ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.", isrc->sa_family, idst->sa_family)); return NULL; } lck_mtx_lock(sadb_mutex); LIST_FOREACH(sp, &sptree[dir], chain) { if (sp->state == IPSEC_SPSTATE_DEAD) { continue; } r1 = r2 = NULL; for (p = sp->req; p; p = p->next) { if (p->saidx.mode != IPSEC_MODE_TUNNEL) { continue; } r1 = r2; r2 = p; if (!r1) { /* here we look at address matches only */ spidx = sp->spidx; if (isrc->sa_len > sizeof(spidx.src) || idst->sa_len > sizeof(spidx.dst)) { continue; } bcopy(isrc, &spidx.src, isrc->sa_len); bcopy(idst, &spidx.dst, idst->sa_len); if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) { continue; } } else { is = (struct sockaddr *)&r1->saidx.src; id = (struct sockaddr *)&r1->saidx.dst; if (key_sockaddrcmp(is, isrc, 0) || key_sockaddrcmp(id, idst, 0)) { continue; } } os = (struct sockaddr *)&r2->saidx.src; od = (struct sockaddr *)&r2->saidx.dst; if (key_sockaddrcmp(os, osrc, 0) || key_sockaddrcmp(od, odst, 0)) { continue; } goto found; } } lck_mtx_unlock(sadb_mutex); return NULL; found: sp->lastused = key_get_continuous_time_ns(); sp->refcnt++; lck_mtx_unlock(sadb_mutex); return sp; } struct secasvar * key_alloc_outbound_sav_for_interface(ifnet_t interface, int family, struct sockaddr *src, struct sockaddr *dst) { struct secashead *sah; struct secasvar *sav; u_int stateidx; u_int state; const u_int *saorder_state_valid; int arraysize; struct sockaddr_in *sin; u_int16_t dstport; bool strict = true; if (interface == NULL) { return NULL; } LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(sadb_mutex); do { LIST_FOREACH(sah, &sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) { continue; } if (sah->ipsec_if == interface && (family == AF_INET6 || family == AF_INET) && sah->dir == IPSEC_DIR_OUTBOUND) { if (strict && sah->saidx.mode == IPSEC_MODE_TRANSPORT && src != NULL && dst != NULL) { // Validate addresses for transport mode if (key_sockaddrcmp((struct sockaddr *)&sah->saidx.src, src, 0) != 0) { // Source doesn't match continue; } if (key_sockaddrcmp((struct sockaddr *)&sah->saidx.dst, dst, 0) != 0) { // Destination doesn't match continue; } } /* This SAH is linked to the IPsec interface, and the right family. We found it! */ if (key_preferred_oldsa) { saorder_state_valid = saorder_state_valid_prefer_old; arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); } else { saorder_state_valid = saorder_state_valid_prefer_new; arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); } sin = (struct sockaddr_in *)&sah->saidx.dst; dstport = sin->sin_port; if (sah->saidx.mode == IPSEC_MODE_TRANSPORT) { sin->sin_port = IPSEC_PORT_ANY; } for (stateidx = 0; stateidx < arraysize; stateidx++) { state = saorder_state_valid[stateidx]; sav = key_do_allocsa_policy(sah, state, dstport); if (sav != NULL) { lck_mtx_unlock(sadb_mutex); return sav; } } break; } } if (strict) { // If we didn't find anything, try again without strict strict = false; } else { // We already were on the second try, bail break; } } while (true); lck_mtx_unlock(sadb_mutex); return NULL; } /* * allocating an SA entry for an *OUTBOUND* packet. * checking each request entries in SP, and acquire an SA if need. * OUT: 0: there are valid requests. * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. */ int key_checkrequest( struct ipsecrequest *isr, struct secasindex *saidx, struct secasvar **sav) { u_int level; int error; struct sockaddr_in *sin; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); *sav = NULL; /* sanity check */ if (isr == NULL || saidx == NULL) { panic("key_checkrequest: NULL pointer is passed."); } /* check mode */ switch (saidx->mode) { case IPSEC_MODE_TRANSPORT: case IPSEC_MODE_TUNNEL: break; case IPSEC_MODE_ANY: default: panic("key_checkrequest: Invalid policy defined."); } /* get current level */ level = ipsec_get_reqlevel(isr); /* * key_allocsa_policy should allocate the oldest SA available. * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. */ if (*sav == NULL) { *sav = key_allocsa_policy(saidx); } /* When there is SA. */ if (*sav != NULL) { return 0; } /* There is no SA. * * Remove dst port - used for special natt support - don't call * key_acquire with it. */ if (saidx->mode == IPSEC_MODE_TRANSPORT) { sin = (struct sockaddr_in *)&saidx->dst; sin->sin_port = IPSEC_PORT_ANY; } if ((error = key_acquire(saidx, isr->sp)) != 0) { /* XXX What should I do ? */ ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned " "from key_acquire.\n", error)); return error; } return level == IPSEC_LEVEL_REQUIRE ? ENOENT : 0; } /* * allocating a SA for policy entry from SAD. * NOTE: searching SAD of aliving state. * OUT: NULL: not found. * others: found and return the pointer. */ u_int32_t sah_search_calls = 0; u_int32_t sah_search_count = 0; struct secasvar * key_allocsa_policy( struct secasindex *saidx) { struct secashead *sah; struct secasvar *sav; u_int stateidx, state; const u_int *saorder_state_valid; int arraysize; struct sockaddr_in *sin; u_int16_t dstport; lck_mtx_lock(sadb_mutex); sah_search_calls++; LIST_FOREACH(sah, &sahtree, chain) { sah_search_count++; if (sah->state == SADB_SASTATE_DEAD) { continue; } if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE | CMP_REQID)) { goto found; } } lck_mtx_unlock(sadb_mutex); return NULL; found: /* * search a valid state list for outbound packet. * This search order is important. */ if (key_preferred_oldsa) { saorder_state_valid = saorder_state_valid_prefer_old; arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); } else { saorder_state_valid = saorder_state_valid_prefer_new; arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); } sin = (struct sockaddr_in *)&saidx->dst; dstport = sin->sin_port; if (saidx->mode == IPSEC_MODE_TRANSPORT) { sin->sin_port = IPSEC_PORT_ANY; } for (stateidx = 0; stateidx < arraysize; stateidx++) { state = saorder_state_valid[stateidx]; sav = key_do_allocsa_policy(sah, state, dstport); if (sav != NULL) { lck_mtx_unlock(sadb_mutex); return sav; } } lck_mtx_unlock(sadb_mutex); return NULL; } static void key_send_delete(struct secasvar *sav) { struct mbuf *m, *result; u_int8_t satype; key_sa_chgstate(sav, SADB_SASTATE_DEAD); if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) { panic("key_do_allocsa_policy: invalid proto is passed."); } m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, (u_int16_t)(sav->refcnt - 1)); if (!m) { goto msgfail; } result = m; /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, (struct sockaddr *)&sav->sah->saidx.src, sav->sah->saidx.src.ss_len << 3, IPSEC_ULPROTO_ANY); if (!m) { goto msgfail; } m_cat(result, m); /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, (struct sockaddr *)&sav->sah->saidx.dst, sav->sah->saidx.src.ss_len << 3, IPSEC_ULPROTO_ANY); if (!m) { goto msgfail; } m_cat(result, m); /* create SA extension */ m = key_setsadbsa(sav); if (!m) { goto msgfail; } m_cat(result, m); if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { goto msgfail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) { result->m_pkthdr.len += m->m_len; } VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); if (key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED)) { goto msgfail; } msgfail: key_freesav(sav, KEY_SADB_LOCKED); } /* * searching SAD with direction, protocol, mode and state. * called by key_allocsa_policy(). * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_do_allocsa_policy( struct secashead *sah, u_int state, u_int16_t dstport) { struct secasvar *sav, *nextsav, *candidate, *natt_candidate, *no_natt_candidate, *d; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* initialize */ candidate = NULL; natt_candidate = NULL; no_natt_candidate = NULL; for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); /* sanity check */ KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy"); if (sah->saidx.mode == IPSEC_MODE_TUNNEL && dstport && ((sav->flags & SADB_X_EXT_NATT) != 0) && ntohs(dstport) != sav->remote_ike_port) { continue; } if (sah->saidx.mode == IPSEC_MODE_TRANSPORT && ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) && ntohs(dstport) != sav->remote_ike_port) { continue; /* skip this one - not a match - or not UDP */ } if ((sah->saidx.mode == IPSEC_MODE_TUNNEL && ((sav->flags & SADB_X_EXT_NATT) != 0)) || (sah->saidx.mode == IPSEC_MODE_TRANSPORT && ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0))) { if (natt_candidate == NULL) { natt_candidate = sav; continue; } else { candidate = natt_candidate; } } else { if (no_natt_candidate == NULL) { no_natt_candidate = sav; continue; } else { candidate = no_natt_candidate; } } /* Which SA is the better ? */ /* sanity check 2 */ if (candidate->lft_c == NULL || sav->lft_c == NULL) { panic("key_do_allocsa_policy: " "lifetime_current is NULL.\n"); } /* What the best method is to compare ? */ if (key_preferred_oldsa) { if (candidate->lft_c->sadb_lifetime_addtime > sav->lft_c->sadb_lifetime_addtime) { if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) { natt_candidate = sav; } else { no_natt_candidate = sav; } } continue; /*NOTREACHED*/ } /* prefered new sa rather than old sa */ if (candidate->lft_c->sadb_lifetime_addtime < sav->lft_c->sadb_lifetime_addtime) { d = candidate; if ((sah->saidx.mode == IPSEC_MODE_TUNNEL && ((sav->flags & SADB_X_EXT_NATT) != 0)) || (sah->saidx.mode == IPSEC_MODE_TRANSPORT && ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0))) { natt_candidate = sav; } else { no_natt_candidate = sav; } } else { d = sav; } /* * prepared to delete the SA when there is more * suitable candidate and the lifetime of the SA is not * permanent. */ if (d->lft_c->sadb_lifetime_addtime != 0) { key_send_delete(d); } } /* choose latest if both types present */ if (natt_candidate == NULL) { candidate = no_natt_candidate; } else if (no_natt_candidate == NULL) { candidate = natt_candidate; } else if (sah->saidx.mode == IPSEC_MODE_TUNNEL && dstport) { candidate = natt_candidate; } else if (natt_candidate->lft_c->sadb_lifetime_addtime > no_natt_candidate->lft_c->sadb_lifetime_addtime) { candidate = natt_candidate; } else { candidate = no_natt_candidate; } if (candidate) { candidate->refcnt++; KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP allocsa_policy cause " "refcnt++:%d SA:0x%llx\n", candidate->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(candidate))); } return candidate; } /* * allocating a SA entry for a *INBOUND* packet. * Must call key_freesav() later. * OUT: positive: pointer to a sav. * NULL: not found, or error occurred. * * In the comparison, source address will be ignored for RFC2401 conformance. * To quote, from section 4.1: * A security association is uniquely identified by a triple consisting * of a Security Parameter Index (SPI), an IP Destination Address, and a * security protocol (AH or ESP) identifier. * Note that, however, we do need to keep source address in IPsec SA. * IKE specification and PF_KEY specification do assume that we * keep source address in IPsec SA. We see a tricky situation here. */ struct secasvar * key_allocsa( u_int family, caddr_t src, caddr_t dst, uint32_t dst_ifscope, u_int proto, u_int32_t spi) { return key_allocsa_extended(family, src, dst, dst_ifscope, proto, spi, NULL); } struct secasvar * key_allocsa_extended(u_int family, caddr_t src, caddr_t dst, uint32_t dst_ifscope, u_int proto, u_int32_t spi, ifnet_t interface) { struct secasvar *sav, *match; u_int stateidx, state, tmpidx, matchidx; union sockaddr_in_4_6 dst_address = {}; const u_int *saorder_state_valid; int arraysize; bool dst_ll_address = false; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (src == NULL || dst == NULL) { panic("key_allocsa: NULL pointer is passed."); } /* * when both systems employ similar strategy to use a SA. * the search order is important even in the inbound case. */ if (key_preferred_oldsa) { saorder_state_valid = saorder_state_valid_prefer_old; arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); } else { saorder_state_valid = saorder_state_valid_prefer_new; arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); } /* check dst address */ switch (family) { case AF_INET: dst_address.sin.sin_family = AF_INET; dst_address.sin.sin_len = sizeof(dst_address.sin); memcpy(&dst_address.sin.sin_addr, dst, sizeof(dst_address.sin.sin_addr)); break; case AF_INET6: dst_address.sin6.sin6_family = AF_INET6; dst_address.sin6.sin6_len = sizeof(dst_address.sin6); memcpy(&dst_address.sin6.sin6_addr, dst, sizeof(dst_address.sin6.sin6_addr)); if (IN6_IS_SCOPE_LINKLOCAL(&dst_address.sin6.sin6_addr)) { dst_ll_address = true; /* kame fake scopeid */ dst_address.sin6.sin6_scope_id = dst_ifscope; if (in6_embedded_scope) { in6_verify_ifscope(&dst_address.sin6.sin6_addr, dst_address.sin6.sin6_scope_id); dst_address.sin6.sin6_scope_id = ntohs(dst_address.sin6.sin6_addr.s6_addr16[1]); dst_address.sin6.sin6_addr.s6_addr16[1] = 0; } } break; default: ipseclog((LOG_DEBUG, "key_allocsa: " "unknown address family=%d.\n", family)); return NULL; } /* * searching SAD. * XXX: to be checked internal IP header somewhere. Also when * IPsec tunnel packet is received. But ESP tunnel mode is * encrypted so we can't check internal IP header. */ /* * search a valid state list for inbound packet. * the search order is not important. */ match = NULL; matchidx = arraysize; lck_mtx_lock(sadb_mutex); LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { if (sav->spi != spi) { continue; } if (interface != NULL && sav->sah->ipsec_if != interface) { continue; } if (proto != sav->sah->saidx.proto) { continue; } if (family != sav->sah->saidx.src.ss_family || family != sav->sah->saidx.dst.ss_family) { continue; } tmpidx = arraysize; for (stateidx = 0; stateidx < matchidx; stateidx++) { state = saorder_state_valid[stateidx]; if (sav->state == state) { tmpidx = stateidx; break; } } if (tmpidx >= matchidx) { continue; } struct sockaddr_in6 tmp_sah_dst = {}; struct sockaddr *sah_dst = (struct sockaddr *)&sav->sah->saidx.dst; if (dst_ll_address) { if (!IN6_IS_SCOPE_LINKLOCAL(&(__DECONST(struct sockaddr_in6 *, sah_dst))->sin6_addr)) { continue; } else { tmp_sah_dst.sin6_family = AF_INET6; tmp_sah_dst.sin6_len = sizeof(tmp_sah_dst); memcpy(&tmp_sah_dst.sin6_addr, &(__DECONST(struct sockaddr_in6 *, sah_dst))->sin6_addr, sizeof(tmp_sah_dst.sin6_addr)); tmp_sah_dst.sin6_scope_id = sav->sah->outgoing_if; sah_dst = (struct sockaddr *)&tmp_sah_dst; } } if (key_sockaddrcmp(SA(&dst_address.sa), sah_dst, 0) != 0) { continue; } match = sav; matchidx = tmpidx; } if (match) { goto found; } /* not found */ lck_mtx_unlock(sadb_mutex); return NULL; found: match->refcnt++; lck_mtx_unlock(sadb_mutex); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP allocsa cause refcnt++:%d SA:0x%llx\n", match->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(match))); return match; } /* * This function checks whether a UDP packet with a random local port * and a remote port of 4500 matches an SA in the kernel. If does match, * send the packet to the ESP engine. If not, send the packet to the UDP protocol. */ bool key_checksa_present(u_int family, caddr_t local_addr, caddr_t remote_addr, u_int16_t local_port, u_int16_t remote_port, uint32_t source_ifscope, uint32_t remote_ifscope) { LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (local_addr == NULL || remote_addr == NULL) { panic("key_allocsa: NULL pointer is passed."); } /* * searching SAD. * XXX: to be checked internal IP header somewhere. Also when * IPsec tunnel packet is received. But ESP tunnel mode is * encrypted so we can't check internal IP header. */ /* * search a valid state list for inbound packet. * the search order is not important. */ struct secashead *sah = NULL; bool found_sa = false; lck_mtx_lock(sadb_mutex); LIST_FOREACH(sah, &sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) { continue; } if (sah->dir != IPSEC_DIR_OUTBOUND) { continue; } if (family != sah->saidx.src.ss_family) { continue; } struct sockaddr_in src_in = {}; struct sockaddr_in6 src_in6 = {}; /* check src address */ switch (family) { case AF_INET: src_in.sin_family = AF_INET; src_in.sin_len = sizeof(src_in); memcpy(&src_in.sin_addr, local_addr, sizeof(src_in.sin_addr)); if (key_sockaddrcmp((struct sockaddr*)&src_in, (struct sockaddr *)&sah->saidx.src, 0) != 0) { continue; } break; case AF_INET6: src_in6.sin6_family = AF_INET6; src_in6.sin6_len = sizeof(src_in6); memcpy(&src_in6.sin6_addr, local_addr, sizeof(src_in6.sin6_addr)); if (IN6_IS_SCOPE_LINKLOCAL(&src_in6.sin6_addr)) { /* kame fake scopeid */ src_in6.sin6_scope_id = source_ifscope; if (in6_embedded_scope) { in6_verify_ifscope(&src_in6.sin6_addr, src_in6.sin6_scope_id); src_in6.sin6_scope_id = ntohs(src_in6.sin6_addr.s6_addr16[1]); src_in6.sin6_addr.s6_addr16[1] = 0; } } if (key_sockaddrcmp((struct sockaddr*)&src_in6, (struct sockaddr *)&sah->saidx.src, 0) != 0) { continue; } break; default: ipseclog((LOG_DEBUG, "key_checksa_present: " "unknown address family=%d.\n", family)); continue; } struct sockaddr_in dest_in = {}; struct sockaddr_in6 dest_in6 = {}; /* check dst address */ switch (family) { case AF_INET: dest_in.sin_family = AF_INET; dest_in.sin_len = sizeof(dest_in); memcpy(&dest_in.sin_addr, remote_addr, sizeof(dest_in.sin_addr)); if (key_sockaddrcmp((struct sockaddr*)&dest_in, (struct sockaddr *)&sah->saidx.dst, 0) != 0) { continue; } break; case AF_INET6: dest_in6.sin6_family = AF_INET6; dest_in6.sin6_len = sizeof(dest_in6); memcpy(&dest_in6.sin6_addr, remote_addr, sizeof(dest_in6.sin6_addr)); if (IN6_IS_SCOPE_LINKLOCAL(&dest_in6.sin6_addr)) { /* kame fake scopeid */ dest_in6.sin6_scope_id = remote_ifscope; if (in6_embedded_scope) { in6_verify_ifscope(&dest_in6.sin6_addr, dest_in6.sin6_scope_id); dest_in6.sin6_scope_id = ntohs(dest_in6.sin6_addr.s6_addr16[1]); dest_in6.sin6_addr.s6_addr16[1] = 0; } } if (key_sockaddrcmp((struct sockaddr*)&dest_in6, (struct sockaddr *)&sah->saidx.dst, 0) != 0) { continue; } break; default: ipseclog((LOG_DEBUG, "key_checksa_present: " "unknown address family=%d.\n", family)); continue; } struct secasvar *nextsav = NULL; for (u_int stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { u_int state = saorder_state_alive[stateidx]; for (struct secasvar *sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); /* sanity check */ if (sav->state != state) { ipseclog((LOG_DEBUG, "key_checksa_present: " "invalid sav->state " "(state: %d SA: %d)\n", state, sav->state)); continue; } if (sav->remote_ike_port != ntohs(remote_port)) { continue; } if (sav->natt_encapsulated_src_port != local_port) { continue; } found_sa = true; break; } } } /* not found */ lck_mtx_unlock(sadb_mutex); return found_sa; } u_int16_t key_natt_get_translated_port( struct secasvar *outsav) { struct secasindex saidx = {}; struct secashead *sah; u_int stateidx, state; const u_int *saorder_state_valid; int arraysize; /* get sa for incoming */ saidx.mode = outsav->sah->saidx.mode; saidx.reqid = 0; saidx.proto = outsav->sah->saidx.proto; bcopy(&outsav->sah->saidx.src, &saidx.dst, sizeof(struct sockaddr_in)); bcopy(&outsav->sah->saidx.dst, &saidx.src, sizeof(struct sockaddr_in)); lck_mtx_lock(sadb_mutex); LIST_FOREACH(sah, &sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) { continue; } if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE)) { goto found; } } lck_mtx_unlock(sadb_mutex); return 0; found: /* * Found sah - now go thru list of SAs and find * matching remote ike port. If found - set * sav->natt_encapsulated_src_port and return the port. */ /* * search a valid state list for outbound packet. * This search order is important. */ if (key_preferred_oldsa) { saorder_state_valid = saorder_state_valid_prefer_old; arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); } else { saorder_state_valid = saorder_state_valid_prefer_new; arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); } for (stateidx = 0; stateidx < arraysize; stateidx++) { state = saorder_state_valid[stateidx]; if (key_do_get_translated_port(sah, outsav, state)) { lck_mtx_unlock(sadb_mutex); return outsav->natt_encapsulated_src_port; } } lck_mtx_unlock(sadb_mutex); return 0; } static int key_do_get_translated_port( struct secashead *sah, struct secasvar *outsav, u_int state) { struct secasvar *currsav, *nextsav, *candidate; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* initilize */ candidate = NULL; for (currsav = LIST_FIRST(&sah->savtree[state]); currsav != NULL; currsav = nextsav) { nextsav = LIST_NEXT(currsav, chain); /* sanity check */ KEY_CHKSASTATE(currsav->state, state, "key_do_get_translated_port"); if ((currsav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) == 0 || currsav->remote_ike_port != outsav->remote_ike_port) { continue; } if (candidate == NULL) { candidate = currsav; continue; } /* Which SA is the better ? */ /* sanity check 2 */ if (candidate->lft_c == NULL || currsav->lft_c == NULL) { panic("key_do_get_translated_port: " "lifetime_current is NULL.\n"); } /* What the best method is to compare ? */ if (key_preferred_oldsa) { if (candidate->lft_c->sadb_lifetime_addtime > currsav->lft_c->sadb_lifetime_addtime) { candidate = currsav; } continue; /*NOTREACHED*/ } /* prefered new sa rather than old sa */ if (candidate->lft_c->sadb_lifetime_addtime < currsav->lft_c->sadb_lifetime_addtime) { candidate = currsav; } } if (candidate) { outsav->natt_encapsulated_src_port = candidate->natt_encapsulated_src_port; return 1; } return 0; } /* * Must be called after calling key_allocsp(). */ void key_freesp( struct secpolicy *sp, int locked) { /* sanity check */ if (sp == NULL) { panic("key_freesp: NULL pointer is passed."); } if (!locked) { lck_mtx_lock(sadb_mutex); } else { LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); } sp->refcnt--; KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP freesp cause refcnt--:%d SP:0x%llx\n", sp->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sp))); if (sp->refcnt == 0) { key_delsp(sp); } if (!locked) { lck_mtx_unlock(sadb_mutex); } return; } /* * Must be called after calling key_allocsa(). * This function is called by key_freesp() to free some SA allocated * for a policy. */ void key_freesav( struct secasvar *sav, int locked) { /* sanity check */ if (sav == NULL) { panic("key_freesav: NULL pointer is passed."); } if (!locked) { lck_mtx_lock(sadb_mutex); } else { LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); } sav->refcnt--; KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP freesav cause refcnt--:%d SA:0x%llx SPI %u\n", sav->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sav), (u_int32_t)ntohl(sav->spi))); if (sav->refcnt == 0) { key_delsav(sav); } if (!locked) { lck_mtx_unlock(sadb_mutex); } return; } /* %%% SPD management */ /* * free security policy entry. */ static void key_delsp( struct secpolicy *sp) { /* sanity check */ if (sp == NULL) { panic("key_delsp: NULL pointer is passed."); } LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); sp->state = IPSEC_SPSTATE_DEAD; if (sp->refcnt > 0) { return; /* can't free */ } /* remove from SP index */ if (__LIST_CHAINED(sp)) { LIST_REMOVE(sp, chain); ipsec_policy_count--; } if (sp->spidx.internal_if) { ifnet_release(sp->spidx.internal_if); sp->spidx.internal_if = NULL; } if (sp->ipsec_if) { ifnet_release(sp->ipsec_if); sp->ipsec_if = NULL; } if (sp->outgoing_if) { ifnet_release(sp->outgoing_if); sp->outgoing_if = NULL; } { struct ipsecrequest *isr = sp->req, *nextisr; while (isr != NULL) { nextisr = isr->next; kfree_type(struct ipsecrequest, isr); isr = nextisr; } } keydb_delsecpolicy(sp); return; } /* * search SPD * OUT: NULL : not found * others : found, pointer to a SP. */ static struct secpolicy * key_getsp( struct secpolicyindex *spidx) { struct secpolicy *sp; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* sanity check */ if (spidx == NULL) { panic("key_getsp: NULL pointer is passed."); } LIST_FOREACH(sp, &sptree[spidx->dir], chain) { if (sp->state == IPSEC_SPSTATE_DEAD) { continue; } if (key_cmpspidx_exactly(spidx, &sp->spidx)) { sp->refcnt++; return sp; } } return NULL; } /* * get SP by index. * OUT: NULL : not found * others : found, pointer to a SP. */ struct secpolicy * key_getspbyid( u_int32_t id) { struct secpolicy *sp; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(sadb_mutex); sp = __key_getspbyid(id); lck_mtx_unlock(sadb_mutex); return sp; } static struct secpolicy * __key_getspbyid(u_int32_t id) { struct secpolicy *sp; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { if (sp->state == IPSEC_SPSTATE_DEAD) { continue; } if (sp->id == id) { sp->refcnt++; return sp; } } LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { if (sp->state == IPSEC_SPSTATE_DEAD) { continue; } if (sp->id == id) { sp->refcnt++; return sp; } } return NULL; } struct secpolicy * key_newsp(void) { struct secpolicy *newsp = NULL; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); newsp = keydb_newsecpolicy(); if (!newsp) { return newsp; } newsp->refcnt = 1; newsp->req = NULL; return newsp; } /* * create secpolicy structure from sadb_x_policy structure. * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, * so must be set properly later. */ struct secpolicy * key_msg2sp( struct sadb_x_policy *xpl0, size_t len, int *error) { struct secpolicy *newsp; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (xpl0 == NULL) { panic("key_msg2sp: NULL pointer was passed."); } if (len < sizeof(*xpl0)) { panic("key_msg2sp: invalid length."); } if (len != PFKEY_EXTLEN(xpl0)) { ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n")); *error = EINVAL; return NULL; } if ((newsp = key_newsp()) == NULL) { *error = ENOBUFS; return NULL; } newsp->spidx.dir = xpl0->sadb_x_policy_dir; newsp->policy = xpl0->sadb_x_policy_type; /* check policy */ switch (xpl0->sadb_x_policy_type) { case IPSEC_POLICY_DISCARD: case IPSEC_POLICY_GENERATE: case IPSEC_POLICY_NONE: case IPSEC_POLICY_ENTRUST: case IPSEC_POLICY_BYPASS: newsp->req = NULL; break; case IPSEC_POLICY_IPSEC: { int tlen; struct sadb_x_ipsecrequest *xisr; struct ipsecrequest **p_isr = &newsp->req; /* validity check */ if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n")); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); while (tlen > 0) { if (tlen < sizeof(*xisr)) { ipseclog((LOG_DEBUG, "key_msg2sp: " "invalid ipsecrequest.