/* * Copyright (c) 1999-2021 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */ /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ /* * Mach Operating System * Copyright (c) 1987 Carnegie-Mellon University * All rights reserved. The CMU software License Agreement specifies * the terms and conditions for use and redistribution. */ /* * Copyright (c) 1994 NeXT Computer, Inc. All rights reserved. * * Copyright (c) 1982, 1986, 1988 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)mbuf.h 8.3 (Berkeley) 1/21/94 */ /* * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce * support for mandatory and extensible security protections. This notice * is included in support of clause 2.2 (b) of the Apple Public License, * Version 2.0. */ #ifndef _SYS_MBUF_H_ #define _SYS_MBUF_H_ #include #include #include /* u_int32_t */ #include /* u_int64_t */ #include /* u_short */ #ifdef KERNEL #include #endif #ifdef XNU_KERNEL_PRIVATE #include #include #include /* * Mbufs are of a single size, which includes overhead. * An mbuf may add a single "mbuf cluster" of size * MCLBYTES/MBIGCLBYTES/M16KCLBYTES (also in machine/param.h), which has * no additional overhead and is used instead of the internal data area; * this is done when at least MINCLSIZE of data must be stored. */ #if CONFIG_MBUF_MCACHE #define _MSIZESHIFT 8 /* 256 */ #define _MSIZE (1 << _MSIZESHIFT) /* size of an mbuf */ #else /* CONFIG_MBUF_MCACHE */ #define _MSIZE 512 #endif /* CONFIG_MBUF_MCACHE */ #define NCLPGSHIFT (PAGE_SHIFT - MCLSHIFT) #define NCLPG (1 << NCLPGSHIFT) /* # of cl per page */ #define NBCLPGSHIFT (PAGE_SHIFT - MBIGCLSHIFT) #define NBCLPG (1 << NBCLPGSHIFT) /* # of big cl per page */ #define NMBPCL (MCLBYTES / _MSIZE) #define NCLPJCLSHIFT (M16KCLSHIFT - MCLSHIFT) #define NCLPJCL (1 << NCLPJCLSHIFT) /* # of cl per jumbo cl */ #define NCLPBGSHIFT (MBIGCLSHIFT - MCLSHIFT) #define NCLPBG (1 << NCLPBGSHIFT) /* # of cl per big cl */ /* * Macros for type conversion * mtod(m,t) - convert mbuf pointer to data pointer of correct type * mtodo(m, o) -- Same as above but with offset 'o' into data. */ #define mtod(m, t) ((t)(void *)m_mtod_current(m)) #define mtodo(m, o) ((void *)(mtod(m, uint8_t *) + (o))) /* header at beginning of each mbuf: */ struct m_hdr { struct mbuf *mh_next; /* next buffer in chain */ struct mbuf *mh_nextpkt; /* next chain in queue/record */ uintptr_t mh_data; /* location of data */ int32_t mh_len; /* amount of data in this mbuf */ u_int16_t mh_type; /* type of data in this mbuf */ u_int16_t mh_flags; /* flags; see below */ #if __arm__ && (__BIGGEST_ALIGNMENT__ > 4) /* This is needed because of how _MLEN is defined and used. Ideally, _MLEN * should be defined using the offsetof(struct mbuf, M_dat), since there is * no guarantee that mbuf.M_dat will start where mbuf.m_hdr ends. The compiler * may (and does in the armv7k case) insert padding between m_hdr and M_dat in * mbuf. We cannot easily use offsetof, however, since _MLEN is referenced * in the definition of mbuf. */ } __attribute__((aligned(8))); #else }; #endif /* * Packet tag structure (see below for details). */ struct m_tag { uint64_t m_tag_cookie; /* Error checking */ SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ void *m_tag_data; uint16_t m_tag_type; /* Module specific type */ uint16_t m_tag_len; /* Length of data */ uint32_t m_tag_id; /* Module ID */ void *m_tag_mb_cl; /* pointer to mbuf or cluster container */ #ifndef __LP64__ u_int32_t m_tag_pad; #endif /* !__LP64__ */ }; #define M_TAG_ALIGN(len) \ (P2ROUNDUP(len, sizeof (u_int64_t)) + sizeof (struct m_tag)) #define M_TAG_INIT(tag, id, type, len, data, mb_cl) { \ VERIFY(IS_P2ALIGNED((tag), sizeof(u_int64_t))); \ (tag)->m_tag_type = (type); \ (tag)->m_tag_len = (uint16_t)(len); \ (tag)->m_tag_id = (id); \ (tag)->m_tag_data = (data); \ (tag)->m_tag_mb_cl = (mb_cl); \ m_tag_create_cookie(tag); \ } #define M_TAG_VALID_PATTERN 0xfeedfacefeedfaceULL #define M_TAG_FREE_PATTERN 0xdeadbeefdeadbeefULL /* * Packet tag header structure at the top of mbuf whe mbufs are use for m_tag * Pointers are 32-bit in ILP32; m_tag needs 64-bit alignment, hence padded. */ struct m_taghdr { #ifndef __LP64__ u_int32_t pad; /* For structure alignment */ #endif /* !__LP64__ */ u_int64_t mth_refcnt; /* Number of tags in this mbuf */ }; /* * Driver auxiliary metadata tag (KERNEL_TAG_TYPE_DRVAUX). */ struct m_drvaux_tag { u_int32_t da_family; /* IFNET_FAMILY values */ u_int32_t da_subfamily; /* IFNET_SUBFAMILY values */ u_int32_t da_reserved; /* for future */ u_int32_t da_length; /* length of following data */ }; /* Values for pftag_flags (16-bit wide) */ #define PF_TAG_GENERATED 0x1 /* pkt generated by PF */ #define PF_TAG_FRAGCACHE 0x2 #define PF_TAG_TRANSLATE_LOCALHOST 0x4 #if PF_ECN #define PF_TAG_HDR_INET 0x8 /* hdr points to IPv4 */ #define PF_TAG_HDR_INET6 0x10 /* hdr points to IPv6 */ #endif /* PF_ECN */ #define PF_TAG_REASSEMBLED 0x20 /* pkt reassembled by PF */ #define PF_TAG_REFRAGMENTED 0x40 /* pkt refragmented by PF */ /* * PF mbuf tag */ struct pf_mtag { u_int16_t pftag_flags; /* PF_TAG flags */ u_int16_t pftag_rtableid; /* alternate routing table id */ u_int16_t pftag_tag; u_int16_t pftag_routed; #if PF_ECN void *pftag_hdr; /* saved hdr pos in mbuf, for ECN */ #endif /* PF_ECN */ }; /* System reserved PF tags */ #define PF_TAG_ID_SYSTEM_SERVICE 0xff00 #define PF_TAG_ID_STACK_DROP 0xff01 /* * PF fragment tag */ struct pf_fragment_tag { uint32_t ft_id; /* fragment id */ uint16_t ft_hdrlen; /* header length of reassembled pkt */ uint16_t ft_unfragpartlen; /* length of the per-fragment headers */ uint16_t ft_extoff; /* last extension header offset or 0 */ uint16_t ft_maxlen; /* maximum fragment payload length */ }; /* * TCP mbuf tag */ struct tcp_pktinfo { union { struct { uint32_t segsz; /* segment size (actual MSS) */ uint32_t start_seq; /* start seq of this packet */ pid_t pid; pid_t e_pid; } __tx; struct { uint8_t seg_cnt; /* # of coalesced TCP pkts */ } __rx; } __offload; #define tso_segsz proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.segsz #define tx_start_seq proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.start_seq #define tx_tcp_pid proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.pid #define tx_tcp_e_pid proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.e_pid #define seg_cnt proto_mtag.