\n")); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } /* length check */ if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { ipseclog((LOG_DEBUG, "key_msg2sp: " "invalid ipsecrequest length.\n")); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } /* allocate request buffer */ *p_isr = kalloc_type(struct ipsecrequest, Z_WAITOK_ZERO_NOFAIL); switch (xisr->sadb_x_ipsecrequest_proto) { case IPPROTO_ESP: case IPPROTO_AH: break; default: ipseclog((LOG_DEBUG, "key_msg2sp: invalid proto type=%u\n", xisr->sadb_x_ipsecrequest_proto)); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EPROTONOSUPPORT; return NULL; } (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; switch (xisr->sadb_x_ipsecrequest_mode) { case IPSEC_MODE_TRANSPORT: case IPSEC_MODE_TUNNEL: break; case IPSEC_MODE_ANY: default: ipseclog((LOG_DEBUG, "key_msg2sp: invalid mode=%u\n", xisr->sadb_x_ipsecrequest_mode)); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; switch (xisr->sadb_x_ipsecrequest_level) { case IPSEC_LEVEL_DEFAULT: case IPSEC_LEVEL_USE: case IPSEC_LEVEL_REQUIRE: break; case IPSEC_LEVEL_UNIQUE: /* validity check */ /* * If range violation of reqid, kernel will * update it, don't refuse it. */ if (xisr->sadb_x_ipsecrequest_reqid > IPSEC_MANUAL_REQID_MAX) { ipseclog((LOG_DEBUG, "key_msg2sp: reqid=%d range " "violation, updated by kernel.\n", xisr->sadb_x_ipsecrequest_reqid)); xisr->sadb_x_ipsecrequest_reqid = 0; } /* allocate new reqid id if reqid is zero. */ if (xisr->sadb_x_ipsecrequest_reqid == 0) { u_int16_t reqid; if ((reqid = key_newreqid()) == 0) { key_freesp(newsp, KEY_SADB_UNLOCKED); *error = ENOBUFS; return NULL; } (*p_isr)->saidx.reqid = reqid; xisr->sadb_x_ipsecrequest_reqid = reqid; } else { /* set it for manual keying. */ (*p_isr)->saidx.reqid = xisr->sadb_x_ipsecrequest_reqid; } break; default: ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n", xisr->sadb_x_ipsecrequest_level)); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; /* set IP addresses if there */ if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { struct sockaddr *paddr; if (tlen < xisr->sadb_x_ipsecrequest_len) { ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " "address length.\n")); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } paddr = (struct sockaddr *)(xisr + 1); uint8_t src_len = paddr->sa_len; /* +sizeof(uint8_t) for dst_len below */ if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) + src_len + sizeof(uint8_t)) { ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " "invalid source address length.\n")); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } /* validity check */ if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " "address length.\n")); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } bcopy(paddr, &(*p_isr)->saidx.src, MIN(paddr->sa_len, sizeof((*p_isr)->saidx.src))); paddr = (struct sockaddr *)((caddr_t)paddr + paddr->sa_len); uint8_t dst_len = paddr->sa_len; if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) + src_len + dst_len) { ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " "invalid dest address length.\n")); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } /* validity check */ if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " "address length.\n")); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } bcopy(paddr, &(*p_isr)->saidx.dst, MIN(paddr->sa_len, sizeof((*p_isr)->saidx.dst))); } (*p_isr)->sp = newsp; /* initialization for the next. */ p_isr = &(*p_isr)->next; tlen -= xisr->sadb_x_ipsecrequest_len; /* validity check */ if (tlen < 0) { ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n")); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } xisr = (struct sadb_x_ipsecrequest *)(void *) ((caddr_t)xisr + xisr->sadb_x_ipsecrequest_len); } } break; default: ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n")); key_freesp(newsp, KEY_SADB_UNLOCKED); *error = EINVAL; return NULL; } *error = 0; return newsp; } static u_int16_t key_newreqid(void) { lck_mtx_lock(sadb_mutex); static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; int done = 0; /* The reqid must be limited to 16 bits because the PF_KEY message format only uses * 16 bits for this field. Once it becomes larger than 16 bits - ipsec fails to * work anymore. Changing the PF_KEY message format would introduce compatibility * issues. This code now tests to see if the tentative reqid is in use */ while (!done) { struct secpolicy *sp; struct ipsecrequest *isr; int dir; auto_reqid = (auto_reqid == 0xFFFF ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); /* check for uniqueness */ done = 1; for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { LIST_FOREACH(sp, &sptree[dir], chain) { for (isr = sp->req; isr != NULL; isr = isr->next) { if (isr->saidx.reqid == auto_reqid) { done = 0; break; } } if (done == 0) { break; } } if (done == 0) { break; } } } lck_mtx_unlock(sadb_mutex); return auto_reqid; } /* * copy secpolicy struct to sadb_x_policy structure indicated. */ struct mbuf * key_sp2msg( struct secpolicy *sp) { struct sadb_x_policy *xpl; u_int tlen; caddr_t p; struct mbuf *m; /* sanity check. */ if (sp == NULL) { panic("key_sp2msg: NULL pointer was passed."); } tlen = key_getspreqmsglen(sp); if (PFKEY_UNIT64(tlen) > UINT16_MAX) { ipseclog((LOG_ERR, "key_getspreqmsglen returned length %u\n", tlen)); return NULL; } m = key_alloc_mbuf(tlen); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } return NULL; } m->m_len = tlen; m->m_next = NULL; xpl = mtod(m, struct sadb_x_policy *); bzero(xpl, tlen); xpl->sadb_x_policy_len = (u_int16_t)PFKEY_UNIT64(tlen); xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; xpl->sadb_x_policy_type = (u_int16_t)sp->policy; xpl->sadb_x_policy_dir = sp->spidx.dir; xpl->sadb_x_policy_id = sp->id; p = (caddr_t)xpl + sizeof(*xpl); /* if is the policy for ipsec ? */ if (sp->policy == IPSEC_POLICY_IPSEC) { struct sadb_x_ipsecrequest *xisr; struct ipsecrequest *isr; for (isr = sp->req; isr != NULL; isr = isr->next) { xisr = (struct sadb_x_ipsecrequest *)(void *)p; xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; xisr->sadb_x_ipsecrequest_level = (u_int8_t)isr->level; xisr->sadb_x_ipsecrequest_reqid = (u_int16_t)isr->saidx.reqid; p += sizeof(*xisr); bcopy(&isr->saidx.src, p, isr->saidx.src.ss_len); p += isr->saidx.src.ss_len; bcopy(&isr->saidx.dst, p, isr->saidx.dst.ss_len); p += isr->saidx.src.ss_len; xisr->sadb_x_ipsecrequest_len = PFKEY_ALIGN8(sizeof(*xisr) + isr->saidx.src.ss_len + isr->saidx.dst.ss_len); } } return m; } /* m will not be freed nor modified */ static struct mbuf * key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, int ndeep, int nitem, int *items) { int idx; int i; struct mbuf *result = NULL, *n; int len; if (m == NULL || mhp == NULL) { panic("null pointer passed to key_gather"); } for (i = 0; i < nitem; i++) { idx = items[i]; if (idx < 0 || idx > SADB_EXT_MAX) { goto fail; } /* don't attempt to pull empty extension */ if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) { continue; } if (idx != SADB_EXT_RESERVED && (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) { continue; } if (idx == SADB_EXT_RESERVED) { len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); MGETHDR(n, M_WAITOK, MT_DATA); // sadb_msg len < MHLEN - enforced by _CASSERT if (!n) { goto fail; } n->m_len = len; n->m_next = NULL; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t)); } else if (i < ndeep) { len = mhp->extlen[idx]; n = key_alloc_mbuf(len); if (!n || n->m_next) { /*XXX*/ if (n) { m_freem(n); } goto fail; } m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], mtod(n, caddr_t)); } else { n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], M_WAITOK); } if (n == NULL) { goto fail; } if (result) { m_cat(result, n); } else { result = n; } } if ((result->m_flags & M_PKTHDR) != 0) { result->m_pkthdr.len = 0; for (n = result; n; n = n->m_next) { result->m_pkthdr.len += n->m_len; } } return result; fail: m_freem(result); return NULL; } /* * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing * add a entry to SP database, when received * * from the user(?). * Adding to SP database, * and send * * to the socket which was send. * * SPDADD set a unique policy entry. * SPDSETIDX like SPDADD without a part of policy requests. * SPDUPDATE replace a unique policy entry. * * m will always be freed. */ static int key_spdadd( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_address *src0, *dst0, *src1 = NULL, *dst1 = NULL; struct sadb_x_policy *xpl0, *xpl; struct sadb_lifetime *lft = NULL; struct secpolicyindex spidx; struct secpolicy *newsp; ifnet_t internal_if = NULL; char *outgoing_if = NULL; char *ipsec_if = NULL; struct sadb_x_ipsecif *ipsecifopts = NULL; int error; int use_src_range = 0; int use_dst_range = 0; int init_disabled = 0; int address_family, address_len; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_spdadd: NULL pointer is passed."); } if (mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) { use_src_range = 1; } if (mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) { use_dst_range = 1; } if ((!use_src_range && mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL) || (!use_dst_range && mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) || mhp->ext[SADB_X_EXT_POLICY] == NULL) { ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if ((use_src_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_START] < sizeof(struct sadb_address) || mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_END] < sizeof(struct sadb_address))) || (!use_src_range && mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address)) || (use_dst_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_START] < sizeof(struct sadb_address) || mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_END] < sizeof(struct sadb_address))) || (!use_dst_range && mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(struct sadb_lifetime)) { ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } lft = (struct sadb_lifetime *) (void *)mhp->ext[SADB_EXT_LIFETIME_HARD]; } if (mhp->ext[SADB_X_EXT_IPSECIF] != NULL) { if (mhp->extlen[SADB_X_EXT_IPSECIF] < sizeof(struct sadb_x_ipsecif)) { ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } } if (use_src_range) { src0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START]; src1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END]; } else { src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; } if (use_dst_range) { dst0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START]; dst1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END]; } else { dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; } xpl0 = (struct sadb_x_policy *)(void *)mhp->ext[SADB_X_EXT_POLICY]; ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[SADB_X_EXT_IPSECIF]; /* check addresses */ address_family = ((struct sockaddr *)(src0 + 1))->sa_family; address_len = ((struct sockaddr *)(src0 + 1))->sa_len; if (use_src_range) { if (((struct sockaddr *)(src1 + 1))->sa_family != address_family || ((struct sockaddr *)(src1 + 1))->sa_len != address_len) { return key_senderror(so, m, EINVAL); } } if (((struct sockaddr *)(dst0 + 1))->sa_family != address_family || ((struct sockaddr *)(dst0 + 1))->sa_len != address_len) { return key_senderror(so, m, EINVAL); } if (use_dst_range) { if (((struct sockaddr *)(dst1 + 1))->sa_family != address_family || ((struct sockaddr *)(dst1 + 1))->sa_len != address_len) { return key_senderror(so, m, EINVAL); } } /* checking the direction. */ switch (xpl0->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n")); return key_senderror(so, m, EINVAL); } /* check policy */ /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n")); return key_senderror(so, m, EINVAL); } /* policy requests are mandatory when action is ipsec. */ if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n")); return key_senderror(so, m, EINVAL); } /* Process interfaces */ if (ipsecifopts != NULL) { ipsecifopts->sadb_x_ipsecif_internal_if[IFXNAMSIZ - 1] = '\0'; ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0'; ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0'; if (ipsecifopts->sadb_x_ipsecif_internal_if[0]) { ifnet_find_by_name(ipsecifopts->sadb_x_ipsecif_internal_if, &internal_if); } if (ipsecifopts->sadb_x_ipsecif_outgoing_if[0]) { outgoing_if = ipsecifopts->sadb_x_ipsecif_outgoing_if; } if (ipsecifopts->sadb_x_ipsecif_ipsec_if[0]) { ipsec_if = ipsecifopts->sadb_x_ipsecif_ipsec_if; } init_disabled = ipsecifopts->sadb_x_ipsecif_init_disabled; } /* make secindex */ /* XXX boundary check against sa_len */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, internal_if, use_src_range ? src0 + 1 : NULL, use_src_range ? src1 + 1 : NULL, use_dst_range ? dst0 + 1 : NULL, use_dst_range ? dst1 + 1 : NULL, &spidx); /* * checking there is SP already or not. * SPDUPDATE doesn't depend on whether there is a SP or not. * If the type is either SPDADD or SPDSETIDX AND a SP is found, * then error. */ lck_mtx_lock(sadb_mutex); newsp = key_getsp(&spidx); if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { if (newsp) { newsp->state = IPSEC_SPSTATE_DEAD; key_freesp(newsp, KEY_SADB_LOCKED); } } else { if (newsp != NULL) { key_freesp(newsp, KEY_SADB_LOCKED); ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n")); lck_mtx_unlock(sadb_mutex); if (internal_if) { ifnet_release(internal_if); internal_if = NULL; } return key_senderror(so, m, EEXIST); } } lck_mtx_unlock(sadb_mutex); /* allocation new SP entry */ if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { if (internal_if) { ifnet_release(internal_if); internal_if = NULL; } return key_senderror(so, m, error); } if ((newsp->id = key_getnewspid()) == 0) { keydb_delsecpolicy(newsp); if (internal_if) { ifnet_release(internal_if); internal_if = NULL; } return key_senderror(so, m, ENOBUFS); } /* XXX boundary check against sa_len */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, internal_if, use_src_range ? src0 + 1 : NULL, use_src_range ? src1 + 1 : NULL, use_dst_range ? dst0 + 1 : NULL, use_dst_range ? dst1 + 1 : NULL, &newsp->spidx); #if 1 /* * allow IPv6 over IPv4 or IPv4 over IPv6 tunnels using ESP - * otherwise reject if inner and outer address families not equal */ if (newsp->req && newsp->req->saidx.src.ss_family) { struct sockaddr *sa; sa = (struct sockaddr *)(src0 + 1); if (sa->sa_family != newsp->req->saidx.src.ss_family) { if (newsp->req->saidx.mode != IPSEC_MODE_TUNNEL || newsp->req->saidx.proto != IPPROTO_ESP) { keydb_delsecpolicy(newsp); if (internal_if) { ifnet_release(internal_if); internal_if = NULL; } return key_senderror(so, m, EINVAL); } } } if (newsp->req && newsp->req->saidx.dst.ss_family) { struct sockaddr *sa; sa = (struct sockaddr *)(dst0 + 1); if (sa->sa_family != newsp->req->saidx.dst.ss_family) { if (newsp->req->saidx.mode != IPSEC_MODE_TUNNEL || newsp->req->saidx.proto != IPPROTO_ESP) { keydb_delsecpolicy(newsp); if (internal_if) { ifnet_release(internal_if); internal_if = NULL; } return key_senderror(so, m, EINVAL); } } } #endif const u_int64_t current_time_ns = key_get_continuous_time_ns(); newsp->created = current_time_ns; newsp->lastused = current_time_ns; if (lft != NULL) { // Convert to nanoseconds u_int64_t lifetime_ns; if (__improbable(os_mul_overflow(lft->sadb_lifetime_addtime, NSEC_PER_SEC, &lifetime_ns))) { ipseclog((LOG_DEBUG, "key_spdadd: invalid lifetime value %llu.\n", lft->sadb_lifetime_addtime)); return key_senderror(so, m, EINVAL); } newsp->lifetime = lifetime_ns; u_int64_t validtime_ns; if (__improbable(os_mul_overflow(lft->sadb_lifetime_usetime, NSEC_PER_SEC, &validtime_ns))) { ipseclog((LOG_DEBUG, "key_spdadd: invalid use time value %llu.\n", lft->sadb_lifetime_usetime)); return key_senderror(so, m, EINVAL); } newsp->validtime = validtime_ns; } else { newsp->lifetime = 0; newsp->validtime = 0; } if (outgoing_if != NULL) { ifnet_find_by_name(outgoing_if, &newsp->outgoing_if); } if (ipsec_if != NULL) { ifnet_find_by_name(ipsec_if, &newsp->ipsec_if); } if (init_disabled > 0) { newsp->disabled = 1; } newsp->refcnt = 1; /* do not reclaim until I say I do */ newsp->state = IPSEC_SPSTATE_ALIVE; lck_mtx_lock(sadb_mutex); /* * policies of type generate should be at the end of the SPD * because they function as default discard policies * Don't start timehandler for generate policies */ if (newsp->policy == IPSEC_POLICY_GENERATE) { LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); } else { /* XXX until we have policy ordering in the kernel */ struct secpolicy *tmpsp; LIST_FOREACH(tmpsp, &sptree[newsp->spidx.dir], chain) if (tmpsp->policy == IPSEC_POLICY_GENERATE) { break; } if (tmpsp) { LIST_INSERT_BEFORE(tmpsp, newsp, chain); } else { LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); } key_start_timehandler(); } ipsec_policy_count++; /* Turn off the ipsec bypass */ if (ipsec_bypass != 0) { ipsec_bypass = 0; } /* delete the entry in spacqtree */ if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { struct secspacq *spacq; if ((spacq = key_getspacq(&spidx)) != NULL) { /* reset counter in order to deletion by timehandler. */ spacq->created = key_get_continuous_time_ns(); spacq->count = 0; } } lck_mtx_unlock(sadb_mutex); { struct mbuf *n, *mpolicy; struct sadb_msg *newmsg; int off; /* create new sadb_msg to reply. */ if (lft) { int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END, SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END}; n = key_gather_mbuf(m, mhp, 2, sizeof(mbufItems) / sizeof(int), mbufItems); } else { int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END, SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END}; n = key_gather_mbuf(m, mhp, 2, sizeof(mbufItems) / sizeof(int), mbufItems); } if (!n) { return key_senderror(so, m, ENOBUFS); } if (n->m_len < sizeof(*newmsg)) { n = m_pullup(n, sizeof(*newmsg)); if (!n) { return key_senderror(so, m, ENOBUFS); } } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); off = 0; mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), sizeof(*xpl), &off); if (mpolicy == NULL) { /* n is already freed */ return key_senderror(so, m, ENOBUFS); } xpl = (struct sadb_x_policy *)(void *)(mtod(mpolicy, caddr_t) + off); if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { m_freem(n); return key_senderror(so, m, EINVAL); } xpl->sadb_x_policy_id = newsp->id; m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * get new policy id. * OUT: * 0: failure. * others: success. */ static u_int32_t key_getnewspid(void) { u_int32_t newid = 0; int count = key_spi_trycnt; /* XXX */ struct secpolicy *sp; /* when requesting to allocate spi ranged */ lck_mtx_lock(sadb_mutex); while (count--) { newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); if ((sp = __key_getspbyid(newid)) == NULL) { break; } key_freesp(sp, KEY_SADB_LOCKED); } lck_mtx_unlock(sadb_mutex); if (count == 0 || newid == 0) { ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n")); return 0; } return newid; } /* * SADB_SPDDELETE processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spddelete( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_address *src0, *dst0, *src1 = NULL, *dst1 = NULL; struct sadb_x_policy *xpl0; struct secpolicyindex spidx; struct secpolicy *sp; ifnet_t internal_if = NULL; struct sadb_x_ipsecif *ipsecifopts = NULL; int use_src_range = 0; int use_dst_range = 0; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_spddelete: NULL pointer is passed."); } if (mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) { use_src_range = 1; } if (mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) { use_dst_range = 1; } if ((!use_src_range && mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL) || (!use_dst_range && mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) || mhp->ext[SADB_X_EXT_POLICY] == NULL) { ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if ((use_src_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_START] < sizeof(struct sadb_address) || mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_END] < sizeof(struct sadb_address))) || (!use_src_range && mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address)) || (use_dst_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_START] < sizeof(struct sadb_address) || mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_END] < sizeof(struct sadb_address))) || (!use_dst_range && mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if (use_src_range) { src0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START]; src1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END]; } else { src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; } if (use_dst_range) { dst0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START]; dst1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END]; } else { dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; } xpl0 = (struct sadb_x_policy *)(void *)mhp->ext[SADB_X_EXT_POLICY]; ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[SADB_X_EXT_IPSECIF]; /* checking the direction. */ switch (xpl0->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n")); return key_senderror(so, m, EINVAL); } /* Process interfaces */ if (ipsecifopts != NULL) { ipsecifopts->sadb_x_ipsecif_internal_if[IFXNAMSIZ - 1] = '\0'; ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0'; ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0'; if (ipsecifopts->sadb_x_ipsecif_internal_if[0]) { ifnet_find_by_name(ipsecifopts->sadb_x_ipsecif_internal_if, &internal_if); } } /* make secindex */ /* XXX boundary check against sa_len */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, internal_if, use_src_range ? src0 + 1 : NULL, use_src_range ? src1 + 1 : NULL, use_dst_range ? dst0 + 1 : NULL, use_dst_range ? dst1 + 1 : NULL, &spidx); /* Is there SP in SPD ? */ lck_mtx_lock(sadb_mutex); if ((sp = key_getsp(&spidx)) == NULL) { ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n")); lck_mtx_unlock(sadb_mutex); if (internal_if) { ifnet_release(internal_if); internal_if = NULL; } return key_senderror(so, m, EINVAL); } if (internal_if) { ifnet_release(internal_if); internal_if = NULL; } /* save policy id to buffer to be returned. */ xpl0->sadb_x_policy_id = sp->id; sp->state = IPSEC_SPSTATE_DEAD; key_freesp(sp, KEY_SADB_LOCKED); lck_mtx_unlock(sadb_mutex); { struct mbuf *n; struct sadb_msg *newmsg; int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END, SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END}; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems); if (!n) { return key_senderror(so, m, ENOBUFS); } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_SPDDELETE2 processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spddelete2( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { u_int32_t id; struct secpolicy *sp; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_spddelete2: NULL pointer is passed."); } if (mhp->ext[SADB_X_EXT_POLICY] == NULL || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n")); key_senderror(so, m, EINVAL); return 0; } id = ((struct sadb_x_policy *) (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; /* Is there SP in SPD ? */ lck_mtx_lock(sadb_mutex); if ((sp = __key_getspbyid(id)) == NULL) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id)); return key_senderror(so, m, EINVAL); } sp->state = IPSEC_SPSTATE_DEAD; key_freesp(sp, KEY_SADB_LOCKED); lck_mtx_unlock(sadb_mutex); { struct mbuf *n, *nn; struct sadb_msg *newmsg; int off, len; /* create new sadb_msg to reply. */ len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); if (len > MCLBYTES) { return key_senderror(so, m, ENOBUFS); } MGETHDR(n, M_WAITOK, MT_DATA); if (n && len > MHLEN) { MCLGET(n, M_WAITOK); if ((n->m_flags & M_EXT) == 0) { m_freem(n); n = NULL; } } if (!n) { return key_senderror(so, m, ENOBUFS); } n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); #if DIAGNOSTIC if (off != len) { panic("length inconsistency in key_spddelete2"); } #endif n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); if (!n->m_next) { m_freem(n); return key_senderror(so, m, ENOBUFS); } n->m_pkthdr.len = 0; for (nn = n; nn; nn = nn->m_next) { n->m_pkthdr.len += nn->m_len; } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } static int key_spdenable( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { u_int32_t id; struct secpolicy *sp; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_spdenable: NULL pointer is passed."); } if (mhp->ext[SADB_X_EXT_POLICY] == NULL || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "key_spdenable: invalid message is passed.\n")); key_senderror(so, m, EINVAL); return 0; } id = ((struct sadb_x_policy *) (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; /* Is there SP in SPD ? */ lck_mtx_lock(sadb_mutex); if ((sp = __key_getspbyid(id)) == NULL) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_spdenable: no SP found id:%u.\n", id)); return key_senderror(so, m, EINVAL); } sp->disabled = 0; key_freesp(sp, KEY_SADB_LOCKED); lck_mtx_unlock(sadb_mutex); { struct mbuf *n; struct sadb_msg *newmsg; int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY}; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems); if (!n) { return key_senderror(so, m, ENOBUFS); } if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) { return key_senderror(so, m, ENOBUFS); } } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } static int key_spddisable( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { u_int32_t id; struct secpolicy *sp; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_spddisable: NULL pointer is passed."); } if (mhp->ext[SADB_X_EXT_POLICY] == NULL || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "key_spddisable: invalid message is passed.\n")); key_senderror(so, m, EINVAL); return 0; } id = ((struct sadb_x_policy *) (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; /* Is there SP in SPD ? */ lck_mtx_lock(sadb_mutex); if ((sp = __key_getspbyid(id)) == NULL) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_spddisable: no SP found id:%u.\n", id)); return key_senderror(so, m, EINVAL); } sp->disabled = 1; key_freesp(sp, KEY_SADB_LOCKED); lck_mtx_unlock(sadb_mutex); { struct mbuf *n; struct sadb_msg *newmsg; int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY}; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems); if (!n) { return key_senderror(so, m, ENOBUFS); } if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) { return key_senderror(so, m, ENOBUFS); } } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_X_GET processing * receive * * from the user(?), * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spdget( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { u_int32_t id; struct secpolicy *sp; struct mbuf *n; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_spdget: NULL pointer is passed."); } if (mhp->ext[SADB_X_EXT_POLICY] == NULL || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } id = ((struct sadb_x_policy *) (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; /* Is there SP in SPD ? */ lck_mtx_lock(sadb_mutex); if ((sp = __key_getspbyid(id)) == NULL) { ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id)); lck_mtx_unlock(sadb_mutex); return key_senderror(so, m, ENOENT); } lck_mtx_unlock(sadb_mutex); n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); key_freesp(sp, KEY_SADB_UNLOCKED); if (n != NULL) { m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } else { return key_senderror(so, m, ENOBUFS); } } /* * SADB_X_SPDACQUIRE processing. * Acquire policy and SA(s) for a *OUTBOUND* packet. * send * * to KMD, and expect to receive * with SADB_X_SPDACQUIRE if error occurred, * or * * with SADB_X_SPDUPDATE from KMD by PF_KEY. * policy(*) is without policy requests. * * 0 : succeed * others: error number */ int key_spdacquire( struct secpolicy *sp) { struct mbuf *result = NULL, *m; struct secspacq *newspacq; int error; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (sp == NULL) { panic("key_spdacquire: NULL pointer is passed."); } if (sp->req != NULL) { panic("key_spdacquire: called but there is request."); } if (sp->policy != IPSEC_POLICY_IPSEC) { panic("key_spdacquire: policy mismathed. IPsec is expected."); } /* get a entry to check whether sent message or not. */ lck_mtx_lock(sadb_mutex); sp->refcnt++; if ((newspacq = key_getspacq(&sp->spidx)) != NULL) { key_freesp(sp, KEY_SADB_LOCKED); if (key_blockacq_count < newspacq->count) { /* reset counter and do send message. */ newspacq->count = 0; } else { /* increment counter and do nothing. */ newspacq->count++; lck_mtx_unlock(sadb_mutex); return 0; } } else { /* make new entry for blocking to send SADB_ACQUIRE. */ if ((newspacq = key_newspacq(&sp->spidx)) == NULL) { key_freesp(sp, KEY_SADB_LOCKED); lck_mtx_unlock(sadb_mutex); return ENOBUFS; } key_freesp(sp, KEY_SADB_LOCKED); /* add to acqtree */ LIST_INSERT_HEAD(&spacqtree, newspacq, chain); key_start_timehandler(); } lck_mtx_unlock(sadb_mutex); /* create new sadb_msg to reply. */ m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); if (!m) { error = ENOBUFS; goto fail; } result = m; result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) { result->m_pkthdr.len += m->m_len; } VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); fail: if (result) { m_freem(result); } return error; } /* * SADB_SPDFLUSH processing * receive * * from the user, and free all entries in secpctree. * and send, * * to the user. * NOTE: what to do is only marking SADB_SASTATE_DEAD. * * m will always be freed. */ static int key_spdflush( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_msg *newmsg; struct secpolicy *sp; u_int dir; /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_spdflush: NULL pointer is passed."); } if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) { return key_senderror(so, m, EINVAL); } lck_mtx_lock(sadb_mutex); for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { LIST_FOREACH(sp, &sptree[dir], chain) { sp->state = IPSEC_SPSTATE_DEAD; } } lck_mtx_unlock(sadb_mutex); if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n")); return key_senderror(so, m, ENOBUFS); } if (m->m_next) { m_freem(m->m_next); } m->m_next = NULL; m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); newmsg = mtod(m, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(m->m_pkthdr.len); return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } /* * SADB_SPDDUMP processing * receive * * from the user, and dump all SP leaves * and send, * ..... * to the ikmpd. * * m will always be freed. */ static int key_spddump( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secpolicy *sp, **spbuf = NULL, **sp_ptr; u_int32_t cnt = 0, bufcount = 0; u_int dir; struct mbuf *n; int error = 0; /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_spddump: NULL pointer is passed."); } if ((bufcount = ipsec_policy_count) == 0) { error = ENOENT; goto end; } if (os_add_overflow(bufcount, 256, &bufcount)) { ipseclog((LOG_DEBUG, "key_spddump: bufcount overflow, ipsec policy count %u.\n", ipsec_policy_count)); bufcount = ipsec_policy_count; } spbuf = kalloc_type(struct secpolicy *, bufcount, Z_WAITOK); if (spbuf == NULL) { ipseclog((LOG_DEBUG, "key_spddump: No more memory.\n")); error = ENOMEM; goto end; } lck_mtx_lock(sadb_mutex); /* search SPD entry, make list. */ sp_ptr = spbuf; for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { LIST_FOREACH(sp, &sptree[dir], chain) { if (cnt == bufcount) { break; /* buffer full */ } *sp_ptr++ = sp; sp->refcnt++; cnt++; } } lck_mtx_unlock(sadb_mutex); if (cnt == 0) { error = ENOENT; goto end; } sp_ptr = spbuf; while (cnt) { --cnt; n = key_setdumpsp(*sp_ptr++, SADB_X_SPDDUMP, cnt, mhp->msg->sadb_msg_pid); if (n) { key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } lck_mtx_lock(sadb_mutex); while (sp_ptr > spbuf) { key_freesp(*(--sp_ptr), KEY_SADB_LOCKED); } lck_mtx_unlock(sadb_mutex); end: kfree_type(struct secpolicy *, bufcount, spbuf); if (error) { return key_senderror(so, m, error); } m_freem(m); return 0; } static struct mbuf * key_setdumpsp( struct secpolicy *sp, u_int8_t msg_type, u_int32_t seq, u_int32_t pid) { struct mbuf *result = NULL, *m; m = key_setsadbmsg(msg_type, 0, SADB_SATYPE_UNSPEC, seq, pid, (u_int16_t)sp->refcnt); if (!m) { goto fail; } result = m; if (sp->spidx.src_range.start.ss_len > 0) { m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START, (struct sockaddr *)&sp->spidx.src_range.start, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END, (struct sockaddr *)&sp->spidx.src_range.end, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); } else { m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, (struct sockaddr *)&sp->spidx.src, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); } if (sp->spidx.dst_range.start.ss_len > 0) { m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START, (struct sockaddr *)&sp->spidx.dst_range.start, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END, (struct sockaddr *)&sp->spidx.dst_range.end, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); } else { m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, (struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); } if (sp->spidx.internal_if || sp->outgoing_if || sp->ipsec_if || sp->disabled) { m = key_setsadbipsecif(sp->spidx.internal_if, sp->outgoing_if, sp->ipsec_if, sp->disabled); if (!m) { goto fail; } m_cat(result, m); } m = key_sp2msg(sp); if (!m) { goto fail; } m_cat(result, m); if ((result->m_flags & M_PKTHDR) == 0) { goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) { result->m_pkthdr.len += m->m_len; } if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) { ipseclog((LOG_DEBUG, "key_setdumpsp: packet header length > UINT16_MAX\n")); goto fail; } mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); return result; fail: m_freem(result); return NULL; } /* * get PFKEY message length for security policy and request. */ static u_int key_getspreqmsglen( struct secpolicy *sp) { u_int tlen; tlen = sizeof(struct sadb_x_policy); /* if is the policy for ipsec ? */ if (sp->policy != IPSEC_POLICY_IPSEC) { return tlen; } /* get length of ipsec requests */ { struct ipsecrequest *isr; int len; for (isr = sp->req; isr != NULL; isr = isr->next) { len = sizeof(struct sadb_x_ipsecrequest) + isr->saidx.src.ss_len + isr->saidx.dst.ss_len; tlen += PFKEY_ALIGN8(len); } } return tlen; } /* * SADB_SPDEXPIRE processing * send * * to KMD by PF_KEY. * * OUT: 0 : succeed * others : error number */ static int key_spdexpire( struct secpolicy *sp) { struct mbuf *result = NULL, *m; int len; int error = EINVAL; struct sadb_lifetime *lt; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (sp == NULL) { panic("key_spdexpire: NULL pointer is passed."); } /* set msg header */ m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); if (!m) { error = ENOBUFS; goto fail; } result = m; /* create lifetime extension (current and hard) */ len = PFKEY_ALIGN8(sizeof(*lt)) * 2; m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } error = ENOBUFS; goto fail; } bzero(mtod(m, caddr_t), len); lt = mtod(m, struct sadb_lifetime *); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lt->sadb_lifetime_allocations = 0; lt->sadb_lifetime_bytes = 0; lt->sadb_lifetime_addtime = key_convert_continuous_time_ns(sp->created); lt->sadb_lifetime_usetime = key_convert_continuous_time_ns(sp->lastused); lt = (struct sadb_lifetime *)(void *)(mtod(m, caddr_t) + len / 2); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lt->sadb_lifetime_allocations = 0; lt->sadb_lifetime_bytes = 0; lt->sadb_lifetime_addtime = sp->lifetime / NSEC_PER_SEC; lt->sadb_lifetime_usetime = sp->validtime / NSEC_PER_SEC; m_cat(result, m); /* set sadb_address(es) for source */ if (sp->spidx.src_range.start.ss_len > 0) { m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START, (struct sockaddr *)&sp->spidx.src_range.start, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END, (struct sockaddr *)&sp->spidx.src_range.end, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); } else { m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, (struct sockaddr *)&sp->spidx.src, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); } /* set sadb_address(es) for dest */ if (sp->spidx.dst_range.start.ss_len > 0) { m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START, (struct sockaddr *)&sp->spidx.dst_range.start, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END, (struct sockaddr *)&sp->spidx.dst_range.end, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); } else { m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, (struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); } /* set secpolicy */ m = key_sp2msg(sp); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) { result->m_pkthdr.len += m->m_len; } if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) { ipseclog((LOG_DEBUG, "key_setdumpsp: packet header length > UINT16_MAX\n")); goto fail; } mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) { m_freem(result); } return error; } /* %%% SAD management */ /* * allocating a memory for new SA head, and copy from the values of mhp. * OUT: NULL : failure due to the lack of memory. * others : pointer to new SA head. */ static struct secashead * key_newsah(struct secasindex *saidx, ifnet_t ipsec_if, u_int outgoing_if, u_int8_t dir, u_int16_t flags) { struct secashead *newsah; /* sanity check */ if (saidx == NULL) { panic("key_newsaidx: NULL pointer is passed."); } VERIFY(flags == SECURITY_ASSOCIATION_PFKEY || flags == SECURITY_ASSOCIATION_CUSTOM_IPSEC); newsah = keydb_newsecashead(); if (newsah == NULL) { return NULL; } bcopy(saidx, &newsah->saidx, sizeof(newsah->saidx)); /* remove the ports */ switch (saidx->src.ss_family) { case AF_INET: ((struct sockaddr_in *)(&newsah->saidx.src))->sin_port = IPSEC_PORT_ANY; break; case AF_INET6: ((struct sockaddr_in6 *)(&newsah->saidx.src))->sin6_port = IPSEC_PORT_ANY; break; default: break; } switch (saidx->dst.ss_family) { case AF_INET: ((struct sockaddr_in *)(&newsah->saidx.dst))->sin_port = IPSEC_PORT_ANY; break; case AF_INET6: ((struct sockaddr_in6 *)(&newsah->saidx.dst))->sin6_port = IPSEC_PORT_ANY; break; default: break; } newsah->outgoing_if = outgoing_if; if (ipsec_if) { ifnet_reference(ipsec_if); newsah->ipsec_if = ipsec_if; } newsah->dir = dir; /* add to saidxtree */ newsah->state = SADB_SASTATE_MATURE; newsah->flags = flags; if (flags == SECURITY_ASSOCIATION_PFKEY) { LIST_INSERT_HEAD(&sahtree, newsah, chain); } else { LIST_INSERT_HEAD(&custom_sahtree, newsah, chain); } key_start_timehandler(); return newsah; } /* * delete SA index and all SA registered. */ void key_delsah( struct secashead *sah) { struct secasvar *sav, *nextsav; u_int stateidx, state; int zombie = 0; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* sanity check */ if (sah == NULL) { panic("key_delsah: NULL pointer is passed."); } if (sah->use_count > 0) { return; } /* searching all SA registered in the secindex. */ for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_any); stateidx++) { state = saorder_state_any[stateidx]; for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); if (sav->refcnt > 0) { /* give up to delete this sa */ zombie++; continue; } /* sanity check */ KEY_CHKSASTATE(state, sav->state, "key_delsah"); key_freesav(sav, KEY_SADB_LOCKED); /* remove back pointer */ sav->sah = NULL; sav = NULL; } } /* don't delete sah only if there are savs. */ if (zombie) { return; } ROUTE_RELEASE(&sah->sa_route); if (sah->ipsec_if) { ifnet_release(sah->ipsec_if); sah->ipsec_if = NULL; } /* remove from tree of SA index */ if (__LIST_CHAINED(sah)) { LIST_REMOVE(sah, chain); } kfree_type(struct secashead, sah); } /* * allocating a new SA with LARVAL state. key_add() and key_getspi() call, * and copy the values of mhp into new buffer. * When SAD message type is GETSPI: * to set sequence number from acq_seq++, * to set zero to SPI. * not to call key_setsava(). * OUT: NULL : fail * others : pointer to new secasvar. * * does not modify mbuf. does not free mbuf on error. */ static struct secasvar * key_newsav( struct mbuf *m, const struct sadb_msghdr *mhp, struct secashead *sah, int *errp, struct socket *so) { struct secasvar *newsav; const struct sadb_sa *xsa; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* sanity check */ if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL) { panic("key_newsa: NULL pointer is passed."); } newsav = kalloc_type(struct secasvar, Z_NOWAIT_ZERO); if (newsav == NULL) { lck_mtx_unlock(sadb_mutex); newsav = kalloc_type(struct secasvar, Z_WAITOK_ZERO_NOFAIL); lck_mtx_lock(sadb_mutex); } switch (mhp->msg->sadb_msg_type) { case SADB_GETSPI: key_setspi(newsav, 0); newsav->seq = mhp->msg->sadb_msg_seq; break; case SADB_ADD: /* sanity check */ if (mhp->ext[SADB_EXT_SA] == NULL) { key_delsav(newsav); ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n")); *errp = EINVAL; return NULL; } xsa = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; key_setspi(newsav, xsa->sadb_sa_spi); newsav->seq = mhp->msg->sadb_msg_seq; break; default: key_delsav(newsav); *errp = EINVAL; return NULL; } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { if (((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_alwaysexpire) { newsav->always_expire = 1; } newsav->flags2 = ((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_flags; if (newsav->flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH) { newsav->so = so; } } // Get current continuous time const u_int64_t current_time_ns = key_get_continuous_time_ns(); /* copy sav values */ if (mhp->msg->sadb_msg_type != SADB_GETSPI) { *errp = key_setsaval(newsav, m, mhp); if (*errp) { key_delsav(newsav); return NULL; } } else { /* For get SPI, if has a hard lifetime, apply */ const struct sadb_lifetime *lft0; lft0 = (struct sadb_lifetime *)(void *)mhp->ext[SADB_EXT_LIFETIME_HARD]; if (lft0 != NULL) { /* make lifetime for CURRENT */ newsav->lft_c = kalloc_type(struct sadb_lifetime, Z_NOWAIT); if (newsav->lft_c == NULL) { lck_mtx_unlock(sadb_mutex); newsav->lft_c = kalloc_type(struct sadb_lifetime, Z_WAITOK | Z_NOFAIL); lck_mtx_lock(sadb_mutex); } newsav->lft_c->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); newsav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; newsav->lft_c->sadb_lifetime_allocations = 0; newsav->lft_c->sadb_lifetime_bytes = 0; newsav->lft_c->sadb_lifetime_addtime = current_time_ns; newsav->lft_c->sadb_lifetime_usetime = 0; if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { ipseclog((LOG_DEBUG, "key_newsa: invalid hard lifetime ext len.\n")); key_delsav(newsav); *errp = EINVAL; return NULL; } newsav->lft_h = key_newbuf(lft0, sizeof(*lft0)); } } /* reset created */ newsav->created = current_time_ns; newsav->pid = mhp->msg->sadb_msg_pid; /* add to satree */ newsav->sah = sah; newsav->refcnt = 1; newsav->state = SADB_SASTATE_LARVAL; LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, secasvar, chain); ipsec_sav_count++; ipsec_monitor_sleep_wake(); return newsav; } static int key_migratesav(struct secasvar *sav, struct secashead *newsah) { if (sav == NULL || newsah == NULL || sav->state != SADB_SASTATE_MATURE) { return EINVAL; } /* remove from SA header */ if (__LIST_CHAINED(sav)) { LIST_REMOVE(sav, chain); } sav->sah = newsah; LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], sav, secasvar, chain); return 0; } static void key_reset_sav(struct secasvar *sav) { LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* sanity check */ if (sav == NULL) { panic("key_delsav: NULL pointer is passed."); } sav->remote_ike_port = 0; sav->natt_encapsulated_src_port = 0; if (sav->key_auth != NULL) { bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth)); kfree_data(sav->key_auth, PFKEY_UNUNIT64(sav->key_auth->sadb_key_len)); sav->key_auth = NULL; } if (sav->key_enc != NULL) { bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc)); kfree_data(sav->key_enc, PFKEY_UNUNIT64(sav->key_enc->sadb_key_len)); sav->key_enc = NULL; } if (sav->sched_auth) { bzero(sav->sched_auth, sav->schedlen_auth); kfree_data(sav->sched_auth, sav->schedlen_auth); sav->sched_auth = NULL; sav->schedlen_auth = 0; } if (sav->sched_enc) { bzero(sav->sched_enc, sav->schedlen_enc); kfree_data(sav->sched_enc, sav->schedlen_enc); sav->sched_enc = NULL; sav->schedlen_enc = 0; } for (int i = 0; i < MAX_REPLAY_WINDOWS; i++) { if (sav->replay[i] != NULL) { keydb_delsecreplay(sav->replay[i]); sav->replay[i] = NULL; } } if (sav->lft_c != NULL) { kfree_type(struct sadb_lifetime, sav->lft_c); sav->lft_c = NULL; } if (sav->lft_h != NULL) { kfree_data(sav->lft_h, sizeof(*sav->lft_h)); sav->lft_h = NULL; } if (sav->lft_s != NULL) { kfree_data(sav->lft_s, sizeof(*sav->lft_h)); sav->lft_s = NULL; } if (sav->iv != NULL) { kfree_data(sav->iv, sav->ivlen); sav->iv = NULL; } key_release_flowid(sav); return; } /* * free() SA variable entry. */ void key_delsav( struct secasvar *sav) { LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* sanity check */ if (sav == NULL) { panic("key_delsav: NULL pointer is passed."); } if (sav->refcnt > 0) { return; /* can't free */ } /* remove from SA header */ if (__LIST_CHAINED(sav)) { LIST_REMOVE(sav, chain); ipsec_sav_count--; } if (sav->spihash.le_prev || sav->spihash.le_next) { LIST_REMOVE(sav, spihash); } key_reset_sav(sav); kfree_type(struct secasvar, sav); } /* * search SAD. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secashead * key_getsah(struct secasindex *saidx, u_int16_t flags) { struct secashead *sah; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); if ((flags & SECURITY_ASSOCIATION_ANY) == SECURITY_ASSOCIATION_ANY || (flags & SECURITY_ASSOCIATION_PFKEY) == SECURITY_ASSOCIATION_PFKEY) { LIST_FOREACH(sah, &sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) { continue; } if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) { return sah; } } } if ((flags & SECURITY_ASSOCIATION_ANY) == SECURITY_ASSOCIATION_ANY || (flags & SECURITY_ASSOCIATION_PFKEY) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { LIST_FOREACH(sah, &custom_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) { continue; } if (key_cmpsaidx(&sah->saidx, saidx, 0)) { return sah; } } } return NULL; } struct secashead * key_newsah2(struct secasindex *saidx, u_int8_t dir) { struct secashead *sah; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); sah = key_getsah(saidx, SECURITY_ASSOCIATION_ANY); if (!sah) { return key_newsah(saidx, NULL, 0, dir, SECURITY_ASSOCIATION_PFKEY); } return sah; } /* * check not to be duplicated SPI. * NOTE: this function is too slow due to searching all SAD. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_checkspidup( struct secasindex *saidx, u_int32_t spi) { struct secasvar *sav; u_int stateidx, state; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* check address family */ if (saidx->src.ss_family != saidx->dst.ss_family) { ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n")); return NULL; } /* check all SAD */ LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { if (sav->spi != spi) { continue; } for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_alive[stateidx]; if (sav->state == state && key_ismyaddr((struct sockaddr *)&sav->sah->saidx.dst)) { return sav; } } } return NULL; } static void key_setspi( struct secasvar *sav, u_int32_t spi) { LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); sav->spi = spi; if (sav->spihash.le_prev || sav->spihash.le_next) { LIST_REMOVE(sav, spihash); } LIST_INSERT_HEAD(&spihash[SPIHASH(spi)], sav, spihash); } /* * search SAD litmited alive SA, protocol, SPI. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_getsavbyspi( struct secashead *sah, u_int32_t spi) { struct secasvar *sav, *match; u_int stateidx, state, matchidx; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); match = NULL; matchidx = _ARRAYLEN(saorder_state_alive); LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { if (sav->spi != spi) { continue; } if (sav->sah != sah) { continue; } for (stateidx = 0; stateidx < matchidx; stateidx++) { state = saorder_state_alive[stateidx]; if (sav->state == state) { match = sav; matchidx = stateidx; break; } } } return match; } /* * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. * You must update these if need. * OUT: 0: success. * !0: failure. * * does not modify mbuf. does not free mbuf on error. */ static int key_setsaval( struct secasvar *sav, struct mbuf *m, const struct sadb_msghdr *mhp) { #if IPSEC_ESP const struct esp_algorithm *algo; #endif int error = 0; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* sanity check */ if (m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_setsaval: NULL pointer is passed."); } /* initialization */ key_reset_sav(sav); sav->natt_last_activity = natt_now; /* SA */ if (mhp->ext[SADB_EXT_SA] != NULL) { const struct sadb_sa *sa0; sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { ipseclog((LOG_DEBUG, "key_setsaval: invalid message size.