__pr_u.tcp.tm_tcp.__offload.__rx.seg_cnt }; /* * MPTCP mbuf tag */ struct mptcp_pktinfo { uint64_t mtpi_dsn; /* MPTCP Data Sequence Number */ uint32_t mtpi_rel_seq; /* Relative Seq Number */ uint16_t mtpi_length; /* Length of mapping */ uint16_t mtpi_csum; #define mp_dsn proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_dsn #define mp_rseq proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_rel_seq #define mp_rlen proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_length #define mp_csum proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_csum }; /* * TCP specific mbuf tag. Note that the current implementation uses * MPTCP metadata strictly between MPTCP and the TCP subflow layers, * hence tm_tcp and tm_mptcp are mutually exclusive. This also means * that TCP messages functionality is currently incompatible with MPTCP. */ struct tcp_mtag { union { struct tcp_pktinfo tm_tcp; /* TCP and below */ struct mptcp_pktinfo tm_mptcp; /* MPTCP-TCP only */ }; }; struct udp_mtag { pid_t _pid; pid_t _e_pid; #define tx_udp_pid proto_mtag.__pr_u.udp._pid #define tx_udp_e_pid proto_mtag.__pr_u.udp._e_pid }; struct rawip_mtag { pid_t _pid; pid_t _e_pid; #define tx_rawip_pid proto_mtag.__pr_u.rawip._pid #define tx_rawip_e_pid proto_mtag.__pr_u.rawip._e_pid }; struct driver_mtag_ { uintptr_t _drv_tx_compl_arg; uintptr_t _drv_tx_compl_data; kern_return_t _drv_tx_status; uint16_t _drv_flowid; #define drv_tx_compl_arg builtin_mtag._drv_mtag._drv_tx_compl_arg #define drv_tx_compl_data builtin_mtag._drv_mtag._drv_tx_compl_data #define drv_tx_status builtin_mtag._drv_mtag._drv_tx_status #define drv_flowid builtin_mtag._drv_mtag._drv_flowid }; /* * Protocol specific mbuf tag (at most one protocol metadata per mbuf). * * Care must be taken to ensure that they are mutually exclusive, e.g. * IPsec policy ID implies no TCP segment offload (which is fine given * that the former is used on the virtual ipsec interface that does * not advertise the TSO capability.) */ struct proto_mtag_ { union { struct tcp_mtag tcp; /* TCP specific */ struct udp_mtag udp; /* UDP specific */ struct rawip_mtag rawip; /* raw IPv4/IPv6 specific */ } __pr_u; }; /* * NECP specific mbuf tag. */ struct necp_mtag_ { u_int32_t necp_policy_id; u_int32_t necp_skip_policy_id; u_int32_t necp_route_rule_id; u_int16_t necp_last_interface_index; u_int16_t necp_app_id; }; union builtin_mtag { struct { struct proto_mtag_ _proto_mtag; /* built-in protocol-specific tag */ struct pf_mtag _pf_mtag; /* built-in PF tag */ struct necp_mtag_ _necp_mtag; /* built-in NECP tag */ } _net_mtag; struct driver_mtag_ _drv_mtag; #define necp_mtag builtin_mtag._net_mtag._necp_mtag #define proto_mtag builtin_mtag._net_mtag._proto_mtag #define driver_mtag builtin_mtag._drv_mtag }; /* * Record/packet header in first mbuf of chain; valid only if M_PKTHDR set. */ struct pkthdr { struct ifnet *rcvif; /* rcv interface */ /* variables for ip and tcp reassembly */ void *pkt_hdr; /* pointer to packet header */ int32_t len; /* total packet length */ /* variables for hardware checksum */ /* Note: csum_flags is used for hardware checksum and VLAN */ u_int32_t csum_flags; /* flags regarding checksum */ union { struct { u_int16_t val; /* checksum value */ u_int16_t start; /* checksum start offset */ } _csum_rx; #define csum_rx_val _csum_rx.val #define csum_rx_start _csum_rx.start struct { u_int16_t start; /* checksum start offset */ u_int16_t stuff; /* checksum stuff offset */ } _csum_tx; #define csum_tx_start _csum_tx.start #define csum_tx_stuff _csum_tx.stuff /* * Generic data field used by csum routines. * It gets used differently in different contexts. */ u_int32_t csum_data; }; u_int16_t vlan_tag; /* VLAN tag, host byte order */ /* * Packet classifier info * * PKTF_FLOW_ID set means valid flow ID. A non-zero flow ID value * means the packet has been classified by one of the flow sources. * It is also a prerequisite for flow control advisory, which is * enabled by additionally setting PKTF_FLOW_ADV. * * The protocol value is a best-effort representation of the payload. * It is opportunistically updated and used only for optimization. * It is not a substitute for parsing the protocol header(s); use it * only as a hint. * * If PKTF_IFAINFO is set, pkt_ifainfo contains one or both of the * indices of interfaces which own the source and/or destination * addresses of the packet. For the local/loopback case (PKTF_LOOP), * both should be valid, and thus allows for the receiving end to * quickly determine the actual interfaces used by the the addresses; * they may not necessarily be the same or refer to the loopback * interface. Otherwise, in the non-local/loopback case, the indices * are opportunistically set, and because of that only one may be set * (0 means the index has not been determined.) In addition, the * interface address flags are also recorded. This allows us to avoid * storing the corresponding {in,in6}_ifaddr in an mbuf tag. Ideally * this would be a superset of {ia,ia6}_flags, but the namespaces are * overlapping at present, so we'll need a new set of values in future * to achieve this. For now, we will just rely on the address family * related code paths examining this mbuf to interpret the flags. */ u_int8_t pkt_proto; /* IPPROTO value */ u_int8_t pkt_flowsrc; /* FLOWSRC values */ u_int32_t pkt_flowid; /* flow ID */ u_int32_t pkt_flags; /* PKTF flags (see below) */ u_int32_t pkt_svc; /* MBUF_SVC value */ u_int32_t pkt_compl_context; /* Packet completion context */ union { struct { u_int16_t src; /* ifindex of src addr i/f */ u_int16_t src_flags; /* src PKT_IFAIFF flags */ u_int16_t dst; /* ifindex of dst addr i/f */ u_int16_t dst_flags; /* dst PKT_IFAIFF flags */ } _pkt_iaif; #define src_ifindex _pkt_iaif.src #define src_iff _pkt_iaif.src_flags #define dst_ifindex _pkt_iaif.dst #define dst_iff _pkt_iaif.dst_flags u_int64_t pkt_ifainfo; /* data field used by ifainfo */ struct { u_int32_t if_data; /* bytes in interface queue */ u_int32_t sndbuf_data; /* bytes in socket buffer */ } _pkt_bsr; /* Buffer status report used by cellular interface */ #define bufstatus_if _pkt_bsr.if_data #define bufstatus_sndbuf _pkt_bsr.sndbuf_data }; u_int64_t pkt_timestamp; /* TX: enqueue time, RX: receive timestamp */ /* * Tags (external and built-in) */ SLIST_HEAD(packet_tags, m_tag) tags; /* list of external tags */ union builtin_mtag builtin_mtag; uint32_t comp_gencnt; uint16_t pkt_ext_flags; uint16_t pkt_crumbs; /* * Module private scratch space (32-bit aligned), currently 16-bytes * large. Anything stored here is not guaranteed to survive across * modules. The AQM layer (outbound) uses all 16-bytes for both * packet scheduling and flow advisory information. */ struct { union { u_int8_t __mpriv8[16]; u_int16_t __mpriv16[8]; struct { union { u_int8_t __val8[4]; u_int16_t __val16[2]; u_int32_t __val32; } __mpriv32_u; } __mpriv32[4]; u_int64_t __mpriv64[2]; } __mpriv_u; } pkt_mpriv __attribute__((aligned(4))); #define pkt_mpriv_hash pkt_mpriv.