\n")); error = EINVAL; goto fail; } sav->alg_auth = sa0->sadb_sa_auth; sav->alg_enc = sa0->sadb_sa_encrypt; sav->flags = sa0->sadb_sa_flags; /* * Verify that a nat-traversal port was specified if * the nat-traversal flag is set. */ if ((sav->flags & SADB_X_EXT_NATT) != 0) { if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa_2) || ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port == 0) { ipseclog((LOG_DEBUG, "key_setsaval: natt port not set.\n")); error = EINVAL; goto fail; } sav->natt_encapsulated_src_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_src_port; sav->remote_ike_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port; sav->natt_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_interval; sav->natt_offload_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_offload_interval; } /* * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that * SADB_X_EXT_NATT is set and SADB_X_EXT_NATT_KEEPALIVE is not * set (we're not behind nat) - otherwise clear it. */ if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) { if ((sav->flags & SADB_X_EXT_NATT) == 0 || (sav->flags & SADB_X_EXT_NATT_KEEPALIVE) != 0) { sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; } } /* replay window */ if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { if ((sav->flags2 & SADB_X_EXT_SA2_SEQ_PER_TRAFFIC_CLASS) == SADB_X_EXT_SA2_SEQ_PER_TRAFFIC_CLASS) { const uint32_t range = PER_TC_REPLAY_WINDOW_RANGE; for (uint32_t i = 0; i < MAX_REPLAY_WINDOWS; i++) { sav->replay[i] = keydb_newsecreplay(sa0->sadb_sa_replay); /* Allowed range for sequence per traffic class */ const uint32_t seq = i << PER_TC_REPLAY_WINDOW_SN_SHIFT; sav->replay[i]->seq = seq; sav->replay[i]->lastseq = seq + range - 1; } } else { sav->replay[0] = keydb_newsecreplay(sa0->sadb_sa_replay); sav->replay[0]->lastseq = ~0; } } } /* Authentication keys */ if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { const struct sadb_key *key0; int len; key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; len = mhp->extlen[SADB_EXT_KEY_AUTH]; const size_t max_length = PFKEY_ALIGN8(sizeof(*key0)) + PFKEY_ALIGN8(IPSEC_KEY_AUTH_MAX_BYTES); assert(max_length < KALLOC_SAFE_ALLOC_SIZE); error = 0; if ((len < sizeof(*key0)) || (len > max_length)) { ipseclog((LOG_DEBUG, "key_setsaval: invalid auth key ext len. len = %d\n", len)); error = EINVAL; goto fail; } switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_AH: case SADB_SATYPE_ESP: if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && sav->alg_auth != SADB_X_AALG_NULL) { error = EINVAL; } break; default: error = EINVAL; break; } if (error) { ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n")); goto fail; } sav->key_auth = (struct sadb_key *)key_newbuf(key0, len); } /* Encryption key */ if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { const struct sadb_key *key0; int len; key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; const size_t max_length = PFKEY_ALIGN8(sizeof(*key0)) + PFKEY_ALIGN8(IPSEC_KEY_ENCRYPT_MAX_BYTES); assert(max_length < KALLOC_SAFE_ALLOC_SIZE); error = 0; if ((len < sizeof(*key0)) || (len > max_length)) { ipseclog((LOG_DEBUG, "key_setsaval: invalid encryption key ext len. len = %d\n", len)); error = EINVAL; goto fail; } switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_ESP: if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && sav->alg_enc != SADB_EALG_NULL) { ipseclog((LOG_DEBUG, "key_setsaval: invalid ESP algorithm.\n")); error = EINVAL; break; } sav->key_enc = (struct sadb_key *)key_newbuf(key0, len); break; case SADB_SATYPE_AH: default: error = EINVAL; break; } if (error) { ipseclog((LOG_DEBUG, "key_setsaval: invalid key_enc value.\n")); goto fail; } } /* set iv */ sav->ivlen = 0; switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_ESP: #if IPSEC_ESP algo = esp_algorithm_lookup(sav->alg_enc); if (algo && algo->ivlen) { sav->ivlen = (*algo->ivlen)(algo, sav); } if (sav->ivlen == 0) { break; } sav->iv = (caddr_t) kalloc_data(sav->ivlen, Z_NOWAIT); if (sav->iv == 0) { lck_mtx_unlock(sadb_mutex); sav->iv = (caddr_t) kalloc_data(sav->ivlen, Z_WAITOK); lck_mtx_lock(sadb_mutex); if (sav->iv == 0) { ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); error = ENOBUFS; goto fail; } } /* initialize IV with random bytes */ key_randomfill(sav->iv, sav->ivlen); #endif break; case SADB_SATYPE_AH: break; default: ipseclog((LOG_DEBUG, "key_setsaval: invalid SA type.\n")); error = EINVAL; goto fail; } /* reset created */ const u_int64_t current_time_ns = key_get_continuous_time_ns(); sav->created = current_time_ns; /* make lifetime for CURRENT */ sav->lft_c = kalloc_type(struct sadb_lifetime, Z_NOWAIT); if (sav->lft_c == NULL) { lck_mtx_unlock(sadb_mutex); sav->lft_c = kalloc_type(struct sadb_lifetime, Z_WAITOK | Z_NOFAIL); lck_mtx_lock(sadb_mutex); } sav->lft_c->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; sav->lft_c->sadb_lifetime_allocations = 0; sav->lft_c->sadb_lifetime_bytes = 0; sav->lft_c->sadb_lifetime_addtime = current_time_ns; sav->lft_c->sadb_lifetime_usetime = 0; /* lifetimes for HARD and SOFT */ { const struct sadb_lifetime *lft0; lft0 = (struct sadb_lifetime *) (void *)mhp->ext[SADB_EXT_LIFETIME_HARD]; if (lft0 != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { ipseclog((LOG_DEBUG, "key_setsaval: invalid hard lifetime ext len.\n")); error = EINVAL; goto fail; } sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0, sizeof(*lft0)); // Check that conversion to nanoseconds won't cause an overflow u_int64_t nanotime; if (__improbable(os_mul_overflow(sav->lft_h->sadb_lifetime_addtime, NSEC_PER_SEC, &nanotime))) { ipseclog((LOG_DEBUG, "key_setsaval: invalid hard lifetime value %llu.\n", sav->lft_h->sadb_lifetime_addtime)); error = EINVAL; goto fail; } } lft0 = (struct sadb_lifetime *) (void *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; if (lft0 != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { ipseclog((LOG_DEBUG, "key_setsaval: invalid soft lifetime ext len.\n")); error = EINVAL; goto fail; } sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0, sizeof(*lft0)); // Check that conversion to nanoseconds won't cause an overflow u_int64_t nanotime; if (__improbable(os_mul_overflow(sav->lft_s->sadb_lifetime_addtime, NSEC_PER_SEC, &nanotime))) { ipseclog((LOG_DEBUG, "key_setsaval: invalid soft lifetime value %llu.\n", sav->lft_s->sadb_lifetime_addtime)); error = EINVAL; goto fail; } } } return 0; fail: key_reset_sav(sav); return error; } /* * validation with a secasvar entry, and set SADB_SATYPE_MATURE. * OUT: 0: valid * other: errno */ static int key_mature( struct secasvar *sav) { int mature; int checkmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */ int mustmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */ mature = 0; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* check SPI value */ switch (sav->sah->saidx.proto) { case IPPROTO_ESP: case IPPROTO_AH: /* No reason to test if this is >= 0, because ntohl(sav->spi) is unsigned. */ if (ntohl(sav->spi) <= 255) { ipseclog((LOG_DEBUG, "key_mature: illegal range of SPI %u.\n", (u_int32_t)ntohl(sav->spi))); return EINVAL; } break; } /* check satype */ switch (sav->sah->saidx.proto) { case IPPROTO_ESP: /* check flags */ if ((sav->flags & SADB_X_EXT_OLD) && (sav->flags & SADB_X_EXT_DERIV)) { ipseclog((LOG_DEBUG, "key_mature: " "invalid flag (derived) given to old-esp.\n")); return EINVAL; } if (sav->alg_auth == SADB_AALG_NONE) { checkmask = 1; } else { checkmask = 3; } mustmask = 1; break; case IPPROTO_AH: /* check flags */ if (sav->flags & SADB_X_EXT_DERIV) { ipseclog((LOG_DEBUG, "key_mature: " "invalid flag (derived) given to AH SA.\n")); return EINVAL; } if (sav->alg_enc != SADB_EALG_NONE) { ipseclog((LOG_DEBUG, "key_mature: " "protocol and algorithm mismated.\n")); return EINVAL; } checkmask = 2; mustmask = 2; break; default: ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n")); return EPROTONOSUPPORT; } /* check authentication algorithm */ if ((checkmask & 2) != 0) { const struct ah_algorithm *algo; int keylen; algo = ah_algorithm_lookup(sav->alg_auth); if (!algo) { ipseclog((LOG_DEBUG, "key_mature: " "unknown authentication algorithm.\n")); return EINVAL; } /* algorithm-dependent check */ if (sav->key_auth) { keylen = sav->key_auth->sadb_key_bits; } else { keylen = 0; } if (keylen < algo->keymin || algo->keymax < keylen) { ipseclog((LOG_DEBUG, "key_mature: invalid AH key length %d " "(%d-%d allowed)\n", keylen, algo->keymin, algo->keymax)); return EINVAL; } if (algo->mature) { if ((*algo->mature)(sav)) { /* message generated in per-algorithm function*/ return EINVAL; } else { mature = SADB_SATYPE_AH; } } if ((mustmask & 2) != 0 && mature != SADB_SATYPE_AH) { ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for AH\n")); return EINVAL; } } /* check encryption algorithm */ if ((checkmask & 1) != 0) { #if IPSEC_ESP const struct esp_algorithm *algo; int keylen; algo = esp_algorithm_lookup(sav->alg_enc); if (!algo) { ipseclog((LOG_DEBUG, "key_mature: unknown encryption algorithm.\n")); return EINVAL; } /* algorithm-dependent check */ if (sav->key_enc) { keylen = sav->key_enc->sadb_key_bits; } else { keylen = 0; } if (keylen < algo->keymin || algo->keymax < keylen) { ipseclog((LOG_DEBUG, "key_mature: invalid ESP key length %d " "(%d-%d allowed)\n", keylen, algo->keymin, algo->keymax)); return EINVAL; } if (algo->mature) { if ((*algo->mature)(sav)) { /* message generated in per-algorithm function*/ return EINVAL; } else { mature = SADB_SATYPE_ESP; } } if ((mustmask & 1) != 0 && mature != SADB_SATYPE_ESP) { ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for ESP\n")); return EINVAL; } #else /*IPSEC_ESP*/ ipseclog((LOG_DEBUG, "key_mature: ESP not supported in this configuration\n")); return EINVAL; #endif } key_sa_chgstate(sav, SADB_SASTATE_MATURE); return 0; } /* * subroutine for SADB_GET and SADB_DUMP. */ static struct mbuf * key_setdumpsa( struct secasvar *sav, u_int8_t type, u_int8_t satype, u_int32_t seq, u_int32_t pid) { struct mbuf *result = NULL, *tres = NULL, *m; int l = 0; int i; void *p; int dumporder[] = { SADB_EXT_SA, SADB_X_EXT_SA2, SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, }; m = key_setsadbmsg(type, 0, satype, seq, pid, (u_int16_t)sav->refcnt); if (m == NULL) { goto fail; } result = m; for (i = sizeof(dumporder) / sizeof(dumporder[0]) - 1; i >= 0; i--) { m = NULL; p = NULL; switch (dumporder[i]) { case SADB_EXT_SA: m = key_setsadbsa(sav); if (!m) { goto fail; } break; case SADB_X_EXT_SA2: m = key_setsadbxsa2(sav->sah->saidx.mode, sav->replay[0] ? sav->replay[0]->count : 0, sav->sah->saidx.reqid, sav->flags2); if (!m) { goto fail; } break; case SADB_EXT_ADDRESS_SRC: m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, (struct sockaddr *)&sav->sah->saidx.src, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { goto fail; } break; case SADB_EXT_ADDRESS_DST: m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, (struct sockaddr *)&sav->sah->saidx.dst, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { goto fail; } break; case SADB_EXT_KEY_AUTH: if (!sav->key_auth) { continue; } l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); p = sav->key_auth; break; case SADB_EXT_KEY_ENCRYPT: if (!sav->key_enc) { continue; } l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); p = sav->key_enc; break; case SADB_EXT_LIFETIME_CURRENT: if (!sav->lft_c) { continue; } m = key_setsalifecurr(sav->lft_c); if (!m) { goto fail; } break; case SADB_EXT_LIFETIME_HARD: if (!sav->lft_h) { continue; } l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); p = sav->lft_h; break; case SADB_EXT_LIFETIME_SOFT: if (!sav->lft_s) { continue; } l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); p = sav->lft_s; break; case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: /* XXX: should we brought from SPD ? */ case SADB_EXT_SENSITIVITY: default: continue; } if ((!m && !p) || (m && p)) { goto fail; } if (p && tres) { M_PREPEND(tres, l, M_WAITOK, 1); if (!tres) { goto fail; } bcopy(p, mtod(tres, caddr_t), l); continue; } if (p) { m = key_alloc_mbuf(l); if (!m) { goto fail; } m_copyback(m, 0, l, p); } if (tres) { m_cat(m, tres); } tres = m; } m_cat(result, tres); if (sav->sah && (sav->sah->outgoing_if || sav->sah->ipsec_if)) { m = key_setsadbipsecif(NULL, ifindex2ifnet[sav->sah->outgoing_if], sav->sah->ipsec_if, 0); if (!m) { goto fail; } m_cat(result, m); } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) { result->m_pkthdr.len += m->m_len; } VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); return result; fail: m_freem(result); m_freem(tres); return NULL; } /* * set data into sadb_msg. */ static struct mbuf * key_setsadbmsg( u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, pid_t pid, u_int16_t reserved) { struct mbuf *m; struct sadb_msg *p; int len; len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); if (len > MCLBYTES) { return NULL; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m && len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); m = NULL; } } if (!m) { return NULL; } m->m_pkthdr.len = m->m_len = len; m->m_next = NULL; p = mtod(m, struct sadb_msg *); bzero(p, len); p->sadb_msg_version = PF_KEY_V2; p->sadb_msg_type = type; p->sadb_msg_errno = 0; p->sadb_msg_satype = satype; p->sadb_msg_len = PFKEY_UNIT64(tlen); p->sadb_msg_reserved = reserved; p->sadb_msg_seq = seq; p->sadb_msg_pid = (u_int32_t)pid; return m; } /* * copy secasvar data into sadb_address. */ static struct mbuf * key_setsadbsa( struct secasvar *sav) { struct mbuf *m; struct sadb_sa *p; u_int16_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } return NULL; } p = mtod(m, struct sadb_sa *); bzero(p, len); p->sadb_sa_len = PFKEY_UNIT64(len); p->sadb_sa_exttype = SADB_EXT_SA; p->sadb_sa_spi = sav->spi; p->sadb_sa_replay = (sav->replay[0] != NULL ? sav->replay[0]->wsize : 0); p->sadb_sa_state = sav->state; p->sadb_sa_auth = sav->alg_auth; p->sadb_sa_encrypt = sav->alg_enc; p->sadb_sa_flags = sav->flags; return m; } /* * set data into sadb_address. */ static struct mbuf * key_setsadbaddr( u_int16_t exttype, struct sockaddr *saddr, size_t prefixlen, u_int8_t ul_proto) { struct mbuf *m; struct sadb_address *p; u_int16_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + PFKEY_ALIGN8(saddr->sa_len); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } return NULL; } p = mtod(m, struct sadb_address *); bzero(p, len); p->sadb_address_len = PFKEY_UNIT64(len); p->sadb_address_exttype = exttype; p->sadb_address_proto = ul_proto; if (prefixlen == FULLMASK) { switch (saddr->sa_family) { case AF_INET: prefixlen = sizeof(struct in_addr) << 3; break; case AF_INET6: prefixlen = sizeof(struct in6_addr) << 3; break; default: ; /*XXX*/ } } if (prefixlen >= UINT8_MAX) { ipseclog((LOG_ERR, "key_setsadbaddr: bad prefix length %zu", prefixlen)); m_freem(m); return NULL; } p->sadb_address_prefixlen = (u_int8_t)prefixlen; p->sadb_address_reserved = 0; bcopy(saddr, mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), saddr->sa_len); return m; } static struct mbuf * key_setsadbipsecif(ifnet_t internal_if, ifnet_t outgoing_if, ifnet_t ipsec_if, u_int8_t init_disabled) { struct mbuf *m; struct sadb_x_ipsecif *p; u_int16_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_ipsecif)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } return NULL; } p = mtod(m, struct sadb_x_ipsecif *); bzero(p, len); p->sadb_x_ipsecif_len = PFKEY_UNIT64(len); p->sadb_x_ipsecif_exttype = SADB_X_EXT_IPSECIF; if (internal_if && internal_if->if_xname) { strlcpy(p->sadb_x_ipsecif_internal_if, internal_if->if_xname, IFXNAMSIZ); } if (outgoing_if && outgoing_if->if_xname) { strlcpy(p->sadb_x_ipsecif_outgoing_if, outgoing_if->if_xname, IFXNAMSIZ); } if (ipsec_if && ipsec_if->if_xname) { strlcpy(p->sadb_x_ipsecif_ipsec_if, ipsec_if->if_xname, IFXNAMSIZ); } p->sadb_x_ipsecif_init_disabled = init_disabled; return m; } /* * set data into sadb_session_id */ static struct mbuf * key_setsadbsession_id(u_int64_t session_ids[]) { struct mbuf *m; struct sadb_session_id *p; u_int16_t len; len = PFKEY_ALIGN8(sizeof(*p)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } return NULL; } p = mtod(m, __typeof__(p)); bzero(p, len); p->sadb_session_id_len = PFKEY_UNIT64(len); p->sadb_session_id_exttype = SADB_EXT_SESSION_ID; p->sadb_session_id_v[0] = session_ids[0]; p->sadb_session_id_v[1] = session_ids[1]; return m; } /* * copy stats data into sadb_sastat type. */ static struct mbuf * key_setsadbsastat(u_int32_t dir, struct sastat *stats, u_int32_t max_stats) { struct mbuf *m; struct sadb_sastat *p; size_t list_len, len; if (!stats) { return NULL; } list_len = sizeof(*stats) * max_stats; len = PFKEY_ALIGN8(sizeof(*p)) + PFKEY_ALIGN8(list_len); if (PFKEY_UNIT64(len) >= UINT16_MAX) { ipseclog((LOG_ERR, "key_setsadbsastat: length is too big: %zu\n", len)); return NULL; } m = key_alloc_mbuf((int)len); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } return NULL; } p = mtod(m, __typeof__(p)); bzero(p, len); p->sadb_sastat_len = (u_int16_t)PFKEY_UNIT64(len); p->sadb_sastat_exttype = SADB_EXT_SASTAT; p->sadb_sastat_dir = dir; p->sadb_sastat_list_len = max_stats; if (list_len) { bcopy(stats, mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(*p)), list_len); } return m; } /* * set data into sadb_x_sa2. */ static struct mbuf * key_setsadbxsa2( u_int8_t mode, u_int32_t seq, u_int32_t reqid, u_int16_t flags) { struct mbuf *m; struct sadb_x_sa2 *p; u_int16_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } return NULL; } p = mtod(m, struct sadb_x_sa2 *); bzero(p, len); p->sadb_x_sa2_len = PFKEY_UNIT64(len); p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; p->sadb_x_sa2_mode = mode; p->sadb_x_sa2_reserved1 = 0; p->sadb_x_sa2_reserved2 = 0; p->sadb_x_sa2_sequence = seq; p->sadb_x_sa2_reqid = reqid; p->sadb_x_sa2_flags = flags; return m; } /* * set data into sadb_x_policy */ static struct mbuf * key_setsadbxpolicy( u_int16_t type, u_int8_t dir, u_int32_t id) { struct mbuf *m; struct sadb_x_policy *p; u_int16_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } return NULL; } p = mtod(m, struct sadb_x_policy *); bzero(p, len); p->sadb_x_policy_len = PFKEY_UNIT64(len); p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; p->sadb_x_policy_type = type; p->sadb_x_policy_dir = dir; p->sadb_x_policy_id = id; return m; } /* * Copy current lifetime data, converting timestamps to wall clock time */ static struct mbuf * key_setsalifecurr( struct sadb_lifetime *lft_c) { struct mbuf *m; struct sadb_lifetime *p; u_int16_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } return NULL; } p = mtod(m, struct sadb_lifetime *); bcopy(lft_c, p, sizeof(struct sadb_lifetime)); // Convert timestamps p->sadb_lifetime_addtime = key_convert_continuous_time_ns(lft_c->sadb_lifetime_addtime); p->sadb_lifetime_usetime = key_convert_continuous_time_ns(lft_c->sadb_lifetime_usetime); return m; } /* %%% utilities */ /* * copy a buffer into the new buffer allocated. */ static void * key_newbuf( const void *src, u_int len) { caddr_t new; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); new = kalloc_data(len, Z_NOWAIT); if (new == NULL) { lck_mtx_unlock(sadb_mutex); new = kalloc_data(len, Z_WAITOK | Z_NOFAIL); lck_mtx_lock(sadb_mutex); } bcopy(src, new, len); return new; } /* compare my own address * OUT: 1: true, i.e. my address. * 0: false */ int key_ismyaddr( struct sockaddr *sa) { #if INET struct sockaddr_in *sin; struct in_ifaddr *ia; #endif /* sanity check */ if (sa == NULL) { panic("key_ismyaddr: NULL pointer is passed."); } switch (sa->sa_family) { #if INET case AF_INET: lck_rw_lock_shared(&in_ifaddr_rwlock); sin = (struct sockaddr_in *)(void *)sa; for (ia = in_ifaddrhead.tqh_first; ia; ia = ia->ia_link.tqe_next) { IFA_LOCK_SPIN(&ia->ia_ifa); if (sin->sin_family == ia->ia_addr.sin_family && sin->sin_len == ia->ia_addr.sin_len && sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) { IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in_ifaddr_rwlock); return 1; } IFA_UNLOCK(&ia->ia_ifa); } lck_rw_done(&in_ifaddr_rwlock); break; #endif case AF_INET6: return key_ismyaddr6((struct sockaddr_in6 *)(void *)sa); } return 0; } /* * compare my own address for IPv6. * 1: ours * 0: other * NOTE: derived ip6_input() in KAME. This is necessary to modify more. */ #include static int key_ismyaddr6( struct sockaddr_in6 *sin6) { struct in6_ifaddr *ia; struct in6_multi *in6m; lck_rw_lock_shared(&in6_ifaddr_rwlock); TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) { IFA_LOCK(&ia->ia_ifa); if (key_sockaddrcmp((struct sockaddr *)&sin6, (struct sockaddr *)&ia->ia_addr, 0) == 0) { IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); return 1; } IFA_UNLOCK(&ia->ia_ifa); /* * XXX Multicast * XXX why do we care about multlicast here while we don't care * about IPv4 multicast?? * XXX scope */ in6m = NULL; in6_multihead_lock_shared(); IN6_LOOKUP_MULTI(&sin6->sin6_addr, ia->ia_ifp, in6m); in6_multihead_lock_done(); if (in6m != NULL) { lck_rw_done(&in6_ifaddr_rwlock); IN6M_REMREF(in6m); return 1; } } lck_rw_done(&in6_ifaddr_rwlock); /* loopback, just for safety */ if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) { return 1; } return 0; } /* * compare two secasindex structure. * flag can specify to compare 2 saidxes. * compare two secasindex structure without both mode and reqid. * don't compare port. * IN: * saidx0: source, it can be in SAD. * saidx1: object. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpsaidx( struct secasindex *saidx0, struct secasindex *saidx1, int flag) { /* sanity */ if (saidx0 == NULL && saidx1 == NULL) { return 1; } if (saidx0 == NULL || saidx1 == NULL) { return 0; } if (saidx0->ipsec_ifindex != 0 && saidx0->ipsec_ifindex != saidx1->ipsec_ifindex) { return 0; } if (saidx0->proto != saidx1->proto) { return 0; } if (flag == CMP_EXACTLY) { if (saidx0->mode != saidx1->mode) { return 0; } if (saidx0->reqid != saidx1->reqid) { return 0; } if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.ss_len) != 0 || bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.ss_len) != 0) { return 0; } } else { /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ if (flag & CMP_REQID) { /* * If reqid of SPD is non-zero, unique SA is required. * The result must be of same reqid in this case. */ if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) { return 0; } } if (flag & CMP_MODE) { if (saidx0->mode != IPSEC_MODE_ANY && saidx0->mode != saidx1->mode) { return 0; } } if (key_sockaddrcmp((struct sockaddr *)&saidx0->src, (struct sockaddr *)&saidx1->src, flag & CMP_PORT ? 1 : 0) != 0) { return 0; } if (key_sockaddrcmp((struct sockaddr *)&saidx0->dst, (struct sockaddr *)&saidx1->dst, flag & CMP_PORT ? 1 : 0) != 0) { return 0; } } return 1; } /* * compare two secindex structure exactly. * IN: * spidx0: source, it is often in SPD. * spidx1: object, it is often from PFKEY message. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpspidx_exactly( struct secpolicyindex *spidx0, struct secpolicyindex *spidx1) { /* sanity */ if (spidx0 == NULL && spidx1 == NULL) { return 1; } if (spidx0 == NULL || spidx1 == NULL) { return 0; } if (spidx0->prefs != spidx1->prefs || spidx0->prefd != spidx1->prefd || spidx0->ul_proto != spidx1->ul_proto || spidx0->internal_if != spidx1->internal_if) { return 0; } if (key_sockaddrcmp((struct sockaddr *)&spidx0->src, (struct sockaddr *)&spidx1->src, 1) != 0) { return 0; } if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst, (struct sockaddr *)&spidx1->dst, 1) != 0) { return 0; } if (key_sockaddrcmp((struct sockaddr *)&spidx0->src_range.start, (struct sockaddr *)&spidx1->src_range.start, 1) != 0) { return 0; } if (key_sockaddrcmp((struct sockaddr *)&spidx0->src_range.end, (struct sockaddr *)&spidx1->src_range.end, 1) != 0) { return 0; } if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst_range.start, (struct sockaddr *)&spidx1->dst_range.start, 1) != 0) { return 0; } if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst_range.end, (struct sockaddr *)&spidx1->dst_range.end, 1) != 0) { return 0; } return 1; } /* * compare two secindex structure with mask. * IN: * spidx0: source, it is often in SPD. * spidx1: object, it is often from IP header. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpspidx_withmask( struct secpolicyindex *spidx0, struct secpolicyindex *spidx1) { int spidx0_src_is_range = 0; int spidx0_dst_is_range = 0; /* sanity */ if (spidx0 == NULL && spidx1 == NULL) { return 1; } if (spidx0 == NULL || spidx1 == NULL) { return 0; } if (spidx0->src_range.start.ss_len > 0) { spidx0_src_is_range = 1; } if (spidx0->dst_range.start.ss_len > 0) { spidx0_dst_is_range = 1; } if ((spidx0_src_is_range ? spidx0->src_range.start.ss_family : spidx0->src.ss_family) != spidx1->src.ss_family || (spidx0_dst_is_range ? spidx0->dst_range.start.ss_family : spidx0->dst.ss_family) != spidx1->dst.ss_family || (spidx0_src_is_range ? spidx0->src_range.start.ss_len : spidx0->src.ss_len) != spidx1->src.ss_len || (spidx0_dst_is_range ? spidx0->dst_range.start.ss_len : spidx0->dst.ss_len) != spidx1->dst.ss_len) { return 0; } /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && spidx0->ul_proto != spidx1->ul_proto) { return 0; } /* If spidx1 specifies interface, ignore src addr */ if (spidx1->internal_if != NULL) { if (spidx0->internal_if == NULL || spidx0->internal_if != spidx1->internal_if) { return 0; } /* Still check ports */ switch (spidx0->src.ss_family) { case AF_INET: if (spidx0_src_is_range && (satosin(&spidx1->src)->sin_port < satosin(&spidx0->src_range.start)->sin_port || satosin(&spidx1->src)->sin_port > satosin(&spidx0->src_range.end)->sin_port)) { return 0; } else if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY && satosin(&spidx0->src)->sin_port != satosin(&spidx1->src)->sin_port) { return 0; } break; case AF_INET6: if (spidx0_src_is_range && (satosin6(&spidx1->src)->sin6_port < satosin6(&spidx0->src_range.start)->sin6_port || satosin6(&spidx1->src)->sin6_port > satosin6(&spidx0->src_range.end)->sin6_port)) { return 0; } else if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY && satosin6(&spidx0->src)->sin6_port != satosin6(&spidx1->src)->sin6_port) { return 0; } break; default: break; } } else if (spidx0_src_is_range) { if (!key_is_addr_in_range(&spidx1->src, &spidx0->src_range)) { return 0; } } else { switch (spidx0->src.ss_family) { case AF_INET: if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY && satosin(&spidx0->src)->sin_port != satosin(&spidx1->src)->sin_port) { return 0; } if (!key_bbcmp((caddr_t)&satosin(&spidx0->src)->sin_addr, (caddr_t)&satosin(&spidx1->src)->sin_addr, spidx0->prefs)) { return 0; } break; case AF_INET6: if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY && satosin6(&spidx0->src)->sin6_port != satosin6(&spidx1->src)->sin6_port) { return 0; } /* * scope_id check. if sin6_scope_id is 0, we regard it * as a wildcard scope, which matches any scope zone ID. */ if (satosin6(&spidx0->src)->sin6_scope_id && satosin6(&spidx1->src)->sin6_scope_id && satosin6(&spidx0->src)->sin6_scope_id != satosin6(&spidx1->src)->sin6_scope_id) { return 0; } if (!key_bbcmp((caddr_t)&satosin6(&spidx0->src)->sin6_addr, (caddr_t)&satosin6(&spidx1->src)->sin6_addr, spidx0->prefs)) { return 0; } break; default: /* XXX */ if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.ss_len) != 0) { return 0; } break; } } if (spidx0_dst_is_range) { if (!key_is_addr_in_range(&spidx1->dst, &spidx0->dst_range)) { return 0; } } else { switch (spidx0->dst.ss_family) { case AF_INET: if (satosin(&spidx0->dst)->sin_port != IPSEC_PORT_ANY && satosin(&spidx0->dst)->sin_port != satosin(&spidx1->dst)->sin_port) { return 0; } if (!key_bbcmp((caddr_t)&satosin(&spidx0->dst)->sin_addr, (caddr_t)&satosin(&spidx1->dst)->sin_addr, spidx0->prefd)) { return 0; } break; case AF_INET6: if (satosin6(&spidx0->dst)->sin6_port != IPSEC_PORT_ANY && satosin6(&spidx0->dst)->sin6_port != satosin6(&spidx1->dst)->sin6_port) { return 0; } /* * scope_id check. if sin6_scope_id is 0, we regard it * as a wildcard scope, which matches any scope zone ID. */ if (satosin6(&spidx0->src)->sin6_scope_id && satosin6(&spidx1->src)->sin6_scope_id && satosin6(&spidx0->dst)->sin6_scope_id != satosin6(&spidx1->dst)->sin6_scope_id) { return 0; } if (!key_bbcmp((caddr_t)&satosin6(&spidx0->dst)->sin6_addr, (caddr_t)&satosin6(&spidx1->dst)->sin6_addr, spidx0->prefd)) { return 0; } break; default: /* XXX */ if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.ss_len) != 0) { return 0; } break; } } /* XXX Do we check other field ? e.g. flowinfo */ return 1; } static int key_is_addr_in_range(struct sockaddr_storage *addr, struct secpolicyaddrrange *addr_range) { int cmp = 0; if (addr == NULL || addr_range == NULL) { return 0; } /* Must be greater than or equal to start */ cmp = key_sockaddrcmp((struct sockaddr *)addr, (struct sockaddr *)&addr_range->start, 1); if (cmp != 0 && cmp != 1) { return 0; } /* Must be less than or equal to end */ cmp = key_sockaddrcmp((struct sockaddr *)addr, (struct sockaddr *)&addr_range->end, 1); if (cmp != 0 && cmp != -1) { return 0; } return 1; } /* * Return values: * -1: sa1 < sa2 * 0: sa1 == sa2 * 1: sa1 > sa2 * 2: Not comparable or error */ static int key_sockaddrcmp( struct sockaddr *sa1, struct sockaddr *sa2, int port) { int result = 0; int port_result = 0; if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { return 2; } if (sa1->sa_len == 0) { return 0; } switch (sa1->sa_family) { case AF_INET: if (sa1->sa_len != sizeof(struct sockaddr_in)) { return 2; } result = memcmp(&satosin(sa1)->sin_addr.s_addr, &satosin(sa2)->sin_addr.s_addr, sizeof(satosin(sa1)->sin_addr.s_addr)); if (port) { if (satosin(sa1)->sin_port < satosin(sa2)->sin_port) { port_result = -1; } else if (satosin(sa1)->sin_port > satosin(sa2)->sin_port) { port_result = 1; } if (result == 0) { result = port_result; } else if ((result > 0 && port_result < 0) || (result < 0 && port_result > 0)) { return 2; } } break; case AF_INET6: if (sa1->sa_len != sizeof(struct sockaddr_in6)) { return 2; /*EINVAL*/ } if (satosin6(sa1)->sin6_scope_id != satosin6(sa2)->sin6_scope_id) { return 2; } result = memcmp(&satosin6(sa1)->sin6_addr.s6_addr[0], &satosin6(sa2)->sin6_addr.s6_addr[0], sizeof(struct in6_addr)); if (port) { if (satosin6(sa1)->sin6_port < satosin6(sa2)->sin6_port) { port_result = -1; } else if (satosin6(sa1)->sin6_port > satosin6(sa2)->sin6_port) { port_result = 1; } if (result == 0) { result = port_result; } else if ((result > 0 && port_result < 0) || (result < 0 && port_result > 0)) { return 2; } } break; default: result = memcmp(sa1, sa2, sa1->sa_len); break; } if (result < 0) { result = -1; } else if (result > 0) { result = 1; } return result; } /* * compare two buffers with mask. * IN: * addr1: source * addr2: object * bits: Number of bits to compare * OUT: * 1 : equal * 0 : not equal */ static int key_bbcmp( caddr_t p1, caddr_t p2, u_int bits) { u_int8_t mask; /* XXX: This could be considerably faster if we compare a word * at a time, but it is complicated on LSB Endian machines */ /* Handle null pointers */ if (p1 == NULL || p2 == NULL) { return p1 == p2; } while (bits >= 8) { if (*p1++ != *p2++) { return 0; } bits -= 8; } if (bits > 0) { mask = (u_int8_t)(~((1 << (8 - bits)) - 1)); if ((*p1 & mask) != (*p2 & mask)) { return 0; } } return 1; /* Match! */ } /* * time handler. * scanning SPD and SAD to check status for each entries, * and do to remove or to expire. * XXX: year 2038 problem may remain. */ int key_timehandler_debug = 0; u_int32_t spd_count = 0, sah_count = 0, dead_sah_count = 0, empty_sah_count = 0, larval_sav_count = 0, mature_sav_count = 0, dying_sav_count = 0, dead_sav_count = 0; u_int64_t total_sav_count = 0; void key_timehandler(void) { u_int dir; struct secpolicy **spbuf = NULL, **spptr = NULL; struct secasvar **savexbuf = NULL, **savexptr = NULL; struct secasvar **savkabuf = NULL, **savkaptr = NULL; u_int32_t spbufcount = 0, savbufcount = 0, spcount = 0, savexcount = 0, savkacount = 0, cnt; int stop_handler = 1; /* stop the timehandler */ const u_int64_t current_time_ns = key_get_continuous_time_ns(); /* pre-allocate buffers before taking the lock */ /* if allocation failures occur - portions of the processing will be skipped */ if ((spbufcount = ipsec_policy_count) != 0) { if (os_add_overflow(spbufcount, 256, &spbufcount)) { ipseclog((LOG_DEBUG, "key_timehandler: spbufcount overflow, ipsec policy count %u.\n", ipsec_policy_count)); spbufcount = ipsec_policy_count; } spbuf = kalloc_type(struct secpolicy *, spbufcount, Z_WAITOK); if (spbuf) { spptr = spbuf; } } if ((savbufcount = ipsec_sav_count) != 0) { if (os_add_overflow(savbufcount, 512, &savbufcount)) { ipseclog((LOG_DEBUG, "key_timehandler: savbufcount overflow, ipsec sa count %u.\n", ipsec_sav_count)); savbufcount = ipsec_sav_count; } savexbuf = kalloc_type(struct secasvar *, savbufcount, Z_WAITOK); if (savexbuf) { savexptr = savexbuf; } savkabuf = kalloc_type(struct secasvar *, savbufcount, Z_WAITOK); if (savkabuf) { savkaptr = savkabuf; } } lck_mtx_lock(sadb_mutex); /* SPD */ if (spbuf) { struct secpolicy *sp, *nextsp; for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { for (sp = LIST_FIRST(&sptree[dir]); sp != NULL; sp = nextsp) { /* don't prevent timehandler from stopping for generate policy */ if (sp->policy != IPSEC_POLICY_GENERATE) { stop_handler = 0; } spd_count++; nextsp = LIST_NEXT(sp, chain); if (sp->state == IPSEC_SPSTATE_DEAD) { key_freesp(sp, KEY_SADB_LOCKED); continue; } if (sp->lifetime == 0 && sp->validtime == 0) { continue; } if (spbuf && spcount < spbufcount) { /* the deletion will occur next time */ if ((sp->lifetime && current_time_ns - sp->created > sp->lifetime) || (sp->validtime && current_time_ns - sp->lastused > sp->validtime)) { //key_spdexpire(sp); sp->state = IPSEC_SPSTATE_DEAD; sp->refcnt++; *spptr++ = sp; spcount++; } } } } } /* SAD */ { struct secashead *sah, *nextsah; struct secasvar *sav, *nextsav; for (sah = LIST_FIRST(&sahtree); sah != NULL; sah = nextsah) { sah_count++; nextsah = LIST_NEXT(sah, chain); /* if sah has been dead, then delete it and process next sah. */ if (sah->state == SADB_SASTATE_DEAD) { key_delsah(sah); dead_sah_count++; continue; } if (LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]) == NULL && LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]) == NULL && LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]) == NULL && LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]) == NULL) { key_delsah(sah); empty_sah_count++; continue; } if (savbufcount == 0) { continue; } stop_handler = 0; /* if LARVAL entry doesn't become MATURE, delete it. */ const u_int64_t larval_lifetime = (u_int64_t)key_larval_lifetime * NSEC_PER_SEC; for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]); sav != NULL; sav = nextsav) { larval_sav_count++; total_sav_count++; nextsav = LIST_NEXT(sav, chain); if (sav->lft_h != NULL) { /* If a hard lifetime is defined for the LARVAL SA, use it */ if (sav->lft_h->sadb_lifetime_addtime != 0) { const u_int64_t lifetime_addtime = sav->lft_h->sadb_lifetime_addtime * NSEC_PER_SEC; if (current_time_ns - sav->created > lifetime_addtime) { if (sav->always_expire) { key_send_delete(sav); sav = NULL; } else { key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_freesav(sav, KEY_SADB_LOCKED); sav = NULL; } } } } else { if (current_time_ns - sav->created > larval_lifetime) { key_freesav(sav, KEY_SADB_LOCKED); } } } /* * If this is a NAT traversal SA with no activity, * we need to send a keep alive. * * Performed outside of the loop before so we will * only ever send one keepalive. The first SA on * the list is the one that will be used for sending * traffic, so this is the one we use for determining * when to send the keepalive. */ if (savkabuf && savkacount < savbufcount) { sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); //%%% should we check dying list if this is empty??? if (sav && (natt_keepalive_interval || sav->natt_interval) && (sav->flags & (SADB_X_EXT_NATT_KEEPALIVE | SADB_X_EXT_ESP_KEEPALIVE)) != 0) { sav->refcnt++; *savkaptr++ = sav; savkacount++; } } /* * check MATURE entry to start to send expire message * whether or not. */ for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); sav != NULL; sav = nextsav) { mature_sav_count++; total_sav_count++; nextsav = LIST_NEXT(sav, chain); /* we don't need to check. */ if (sav->lft_s == NULL) { continue; } /* sanity check */ if (sav->lft_c == NULL) { ipseclog((LOG_DEBUG, "key_timehandler: " "There is no CURRENT time, why?\n")); continue; } /* check SOFT lifetime */ if (sav->lft_s->sadb_lifetime_addtime != 0) { const u_int64_t lifetime_addtime = sav->lft_s->sadb_lifetime_addtime * NSEC_PER_SEC; if (current_time_ns - sav->created > lifetime_addtime) { /* * If always_expire is set, expire. Otherwise, * if the SA has not been used, delete immediately. */ if (sav->lft_c->sadb_lifetime_usetime == 0 && sav->always_expire == 0) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_freesav(sav, KEY_SADB_LOCKED); sav = NULL; } else if (savexbuf && savexcount < savbufcount) { key_sa_chgstate(sav, SADB_SASTATE_DYING); sav->refcnt++; *savexptr++ = sav; savexcount++; } } } /* check SOFT lifetime by bytes */ /* * XXX I don't know the way to delete this SA * when new SA is installed. Caution when it's * installed too big lifetime by time. */ else if (savexbuf && savexcount < savbufcount && sav->lft_s->sadb_lifetime_bytes != 0 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { /* * XXX If we keep to send expire * message in the status of * DYING. Do remove below code. */ //key_expire(sav); key_sa_chgstate(sav, SADB_SASTATE_DYING); sav->refcnt++; *savexptr++ = sav; savexcount++; } } /* check DYING entry to change status to DEAD. */ for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]); sav != NULL; sav = nextsav) { dying_sav_count++; total_sav_count++; nextsav = LIST_NEXT(sav, chain); /* we don't need to check. */ if (sav->lft_h == NULL) { continue; } /* sanity check */ if (sav->lft_c == NULL) { ipseclog((LOG_DEBUG, "key_timehandler: " "There is no CURRENT time, why?\n")); continue; } /* check HARD lifetime */ if (sav->lft_h->sadb_lifetime_addtime != 0) { const u_int64_t lifetime_addtime = sav->lft_h->sadb_lifetime_addtime * NSEC_PER_SEC; if (current_time_ns - sav->created > lifetime_addtime) { if (sav->always_expire) { key_send_delete(sav); sav = NULL; } else { key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_freesav(sav, KEY_SADB_LOCKED); sav = NULL; } } } /* check HARD lifetime by bytes */ else if (sav->lft_h->sadb_lifetime_bytes != 0 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_freesav(sav, KEY_SADB_LOCKED); sav = NULL; } } /* delete entry in DEAD */ for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]); sav != NULL; sav = nextsav) { dead_sav_count++; total_sav_count++; nextsav = LIST_NEXT(sav, chain); /* sanity check */ if (sav->state != SADB_SASTATE_DEAD) { ipseclog((LOG_DEBUG, "key_timehandler: " "invalid sav->state " "(queue: %d SA: %d): " "kill it anyway\n", SADB_SASTATE_DEAD, sav->state)); } /* * do not call key_freesav() here. * sav should already be freed, and sav->refcnt * shows other references to sav * (such as from SPD). */ } } } if (++key_timehandler_debug >= 300) { if (key_debug_level) { printf("%s: total stats for %u calls\n", __FUNCTION__, key_timehandler_debug); printf("%s: walked %u SPDs\n", __FUNCTION__, spd_count); printf("%s: walked %llu SAs: LARVAL SAs %u, MATURE SAs %u, DYING SAs %u, DEAD SAs %u\n", __FUNCTION__, total_sav_count, larval_sav_count, mature_sav_count, dying_sav_count, dead_sav_count); printf("%s: walked %u SAHs: DEAD SAHs %u, EMPTY SAHs %u\n", __FUNCTION__, sah_count, dead_sah_count, empty_sah_count); if (sah_search_calls) { printf("%s: SAH search cost %d iters per call\n", __FUNCTION__, (sah_search_count / sah_search_calls)); } } spd_count = 0; sah_count = 0; dead_sah_count = 0; empty_sah_count = 0; larval_sav_count = 0; mature_sav_count = 0; dying_sav_count = 0; dead_sav_count = 0; total_sav_count = 0; sah_search_count = 0; sah_search_calls = 0; key_timehandler_debug = 0; } const u_int64_t blockacq_lifetime = (u_int64_t)key_blockacq_lifetime * NSEC_PER_SEC; #ifndef IPSEC_NONBLOCK_ACQUIRE /* ACQ tree */ { struct secacq *acq, *nextacq; for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) { stop_handler = 0; nextacq = LIST_NEXT(acq, chain); if (current_time_ns - acq->created > blockacq_lifetime && __LIST_CHAINED(acq)) { LIST_REMOVE(acq, chain); kfree_type(struct secacq, acq); } } } #endif /* SP ACQ tree */ { struct secspacq *acq, *nextacq; for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) { stop_handler = 0; nextacq = LIST_NEXT(acq, chain); if (current_time_ns - acq->created > blockacq_lifetime && __LIST_CHAINED(acq)) { LIST_REMOVE(acq, chain); struct secacq *secacq_p = (struct secacq *)acq; kfree_type(struct secacq, secacq_p); } } } /* initialize random seed */ if (key_tick_init_random++ > key_int_random) { key_tick_init_random = 0; key_srandom(); } uint64_t acc_sleep_time = 0; absolutetime_to_nanoseconds(mach_absolutetime_asleep, &acc_sleep_time); natt_now = ++up_time + (acc_sleep_time / NSEC_PER_SEC); lck_mtx_unlock(sadb_mutex); /* send messages outside of sadb_mutex */ if (spbuf && spcount > 0) { cnt = spcount; while (cnt--) { key_spdexpire(*(--spptr)); } } if (savkabuf && savkacount > 0) { struct secasvar **savkaptr_sav = savkaptr; u_int32_t cnt_send = savkacount; while (cnt_send--) { if (ipsec_send_natt_keepalive(*(--savkaptr))) { // iterate (all over again) and update timestamps struct secasvar **savkaptr_update = savkaptr_sav; u_int32_t cnt_update = savkacount; while (cnt_update--) { key_update_natt_keepalive_timestamp(*savkaptr, *(--savkaptr_update)); } } } } if (savexbuf && savexcount > 0) { cnt = savexcount; while (cnt--) { key_expire(*(--savexptr)); } } /* decrement ref counts and free buffers */ lck_mtx_lock(sadb_mutex); if (spbuf) { while (spcount--) { key_freesp(*spptr++, KEY_SADB_LOCKED); } kfree_type(struct secpolicy *, spbufcount, spbuf); } if (savkabuf) { while (savkacount--) { key_freesav(*savkaptr++, KEY_SADB_LOCKED); } kfree_type(struct secasvar *, savbufcount, savkabuf); } if (savexbuf) { while (savexcount--) { key_freesav(*savexptr++, KEY_SADB_LOCKED); } kfree_type(struct secasvar *, savbufcount, savexbuf); } if (stop_handler) { key_timehandler_running = 0; /* Turn on the ipsec bypass */ ipsec_bypass = 1; } else { /* do exchange to tick time !! */ (void)timeout((void *)key_timehandler, (void *)0, hz); } lck_mtx_unlock(sadb_mutex); return; } /* * to initialize a seed for random() */ static void key_srandom(void) { #ifdef __APPLE__ /* Our PRNG is based on Yarrow and doesn't need to be seeded */ random(); #else struct timeval tv; microtime(&tv); srandom(tv.tv_usec); #endif return; } u_int32_t key_random(void) { u_int32_t value; key_randomfill(&value, sizeof(value)); return value; } void key_randomfill( void *p, size_t l) { #ifdef __APPLE__ cc_rand_generate(p, l); #else size_t n; u_int32_t v; static int warn = 1; n = 0; n = (size_t)read_random(p, (u_int)l); /* last resort */ while (n < l) { v = random(); bcopy(&v, (u_int8_t *)p + n, l - n < sizeof(v) ? l - n : sizeof(v)); n += sizeof(v); if (warn) { printf("WARNING: pseudo-random number generator " "used for IPsec processing\n"); warn = 0; } } #endif } /* * map SADB_SATYPE_* to IPPROTO_*. * if satype == SADB_SATYPE then satype is mapped to ~0. * OUT: * 0: invalid satype. */ static u_int8_t key_satype2proto( u_int8_t satype) { switch (satype) { case SADB_SATYPE_UNSPEC: return IPSEC_PROTO_ANY; case SADB_SATYPE_AH: return IPPROTO_AH; case SADB_SATYPE_ESP: return IPPROTO_ESP; default: return 0; } /* NOTREACHED */ } /* * map IPPROTO_* to SADB_SATYPE_* * OUT: * 0: invalid protocol type. */ static u_int8_t key_proto2satype( u_int16_t proto) { switch (proto) { case IPPROTO_AH: return SADB_SATYPE_AH; case IPPROTO_ESP: return SADB_SATYPE_ESP; default: return 0; } /* NOTREACHED */ } static ifnet_t key_get_ipsec_if_from_message(const struct sadb_msghdr *mhp, int message_type) { struct sadb_x_ipsecif *ipsecifopts = NULL; ifnet_t ipsec_if = NULL; ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[message_type]; if (ipsecifopts != NULL) { if (ipsecifopts->sadb_x_ipsecif_ipsec_if[0]) { ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0'; ifnet_find_by_name(ipsecifopts->sadb_x_ipsecif_ipsec_if, &ipsec_if); } } return ipsec_if; } static u_int key_get_outgoing_ifindex_from_message(const struct sadb_msghdr *mhp, int message_type) { struct sadb_x_ipsecif *ipsecifopts = NULL; ifnet_t outgoing_if = NULL; ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[message_type]; if (ipsecifopts != NULL) { if (ipsecifopts->sadb_x_ipsecif_outgoing_if[0]) { ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0'; ifnet_find_by_name(ipsecifopts->sadb_x_ipsecif_outgoing_if, &outgoing_if); } } u_int outgoing_if_index = 0; if (outgoing_if != NULL) { outgoing_if_index = outgoing_if->if_index; ifnet_release(outgoing_if); } return outgoing_if_index; } /* %%% PF_KEY */ /* * SADB_GETSPI processing is to receive * * from the IKMPd, to assign a unique spi value, to hang on the INBOUND * tree with the status of LARVAL, and send * * to the IKMPd. * * IN: mhp: pointer to the pointer to each header. * OUT: NULL if fail. * other if success, return pointer to the message to send. */ static int key_getspi( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *newsah; struct secasvar *newsav; ifnet_t ipsec_if = NULL; u_int8_t proto; u_int32_t spi; u_int8_t mode; u_int32_t reqid; int error; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_getspi: NULL pointer is passed."); } if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { mode = ((struct sadb_x_sa2 *) (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *) (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n")); return key_senderror(so, m, EINVAL); } /* make sure if port number is zero. */ switch (((struct sockaddr *)(src0 + 1))->sa_family) { case AF_INET: if (((struct sockaddr *)(src0 + 1))->sa_len != sizeof(struct sockaddr_in)) { return key_senderror(so, m, EINVAL); } ((struct sockaddr_in *)(void *)(src0 + 1))->sin_port = 0; break; case AF_INET6: if (((struct sockaddr *)(src0 + 1))->sa_len != sizeof(struct sockaddr_in6)) { return key_senderror(so, m, EINVAL); } ((struct sockaddr_in6 *)(void *)(src0 + 1))->sin6_port = 0; break; default: ; /*???*/ } switch (((struct sockaddr *)(dst0 + 1))->sa_family) { case AF_INET: if (((struct sockaddr *)(dst0 + 1))->sa_len != sizeof(struct sockaddr_in)) { return key_senderror(so, m, EINVAL); } ((struct sockaddr_in *)(void *)(dst0 + 1))->sin_port = 0; break; case AF_INET6: if (((struct sockaddr *)(dst0 + 1))->sa_len != sizeof(struct sockaddr_in6)) { return key_senderror(so, m, EINVAL); } ((struct sockaddr_in6 *)(void *)(dst0 + 1))->sin6_port = 0; break; default: ; /*???