__mpriv_u.__mpriv32[0].__mpriv32_u.__val32 #define pkt_mpriv_flags pkt_mpriv.__mpriv_u.__mpriv32[1].__mpriv32_u.__val32 #define pkt_mpriv_srcid pkt_mpriv.__mpriv_u.__mpriv32[2].__mpriv32_u.__val32 #define pkt_mpriv_fidx pkt_mpriv.__mpriv_u.__mpriv32[3].__mpriv32_u.__val32 u_int32_t redzone; /* red zone */ u_int32_t pkt_compl_callbacks; /* Packet completion callbacks */ }; /* * Flow data source type. A data source module is responsible for generating * a unique flow ID and associating it to each data flow as pkt_flowid. * This is required for flow control/advisory, as it allows the output queue * to identify the data source object and inform that it can resume its * transmission (in the event it was flow controlled.) */ #define FLOWSRC_INPCB 1 /* flow ID generated by INPCB */ #define FLOWSRC_IFNET 2 /* flow ID generated by interface */ #define FLOWSRC_PF 3 /* flow ID generated by PF */ #define FLOWSRC_CHANNEL 4 /* flow ID generated by channel */ /* * FLOWSRC_MPKL_INPUT is not a true flow data source and is used for * multi-layer packet logging. We're usurping the pkt_flowsrc field because * the mbuf packet header ran out of space and pkt_flowsrc is normally * used on output so we assume we can safely overwrite the normal semantic of * the field. * This value is meant to be used on incoming packet from a lower level protocol * to pass information to some upper level protocol. When FLOWSRC_MPKL_INPUT * is set, the following fields are used: * - pkt_proto: the IP protocol ID of the lower level protocol * - pkt_flowid: the identifier of the packet at the lower protocol. * For example ESP would set pkt_proto to IPPROTO_ESP and pkt_flowid to the SPI. */ /* * Packet flags. Unlike m_flags, all packet flags are copied along when * copying m_pkthdr, i.e. no equivalent of M_COPYFLAGS here. These flags * (and other classifier info) will be cleared during DLIL input. * * Some notes about M_LOOP and PKTF_LOOP: * * - M_LOOP flag is overloaded, and its use is discouraged. Historically, * that flag was used by the KAME implementation for allowing certain * certain exceptions to be made in the IP6_EXTHDR_CHECK() logic; this * was originally meant to be set as the packet is looped back to the * system, and in some circumstances temporarily set in ip6_output(). * Over time, this flag was used by the pre-output routines to indicate * to the DLIL frameout and output routines, that the packet may be * looped back to the system under the right conditions. In addition, * this is an mbuf flag rather than an mbuf packet header flag. * * - PKTF_LOOP is an mbuf packet header flag, which is set if and only * if the packet was looped back to the system. This flag should be * used instead for newer code. */ #define PKTF_FLOW_ID 0x1 /* pkt has valid flowid value */ #define PKTF_FLOW_ADV 0x2 /* pkt triggers local flow advisory */ #define PKTF_FLOW_LOCALSRC 0x4 /* pkt is locally originated */ #define PKTF_FLOW_RAWSOCK 0x8 /* pkt locally generated by raw sock */ #define PKTF_PRIO_PRIVILEGED 0x10 /* packet priority is privileged */ #define PKTF_PROXY_DST 0x20 /* processed but not locally destined */ #define PKTF_INET_RESOLVE 0x40 /* IPv4 resolver packet */ #define PKTF_INET6_RESOLVE 0x80 /* IPv6 resolver packet */ #define PKTF_RESOLVE_RTR 0x100 /* pkt is for resolving router */ #define PKTF_SKIP_PKTAP 0x200 /* pkt has already passed through pktap */ #define PKTF_WAKE_PKT 0x400 /* packet caused system to wake from sleep */ #define PKTF_MPTCP 0x800 /* TCP with MPTCP metadata */ #define PKTF_MPSO 0x1000 /* MPTCP socket meta data */ #define PKTF_LOOP 0x2000 /* loopbacked packet */ #define PKTF_IFAINFO 0x4000 /* pkt has valid interface addr info */ #define PKTF_SO_BACKGROUND 0x8000 /* data is from background source */ #define PKTF_FORWARDED 0x10000 /* pkt was forwarded from another i/f */ #define PKTF_PRIV_GUARDED 0x20000 /* pkt_mpriv area guard enabled */ #define PKTF_KEEPALIVE 0x40000 /* pkt is kernel-generated keepalive */ #define PKTF_SO_REALTIME 0x80000 /* data is realtime traffic */ #define PKTF_VALID_UNSENT_DATA 0x100000 /* unsent data is valid */ #define PKTF_TCP_REXMT 0x200000 /* packet is TCP retransmission */ #define PKTF_REASSEMBLED 0x400000 /* Packet was reassembled */ #define PKTF_TX_COMPL_TS_REQ 0x800000 /* tx completion timestamp requested */ #define PKTF_TS_VALID 0x1000000 /* pkt timestamp is valid */ #define PKTF_DRIVER_MTAG 0x2000000 /* driver mbuf tags fields inited */ #define PKTF_NEW_FLOW 0x4000000 /* Data from a new flow */ #define PKTF_START_SEQ 0x8000000 /* valid start sequence */ #define PKTF_LAST_PKT 0x10000000 /* last packet in the flow */ #define PKTF_MPTCP_REINJ 0x20000000 /* Packet has been reinjected for MPTCP */ #define PKTF_MPTCP_DFIN 0x40000000 /* Packet is a data-fin */ #define PKTF_HBH_CHKED 0x80000000 /* HBH option is checked */ #define PKTF_EXT_OUTPUT_SCOPE 0x1 /* outgoing packet has ipv6 address scope id */ #define PKTF_EXT_L4S 0x2 /* pkts is from a L4S connection */ #define PKTF_EXT_QUIC 0x4 /* flag to denote a QUIC packet */ #define PKT_CRUMB_TS_COMP_REQ 0x0001 /* timestamp completion requested */ #define PKT_CRUMB_TS_COMP_CB 0x0002 /* timestamp callback called */ #define PKT_CRUMB_DLIL_OUTPUT 0x0004 /* dlil_output called */ #define PKT_CRUMB_FLOW_TX 0x0008 /* dp_flow_tx_process called */ #define PKT_CRUMB_FQ_ENQUEUE 0x0010 /* fq_enqueue called */ #define PKT_CRUMB_FQ_DEQUEUE 0x0020 /* fq_dequeue called */ #define PKT_CRUMB_SK_PKT_COPY 0x0040 /* copy from mbuf to skywalk packet */ #define PKT_CRUMB_TCP_OUTPUT 0x0080 #define PKT_CRUMB_UDP_OUTPUT 0x0100 #define PKT_CRUMB_SOSEND 0x0200 #define PKT_CRUMB_DLIL_INPUT 0x0400 #define PKT_CRUMB_IP_INPUT 0x0800 #define PKT_CRUMB_TCP_INPUT 0x1000 #define PKT_CRUMB_UDP_INPUT 0x2000 /* flags related to flow control/advisory and identification */ #define PKTF_FLOW_MASK \ (PKTF_FLOW_ID | PKTF_FLOW_ADV | PKTF_FLOW_LOCALSRC | PKTF_FLOW_RAWSOCK) /* * Description of external storage mapped into mbuf, valid only if M_EXT set. */ typedef void (*m_ext_free_func_t)(caddr_t, u_int, caddr_t); struct m_ext { caddr_t __counted_by(ext_size) ext_buf; /* start of buffer */ m_ext_free_func_t ext_free; /* free routine if not the usual */ u_int ext_size; /* size of buffer, for ext_free */ caddr_t ext_arg; /* additional ext_free argument */ struct ext_ref { struct mbuf *paired; u_int16_t minref; u_int16_t refcnt; u_int16_t prefcnt; u_int16_t flags; u_int32_t priv; uintptr_t ext_token; } *ext_refflags; }; /* define m_ext to a type since it gets redefined below */ typedef struct m_ext _m_ext_t; #if CONFIG_MBUF_MCACHE /* * The following _MLEN and _MHLEN macros are private to xnu. Private code * that are outside of xnu must use the mbuf_get_{mlen,mhlen} routines since * the sizes of the structures are dependent upon specific xnu configs. */ #define _MLEN (_MSIZE - sizeof(struct m_hdr)) /* normal data len */ #define _MHLEN (_MLEN - sizeof(struct pkthdr)) /* data len w/pkthdr */ #define NMBPGSHIFT (PAGE_SHIFT - _MSIZESHIFT) #define NMBPG (1 << NMBPGSHIFT) /* # of mbufs per page */ #define NMBPCLSHIFT (MCLSHIFT - _MSIZESHIFT) /* * The mbuf object */ struct mbuf { struct m_hdr m_hdr; union { struct { struct pkthdr MH_pkthdr; /* M_PKTHDR set */ union { struct m_ext MH_ext; /* M_EXT set */ char MH_databuf[_MHLEN]; } MH_dat; } MH; char M_databuf[_MLEN]; /* !M_PKTHDR, !M_EXT */ } M_dat; }; #define m_next m_hdr.mh_next #define m_len m_hdr.mh_len #define m_data m_hdr.mh_data #define m_type m_hdr.mh_type #define m_flags m_hdr.mh_flags #define m_nextpkt m_hdr.mh_nextpkt #define m_act m_nextpkt #define m_ext M_dat.MH.MH_dat.MH_ext #define m_pkthdr M_dat.MH.MH_pkthdr #define m_pktdat M_dat.MH.MH_dat.MH_databuf #else /* !CONFIG_MBUF_MCACHE */ /* * The following _MLEN and _MHLEN macros are private to xnu. Private code * that are outside of xnu must use the mbuf_get_{mlen,mhlen} routines since * the sizes of the structures are dependent upon specific xnu configs. */ #define _MLEN (_MSIZE - sizeof(struct m_hdr_common)) /* normal data len */ #define _MHLEN (_MLEN) /* data len w/pkthdr */ struct m_hdr_common { struct m_hdr M_hdr; struct m_ext M_ext __attribute__((aligned(16))); /* M_EXT set */ struct pkthdr M_pkthdr __attribute__((aligned(16))); /* M_PKTHDR set */ }; /* * The mbuf object */ struct mbuf { struct m_hdr_common M_hdr_common; union { char MH_databuf[_MHLEN]; char M_databuf[_MLEN]; /* !M_PKTHDR, !M_EXT */ } M_dat __attribute__((aligned(16))); }; #define m_next M_hdr_common.M_hdr.mh_next #define m_len M_hdr_common.M_hdr.mh_len #define m_data M_hdr_common.M_hdr.mh_data #define m_type M_hdr_common.M_hdr.mh_type #define m_flags M_hdr_common.M_hdr.mh_flags #define m_nextpkt M_hdr_common.M_hdr.mh_nextpkt #define m_ext M_hdr_common.M_ext #define m_pkthdr M_hdr_common.M_pkthdr #define m_pktdat M_dat.MH_databuf #endif /* CONFIG_MBUF_MCACHE */ #define m_act m_nextpkt #define m_dat M_dat.M_databuf #define m_pktlen(_m) ((_m)->m_pkthdr.len) #define m_pftag(_m) (&(_m)->m_pkthdr.builtin_mtag._net_mtag._pf_mtag) #define m_necptag(_m) (&(_m)->m_pkthdr.builtin_mtag._net_mtag._necp_mtag) /* mbuf flags (private) */ #define M_EXT 0x0001 /* has associated external storage */ #define M_PKTHDR 0x0002 /* start of record */ #define M_EOR 0x0004 /* end of record */ #define M_PROTO1 0x0008 /* protocol-specific */ #define M_PROTO2 0x0010 /* protocol-specific */ #define M_PROTO3 0x0020 /* protocol-specific */ #define M_LOOP 0x0040 /* packet is looped back (also see PKTF_LOOP) */ #define M_PROTO5 0x0080 /* protocol-specific */ /* mbuf pkthdr flags, also in m_flags (private) */ #define M_BCAST 0x0100 /* send/received as link-level broadcast */ #define M_MCAST 0x0200 /* send/received as link-level multicast */ #define M_FRAG 0x0400 /* packet is a fragment of a larger packet */ #define M_FIRSTFRAG 0x0800 /* packet is first fragment */ #define M_LASTFRAG 0x1000 /* packet is last fragment */ #define M_PROMISC 0x2000 /* packet is promiscuous (shouldn't go to stack) */ #define M_HASFCS 0x4000 /* packet has FCS */ #define M_TAGHDR 0x8000 /* m_tag hdr structure at top of mbuf data */ /* * Flags to purge when crossing layers. */ #define M_PROTOFLAGS \ (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO5) /* flags copied when copying m_pkthdr */ #define M_COPYFLAGS \ (M_PKTHDR|M_EOR|M_PROTO1|M_PROTO2|M_PROTO3 | \ M_LOOP|M_PROTO5|M_BCAST|M_MCAST|M_FRAG | \ M_FIRSTFRAG|M_LASTFRAG|M_PROMISC|M_HASFCS) /* flags indicating hw checksum support and sw checksum requirements */ #define CSUM_IP 0x0001 /* will csum IP */ #define CSUM_TCP 0x0002 /* will csum TCP */ #define CSUM_UDP 0x0004 /* will csum UDP */ #define CSUM_IP_FRAGS 0x0008 /* will csum IP fragments */ #define CSUM_FRAGMENT 0x0010 /* will do IP fragmentation */ #define CSUM_TCPIPV6 0x0020 /* will csum TCP for IPv6 */ #define CSUM_UDPIPV6 0x0040 /* will csum UDP for IPv6 */ #define CSUM_FRAGMENT_IPV6 0x0080 /* will do IPv6 fragmentation */ #define CSUM_IP_CHECKED 0x0100 /* did csum IP */ #define CSUM_IP_VALID 0x0200 /* ... the csum is valid */ #define CSUM_DATA_VALID 0x0400 /* csum_data field is valid */ #define CSUM_PSEUDO_HDR 0x0800 /* csum_data has pseudo hdr */ #define CSUM_PARTIAL 0x1000 /* simple Sum16 computation */ #define CSUM_ZERO_INVERT 0x2000 /* invert 0 to -0 (0xffff) */ #define CSUM_DELAY_DATA (CSUM_TCP | CSUM_UDP) #define CSUM_DELAY_IP (CSUM_IP) /* IPv4 only: no IPv6 IP cksum */ #define CSUM_DELAY_IPV6_DATA (CSUM_TCPIPV6 | CSUM_UDPIPV6) #define CSUM_DATA_IPV6_VALID CSUM_DATA_VALID /* csum_data field is valid */ #define CSUM_TX_FLAGS \ (CSUM_DELAY_IP | CSUM_DELAY_DATA | CSUM_DELAY_IPV6_DATA | \ CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_ZERO_INVERT) #define CSUM_RX_FULL_FLAGS \ (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_PSEUDO_HDR | \ CSUM_DATA_VALID) #define CSUM_RX_FLAGS \ (CSUM_RX_FULL_FLAGS | CSUM_PARTIAL) /* * Note: see also IF_HWASSIST_CSUM defined in */ /* VLAN tag present */ #define CSUM_VLAN_TAG_VALID 0x00010000 /* vlan_tag field is valid */ /* checksum start adjustment has been done */ #define CSUM_ADJUST_DONE 0x00020000 /* VLAN encapsulation present */ #define CSUM_VLAN_ENCAP_PRESENT 0x00040000 /* mbuf has vlan encapsulation */ /* TCP Segment Offloading requested on this mbuf */ #define CSUM_TSO_IPV4 0x00100000 /* This mbuf needs to be segmented by the NIC */ #define CSUM_TSO_IPV6 0x00200000 /* This mbuf needs to be segmented by the NIC */ #define TSO_IPV4_OK(_ifp, _m) \ (((_ifp)->if_hwassist & IFNET_TSO_IPV4) && \ ((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) \ #define TSO_IPV4_NOTOK(_ifp, _m) \ (!