*/ } ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if ? ipsec_if->if_index : 0, &saidx); lck_mtx_lock(sadb_mutex); /* SPI allocation */ spi = key_do_getnewspi((struct sadb_spirange *) (void *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); if (spi == 0) { lck_mtx_unlock(sadb_mutex); if (ipsec_if != NULL) { ifnet_release(ipsec_if); } return key_senderror(so, m, EINVAL); } /* get a SA index */ if ((newsah = key_getsah(&saidx, SECURITY_ASSOCIATION_ANY)) == NULL) { /* create a new SA index: key_addspi is always used for inbound spi */ if ((newsah = key_newsah(&saidx, ipsec_if, key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_IPSECIF), IPSEC_DIR_INBOUND, SECURITY_ASSOCIATION_PFKEY)) == NULL) { lck_mtx_unlock(sadb_mutex); if (ipsec_if != NULL) { ifnet_release(ipsec_if); } ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n")); return key_senderror(so, m, ENOBUFS); } } if (ipsec_if != NULL) { ifnet_release(ipsec_if); ipsec_if = NULL; } // Increment use count, since key_newsav() could release sadb_mutex lock newsah->use_count++; if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { newsah->use_count--; lck_mtx_unlock(sadb_mutex); ipseclog((LOG_ERR, "key_getspi: custom ipsec exists\n")); return key_senderror(so, m, EEXIST); } /* get a new SA */ /* XXX rewrite */ newsav = key_newsav(m, mhp, newsah, &error, so); if (newsav == NULL) { /* XXX don't free new SA index allocated in above. */ newsah->use_count--; lck_mtx_unlock(sadb_mutex); return key_senderror(so, m, error); } if (newsah->state == SADB_SASTATE_DEAD) { newsah->use_count--; key_sa_chgstate(newsav, SADB_SASTATE_DEAD); key_freesav(newsav, KEY_SADB_LOCKED); lck_mtx_unlock(sadb_mutex); ipseclog((LOG_ERR, "key_getspi: security association head is dead\n")); return key_senderror(so, m, EINVAL); } /* set spi */ key_setspi(newsav, htonl(spi)); #ifndef IPSEC_NONBLOCK_ACQUIRE /* delete the entry in acqtree */ if (mhp->msg->sadb_msg_seq != 0) { struct secacq *acq; if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { /* reset counter in order to deletion by timehandler. */ acq->created = key_get_continuous_time_ns(); acq->count = 0; } } #endif newsah->use_count--; u_int32_t newsav_seq = newsav->seq; lck_mtx_unlock(sadb_mutex); { struct mbuf *n, *nn; struct sadb_sa *m_sa; struct sadb_msg *newmsg; int off, len; /* create new sadb_msg to reply. */ len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + PFKEY_ALIGN8(sizeof(struct sadb_sa)); if (len > MCLBYTES) { return key_senderror(so, m, ENOBUFS); } MGETHDR(n, M_WAITOK, MT_DATA); if (n && len > MHLEN) { MCLGET(n, M_WAITOK); if ((n->m_flags & M_EXT) == 0) { m_freem(n); n = NULL; } } if (!n) { return key_senderror(so, m, ENOBUFS); } n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); m_sa = (struct sadb_sa *)(void *)(mtod(n, caddr_t) + off); memset(m_sa, 0, PFKEY_ALIGN8(sizeof(struct sadb_sa))); m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); m_sa->sadb_sa_exttype = SADB_EXT_SA; m_sa->sadb_sa_spi = htonl(spi); off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); #if DIAGNOSTIC if (off != len) { panic("length inconsistency in key_getspi"); } #endif { int mbufItems[] = {SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; n->m_next = key_gather_mbuf(m, mhp, 0, sizeof(mbufItems) / sizeof(int), mbufItems); if (!n->m_next) { m_freem(n); return key_senderror(so, m, ENOBUFS); } } if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) { return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); } } n->m_pkthdr.len = 0; for (nn = n; nn; nn = nn->m_next) { n->m_pkthdr.len += nn->m_len; } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_seq = newsav_seq; newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } /* * allocating new SPI * called by key_getspi(). * OUT: * 0: failure. * others: success. */ static u_int32_t key_do_getnewspi( struct sadb_spirange *spirange, struct secasindex *saidx) { u_int32_t newspi; u_int32_t keymin, keymax; int count = key_spi_trycnt; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); /* set spi range to allocate */ if (spirange != NULL) { keymin = spirange->sadb_spirange_min; keymax = spirange->sadb_spirange_max; } else { keymin = key_spi_minval; keymax = key_spi_maxval; } if (keymin == keymax) { if (key_checkspidup(saidx, keymin) != NULL) { ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", keymin)); return 0; } count--; /* taking one cost. */ newspi = keymin; } else { u_int32_t range = keymax - keymin + 1; /* overflow value of zero means full range */ /* init SPI */ newspi = 0; /* when requesting to allocate spi ranged */ while (count--) { u_int32_t rand_val = key_random(); /* generate pseudo-random SPI value ranged. */ newspi = (range == 0 ? rand_val : keymin + (rand_val % range)); if (key_checkspidup(saidx, newspi) == NULL) { break; } } if (count == 0 || newspi == 0) { ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n")); return 0; } } /* statistics */ keystat.getspi_count = (keystat.getspi_count + key_spi_trycnt - count) / 2; return newspi; } /* * SADB_UPDATE processing * receive * * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. * and send * * to the ikmpd. * * m will always be freed. */ static int key_update( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0 = NULL; struct sadb_address *src0 = NULL, *dst0 = NULL; ifnet_t ipsec_if = NULL; struct secasindex saidx; struct secashead *sah = NULL; struct secasvar *sav = NULL; u_int8_t proto; u_int8_t mode; u_int32_t reqid; u_int16_t flags2; int error; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_update: NULL pointer is passed."); } /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n")); bzero_keys(mhp); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n")); bzero_keys(mhp); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n")); bzero_keys(mhp); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { mode = ((struct sadb_x_sa2 *) (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *) (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; flags2 = ((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_flags; } else { mode = IPSEC_MODE_ANY; reqid = 0; flags2 = 0; } /* XXX boundary checking for other extensions */ sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); u_int ipsec_if_index = 0; if (ipsec_if != NULL) { ipsec_if_index = ipsec_if->if_index; ifnet_release(ipsec_if); ipsec_if = NULL; } /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); lck_mtx_lock(sadb_mutex); /* get a SA header */ if ((sah = key_getsah(&saidx, SECURITY_ASSOCIATION_PFKEY)) == NULL) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_update: no SA index found.\n")); bzero_keys(mhp); return key_senderror(so, m, ENOENT); } // Increment use count, since key_setsaval() could release sadb_mutex lock sah->use_count++; if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) { ipseclog((LOG_DEBUG, "key_update: no such a SA found (spi:%u)\n", (u_int32_t)ntohl(sa0->sadb_sa_spi))); error = EINVAL; goto fail; } // Increment reference count, since key_setsaval() could release sadb_mutex lock sav->refcnt++; /* validity check */ if (sav->sah->saidx.proto != proto) { ipseclog((LOG_DEBUG, "key_update: protocol mismatched (DB=%u param=%u)\n", sav->sah->saidx.proto, proto)); error = EINVAL; goto fail; } if (sav->pid != mhp->msg->sadb_msg_pid) { ipseclog((LOG_DEBUG, "key_update: pid mismatched (DB:%u param:%u)\n", sav->pid, mhp->msg->sadb_msg_pid)); error = EINVAL; goto fail; } /* copy sav values */ sav->flags2 = flags2; if (flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH) { sav->so = so; } error = key_setsaval(sav, m, mhp); if (error) { goto fail; } if (sah->state == SADB_SASTATE_DEAD) { ipseclog((LOG_ERR, "key_update: security association head is dead\n")); error = EINVAL; goto fail; } /* * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that * this SA is for transport mode - otherwise clear it. */ if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0 && (sav->sah->saidx.mode != IPSEC_MODE_TRANSPORT || sav->sah->saidx.src.ss_family != AF_INET)) { sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; } /* check SA values to be mature. */ if ((error = key_mature(sav)) != 0) { goto fail; } key_freesav(sav, KEY_SADB_LOCKED); sah->use_count--; lck_mtx_unlock(sadb_mutex); { struct mbuf *n; /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { ipseclog((LOG_DEBUG, "key_update: No more memory.\n")); return key_senderror(so, m, ENOBUFS); } bzero_keys(mhp); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } fail: if (sav != NULL) { key_freesav(sav, KEY_SADB_LOCKED); } if (sah != NULL) { sah->use_count--; } lck_mtx_unlock(sadb_mutex); bzero_keys(mhp); return key_senderror(so, m, error); } static int key_migrate(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0 = NULL; struct sadb_address *src0 = NULL; struct sadb_address *dst0 = NULL; struct sadb_address *src1 = NULL; struct sadb_address *dst1 = NULL; ifnet_t ipsec_if0 = NULL; ifnet_t ipsec_if1 = NULL; struct secasindex saidx0; struct secasindex saidx1; struct secashead *sah = NULL; struct secashead *newsah = NULL; struct secasvar *sav = NULL; u_int8_t proto; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_migrate: NULL pointer is passed."); } /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "key_migrate: invalid satype is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_EXT_MIGRATE_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_MIGRATE_ADDRESS_DST] == NULL) { ipseclog((LOG_DEBUG, "key_migrate: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_MIGRATE_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_MIGRATE_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "key_migrate: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } lck_mtx_lock(sadb_mutex); sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); src1 = (struct sadb_address *)(mhp->ext[SADB_EXT_MIGRATE_ADDRESS_SRC]); dst1 = (struct sadb_address *)(mhp->ext[SADB_EXT_MIGRATE_ADDRESS_DST]); ipsec_if0 = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); ipsec_if1 = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_MIGRATE_IPSECIF); u_int ipsec_if0_index = 0; if (ipsec_if0 != NULL) { ipsec_if0_index = ipsec_if0->if_index; ifnet_release(ipsec_if0); ipsec_if0 = NULL; } /* Find existing SAH and SAV */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if0_index, &saidx0); LIST_FOREACH(sah, &sahtree, chain) { if (sah->state != SADB_SASTATE_MATURE) { continue; } if (key_cmpsaidx(&sah->saidx, &saidx0, CMP_HEAD) == 0) { continue; } sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); if (sav && sav->state == SADB_SASTATE_MATURE) { break; } } if (sah == NULL) { lck_mtx_unlock(sadb_mutex); if (ipsec_if1 != NULL) { ifnet_release(ipsec_if1); } ipseclog((LOG_DEBUG, "key_migrate: no mature SAH found.\n")); return key_senderror(so, m, ENOENT); } if (sav == NULL) { lck_mtx_unlock(sadb_mutex); if (ipsec_if1 != NULL) { ifnet_release(ipsec_if1); } ipseclog((LOG_DEBUG, "key_migrate: no SA found.\n")); return key_senderror(so, m, ENOENT); } /* Find or create new SAH */ KEY_SETSECASIDX(proto, sah->saidx.mode, sah->saidx.reqid, src1 + 1, dst1 + 1, ipsec_if1 ? ipsec_if1->if_index : 0, &saidx1); if ((newsah = key_getsah(&saidx1, SECURITY_ASSOCIATION_ANY)) == NULL) { if ((newsah = key_newsah(&saidx1, ipsec_if1, key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_MIGRATE_IPSECIF), sah->dir, SECURITY_ASSOCIATION_PFKEY)) == NULL) { lck_mtx_unlock(sadb_mutex); if (ipsec_if1 != NULL) { ifnet_release(ipsec_if1); } ipseclog((LOG_DEBUG, "key_migrate: No more memory.\n")); return key_senderror(so, m, ENOBUFS); } } if (ipsec_if1 != NULL) { ifnet_release(ipsec_if1); ipsec_if1 = NULL; } if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_ERR, "key_migrate: custom ipsec exists\n")); return key_senderror(so, m, EEXIST); } /* Migrate SAV in to new SAH */ if (key_migratesav(sav, newsah) != 0) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_migrate: Failed to migrate SA to new SAH.\n")); return key_senderror(so, m, EINVAL); } /* Reset NAT values */ sav->flags = sa0->sadb_sa_flags; sav->natt_encapsulated_src_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_src_port; sav->remote_ike_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port; sav->natt_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_interval; sav->natt_offload_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_offload_interval; sav->natt_last_activity = natt_now; /* * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that * SADB_X_EXT_NATT is set and SADB_X_EXT_NATT_KEEPALIVE is not * set (we're not behind nat) - otherwise clear it. */ if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) { if ((sav->flags & SADB_X_EXT_NATT) == 0 || (sav->flags & SADB_X_EXT_NATT_KEEPALIVE) != 0) { sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; } } lck_mtx_unlock(sadb_mutex); { struct mbuf *n; struct sadb_msg *newmsg; int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_X_EXT_IPSECIF, SADB_EXT_MIGRATE_ADDRESS_SRC, SADB_EXT_MIGRATE_ADDRESS_DST, SADB_X_EXT_MIGRATE_IPSECIF}; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems); if (!n) { return key_senderror(so, m, ENOBUFS); } if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) { return key_senderror(so, m, ENOBUFS); } } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_ADD processing * add a entry to SA database, when received * * from the ikmpd, * and send * * to the ikmpd. * * IGNORE identity and sensitivity messages. * * m will always be freed. */ static int key_add( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0 = NULL; struct sadb_address *src0 = NULL, *dst0 = NULL; ifnet_t ipsec_if = NULL; struct secasindex saidx; struct secashead *newsah = NULL; struct secasvar *newsav = NULL; u_int8_t proto; u_int8_t mode; u_int32_t reqid; int error; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_add: NULL pointer is passed."); } /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n")); bzero_keys(mhp); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n")); bzero_keys(mhp); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { /* XXX need more */ ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n")); bzero_keys(mhp); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { mode = ((struct sadb_x_sa2 *) (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *) (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if ? ipsec_if->if_index : 0, &saidx); lck_mtx_lock(sadb_mutex); /* get a SA header */ if ((newsah = key_getsah(&saidx, SECURITY_ASSOCIATION_ANY)) == NULL) { /* create a new SA header: key_addspi is always used for outbound spi */ if ((newsah = key_newsah(&saidx, ipsec_if, key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_IPSECIF), IPSEC_DIR_OUTBOUND, SECURITY_ASSOCIATION_PFKEY)) == NULL) { ipseclog((LOG_DEBUG, "key_add: No more memory.\n")); error = ENOBUFS; goto fail; } } if (ipsec_if != NULL) { ifnet_release(ipsec_if); ipsec_if = NULL; } // Increment use count, since key_newsav() could release sadb_mutex lock newsah->use_count++; if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { ipseclog((LOG_ERR, "key_add: custom ipsec exists\n")); error = EEXIST; goto fail; } /* create new SA entry. */ /* We can create new SA only if SPI is different. */ if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) { ipseclog((LOG_DEBUG, "key_add: SA already exists.\n")); error = EEXIST; goto fail; } newsav = key_newsav(m, mhp, newsah, &error, so); if (newsav == NULL) { goto fail; } if (newsah->state == SADB_SASTATE_DEAD) { ipseclog((LOG_ERR, "key_add: security association head is dead\n")); error = EINVAL; goto fail; } /* * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that * this SA is for transport mode - otherwise clear it. */ if ((newsav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0 && (newsah->saidx.mode != IPSEC_MODE_TRANSPORT || newsah->saidx.dst.ss_family != AF_INET)) { newsav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; } /* check SA values to be mature. */ if ((error = key_mature(newsav)) != 0) { goto fail; } key_get_flowid(newsav); newsah->use_count--; lck_mtx_unlock(sadb_mutex); /* * don't call key_freesav() here, as we would like to keep the SA * in the database on success. */ { struct mbuf *n; /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { ipseclog((LOG_DEBUG, "key_update: No more memory.\n")); bzero_keys(mhp); return key_senderror(so, m, ENOBUFS); } // mh.ext points to the mbuf content. // Zero out Encryption and Integrity keys if present. bzero_keys(mhp); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } fail: if (newsav != NULL) { key_sa_chgstate(newsav, SADB_SASTATE_DEAD); key_freesav(newsav, KEY_SADB_LOCKED); } if (newsah != NULL) { newsah->use_count--; } lck_mtx_unlock(sadb_mutex); if (ipsec_if != NULL) { ifnet_release(ipsec_if); } bzero_keys(mhp); return key_senderror(so, m, error); } /* * m will not be freed on return. * it is caller's responsibility to free the result. */ static struct mbuf * key_getmsgbuf_x1( struct mbuf *m, const struct sadb_msghdr *mhp) { struct mbuf *n; int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, SADB_X_EXT_SA2, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST}; /* sanity check */ if (m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_getmsgbuf_x1: NULL pointer is passed."); } /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems); if (!n) { return NULL; } if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) { return NULL; } } mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); mtod(n, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); return n; } static int key_delete_all(struct socket *, struct mbuf *, const struct sadb_msghdr *, u_int16_t); /* * SADB_DELETE processing * receive * * from the ikmpd, and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * * m will always be freed. */ static int key_delete( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0; struct sadb_address *src0, *dst0; ifnet_t ipsec_if = NULL; struct secasindex saidx; struct secashead *sah; struct secasvar *sav = NULL; u_int16_t proto; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_delete: NULL pointer is passed."); } /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } lck_mtx_lock(sadb_mutex); if (mhp->ext[SADB_EXT_SA] == NULL) { /* * Caller wants us to delete all non-LARVAL SAs * that match the src/dst. This is used during * IKE INITIAL-CONTACT. */ ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n")); /* key_delete_all will unlock sadb_mutex */ return key_delete_all(so, m, mhp, proto); } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); u_int ipsec_if_index = 0; if (ipsec_if != NULL) { ipsec_if_index = ipsec_if->if_index; ifnet_release(ipsec_if); ipsec_if = NULL; } /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); /* get a SA header */ LIST_FOREACH(sah, &sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) { continue; } if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) { continue; } /* get a SA with SPI. */ sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); if (sav) { break; } } if (sah == NULL) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_delete: no SA found.\n")); return key_senderror(so, m, ENOENT); } key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_freesav(sav, KEY_SADB_LOCKED); lck_mtx_unlock(sadb_mutex); sav = NULL; { struct mbuf *n; struct sadb_msg *newmsg; int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems); if (!n) { return key_senderror(so, m, ENOBUFS); } if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) { return key_senderror(so, m, ENOBUFS); } } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * delete all SAs for src/dst. Called from key_delete(). */ static int key_delete_all( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, u_int16_t proto) { struct sadb_address *src0, *dst0; ifnet_t ipsec_if = NULL; struct secasindex saidx; struct secashead *sah; struct secasvar *sav, *nextsav; u_int stateidx, state; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); u_int ipsec_if_index = 0; if (ipsec_if != NULL) { ipsec_if_index = ipsec_if->if_index; ifnet_release(ipsec_if); ipsec_if = NULL; } /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); LIST_FOREACH(sah, &sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) { continue; } if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) { continue; } /* Delete all non-LARVAL SAs. */ for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_alive[stateidx]; if (state == SADB_SASTATE_LARVAL) { continue; } for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); /* sanity check */ if (sav->state != state) { ipseclog((LOG_DEBUG, "key_delete_all: " "invalid sav->state " "(queue: %d SA: %d)\n", state, sav->state)); continue; } key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_freesav(sav, KEY_SADB_LOCKED); } } } lck_mtx_unlock(sadb_mutex); { struct mbuf *n; struct sadb_msg *newmsg; int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems); if (!n) { return key_senderror(so, m, ENOBUFS); } if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) { return key_senderror(so, m, ENOBUFS); } } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_GET processing * receive * * from the ikmpd, and get a SP and a SA to respond, * and send, * * to the ikmpd. * * m will always be freed. */ static int key_get( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0; struct sadb_address *src0, *dst0; ifnet_t ipsec_if = NULL; struct secasindex saidx; struct secashead *sah; struct secasvar *sav = NULL; u_int16_t proto; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_get: NULL pointer is passed."); } /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); u_int ipsec_if_index = 0; if (ipsec_if != NULL) { ipsec_if_index = ipsec_if->if_index; ifnet_release(ipsec_if); ipsec_if = NULL; } /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); lck_mtx_lock(sadb_mutex); /* get a SA header */ LIST_FOREACH(sah, &sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) { continue; } if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) { continue; } /* get a SA with SPI. */ sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); if (sav) { break; } } if (sah == NULL) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_get: no SA found.\n")); return key_senderror(so, m, ENOENT); } { struct mbuf *n; u_int8_t satype; /* map proto to satype */ if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n")); return key_senderror(so, m, EINVAL); } lck_mtx_unlock(sadb_mutex); /* create new sadb_msg to reply. */ n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, mhp->msg->sadb_msg_pid); if (!n) { return key_senderror(so, m, ENOBUFS); } m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } /* * get SA stats by spi. * OUT: -1 : not found * 0 : found, arg pointer to a SA stats is updated. */ static int key_getsastatbyspi_one(u_int32_t spi, struct sastat *stat) { struct secashead *sah; struct secasvar *sav = NULL; if ((void *)stat == NULL) { return -1; } lck_mtx_lock(sadb_mutex); /* get a SA header */ LIST_FOREACH(sah, &sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) { continue; } /* get a SA with SPI. */ sav = key_getsavbyspi(sah, spi); if (sav) { stat->spi = sav->spi; stat->created = (u_int32_t)key_convert_continuous_time_ns(sav->created); if (sav->lft_c) { bcopy(sav->lft_c, &stat->lft_c, sizeof(stat->lft_c)); // Convert timestamps stat->lft_c.sadb_lifetime_addtime = key_convert_continuous_time_ns(sav->lft_c->sadb_lifetime_addtime); stat->lft_c.sadb_lifetime_usetime = key_convert_continuous_time_ns(sav->lft_c->sadb_lifetime_usetime); } else { bzero(&stat->lft_c, sizeof(stat->lft_c)); } lck_mtx_unlock(sadb_mutex); return 0; } } lck_mtx_unlock(sadb_mutex); return -1; } /* * get SA stats collection by indices. * OUT: -1 : not found * 0 : found, arg pointers to a SA stats and 'maximum stats' are updated. */ static int key_getsastatbyspi(struct sastat *stat_arg, u_int32_t max_stat_arg, struct sastat *stat_res, u_int64_t stat_res_size, u_int32_t *max_stat_res) { u_int32_t cur, found = 0; if (stat_arg == NULL || stat_res == NULL || max_stat_res == NULL) { return -1; } u_int64_t max_stats = stat_res_size / (sizeof(struct sastat)); max_stats = ((max_stat_arg <= max_stats) ? max_stat_arg : max_stats); for (cur = 0; cur < max_stats; cur++) { if (key_getsastatbyspi_one(stat_arg[cur].spi, &stat_res[found]) == 0) { found++; } } *max_stat_res = found; if (found) { return 0; } return -1; } /* XXX make it sysctl-configurable? */ static void key_getcomb_setlifetime( struct sadb_comb *comb) { comb->sadb_comb_soft_allocations = 1; comb->sadb_comb_hard_allocations = 1; comb->sadb_comb_soft_bytes = 0; comb->sadb_comb_hard_bytes = 0; comb->sadb_comb_hard_addtime = 86400; /* 1 day */ comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; } #if IPSEC_ESP /* * XXX reorder combinations by preference * XXX no idea if the user wants ESP authentication or not */ static struct mbuf * key_getcomb_esp(void) { struct sadb_comb *comb; const struct esp_algorithm *algo; struct mbuf *result = NULL, *m, *n; u_int16_t encmin; int off, o; int totlen; u_int8_t i; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_EALG_MAX; i++) { algo = esp_algorithm_lookup(i); if (!algo) { continue; } if (algo->keymax < ipsec_esp_keymin) { continue; } if (algo->keymin < ipsec_esp_keymin) { encmin = (u_int16_t)ipsec_esp_keymin; } else { encmin = algo->keymin; } if (ipsec_esp_auth) { m = key_getcomb_ah(); } else { #if DIAGNOSTIC if (l > MLEN) { panic("assumption failed in key_getcomb_esp"); } #endif MGET(m, M_WAITOK, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; bzero(mtod(m, caddr_t), m->m_len); } } if (!m) { goto fail; } totlen = 0; for (n = m; n; n = n->m_next) { totlen += n->m_len; } #if DIAGNOSTIC if (totlen % l) { panic("assumption failed in key_getcomb_esp"); } #endif for (off = 0; off < totlen; off += l) { n = m_pulldown(m, off, l, &o); if (!n) { /* m is already freed */ goto fail; } comb = (struct sadb_comb *) (void *)(mtod(n, caddr_t) + o); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_encrypt = i; comb->sadb_comb_encrypt_minbits = encmin; comb->sadb_comb_encrypt_maxbits = algo->keymax; } if (!result) { result = m; } else { m_cat(result, m); } } return result; fail: if (result) { m_freem(result); } return NULL; } #endif /* * XXX reorder combinations by preference */ static struct mbuf * key_getcomb_ah(void) { struct sadb_comb *comb; const struct ah_algorithm *algo; struct mbuf *m; u_int16_t keymin; u_int8_t i; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_AALG_MAX; i++) { #if 1 /* we prefer HMAC algorithms, not old algorithms */ if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) { continue; } #endif algo = ah_algorithm_lookup(i); if (!algo) { continue; } if (algo->keymax < ipsec_ah_keymin) { continue; } if (algo->keymin < ipsec_ah_keymin) { keymin = (u_int16_t)ipsec_ah_keymin; } else { keymin = algo->keymin; } if (!m) { #if DIAGNOSTIC if (l > MLEN) { panic("assumption failed in key_getcomb_ah"); } #endif MGET(m, M_WAITOK, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; } } else { M_PREPEND(m, l, M_WAITOK, 1); } if (!m) { return NULL; } comb = mtod(m, struct sadb_comb *); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_auth = i; comb->sadb_comb_auth_minbits = keymin; comb->sadb_comb_auth_maxbits = algo->keymax; } return m; } /* * XXX no way to pass mode (transport/tunnel) to userland * XXX replay checking? * XXX sysctl interface to ipsec_{ah,esp}_keymin */ static struct mbuf * key_getprop( const struct secasindex *saidx) { struct