((_ifp)->if_hwassist & IFNET_TSO_IPV4) && \ ((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) \ #define TSO_IPV6_OK(_ifp, _m) \ (((_ifp)->if_hwassist & IFNET_TSO_IPV6) && \ ((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV6)) \ #define TSO_IPV6_NOTOK(_ifp, _m) \ (!((_ifp)->if_hwassist & IFNET_TSO_IPV6) && \ ((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV6)) \ #endif /* XNU_KERNEL_PRIVATE */ /* mbuf types */ #define MT_FREE 0 /* should be on free list */ #define MT_DATA 1 /* dynamic (data) allocation */ #define MT_HEADER 2 /* packet header */ #define MT_SOCKET 3 /* socket structure */ #define MT_PCB 4 /* protocol control block */ #define MT_RTABLE 5 /* routing tables */ #define MT_HTABLE 6 /* IMP host tables */ #define MT_ATABLE 7 /* address resolution tables */ #define MT_SONAME 8 /* socket name */ #define MT_SOOPTS 10 /* socket options */ #define MT_FTABLE 11 /* fragment reassembly header */ #define MT_RIGHTS 12 /* access rights */ #define MT_IFADDR 13 /* interface address */ #define MT_CONTROL 14 /* extra-data protocol message */ #define MT_OOBDATA 15 /* expedited data */ #define MT_TAG 16 /* volatile metadata associated to pkts */ #define MT_MAX 32 /* enough? */ enum { MTF_FREE = (1 << MT_FREE), MTF_DATA = (1 << MT_DATA), MTF_HEADER = (1 << MT_HEADER), MTF_SOCKET = (1 << MT_SOCKET), MTF_PCB = (1 << MT_PCB), MTF_RTABLE = (1 << MT_RTABLE), MTF_HTABLE = (1 << MT_HTABLE), MTF_ATABLE = (1 << MT_ATABLE), MTF_SONAME = (1 << MT_SONAME), MTF_SOOPTS = (1 << MT_SOOPTS), MTF_FTABLE = (1 << MT_FTABLE), MTF_RIGHTS = (1 << MT_RIGHTS), MTF_IFADDR = (1 << MT_IFADDR), MTF_CONTROL = (1 << MT_CONTROL), MTF_OOBDATA = (1 << MT_OOBDATA), MTF_TAG = (1 << MT_TAG), }; #ifdef XNU_KERNEL_PRIVATE /* * mbuf allocation/deallocation macros: * * MGET(struct mbuf *m, int how, int type) * allocates an mbuf and initializes it to contain internal data. * * MGETHDR(struct mbuf *m, int how, int type) * allocates an mbuf and initializes it to contain a packet header * and internal data. */ #if 1 #define MCHECK(m) m_mcheck(m) #else #define MCHECK(m) #endif #define MGET(m, how, type) ((m) = m_get((how), (type))) #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) /* * Mbuf cluster macros. * MCLALLOC(caddr_t p, int how) allocates an mbuf cluster. * MCLGET adds such clusters to a normal mbuf; * the flag M_EXT is set upon success. * MCLFREE releases a reference to a cluster allocated by MCLALLOC, * freeing the cluster if the reference count has reached 0. * * Normal mbuf clusters are normally treated as character arrays * after allocation, but use the first word of the buffer as a free list * pointer while on the free list. */ union mcluster { union mcluster *mcl_next; char mcl_buf[MCLBYTES]; }; #define MCLALLOC(p, how) ((p) = m_mclalloc(how)) #define MCLFREE(p) m_mclfree(p) #define MCLGET(m, how) ((m) = m_mclget(m, how)) /* * Mbuf big cluster */ union mbigcluster { union mbigcluster *mbc_next; char mbc_buf[MBIGCLBYTES]; }; /* * Mbuf jumbo cluster */ union m16kcluster { union m16kcluster *m16kcl_next; char m16kcl_buf[M16KCLBYTES]; }; #define MCLHASREFERENCE(m) m_mclhasreference(m) /* * MFREE(struct mbuf *m, struct mbuf *n) * Free a single mbuf and associated external storage. * Place the successor, if any, in n. */ #define MFREE(m, n) ((n) = m_free(m)) /* * Copy mbuf pkthdr from from to to. * from must have M_PKTHDR set, and to must be empty. * aux pointer will be moved to `to'. */ #define M_COPY_PKTHDR(to, from) m_copy_pkthdr(to, from) #define M_COPY_PFTAG(to, from) m_copy_pftag(to, from) #define M_COPY_NECPTAG(to, from) m_copy_necptag(to, from) #define M_COPY_CLASSIFIER(to, from) m_copy_classifier(to, from) /* * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can * be both the local data payload, or an external buffer area, depending on * whether M_EXT is set). */ #define M_WRITABLE(m) (((m)->m_flags & M_EXT) == 0 || !MCLHASREFERENCE(m)) /* * These macros are mapped to the appropriate KPIs, so that private code * can be simply recompiled in order to be forward-compatible with future * changes toward the struture sizes. */ #ifdef XNU_KERNEL_PRIVATE #define MLEN _MLEN #define MHLEN _MHLEN #define MINCLSIZE (MLEN + MHLEN) #else #define MLEN mbuf_get_mlen() /* normal mbuf data len */ #define MHLEN mbuf_get_mhlen() /* data len in an mbuf w/pkthdr */ #define MINCLSIZE mbuf_get_minclsize() /* cluster usage threshold */ #endif /* * Return the address of the start of the buffer associated with an mbuf, * handling external storage, packet-header mbufs, and regular data mbufs. */ #define M_START(m) \ (((m)->m_flags & M_EXT) ? (caddr_t)(m)->m_ext.ext_buf : \ ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \ &(m)->m_dat[0]) /* * Return the size of the buffer associated with an mbuf, handling external * storage, packet-header mbufs, and regular data mbufs. */ #define M_SIZE(m) \ (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \ ((m)->m_flags & M_PKTHDR) ? MHLEN : \ MLEN) #define M_ALIGN(m, len) m_align(m, len) #define MH_ALIGN(m, len) m_align(m, len) #define MEXT_ALIGN(m, len) m_align(m, len) /* * Compute the amount of space available before the current start of data in * an mbuf. * * The M_WRITABLE() is a temporary, conservative safety measure: the burden * of checking writability of the mbuf data area rests solely with the caller. */ #define M_LEADINGSPACE(m) \ (M_WRITABLE(m) ? ((m)->m_data - (uintptr_t)M_START(m)) : 0) /* * Compute the amount of space available after the end of data in an mbuf. * * The M_WRITABLE() is a temporary, conservative safety measure: the burden * of checking writability of the mbuf data area rests solely with the caller. */ #define M_TRAILINGSPACE(m) \ (M_WRITABLE(m) ? \ ((M_START(m) + M_SIZE(m)) - (mtod(m, caddr_t) + (m)->m_len)) : 0) /* * Arrange to prepend space of size plen to mbuf m. * If a new mbuf must be allocated, how specifies whether to wait. * If how is M_DONTWAIT and allocation fails, the original mbuf chain * is freed and m is set to NULL. */ #define M_PREPEND(m, plen, how, align) \ ((m) = m_prepend_2((m), (plen), (how), (align))) /* change mbuf to new type */ #define MCHTYPE(m, t) m_mchtype(m, t) /* compatiblity with 4.3 */ #define m_copy(m, o, l) m_copym((m), (o), (l), M_DONTWAIT) #define MBSHIFT 20 /* 1MB */ #define MBSIZE (1 << MBSHIFT) #define GBSHIFT 30 /* 1GB */ #define GBSIZE (1 << GBSHIFT) /* * M_STRUCT_GET ensures that intermediate protocol header (from "off" to * "off+len") is located in single mbuf, on contiguous memory region. * The pointer to the region will be returned to pointer variable "val", * with type "typ". * * M_STRUCT_GET0 does the same, except that it aligns the structure at * very top of mbuf. GET0 is likely to make memory copy than GET. */ #define M_STRUCT_GET(val, typ, m, off, len) \ do { \ struct mbuf *t; \ int tmp; \ \ if ((m)->m_len >= (off) + (len)) { \ (val) = (typ)(mtod((m), caddr_t) + (off)); \ } else { \ t = m_pulldown((m), (off), (len), &tmp); \ if (t != NULL) { \ if (t->m_len < tmp + (len)) \ panic("m_pulldown malfunction"); \ (val) = (typ)(mtod(t, caddr_t) + tmp); \ } else { \ (val) = (typ)NULL; \ (m) = NULL; \ } \ } \ } while (0) #define M_STRUCT_GET0(val, typ, m, off, len) \ do { \ struct mbuf *t; \ \ if ((off) == 0 && ((m)->m_len >= (len))) { \ (val) = (typ)(void *)mtod(m, caddr_t); \ } else { \ t = m_pulldown((m), (off), (len), NULL); \ if (t != NULL) { \ if (t->m_len < (len)) \ panic("m_pulldown malfunction"); \ (val) = (typ)(void *)mtod(t, caddr_t); \ } else { \ (val) = (typ)NULL; \ (m) = NULL; \ } \ } \ } while (0) #define MBUF_INPUT_CHECK(m, rcvif) \ do { \ if (!(m->m_flags & MBUF_PKTHDR) || \ m->m_len < 0 || \ m->m_len > ((njcl > 0) ? njclbytes : MBIGCLBYTES) || \ m->m_type == MT_FREE || \ ((m->m_flags & M_EXT) != 0 && m->m_ext.ext_buf == NULL)) { \ panic_plain("Failed mbuf validity check: mbuf %p len %d " \ "type %d flags 0x%x data %p rcvif %s ifflags 0x%x", \ m, m->m_len, m->m_type, m->m_flags, \ ((m->m_flags & M_EXT) \ ? m->m_ext.ext_buf \ : (caddr_t __unsafe_indexable)m->m_data), \ if_name(rcvif), \ (rcvif->if_flags & 0xffff)); \ } \ } while (0) /* * Simple mbuf queueing system * * This is basically a SIMPLEQ adapted to mbuf use (i.e. using * m_nextpkt instead of field.sqe_next). * * m_next is ignored, so queueing chains of mbufs is possible */ #define MBUFQ_HEAD(name) \ struct name { \ struct mbuf *mq_first; /* first packet */ \ struct mbuf **mq_last; /* addr of last next packet */ \ } #define MBUFQ_INIT(q) do { \ MBUFQ_FIRST(q) = NULL; \ (q)->mq_last = &MBUFQ_FIRST(q); \ } while (0) #define MBUFQ_PREPEND(q, m) do { \ if ((MBUFQ_NEXT(m) = MBUFQ_FIRST(q)) == NULL) \ (q)->mq_last = &MBUFQ_NEXT(m); \ MBUFQ_FIRST(q) = (m); \ } while (0) #define MBUFQ_ENQUEUE(q, m) do { \ MBUFQ_NEXT(m) = NULL; \ *(q)->mq_last = (m); \ (q)->mq_last = &MBUFQ_NEXT(m); \ } while (0) #define MBUFQ_ENQUEUE_MULTI(q, m, n) do { \ MBUFQ_NEXT(n) = NULL; \ *(q)->mq_last = (m); \ (q)->mq_last = &MBUFQ_NEXT(n); \ } while (0) #define MBUFQ_DEQUEUE(q, m) do { \ if (((m) = MBUFQ_FIRST(q)) != NULL) { \ if ((MBUFQ_FIRST(q) = MBUFQ_NEXT(m)) == NULL) \ (q)->mq_last = &MBUFQ_FIRST(q); \ else \ MBUFQ_NEXT(m) = NULL; \ } \ } while (0) #define MBUFQ_REMOVE(q, m) do { \ if (MBUFQ_FIRST(q) == (m)) { \ MBUFQ_DEQUEUE(q, m); \ } else { \ struct mbuf *_m = MBUFQ_FIRST(q); \ while (MBUFQ_NEXT(_m) != (m)) \ _m = MBUFQ_NEXT(_m); \ if ((MBUFQ_NEXT(_m) = \ MBUFQ_NEXT(MBUFQ_NEXT(_m))) == NULL) \ (q)->mq_last = &MBUFQ_NEXT(_m); \ } \ } while (0) #define MBUFQ_DRAIN(q) do { \ struct mbuf *__m0; \ while ((__m0 = MBUFQ_FIRST(q)) != NULL) { \ MBUFQ_FIRST(q) = MBUFQ_NEXT(__m0); \ MBUFQ_NEXT(__m0) = NULL; \ m_freem(__m0); \ } \ (q)->mq_last = &MBUFQ_FIRST(q); \ } while (0) #define MBUFQ_FOREACH(m, q) \ for ((m) = MBUFQ_FIRST(q); \ (m); \ (m) = MBUFQ_NEXT(m)) #define MBUFQ_FOREACH_SAFE(m, q, tvar) \ for ((m) = MBUFQ_FIRST(q); \ (m) && ((tvar) = MBUFQ_NEXT(m), 1); \ (m) = (tvar)) #define MBUFQ_EMPTY(q) ((q)->mq_first == NULL) #define MBUFQ_FIRST(q) ((q)->mq_first) #define MBUFQ_NEXT(m) ((m)->m_nextpkt) /* * mq_last is initialized to point to mq_first, so check if they're * equal and return NULL when the list is empty. Otherwise, we need * to subtract the offset of MBUQ_NEXT (i.e. m_nextpkt field) to get * to the base mbuf address to return to caller. */ #define MBUFQ_LAST(head) \ (((head)->mq_last == &MBUFQ_FIRST(head)) ? NULL : \ ((struct mbuf *)(void *)((char *)(head)->mq_last - \ __builtin_offsetof(struct mbuf, m_nextpkt)))) #if (DEBUG || DEVELOPMENT) #define MBUFQ_ADD_CRUMB_MULTI(_q, _h, _t, _f) do { \ struct mbuf * _saved = (_t)->m_nextpkt; \ struct mbuf * _m; \ for (_m = (_h); _m != NULL; _m = MBUFQ_NEXT(_m)) { \ m_add_crumb((_m), (_f)); \ } \ (_t)->m_nextpkt = _saved; \ } while (0) #define MBUFQ_ADD_CRUMB(_q, _m, _f) do { \ m_add_crumb((_m), (_f)); \ } while (0) #else #define MBUFQ_ADD_CRUMB_MULTI(_q, _h, _t, _f) #define MBUFQ_ADD_CRUMB(_q, _m, _f) #endif /* (DEBUG || DEVELOPMENT) */ #endif /* XNU_KERNEL_PRIVATE */ /* * Mbuf statistics (legacy). */ struct mbstat { u_int32_t m_mbufs; /* mbufs obtained from page pool */ u_int32_t m_clusters; /* clusters obtained from page pool */ u_int32_t m_spare; /* spare field */ u_int32_t m_clfree; /* free clusters */ u_int32_t m_drops; /* times failed to find space */ u_int32_t m_wait; /* times waited for space */ u_int32_t m_drain; /* times drained protocols for space */ u_short m_mtypes[256]; /* type specific mbuf allocations */ u_int32_t m_mcfail; /* times m_copym failed */ u_int32_t m_mpfail; /* times m_pullup failed */ u_int32_t m_msize; /* length of an mbuf */ u_int32_t m_mclbytes; /* length of an mbuf cluster */ u_int32_t m_minclsize; /* min length of data to allocate a cluster */ u_int32_t m_mlen; /* length of data in an mbuf */ u_int32_t m_mhlen; /* length of data in a header mbuf */ u_int32_t m_bigclusters; /* clusters obtained from page pool */ u_int32_t m_bigclfree; /* free clusters */ u_int32_t m_bigmclbytes; /* length of an mbuf cluster */ u_int32_t m_forcedefunct; /* times we force