sadb_prop *prop; struct mbuf *m, *n; const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); int totlen; switch (saidx->proto) { #if IPSEC_ESP case IPPROTO_ESP: m = key_getcomb_esp(); break; #endif case IPPROTO_AH: m = key_getcomb_ah(); break; default: return NULL; } if (!m) { return NULL; } M_PREPEND(m, l, M_WAITOK, 1); if (!m) { return NULL; } totlen = 0; for (n = m; n; n = n->m_next) { totlen += n->m_len; } prop = mtod(m, struct sadb_prop *); bzero(prop, sizeof(*prop)); VERIFY(totlen <= UINT16_MAX); prop->sadb_prop_len = (u_int16_t)PFKEY_UNIT64(totlen); prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; prop->sadb_prop_replay = 32; /* XXX */ return m; } /* * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). * send * * to KMD, and expect to receive * with SADB_ACQUIRE if error occurred, * or * with SADB_GETSPI * from KMD by PF_KEY. * * XXX x_policy is outside of RFC2367 (KAME extension). * XXX sensitivity is not supported. * * OUT: * 0 : succeed * others: error number */ static int key_acquire( struct secasindex *saidx, struct secpolicy *sp) { struct mbuf *result = NULL, *m; #ifndef IPSEC_NONBLOCK_ACQUIRE struct secacq *newacq; #endif u_int8_t satype; int error = -1; u_int32_t seq; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (saidx == NULL) { panic("key_acquire: NULL pointer is passed."); } if ((satype = key_proto2satype(saidx->proto)) == 0) { panic("key_acquire: invalid proto is passed."); } #ifndef IPSEC_NONBLOCK_ACQUIRE /* * We never do anything about acquirng SA. There is anather * solution that kernel blocks to send SADB_ACQUIRE message until * getting something message from IKEd. In later case, to be * managed with ACQUIRING list. */ /* get a entry to check whether sending message or not. */ lck_mtx_lock(sadb_mutex); if ((newacq = key_getacq(saidx)) != NULL) { if (key_blockacq_count < newacq->count) { /* reset counter and do send message. */ newacq->count = 0; } else { /* increment counter and do nothing. */ newacq->count++; lck_mtx_unlock(sadb_mutex); return 0; } } else { /* make new entry for blocking to send SADB_ACQUIRE. */ if ((newacq = key_newacq(saidx)) == NULL) { lck_mtx_unlock(sadb_mutex); return ENOBUFS; } /* add to acqtree */ LIST_INSERT_HEAD(&acqtree, newacq, chain); key_start_timehandler(); } seq = newacq->seq; lck_mtx_unlock(sadb_mutex); #else seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); #endif m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); if (!m) { error = ENOBUFS; goto fail; } result = m; /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, (struct sockaddr *)&saidx->src, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, (struct sockaddr *)&saidx->dst, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* XXX proxy address (optional) */ /* set sadb_x_policy */ if (sp) { m = key_setsadbxpolicy((u_int16_t)sp->policy, sp->spidx.dir, sp->id); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); } /* XXX sensitivity (optional) */ /* create proposal/combination extension */ m = key_getprop(saidx); /* * outside of spec; make proposal/combination extension optional. */ if (m) { m_cat(result, m); } if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) { result->m_pkthdr.len += m->m_len; } VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) { m_freem(result); } return error; } #ifndef IPSEC_NONBLOCK_ACQUIRE static struct secacq * key_newacq( struct secasindex *saidx) { struct secacq *newacq; /* get new entry */ newacq = kalloc_type(struct secacq, Z_NOWAIT_ZERO); if (newacq == NULL) { lck_mtx_unlock(sadb_mutex); newacq = kalloc_type(struct secacq, Z_WAITOK_ZERO_NOFAIL); lck_mtx_lock(sadb_mutex); } /* copy secindex */ bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); newacq->created = key_get_continuous_time_ns(); return newacq; } static struct secacq * key_getacq( struct secasindex *saidx) { struct secacq *acq; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); LIST_FOREACH(acq, &acqtree, chain) { if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) { return acq; } } return NULL; } static struct secacq * key_getacqbyseq( u_int32_t seq) { struct secacq *acq; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); LIST_FOREACH(acq, &acqtree, chain) { if (acq->seq == seq) { return acq; } } return NULL; } #endif static struct secspacq * key_newspacq( struct secpolicyindex *spidx) { struct secspacq *acq; /* get new entry */ acq = kalloc_type(struct secspacq, Z_NOWAIT_ZERO); if (acq == NULL) { lck_mtx_unlock(sadb_mutex); acq = kalloc_type(struct secspacq, Z_WAITOK_ZERO_NOFAIL); lck_mtx_lock(sadb_mutex); } /* copy secindex */ bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); acq->created = key_get_continuous_time_ns(); return acq; } static struct secspacq * key_getspacq( struct secpolicyindex *spidx) { struct secspacq *acq; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); LIST_FOREACH(acq, &spacqtree, chain) { if (key_cmpspidx_exactly(spidx, &acq->spidx)) { return acq; } } return NULL; } /* * SADB_ACQUIRE processing, * in first situation, is receiving * * from the ikmpd, and clear sequence of its secasvar entry. * * In second situation, is receiving * * from a user land process, and return * * to the socket. * * m will always be freed. */ static int key_acquire2( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { const struct sadb_address *src0, *dst0; ifnet_t ipsec_if = NULL; struct secasindex saidx; struct secashead *sah; u_int16_t proto; int error; /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_acquire2: NULL pointer is passed."); } /* * Error message from KMd. * We assume that if error was occurred in IKEd, the length of PFKEY * message is equal to the size of sadb_msg structure. * We do not raise error even if error occurred in this function. */ lck_mtx_lock(sadb_mutex); if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { #ifndef IPSEC_NONBLOCK_ACQUIRE struct secacq *acq; /* check sequence number */ if (mhp->msg->sadb_msg_seq == 0) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n")); m_freem(m); return 0; } if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { /* * the specified larval SA is already gone, or we got * a bogus sequence number. we can silently ignore it. */ lck_mtx_unlock(sadb_mutex); m_freem(m); return 0; } /* reset acq counter in order to deletion by timehander. */ acq->created = key_get_continuous_time_ns(); acq->count = 0; #endif lck_mtx_unlock(sadb_mutex); m_freem(m); return 0; } /* * This message is from user land. */ /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_EXT_PROPOSAL] == NULL) { /* error */ lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { /* error */ lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } src0 = (const struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (const struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); u_int ipsec_if_index = 0; if (ipsec_if != NULL) { ipsec_if_index = ipsec_if->if_index; ifnet_release(ipsec_if); ipsec_if = NULL; } /* XXX boundary check against sa_len */ /* cast warnings */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); /* get a SA index */ LIST_FOREACH(sah, &sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) { continue; } if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE | CMP_REQID)) { break; } } if (sah != NULL) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n")); return key_senderror(so, m, EEXIST); } lck_mtx_unlock(sadb_mutex); error = key_acquire(&saidx, NULL); if (error != 0) { ipseclog((LOG_DEBUG, "key_acquire2: error %d returned " "from key_acquire.\n", mhp->msg->sadb_msg_errno)); return key_senderror(so, m, error); } return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); } /* * SADB_REGISTER processing. * If SATYPE_UNSPEC has been passed as satype, only return sadb_supported. * receive * * from the ikmpd, and register a socket to send PF_KEY messages, * and send * * to KMD by PF_KEY. * If socket is detached, must free from regnode. * * m will always be freed. */ static int key_register( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secreg *reg, *newreg = 0; /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_register: NULL pointer is passed."); } /* check for invalid register message */ if (mhp->msg->sadb_msg_satype >= sizeof(regtree) / sizeof(regtree[0])) { return key_senderror(so, m, EINVAL); } /* When SATYPE_UNSPEC is specified, only return sadb_supported. */ if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) { goto setmsg; } /* create regnode */ newreg = kalloc_type(struct secreg, Z_WAITOK_ZERO_NOFAIL); lck_mtx_lock(sadb_mutex); /* check whether existing or not */ LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { if (reg->so == so) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_register: socket exists already.\n")); kfree_type(struct secreg, newreg); return key_senderror(so, m, EEXIST); } } socket_lock(so, 1); newreg->so = so; ((struct keycb *)sotorawcb(so))->kp_registered++; socket_unlock(so, 1); /* add regnode to regtree. */ LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); lck_mtx_unlock(sadb_mutex); setmsg: { struct mbuf *n; struct sadb_msg *newmsg; struct sadb_supported *sup; u_int16_t len, alen, elen; int off; u_int8_t i; struct sadb_alg *alg; /* create new sadb_msg to reply. */ alen = 0; for (i = 1; i <= SADB_AALG_MAX; i++) { if (ah_algorithm_lookup(i)) { alen += sizeof(struct sadb_alg); } } if (alen) { alen += sizeof(struct sadb_supported); } elen = 0; #if IPSEC_ESP for (i = 1; i <= SADB_EALG_MAX; i++) { if (esp_algorithm_lookup(i)) { elen += sizeof(struct sadb_alg); } } if (elen) { elen += sizeof(struct sadb_supported); } #endif len = sizeof(struct sadb_msg) + alen + elen; if (len > MCLBYTES) { return key_senderror(so, m, ENOBUFS); } MGETHDR(n, M_WAITOK, MT_DATA); if (n && len > MHLEN) { MCLGET(n, M_WAITOK); if ((n->m_flags & M_EXT) == 0) { m_freem(n); n = NULL; } } if (!n) { return key_senderror(so, m, ENOBUFS); } n->m_pkthdr.len = n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(len) <= UINT16_MAX); newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(len); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); /* for authentication algorithm */ if (alen) { sup = (struct sadb_supported *)(void *)(mtod(n, caddr_t) + off); sup->sadb_supported_len = (u_int16_t)PFKEY_UNIT64(alen); sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; off += PFKEY_ALIGN8(sizeof(*sup)); for (i = 1; i <= SADB_AALG_MAX; i++) { const struct ah_algorithm *aalgo; aalgo = ah_algorithm_lookup(i); if (!aalgo) { continue; } alg = (struct sadb_alg *) (void *)(mtod(n, caddr_t) + off); alg->sadb_alg_id = i; alg->sadb_alg_ivlen = 0; alg->sadb_alg_minbits = aalgo->keymin; alg->sadb_alg_maxbits = aalgo->keymax; off += PFKEY_ALIGN8(sizeof(*alg)); } } #if IPSEC_ESP /* for encryption algorithm */ if (elen) { sup = (struct sadb_supported *)(void *)(mtod(n, caddr_t) + off); sup->sadb_supported_len = PFKEY_UNIT64(elen); sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; off += PFKEY_ALIGN8(sizeof(*sup)); for (i = 1; i <= SADB_EALG_MAX; i++) { const struct esp_algorithm *ealgo; ealgo = esp_algorithm_lookup(i); if (!ealgo) { continue; } alg = (struct sadb_alg *) (void *)(mtod(n, caddr_t) + off); alg->sadb_alg_id = i; if (ealgo && ealgo->ivlen) { /* * give NULL to get the value preferred by * algorithm XXX SADB_X_EXT_DERIV ? */ VERIFY((*ealgo->ivlen)(ealgo, NULL) <= UINT8_MAX); alg->sadb_alg_ivlen = (u_int8_t)((*ealgo->ivlen)(ealgo, NULL)); } else { alg->sadb_alg_ivlen = 0; } alg->sadb_alg_minbits = ealgo->keymin; alg->sadb_alg_maxbits = ealgo->keymax; off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); } } #endif #if DIAGNOSTIC if (off != len) { panic("length assumption failed in key_register"); } #endif m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); } } static void key_delete_all_for_socket(struct socket *so) { struct secashead *sah, *nextsah; struct secasvar *sav, *nextsav; u_int stateidx; u_int state; for (sah = LIST_FIRST(&sahtree); sah != NULL; sah = nextsah) { nextsah = LIST_NEXT(sah, chain); for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_any[stateidx]; for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); if (sav->flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH && sav->so == so) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_freesav(sav, KEY_SADB_LOCKED); } } } } } /* * free secreg entry registered. * XXX: I want to do free a socket marked done SADB_RESIGER to socket. */ void key_freereg( struct socket *so) { struct secreg *reg; int i; /* sanity check */ if (so == NULL) { panic("key_freereg: NULL pointer is passed."); } /* * check whether existing or not. * check all type of SA, because there is a potential that * one socket is registered to multiple type of SA. */ lck_mtx_lock(sadb_mutex); key_delete_all_for_socket(so); for (i = 0; i <= SADB_SATYPE_MAX; i++) { LIST_FOREACH(reg, ®tree[i], chain) { if (reg->so == so && __LIST_CHAINED(reg)) { LIST_REMOVE(reg, chain); kfree_type(struct secreg, reg); break; } } } lck_mtx_unlock(sadb_mutex); return; } /* * SADB_EXPIRE processing * send * * to KMD by PF_KEY. * NOTE: We send only soft lifetime extension. * * OUT: 0 : succeed * others : error number */ static int key_expire( struct secasvar *sav) { u_int8_t satype; struct mbuf *result = NULL, *m; int len; int error = -1; struct sadb_lifetime *lt; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (sav == NULL) { panic("key_expire: NULL pointer is passed."); } if (sav->sah == NULL) { panic("key_expire: Why was SA index in SA NULL."); } if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) { panic("key_expire: invalid proto is passed."); } /* set msg header */ m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, (u_int16_t)sav->refcnt); if (!m) { error = ENOBUFS; goto fail; } result = m; /* create SA extension */ m = key_setsadbsa(sav); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* create SA extension */ m = key_setsadbxsa2(sav->sah->saidx.mode, sav->replay[0] ? sav->replay[0]->count : 0, sav->sah->saidx.reqid, sav->flags2); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* create lifetime extension (current and soft) */ len = PFKEY_ALIGN8(sizeof(*lt)) * 2; m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) { m_freem(m); } error = ENOBUFS; goto fail; } bzero(mtod(m, caddr_t), len); lt = mtod(m, struct sadb_lifetime *); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; lt->sadb_lifetime_addtime = key_convert_continuous_time_ns(sav->lft_c->sadb_lifetime_addtime); lt->sadb_lifetime_usetime = key_convert_continuous_time_ns(sav->lft_c->sadb_lifetime_usetime); lt = (struct sadb_lifetime *)(void *)(mtod(m, caddr_t) + len / 2); bcopy(sav->lft_s, lt, sizeof(*lt)); m_cat(result, m); /* set sadb_address for source */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, (struct sockaddr *)&sav->sah->saidx.src, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* set sadb_address for destination */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, (struct sockaddr *)&sav->sah->saidx.dst, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) { result->m_pkthdr.len += m->m_len; } VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) { m_freem(result); } return error; } /* * SADB_FLUSH processing * receive * * from the ikmpd, and free all entries in secastree. * and send, * * to the ikmpd. * NOTE: to do is only marking SADB_SASTATE_DEAD. * * m will always be freed. */ static int key_flush( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_msg *newmsg; struct secashead *sah, *nextsah; struct secasvar *sav, *nextsav; u_int16_t proto; u_int state; u_int stateidx; /* sanity check */ if (so == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_flush: NULL pointer is passed."); } /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n")); return key_senderror(so, m, EINVAL); } lck_mtx_lock(sadb_mutex); /* no SATYPE specified, i.e. flushing all SA. */ for (sah = LIST_FIRST(&sahtree); sah != NULL; sah = nextsah) { nextsah = LIST_NEXT(sah, chain); if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) { continue; } for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_any[stateidx]; for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_freesav(sav, KEY_SADB_LOCKED); } } sah->state = SADB_SASTATE_DEAD; } lck_mtx_unlock(sadb_mutex); if (m->m_len < sizeof(struct sadb_msg) || sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { ipseclog((LOG_DEBUG, "key_flush: No more memory.\n")); return key_senderror(so, m, ENOBUFS); } if (m->m_next) { m_freem(m->m_next); } m->m_next = NULL; m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); newmsg = mtod(m, struct sadb_msg *); newmsg->sadb_msg_errno = 0; VERIFY(PFKEY_UNIT64(m->m_pkthdr.len) <= UINT16_MAX); newmsg->sadb_msg_len = (uint16_t)PFKEY_UNIT64(m->m_pkthdr.len); return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } /* * SADB_DUMP processing * dump all entries including status of DEAD in SAD. * receive * * from the ikmpd, and dump all secasvar leaves * and send, * ..... * to the ikmpd. * * m will always be freed. */ struct sav_dump_elem { struct secasvar *sav; u_int8_t satype; }; static int key_dump( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secashead *sah; struct secasvar *sav; struct sav_dump_elem *savbuf = NULL, *elem_ptr; u_int32_t bufcount = 0, cnt = 0, cnt2 = 0; u_int16_t proto; u_int stateidx; u_int8_t satype; u_int state; struct mbuf *n; int error = 0; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_dump: NULL pointer is passed."); } /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n")); return key_senderror(so, m, EINVAL); } if ((bufcount = ipsec_sav_count) == 0) { error = ENOENT; goto end; } if (os_add_overflow(bufcount, 512, &bufcount)) { ipseclog((LOG_DEBUG, "key_dump: bufcount overflow, ipsec sa count %u.\n", ipsec_sav_count)); bufcount = ipsec_sav_count; } savbuf = kalloc_type(struct sav_dump_elem, bufcount, Z_WAITOK); if (savbuf == NULL) { ipseclog((LOG_DEBUG, "key_dump: No more memory.\n")); error = ENOMEM; goto end; } /* count sav entries to be sent to the userland. */ lck_mtx_lock(sadb_mutex); elem_ptr = savbuf; LIST_FOREACH(sah, &sahtree, chain) { if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) { continue; } /* map proto to satype */ if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "key_dump: there was invalid proto in SAD.\n")); error = EINVAL; goto end; } for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_any); stateidx++) { state = saorder_state_any[stateidx]; LIST_FOREACH(sav, &sah->savtree[state], chain) { if (cnt == bufcount) { break; /* out of buffer space */ } elem_ptr->sav = sav; elem_ptr->satype = satype; sav->refcnt++; elem_ptr++; cnt++; } } } lck_mtx_unlock(sadb_mutex); if (cnt == 0) { error = ENOENT; goto end; } /* send this to the userland, one at a time. */ elem_ptr = savbuf; cnt2 = cnt; while (cnt2) { n = key_setdumpsa(elem_ptr->sav, SADB_DUMP, elem_ptr->satype, --cnt2, mhp->msg->sadb_msg_pid); if (!n) { error = ENOBUFS; goto end; } key_sendup_mbuf(so, n, KEY_SENDUP_ONE); elem_ptr++; } end: if (savbuf) { if (cnt) { elem_ptr = savbuf; lck_mtx_lock(sadb_mutex); while (cnt--) { key_freesav((elem_ptr++)->sav, KEY_SADB_LOCKED); } lck_mtx_unlock(sadb_mutex); } kfree_type(struct sav_dump_elem, bufcount, savbuf); } if (error) { return key_senderror(so, m, error); } m_freem(m); return 0; } /* * SADB_X_PROMISC processing * * m will always be freed. */ static int key_promisc( struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { int olen; /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("key_promisc: NULL pointer is passed."); } olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); if (olen < sizeof(struct sadb_msg)) { #if 1 return key_senderror(so, m, EINVAL); #else m_freem(m); return 0; #endif } else if (olen == sizeof(struct sadb_msg)) { /* enable/disable promisc mode */ struct keycb *kp; socket_lock(so, 1); if ((kp = (struct keycb *)sotorawcb(so)) == NULL) { return key_senderror(so, m, EINVAL); } mhp->msg->sadb_msg_errno = 0; switch (mhp->msg->sadb_msg_satype) { case 0: case 1: kp->kp_promisc = mhp->msg->sadb_msg_satype; break; default: socket_unlock(so, 1); return key_senderror(so, m, EINVAL); } socket_unlock(so, 1); /* send the original message back to everyone */ mhp->msg->sadb_msg_errno = 0; return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } else { /* send packet as is */ m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); /* TODO: if sadb_msg_seq is specified, send to specific pid */ return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } } static int(*const key_typesw[])(struct socket *, struct mbuf *, const struct sadb_msghdr *) = { NULL, /* SADB_RESERVED */ key_getspi, /* SADB_GETSPI */ key_update, /* SADB_UPDATE */ key_add, /* SADB_ADD */ key_delete, /* SADB_DELETE */ key_get, /* SADB_GET */ key_acquire2, /* SADB_ACQUIRE */ key_register, /* SADB_REGISTER */ NULL, /* SADB_EXPIRE */ key_flush, /* SADB_FLUSH */ key_dump, /* SADB_DUMP */ key_promisc, /* SADB_X_PROMISC */ NULL, /* SADB_X_PCHANGE */ key_spdadd, /* SADB_X_SPDUPDATE */ key_spdadd, /* SADB_X_SPDADD */ key_spddelete, /* SADB_X_SPDDELETE */ key_spdget, /* SADB_X_SPDGET */ NULL, /* SADB_X_SPDACQUIRE */ key_spddump, /* SADB_X_SPDDUMP */ key_spdflush, /* SADB_X_SPDFLUSH */ key_spdadd, /* SADB_X_SPDSETIDX */ NULL, /* SADB_X_SPDEXPIRE */ key_spddelete2, /* SADB_X_SPDDELETE2 */ key_getsastat, /* SADB_GETSASTAT */ key_spdenable, /* SADB_X_SPDENABLE */ key_spddisable, /* SADB_X_SPDDISABLE */ key_migrate, /* SADB_MIGRATE */ }; static void bzero_mbuf(struct mbuf *m) { struct mbuf *mptr = m; struct sadb_msg *msg = NULL; int offset = 0; if (!mptr) { return; } if (mptr->m_len >= sizeof(struct sadb_msg)) { msg = mtod(mptr, struct sadb_msg *); if (msg->sadb_msg_type != SADB_ADD && msg->sadb_msg_type != SADB_UPDATE) { return; } offset = sizeof(struct sadb_msg); } bzero(m_mtod_current(mptr) + offset, mptr->m_len - offset); mptr = mptr->m_next; while (mptr != NULL) { bzero(m_mtod_current(mptr), mptr->m_len); mptr = mptr->m_next; } } static void bzero_keys(const struct sadb_msghdr *mh) { int extlen = 0; int offset = 0; if (!mh) { return; } offset = sizeof(struct sadb_key); if (mh->ext[SADB_EXT_KEY_ENCRYPT]) { struct sadb_key *key = (struct sadb_key*)mh->ext[SADB_EXT_KEY_ENCRYPT]; extlen = key->sadb_key_bits >> 3; if (mh->extlen[SADB_EXT_KEY_ENCRYPT] >= offset + extlen) { bzero((uint8_t *)mh->ext[SADB_EXT_KEY_ENCRYPT] + offset, extlen); } else { bzero(mh->ext[SADB_EXT_KEY_ENCRYPT], mh->extlen[SADB_EXT_KEY_ENCRYPT]); } } if (mh->ext[SADB_EXT_KEY_AUTH]) { struct sadb_key *key = (struct sadb_key*)mh->ext[SADB_EXT_KEY_AUTH]; extlen = key->sadb_key_bits >> 3; if (mh->extlen[SADB_EXT_KEY_AUTH] >= offset + extlen) { bzero((uint8_t *)mh->ext[SADB_EXT_KEY_AUTH] + offset, extlen); } else { bzero(mh->ext[SADB_EXT_KEY_AUTH], mh->extlen[SADB_EXT_KEY_AUTH]); } } } static int key_validate_address_pair(struct sadb_address *src0, struct sadb_address *dst0) { u_int plen = 0; /* check upper layer protocol */ if (src0->sadb_address_proto != dst0->sadb_address_proto) { ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n")); PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); return EINVAL; } /* check family */ if (PFKEY_ADDR_SADDR(src0)->sa_family != PFKEY_ADDR_SADDR(dst0)->sa_family) { ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n")); PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); return EINVAL; } if (PFKEY_ADDR_SADDR(src0)->sa_len != PFKEY_ADDR_SADDR(dst0)->sa_len) { ipseclog((LOG_DEBUG, "key_parse: address struct size mismatched.\n")); PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); return EINVAL; } switch (PFKEY_ADDR_SADDR(src0)->sa_family) { case AF_INET: if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in)) { PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); return EINVAL; } break; case AF_INET6: if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in6)) { PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); return EINVAL; } break; default: ipseclog((LOG_DEBUG, "key_parse: unsupported address family.\n")); PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); return EAFNOSUPPORT; } switch (PFKEY_ADDR_SADDR(src0)->sa_family) { case AF_INET: plen = sizeof(struct in_addr) << 3; break; case AF_INET6: plen = sizeof(struct in6_addr) << 3; break; default: plen = 0; /*fool gcc*/ break; } /* check max prefix length */ if (src0->sadb_address_prefixlen > plen || dst0->sadb_address_prefixlen > plen) { ipseclog((LOG_DEBUG, "key_parse: illegal prefixlen.