defunct'ed an app's sockets */ }; /* Compatibillity with 10.3 */ struct ombstat { u_int32_t m_mbufs; /* mbufs obtained from page pool */ u_int32_t m_clusters; /* clusters obtained from page pool */ u_int32_t m_spare; /* spare field */ u_int32_t m_clfree; /* free clusters */ u_int32_t m_drops; /* times failed to find space */ u_int32_t m_wait; /* times waited for space */ u_int32_t m_drain; /* times drained protocols for space */ u_short m_mtypes[256]; /* type specific mbuf allocations */ u_int32_t m_mcfail; /* times m_copym failed */ u_int32_t m_mpfail; /* times m_pullup failed */ u_int32_t m_msize; /* length of an mbuf */ u_int32_t m_mclbytes; /* length of an mbuf cluster */ u_int32_t m_minclsize; /* min length of data to allocate a cluster */ u_int32_t m_mlen; /* length of data in an mbuf */ u_int32_t m_mhlen; /* length of data in a header mbuf */ }; /* * mbuf class statistics. */ #define MAX_MBUF_CNAME 15 #if defined(XNU_KERNEL_PRIVATE) /* For backwards compatibility with 32-bit userland process */ struct omb_class_stat { char mbcl_cname[MAX_MBUF_CNAME + 1]; /* class name */ u_int32_t mbcl_size; /* buffer size */ u_int32_t mbcl_total; /* # of buffers created */ u_int32_t mbcl_active; /* # of active buffers */ u_int32_t mbcl_infree; /* # of available buffers */ u_int32_t mbcl_slab_cnt; /* # of available slabs */ u_int32_t mbcl_pad; /* padding */ u_int64_t mbcl_alloc_cnt; /* # of times alloc is called */ u_int64_t mbcl_free_cnt; /* # of times free is called */ u_int64_t mbcl_notified; /* # of notified wakeups */ u_int64_t mbcl_purge_cnt; /* # of purges so far */ u_int64_t mbcl_fail_cnt; /* # of allocation failures */ u_int32_t mbcl_ctotal; /* total only for this class */ u_int32_t mbcl_release_cnt; /* amount of memory returned */ /* * Cache layer statistics */ u_int32_t mbcl_mc_state; /* cache state (see below) */ u_int32_t mbcl_mc_cached; /* # of cached buffers */ u_int32_t mbcl_mc_waiter_cnt; /* # waiters on the cache */ u_int32_t mbcl_mc_wretry_cnt; /* # of wait retries */ u_int32_t mbcl_mc_nwretry_cnt; /* # of no-wait retry attempts */ u_int32_t mbcl_reserved[7]; /* for future use */ } __attribute__((__packed__)); #endif /* XNU_KERNEL_PRIVATE */ typedef struct mb_class_stat { char mbcl_cname[MAX_MBUF_CNAME + 1]; /* class name */ u_int32_t mbcl_size; /* buffer size */ u_int32_t mbcl_total; /* # of buffers created */ u_int32_t mbcl_active; /* # of active buffers */ u_int32_t mbcl_infree; /* # of available buffers */ u_int32_t mbcl_slab_cnt; /* # of available slabs */ #if defined(KERNEL) || defined(__LP64__) u_int32_t mbcl_pad; /* padding */ #endif /* KERNEL || __LP64__ */ u_int64_t mbcl_alloc_cnt; /* # of times alloc is called */ u_int64_t mbcl_free_cnt; /* # of times free is called */ u_int64_t mbcl_notified; /* # of notified wakeups */ u_int64_t mbcl_purge_cnt; /* # of purges so far */ u_int64_t mbcl_fail_cnt; /* # of allocation failures */ u_int32_t mbcl_ctotal; /* total only for this class */ u_int32_t mbcl_release_cnt; /* amount of memory returned */ /* * Cache layer statistics */ u_int32_t mbcl_mc_state; /* cache state (see below) */ u_int32_t mbcl_mc_cached; /* # of cached buffers */ u_int32_t mbcl_mc_waiter_cnt; /* # waiters on the cache */ u_int32_t mbcl_mc_wretry_cnt; /* # of wait retries */ u_int32_t mbcl_mc_nwretry_cnt; /* # of no-wait retry attempts */ u_int32_t mbcl_reserved[7]; /* for future use */ } mb_class_stat_t; #define MCS_DISABLED 0 /* cache is permanently disabled */ #define MCS_ONLINE 1 /* cache is online */ #define MCS_PURGING 2 /* cache is being purged */ #define MCS_OFFLINE 3 /* cache is offline (resizing) */ #if defined(XNU_KERNEL_PRIVATE) /* For backwards compatibility with 32-bit userland process */ struct omb_stat { u_int32_t mbs_cnt; /* number of classes */ u_int32_t mbs_pad; /* padding */ struct omb_class_stat mbs_class[1]; /* class array */ } __attribute__((__packed__)); #endif /* XNU_KERNEL_PRIVATE */ typedef struct mb_stat { u_int32_t mbs_cnt; /* number of classes */ #if defined(KERNEL) || defined(__LP64__) u_int32_t mbs_pad; /* padding */ #endif /* KERNEL || __LP64__ */ mb_class_stat_t mbs_class[1]; /* class array */ } mb_stat_t; #ifdef PRIVATE #define MLEAK_STACK_DEPTH 16 /* Max PC stack depth */ typedef struct mleak_trace_stat { u_int64_t mltr_collisions; u_int64_t mltr_hitcount; u_int64_t mltr_allocs; u_int64_t mltr_depth; u_int64_t mltr_addr[MLEAK_STACK_DEPTH]; } mleak_trace_stat_t; typedef struct mleak_stat { u_int32_t ml_isaddr64; /* 64-bit KVA? */ u_int32_t ml_cnt; /* number of traces */ mleak_trace_stat_t ml_trace[1]; /* trace array */ } mleak_stat_t; struct mleak_table { u_int32_t mleak_capture; /* sampling capture counter */ u_int32_t mleak_sample_factor; /* sample factor */ /* Times two active records want to occupy the same spot */ u_int64_t alloc_collisions; u_int64_t trace_collisions; /* Times new record lands on spot previously occupied by freed alloc */ u_int64_t alloc_overwrites; u_int64_t trace_overwrites; /* Times a new alloc or trace is put into the hash table */ u_int64_t alloc_recorded; u_int64_t trace_recorded; /* Total number of outstanding allocs */ u_int64_t outstanding_allocs; /* Times mleak_log returned false because couldn't acquire the lock */ u_int64_t total_conflicts; }; #define HAS_M_TAG_STATS 1 struct m_tag_stats { u_int32_t mts_id; u_int16_t mts_type; u_int16_t mts_len; u_int64_t mts_alloc_count; u_int64_t mts_alloc_failed; u_int64_t mts_free_count; }; #define M_TAG_TYPE_NAMES \ "other,dummynet,ipfilt,encap,inet6,ipsec,cfil_udp,pf_reass,aqm,drvaux" #endif /* PRIVATE */ #ifdef KERNEL_PRIVATE __BEGIN_DECLS /* * Exported (private) */ extern struct mbstat mbstat; /* statistics */ __END_DECLS #endif /* KERNEL_PRIVATE */ #ifdef XNU_KERNEL_PRIVATE __BEGIN_DECLS /* * Not exported (xnu private) */ /* flags to m_get/MGET */ /* Need to include malloc.h to get right options for malloc */ #include struct mbuf; /* length to m_copy to copy all */ #define M_COPYALL 1000000000 #define M_DONTWAIT M_NOWAIT #define M_WAIT M_WAITOK /* modes for m_copym and variants */ #define M_COPYM_NOOP_HDR 0 /* don't copy/move pkthdr contents */ #define M_COPYM_COPY_HDR 1 /* copy pkthdr from old to new */ #define M_COPYM_MOVE_HDR 2 /* move pkthdr from old to new */ #define M_COPYM_MUST_COPY_HDR 3 /* MUST copy pkthdr from old to new */ #define