\n")); PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); return EINVAL; } /* * prefixlen == 0 is valid because there can be a case when * all addresses are matched. */ return 0; } /* * parse sadb_msg buffer to process PFKEYv2, * and create a data to response if needed. * I think to be dealed with mbuf directly. * IN: * msgp : pointer to pointer to a received buffer pulluped. * This is rewrited to response. * so : pointer to socket. * OUT: * length for buffer to send to user process. */ int key_parse( struct mbuf *m, struct socket *so) { struct sadb_msg *msg; struct sadb_msghdr mh; u_int orglen; int error; int target; Boolean keyAligned = FALSE; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); /* sanity check */ if (m == NULL || so == NULL) { panic("key_parse: NULL pointer is passed."); } #if 0 /*kdebug_sadb assumes msg in linear buffer*/ KEYDEBUG(KEYDEBUG_KEY_DUMP, ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n")); kdebug_sadb(msg)); #endif if (m->m_len < sizeof(struct sadb_msg)) { m = m_pullup(m, sizeof(struct sadb_msg)); if (!m) { return ENOBUFS; } } msg = mtod(m, struct sadb_msg *); orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); target = KEY_SENDUP_ONE; if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) { ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n")); PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); error = EINVAL; goto senderror; } if (msg->sadb_msg_version != PF_KEY_V2) { ipseclog((LOG_DEBUG, "key_parse: PF_KEY version %u is mismatched.\n", msg->sadb_msg_version)); PFKEY_STAT_INCREMENT(pfkeystat.out_invver); error = EINVAL; goto senderror; } if (msg->sadb_msg_type > SADB_MAX) { ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n", msg->sadb_msg_type)); PFKEY_STAT_INCREMENT(pfkeystat.out_invmsgtype); error = EINVAL; goto senderror; } /* for old-fashioned code - should be nuked */ if (m->m_pkthdr.len > MCLBYTES) { m_freem(m); return ENOBUFS; } if (m->m_next) { struct mbuf *n; MGETHDR(n, M_WAITOK, MT_DATA); if (n && m->m_pkthdr.len > MHLEN) { MCLGET(n, M_WAITOK); if ((n->m_flags & M_EXT) == 0) { m_free(n); n = NULL; } } if (!n) { bzero_mbuf(m); m_freem(m); return ENOBUFS; } m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; n->m_next = NULL; bzero_mbuf(m); m_freem(m); m = n; } /* align the mbuf chain so that extensions are in contiguous region. */ error = key_align(m, &mh); if (error) { return error; } if (m->m_next) { /*XXX*/ bzero_mbuf(m); m_freem(m); return ENOBUFS; } keyAligned = TRUE; msg = mh.msg; /* check SA type */ switch (msg->sadb_msg_satype) { case SADB_SATYPE_UNSPEC: switch (msg->sadb_msg_type) { case SADB_GETSPI: case SADB_UPDATE: case SADB_ADD: case SADB_DELETE: case SADB_GET: case SADB_ACQUIRE: case SADB_EXPIRE: ipseclog((LOG_DEBUG, "key_parse: must specify satype " "when msg type=%u.\n", msg->sadb_msg_type)); PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); error = EINVAL; goto senderror; } break; case SADB_SATYPE_AH: case SADB_SATYPE_ESP: switch (msg->sadb_msg_type) { case SADB_X_SPDADD: case SADB_X_SPDDELETE: case SADB_X_SPDGET: case SADB_X_SPDDUMP: case SADB_X_SPDFLUSH: case SADB_X_SPDSETIDX: case SADB_X_SPDUPDATE: case SADB_X_SPDDELETE2: case SADB_X_SPDENABLE: case SADB_X_SPDDISABLE: ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n", msg->sadb_msg_type)); PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); error = EINVAL; goto senderror; } break; case SADB_SATYPE_RSVP: case SADB_SATYPE_OSPFV2: case SADB_SATYPE_RIPV2: case SADB_SATYPE_MIP: ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n", msg->sadb_msg_satype)); PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); error = EOPNOTSUPP; goto senderror; case 1: /* XXX: What does it do? */ if (msg->sadb_msg_type == SADB_X_PROMISC) { break; } OS_FALLTHROUGH; default: ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n", msg->sadb_msg_satype)); PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); error = EINVAL; goto senderror; } /* Validate address fields for matching families, lengths, etc. */ void *src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; void *dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; if (mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) { error = key_validate_address_pair((struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START]), (struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_END])); if (error != 0) { goto senderror; } if (src0 == NULL) { src0 = mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START]; } } if (mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && mh.ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) { error = key_validate_address_pair((struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START]), (struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_DST_END])); if (error != 0) { goto senderror; } if (dst0 == NULL) { dst0 = mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START]; } } if (src0 != NULL && dst0 != NULL) { error = key_validate_address_pair((struct sadb_address *)(src0), (struct sadb_address *)(dst0)); if (error != 0) { goto senderror; } } void *migrate_src = mh.ext[SADB_EXT_MIGRATE_ADDRESS_SRC]; void *migrate_dst = mh.ext[SADB_EXT_MIGRATE_ADDRESS_DST]; if (migrate_src != NULL && migrate_dst != NULL) { error = key_validate_address_pair((struct sadb_address *)(migrate_src), (struct sadb_address *)(migrate_dst)); if (error != 0) { goto senderror; } } if (msg->sadb_msg_type >= sizeof(key_typesw) / sizeof(key_typesw[0]) || key_typesw[msg->sadb_msg_type] == NULL) { PFKEY_STAT_INCREMENT(pfkeystat.out_invmsgtype); error = EINVAL; goto senderror; } error = (*key_typesw[msg->sadb_msg_type])(so, m, &mh); return error; senderror: if (keyAligned) { bzero_keys(&mh); } else { bzero_mbuf(m); } msg->sadb_msg_errno = (u_int8_t)error; return key_sendup_mbuf(so, m, target); } static int key_senderror( struct socket *so, struct mbuf *m, int code) { struct sadb_msg *msg; LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); if (m->m_len < sizeof(struct sadb_msg)) { panic("invalid mbuf passed to key_senderror"); } msg = mtod(m, struct sadb_msg *); msg->sadb_msg_errno = (u_int8_t)code; return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); } /* * set the pointer to each header into message buffer. * m will be freed on error. * XXX larger-than-MCLBYTES extension? */ static int key_align( struct mbuf *m, struct sadb_msghdr *mhp) { struct mbuf *n; struct sadb_ext *ext; size_t end; int off, extlen; int toff; /* sanity check */ if (m == NULL || mhp == NULL) { panic("key_align: NULL pointer is passed."); } if (m->m_len < sizeof(struct sadb_msg)) { panic("invalid mbuf passed to key_align"); } /* initialize */ bzero(mhp, sizeof(*mhp)); mhp->msg = mtod(m, struct sadb_msg *); mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); extlen = (int)end; /*just in case extlen is not updated*/ for (off = sizeof(struct sadb_msg); off < end; off += extlen) { n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); if (!n) { /* m is already freed */ return ENOBUFS; } ext = (struct sadb_ext *)(void *)(mtod(n, caddr_t) + toff); /* set pointer */ switch (ext->sadb_ext_type) { case SADB_EXT_SA: case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_LIFETIME_CURRENT: case SADB_EXT_LIFETIME_HARD: case SADB_EXT_LIFETIME_SOFT: case SADB_EXT_KEY_AUTH: case SADB_EXT_KEY_ENCRYPT: case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: case SADB_EXT_SENSITIVITY: case SADB_EXT_PROPOSAL: case SADB_EXT_SUPPORTED_AUTH: case SADB_EXT_SUPPORTED_ENCRYPT: case SADB_EXT_SPIRANGE: case SADB_X_EXT_POLICY: case SADB_X_EXT_SA2: case SADB_EXT_SESSION_ID: case SADB_EXT_SASTAT: case SADB_X_EXT_IPSECIF: case SADB_X_EXT_ADDR_RANGE_SRC_START: case SADB_X_EXT_ADDR_RANGE_SRC_END: case SADB_X_EXT_ADDR_RANGE_DST_START: case SADB_X_EXT_ADDR_RANGE_DST_END: case SADB_EXT_MIGRATE_ADDRESS_SRC: case SADB_EXT_MIGRATE_ADDRESS_DST: case SADB_X_EXT_MIGRATE_IPSECIF: /* duplicate check */ /* * XXX Are there duplication payloads of either * KEY_AUTH or KEY_ENCRYPT ? */ if (mhp->ext[ext->sadb_ext_type] != NULL) { ipseclog((LOG_DEBUG, "key_align: duplicate ext_type %u " "is passed.\n", ext->sadb_ext_type)); bzero_mbuf(m); m_freem(m); PFKEY_STAT_INCREMENT(pfkeystat.out_dupext); return EINVAL; } break; default: ipseclog((LOG_DEBUG, "key_align: invalid ext_type %u is passed.\n", ext->sadb_ext_type)); bzero_mbuf(m); m_freem(m); PFKEY_STAT_INCREMENT(pfkeystat.out_invexttype); return EINVAL; } extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); if (off + extlen > end) { ipseclog((LOG_DEBUG, "key_align: ext type %u invalid ext length %d " "offset %d sadb message total len %zu is passed.\n", ext->sadb_ext_type, extlen, off, end)); bzero_mbuf(m); m_freem(m); PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); return EINVAL; } if (key_validate_ext(ext, extlen)) { bzero_mbuf(m); m_freem(m); PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); return EINVAL; } n = m_pulldown(m, off, extlen, &toff); if (!n) { /* m is already freed */ return ENOBUFS; } ext = (struct sadb_ext *)(void *)(mtod(n, caddr_t) + toff); mhp->ext[ext->sadb_ext_type] = ext; mhp->extoff[ext->sadb_ext_type] = off; mhp->extlen[ext->sadb_ext_type] = extlen; } if (off != end) { bzero_mbuf(m); m_freem(m); PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); return EINVAL; } return 0; } static int key_validate_ext( const struct sadb_ext *ext, int len) { struct sockaddr *sa; enum { NONE, ADDR } checktype = NONE; int baselen = 0; const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) { return EINVAL; } /* if it does not match minimum/maximum length, bail */ if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) { return EINVAL; } if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) { return EINVAL; } if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) { return EINVAL; } /* more checks based on sadb_ext_type XXX need more */ switch (ext->sadb_ext_type) { case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: case SADB_X_EXT_ADDR_RANGE_SRC_START: case SADB_X_EXT_ADDR_RANGE_SRC_END: case SADB_X_EXT_ADDR_RANGE_DST_START: case SADB_X_EXT_ADDR_RANGE_DST_END: case SADB_EXT_MIGRATE_ADDRESS_SRC: case SADB_EXT_MIGRATE_ADDRESS_DST: baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); checktype = ADDR; break; case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: if (((struct sadb_ident *)(uintptr_t)(size_t)ext)-> sadb_ident_type == SADB_X_IDENTTYPE_ADDR) { baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); checktype = ADDR; } else { checktype = NONE; } break; default: checktype = NONE; break; } switch (checktype) { case NONE: break; case ADDR: sa = (struct sockaddr *)((caddr_t)(uintptr_t)ext + baselen); if (len < baselen + sal) { return EINVAL; } if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) { return EINVAL; } break; } /* check key bits length */ if (ext->sadb_ext_type == SADB_EXT_KEY_AUTH || ext->sadb_ext_type == SADB_EXT_KEY_ENCRYPT) { struct sadb_key *key = (struct sadb_key *)(uintptr_t)ext; if (len < (sizeof(struct sadb_key) + _KEYLEN(key))) { return EINVAL; } } return 0; } /* * XXX: maybe This function is called after INBOUND IPsec processing. * * Special check for tunnel-mode packets. * We must make some checks for consistency between inner and outer IP header. * * xxx more checks to be provided */ int key_checktunnelsanity( struct secasvar *sav, __unused u_int family, __unused caddr_t src, __unused caddr_t dst) { /* sanity check */ if (sav->sah == NULL) { panic("sav->sah == NULL at key_checktunnelsanity"); } /* XXX: check inner IP header */ return 1; } /* record data transfer on SA, and update timestamps */ void key_sa_recordxfer( struct secasvar *sav, size_t byte_count) { if (!sav) { panic("key_sa_recordxfer called with sav == NULL"); } if (!sav->lft_c) { return; } lck_mtx_lock(sadb_mutex); /* * XXX Currently, there is a difference of bytes size * between inbound and outbound processing. */ sav->lft_c->sadb_lifetime_bytes += byte_count; /* to check bytes lifetime is done in key_timehandler(). */ /* * We use the number of packets as the unit of * sadb_lifetime_allocations. We increment the variable * whenever {esp,ah}_{in,out}put is called. */ sav->lft_c->sadb_lifetime_allocations++; /* XXX check for expires? */ /* * NOTE: We record CURRENT sadb_lifetime_usetime by using mach_continuous_time, * in nanoseconds. HARD and SOFT lifetime are measured by the time difference * from sadb_lifetime_usetime. * * usetime * v expire expire * -----+-----+--------+---> t * <--------------> HARD * <-----> SOFT */ sav->lft_c->sadb_lifetime_usetime = key_get_continuous_time_ns(); /* XXX check for expires? */ lck_mtx_unlock(sadb_mutex); return; } /* dumb version */ void key_sa_routechange( struct sockaddr *dst) { struct secashead *sah; struct route *ro; lck_mtx_lock(sadb_mutex); LIST_FOREACH(sah, &sahtree, chain) { ro = (struct route *)&sah->sa_route; if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { ROUTE_RELEASE(ro); } } lck_mtx_unlock(sadb_mutex); return; } void key_sa_chgstate( struct secasvar *sav, u_int8_t state) { if (sav == NULL) { panic("key_sa_chgstate called with sav == NULL"); } if (sav->state == state) { return; } LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); if (__LIST_CHAINED(sav)) { LIST_REMOVE(sav, chain); } sav->state = state; LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); } void key_sa_stir_iv( struct secasvar *sav) { lck_mtx_lock(sadb_mutex); if (!sav->iv) { panic("key_sa_stir_iv called with sav == NULL"); } key_randomfill(sav->iv, sav->ivlen); lck_mtx_unlock(sadb_mutex); } /* XXX too much? */ static struct mbuf * key_alloc_mbuf( int l) { struct mbuf *m = NULL, *n; int len, t; len = l; while (len > 0) { MGET(n, M_DONTWAIT, MT_DATA); if (n && len > MLEN) { MCLGET(n, M_DONTWAIT); } if (!n) { m_freem(m); return NULL; } n->m_next = NULL; n->m_len = 0; n->m_len = (int)M_TRAILINGSPACE(n); /* use the bottom of mbuf, hoping we can prepend afterwards */ if (n->m_len > len) { t = (n->m_len - len) & ~(sizeof(long) - 1); n->m_data += t; n->m_len = len; } len -= n->m_len; if (m) { m_cat(m, n); } else { m = n; } } return m; } static struct mbuf * key_setdumpsastats(u_int32_t dir, struct sastat *stats, u_int32_t max_stats, u_int64_t session_ids[], u_int32_t seq, u_int32_t pid) { struct mbuf *result = NULL, *m = NULL; m = key_setsadbmsg(SADB_GETSASTAT, 0, 0, seq, pid, 0); if (!m) { goto fail; } result = m; m = key_setsadbsession_id(session_ids); if (!m) { goto fail; } m_cat(result, m); m = key_setsadbsastat(dir, stats, max_stats); if (!m) { goto fail; } m_cat(result, m); if ((result->m_flags & M_PKTHDR) == 0) { goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) { result->m_pkthdr.len += m->m_len; } if (PFKEY_UNIT64(result->m_pkthdr.len) > UINT16_MAX) { ipseclog((LOG_ERR, "key_setdumpsastats: length too nbug: %u", result->m_pkthdr.len)); goto fail; } mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); return result; fail: if (result) { m_freem(result); } return NULL; } /* * SADB_GETSASTAT processing * dump all stats for matching entries in SAD. * * m will always be freed. */ static int key_getsastat(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_session_id *session_id; size_t bufsize = 0; u_int32_t arg_count, res_count; struct sadb_sastat *sa_stats_arg; struct sastat *sa_stats_sav = NULL; struct mbuf *n; int error = 0; /* sanity check */ if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { panic("%s: NULL pointer is passed.", __FUNCTION__); } if (mhp->ext[SADB_EXT_SESSION_ID] == NULL) { printf("%s: invalid message is passed. missing session-id.\n", __FUNCTION__); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SESSION_ID] < sizeof(struct sadb_session_id)) { printf("%s: invalid message is passed. short session-id.\n", __FUNCTION__); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SASTAT] == NULL) { printf("%s: invalid message is passed. missing stat args.\n", __FUNCTION__); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SASTAT] < sizeof(*sa_stats_arg)) { printf("%s: invalid message is passed. short stat args.\n", __FUNCTION__); return key_senderror(so, m, EINVAL); } LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); // exit early if there are no active SAs if (ipsec_sav_count == 0) { printf("%s: No active SAs.\n", __FUNCTION__); error = ENOENT; goto end; } if (os_mul_overflow(ipsec_sav_count + 1, sizeof(*sa_stats_sav), &bufsize)) { panic("key_getsastat bufsize requested memory overflow %u", ipsec_sav_count); } sa_stats_sav = (__typeof__(sa_stats_sav))kalloc_data(bufsize, Z_WAITOK | Z_ZERO); if (sa_stats_sav == NULL) { printf("%s: No more memory.\n", __FUNCTION__); error = ENOMEM; goto end; } sa_stats_arg = (__typeof__(sa_stats_arg)) (void *)mhp->ext[SADB_EXT_SASTAT]; arg_count = sa_stats_arg->sadb_sastat_list_len; // exit early if there are no requested SAs if (arg_count == 0) { printf("%s: No SAs requested.\n", __FUNCTION__); error = ENOENT; goto end; } if (PFKEY_UNUNIT64(sa_stats_arg->sadb_sastat_len) < (sizeof(*sa_stats_arg) + (arg_count * sizeof(struct sastat)))) { printf("%s: invalid message is passed. sa stat extlen shorter than requested stat length.\n", __FUNCTION__); error = EINVAL; goto end; } res_count = 0; if (key_getsastatbyspi((struct sastat *)(sa_stats_arg + 1), arg_count, sa_stats_sav, bufsize, &res_count)) { printf("%s: Error finding SAs.\n", __FUNCTION__); error = ENOENT; goto end; } if (!res_count) { printf("%s: No SAs found.\n", __FUNCTION__); error = ENOENT; goto end; } session_id = (__typeof__(session_id)) (void *)mhp->ext[SADB_EXT_SESSION_ID]; /* send this to the userland. */ n = key_setdumpsastats(sa_stats_arg->sadb_sastat_dir, sa_stats_sav, res_count, session_id->sadb_session_id_v, mhp->msg->sadb_msg_seq, mhp->msg->sadb_msg_pid); if (!n) { printf("%s: No bufs to dump stats.\n", __FUNCTION__); error = ENOBUFS; goto end; } key_sendup_mbuf(so, n, KEY_SENDUP_ALL); end: if (sa_stats_sav) { kfree_data(sa_stats_sav, bufsize); } if (error) { return key_senderror(so, m, error); } m_freem(m); return 0; } static void key_update_natt_keepalive_timestamp(struct secasvar *sav_sent, struct secasvar *sav_update) { struct secasindex saidx_swap_sent_addr; // exit early if two SAs are identical, or if sav_update is current if (sav_sent == sav_update || sav_update->natt_last_activity == natt_now) { return; } // assuming that (sav_update->remote_ike_port != 0 && (esp_udp_encap_port & 0xFFFF) != 0) bzero(&saidx_swap_sent_addr, sizeof(saidx_swap_sent_addr)); memcpy(&saidx_swap_sent_addr.src, &sav_sent->sah->saidx.dst, sizeof(saidx_swap_sent_addr.src)); memcpy(&saidx_swap_sent_addr.dst, &sav_sent->sah->saidx.src, sizeof(saidx_swap_sent_addr.dst)); saidx_swap_sent_addr.proto = sav_sent->sah->saidx.proto; saidx_swap_sent_addr.mode = sav_sent->sah->saidx.mode; // we ignore reqid for split-tunnel setups if (key_cmpsaidx(&sav_sent->sah->saidx, &sav_update->sah->saidx, CMP_MODE | CMP_PORT) || key_cmpsaidx(&saidx_swap_sent_addr, &sav_update->sah->saidx, CMP_MODE | CMP_PORT)) { sav_update->natt_last_activity = natt_now; } } static int key_send_delsp(struct secpolicy *sp) { struct mbuf *result = NULL, *m; if (sp == NULL) { goto fail; } /* set msg header */ m = key_setsadbmsg(SADB_X_SPDDELETE, 0, 0, 0, 0, 0); if (!m) { goto fail; } result = m; /* set sadb_address(es) for source */ if (sp->spidx.src_range.start.ss_len > 0) { m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START, (struct sockaddr *)&sp->spidx.src_range.start, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END, (struct sockaddr *)&sp->spidx.src_range.end, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); } else { m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, (struct sockaddr *)&sp->spidx.src, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); } /* set sadb_address(es) for destination */ if (sp->spidx.dst_range.start.ss_len > 0) { m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START, (struct sockaddr *)&sp->spidx.dst_range.start, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END, (struct sockaddr *)&sp->spidx.dst_range.end, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); } else { m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, (struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { goto fail; } m_cat(result, m); } /* set secpolicy */ m = key_sp2msg(sp); if (!m) { goto fail; } m_cat(result, m); if ((result->m_flags & M_PKTHDR) == 0) { goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) { result->m_pkthdr.len += m->m_len; } if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) { ipseclog((LOG_ERR, "key_send_delsp: length too big: %d", result->m_pkthdr.len)); goto fail; } mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) { m_free(result); } return -1; } void key_delsp_for_ipsec_if(ifnet_t ipsec_if) { struct secashead *sah; struct secasvar *sav, *nextsav; u_int stateidx; u_int state; struct secpolicy *sp, *nextsp; int dir; if (ipsec_if == NULL) { return; } LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(sadb_mutex); for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { for (sp = LIST_FIRST(&sptree[dir]); sp != NULL; sp = nextsp) { nextsp = LIST_NEXT(sp, chain); if (sp->ipsec_if == ipsec_if) { ifnet_release(sp->ipsec_if); sp->ipsec_if = NULL; key_send_delsp(sp); sp->state = IPSEC_SPSTATE_DEAD; key_freesp(sp, KEY_SADB_LOCKED); } } } LIST_FOREACH(sah, &sahtree, chain) { if (sah->ipsec_if == ipsec_if) { /* This SAH is linked to the IPsec interface. It now needs to close. */ ifnet_release(sah->ipsec_if); sah->ipsec_if = NULL; for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_any[stateidx]; for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_freesav(sav, KEY_SADB_LOCKED); } } sah->state = SADB_SASTATE_DEAD; } } lck_mtx_unlock(sadb_mutex); } __private_extern__ u_int32_t key_fill_offload_frames_for_savs(ifnet_t ifp, struct ifnet_keepalive_offload_frame *frames_array, u_int32_t frames_array_count, size_t frame_data_offset) { struct secashead *sah = NULL; struct secasvar *sav = NULL; struct ifnet_keepalive_offload_frame *frame = frames_array; u_int32_t frame_index = 0; if (frame == NULL || frames_array_count == 0) { return frame_index; } lck_mtx_lock(sadb_mutex); LIST_FOREACH(sah, &sahtree, chain) { LIST_FOREACH(sav, &sah->savtree[SADB_SASTATE_MATURE], chain) { if (ipsec_fill_offload_frame(ifp, sav, frame, frame_data_offset)) { frame_index++; if (frame_index >= frames_array_count) { lck_mtx_unlock(sadb_mutex); return frame_index; } frame = &(frames_array[frame_index]); } } } lck_mtx_unlock(sadb_mutex); return frame_index; } #pragma mark Custom IPsec __private_extern__ bool key_custom_ipsec_token_is_valid(void *ipsec_token) { if (ipsec_token == NULL) { return false; } struct secashead *sah = (struct secashead *)ipsec_token; return (sah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC; } __private_extern__ int key_reserve_custom_ipsec(void **ipsec_token, union sockaddr_in_4_6 *src, union sockaddr_in_4_6 *dst, u_int8_t proto) { if (src == NULL || dst == NULL) { ipseclog((LOG_ERR, "register custom ipsec: invalid address\n")); return EINVAL; } if (src->sa.sa_family != dst->sa.sa_family) { ipseclog((LOG_ERR, "register custom ipsec: address family mismatched\n")); return EINVAL; } if (src->sa.sa_len != dst->sa.sa_len) { ipseclog((LOG_ERR, "register custom ipsec: address struct size mismatched\n")); return EINVAL; } if (ipsec_token == NULL) { ipseclog((LOG_ERR, "register custom ipsec: invalid ipsec token\n")); return EINVAL; } switch (src->sa.sa_family) { case AF_INET: if (src->sa.sa_len != sizeof(struct sockaddr_in)) { ipseclog((LOG_ERR, "register custom esp: invalid address length\n")); return EINVAL; } break; case AF_INET6: if (src->sa.sa_len != sizeof(struct sockaddr_in6)) { ipseclog((LOG_ERR, "register custom esp: invalid address length\n")); return EINVAL; } break; default: ipseclog((LOG_ERR, "register custom esp: invalid address length\n")); return EAFNOSUPPORT; } if (proto != IPPROTO_ESP && proto != IPPROTO_AH) { ipseclog((LOG_ERR, "register custom esp: invalid proto %u\n", proto)); return EINVAL; } struct secasindex saidx = {}; KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, &src->sa, &dst->sa, 0, &saidx); lck_mtx_lock(sadb_mutex); struct secashead *sah = NULL; if ((sah = key_getsah(&saidx, SECURITY_ASSOCIATION_ANY)) != NULL) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_ERR, "register custom esp: SA exists\n")); return EEXIST; } if ((sah = key_newsah(&saidx, NULL, 0, IPSEC_DIR_ANY, SECURITY_ASSOCIATION_CUSTOM_IPSEC)) == NULL) { lck_mtx_unlock(sadb_mutex); ipseclog((LOG_DEBUG, "register custom esp: No more memory.\n")); return ENOBUFS; } *ipsec_token = (void *)sah; lck_mtx_unlock(sadb_mutex); return 0; } __private_extern__ void key_release_custom_ipsec(void **ipsec_token) { struct secashead *sah = *ipsec_token; VERIFY(sah != NULL); lck_mtx_lock(sadb_mutex); VERIFY((sah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC); bool sa_present = true; if (LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]) == NULL && LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]) == NULL && LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]) == NULL && LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]) == NULL) { sa_present = false; } VERIFY(sa_present == false); key_delsah(sah); lck_mtx_unlock(sadb_mutex); *ipsec_token = NULL; return; }