M_COPYM_MUST_MOVE_HDR 4 /* MUST move pkthdr from old to new */ extern void m_freem(struct mbuf *) __XNU_INTERNAL(m_freem); extern u_int64_t mcl_to_paddr(char *); extern void m_adj(struct mbuf *, int); extern void m_cat(struct mbuf *, struct mbuf *); extern void m_copydata(struct mbuf *, int, int, void *); extern struct mbuf *m_copym(struct mbuf *, int, int, int); extern struct mbuf *m_copym_mode(struct mbuf *, int, int, int, struct mbuf **, int *, uint32_t); extern struct mbuf *m_get(int, int); extern struct mbuf *m_gethdr(int, int); extern struct mbuf *m_getpacket(void); extern struct mbuf *m_getpackets(int, int, int); extern struct mbuf *m_mclget(struct mbuf *, int); extern void *__unsafe_indexable m_mtod(struct mbuf *); extern struct mbuf *m_prepend_2(struct mbuf *, int, int, int); extern struct mbuf *m_pullup(struct mbuf *, int); extern struct mbuf *m_split(struct mbuf *, int, int); extern void m_mclfree(caddr_t p); extern bool mbuf_class_under_pressure(struct mbuf *m); /* * Accessors for the mbuf data range. * The "lower bound" is the start of the memory range that m->m_data is allowed * to point into. The "start" is where m->m_data points to; equivalent to the * late m_mtod. The end is where m->m_data + m->m_len points to. The upper bound * is the end of the memory range that m->m_data + m->m_len is allowed to point * into. * In a well-formed range, lower bound <= start <= end <= upper bound. An * ill-formed range always means a programming error. */ __stateful_pure static inline caddr_t __header_bidi_indexable m_mtod_lower_bound(struct mbuf *m) { return M_START(m); } __stateful_pure static inline caddr_t __header_bidi_indexable m_mtod_current(struct mbuf *m) { caddr_t data = m_mtod_lower_bound(m); return data + (m->m_data - (uintptr_t)data); } __stateful_pure static inline caddr_t __header_bidi_indexable m_mtod_end(struct mbuf *m) { return m_mtod_current(m) + m->m_len; } __stateful_pure static inline caddr_t __header_bidi_indexable m_mtod_upper_bound(struct mbuf *m) { return m_mtod_lower_bound(m) + M_SIZE(m); } static inline bool m_has_mtype(const struct mbuf *m, int mtype_flags) { return (1 << m->m_type) & mtype_flags; } /* * On platforms which require strict alignment (currently for anything but * i386 or x86_64 or arm64), this macro checks whether the data pointer of an mbuf * is 32-bit aligned (this is the expected minimum alignment for protocol * headers), and assert otherwise. */ #if defined(__i386__) || defined(__x86_64__) || defined(__arm64__) #define MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(_m) #else /* !__i386__ && !__x86_64__ && !__arm64__ */ #define MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(_m) do { \ if (!IS_P2ALIGNED((_m)->m_data, sizeof (u_int32_t))) { \ if (((_m)->m_flags & M_PKTHDR) && \ (_m)->m_pkthdr.rcvif != NULL) { \ panic_plain("\n%s: mbuf %p data ptr %p is not " \ "32-bit aligned [%s: alignerrs=%lld]\n", \ __func__, (_m), \ (caddr_t __unsafe_indexable)(_m)->m_data, \ if_name((_m)->m_pkthdr.rcvif), \ (_m)->m_pkthdr.rcvif->if_alignerrs); \ } else { \ panic_plain("\n%s: mbuf %p data ptr %p is not " \ "32-bit aligned\n", \ __func__, (_m), \ (caddr_t __unsafe_indexable)(_m)->m_data); \ } \ } \ } while (0) #endif /* !__i386__ && !__x86_64__ && !__arm64__ */ /* Maximum number of MBUF_SC values (excluding MBUF_SC_UNSPEC) */ #define MBUF_SC_MAX_CLASSES 10 /* * These conversion macros rely on the corresponding MBUF_SC and * MBUF_TC values in order to establish the following mapping: * * MBUF_SC_BK_SYS ] ==> MBUF_TC_BK * MBUF_SC_BK ] * * MBUF_SC_BE ] ==> MBUF_TC_BE * MBUF_SC_RD ] * MBUF_SC_OAM ] * * MBUF_SC_AV ] ==> MBUF_TC_VI * MBUF_SC_RV ] * MBUF_SC_VI ] * MBUF_SC_SIG ] * * MBUF_SC_VO ] ==> MBUF_TC_VO * MBUF_SC_CTL ] * * The values assigned to each service class allows for a fast mapping to * the corresponding MBUF_TC traffic class values, as well as to retrieve the * assigned index; therefore care must be taken when comparing against these * values. Use the corresponding class and index macros to retrieve the * corresponding portion, and never assume that a higher class corresponds * to a higher index. */ #define MBUF_SCVAL(x) ((x) & 0xffff) #define MBUF_SCIDX(x) ((((x) >> 16) & 0xff) >> 3) #define MBUF_SC2TC(_sc) (MBUF_SCVAL(_sc) >> 7) #define MBUF_TC2SCVAL(_tc) ((_tc) << 7) #define IS_MBUF_SC_BACKGROUND(_sc) (((_sc) == MBUF_SC_BK_SYS) || \ ((_sc) == MBUF_SC_BK)) #define IS_MBUF_SC_REALTIME(_sc) ((_sc) >= MBUF_SC_AV && (_sc) <= MBUF_SC_VO) #define IS_MBUF_SC_BESTEFFORT(_sc) ((_sc) == MBUF_SC_BE || \ (_sc) == MBUF_SC_RD || (_sc) == MBUF_SC_OAM) #define SCIDX_BK_SYS MBUF_SCIDX(MBUF_SC_BK_SYS) #define SCIDX_BK MBUF_SCIDX(MBUF_SC_BK) #define SCIDX_BE MBUF_SCIDX(MBUF_SC_BE) #define SCIDX_RD MBUF_SCIDX(MBUF_SC_RD) #define SCIDX_OAM MBUF_SCIDX(MBUF_SC_OAM) #define SCIDX_AV MBUF_SCIDX(MBUF_SC_AV) #define SCIDX_RV MBUF_SCIDX(MBUF_SC_RV) #define SCIDX_VI MBUF_SCIDX(MBUF_SC_VI) #define SCIDX_SIG MBUF_SCIDX(MBUF_SC_SIG) #define SCIDX_VO MBUF_SCIDX(MBUF_SC_VO) #define SCIDX_CTL MBUF_SCIDX(MBUF_SC_CTL) #define SCVAL_BK_SYS MBUF_SCVAL(MBUF_SC_BK_SYS) #define SCVAL_BK MBUF_SCVAL(MBUF_SC_BK) #define SCVAL_BE MBUF_SCVAL(MBUF_SC_BE) #define SCVAL_RD MBUF_SCVAL(MBUF_SC_RD) #define SCVAL_OAM MBUF_SCVAL(MBUF_SC_OAM) #define SCVAL_AV MBUF_SCVAL(MBUF_SC_AV) #define SCVAL_RV MBUF_SCVAL(MBUF_SC_RV) #define SCVAL_VI MBUF_SCVAL(MBUF_SC_VI) #define SCVAL_SIG MBUF_SCVAL(MBUF_SC_SIG) #define SCVAL_VO MBUF_SCVAL(MBUF_SC_VO) #define SCVAL_CTL MBUF_SCVAL(MBUF_SC_CTL) #define MBUF_VALID_SC(c) \ (c == MBUF_SC_BK_SYS || c == MBUF_SC_BK || c == MBUF_SC_BE || \ c == MBUF_SC_RD || c == MBUF_SC_OAM || c == MBUF_SC_AV || \ c == MBUF_SC_RV || c == MBUF_SC_VI || c == MBUF_SC_SIG || \ c == MBUF_SC_VO || c == MBUF_SC_CTL) #define MBUF_VALID_SCIDX(c) \ (c == SCIDX_BK_SYS || c == SCIDX_BK || c == SCIDX_BE || \ c == SCIDX_RD || c == SCIDX_OAM || c == SCIDX_AV || \ c == SCIDX_RV || c == SCIDX_VI || c == SCIDX_SIG || \ c == SCIDX_VO || c == SCIDX_CTL) #define MBUF_VALID_SCVAL(c) \ (c == SCVAL_BK_SYS || c == SCVAL_BK || c == SCVAL_BE || \ c == SCVAL_RD || c == SCVAL_OAM || c == SCVAL_AV || \ c == SCVAL_RV || c == SCVAL_VI || c == SCVAL_SIG || \ c == SCVAL_VO || SCVAL_CTL) extern unsigned char *mbutl; /* start VA of mbuf pool */ extern unsigned char *embutl; /* end VA of mbuf pool */ extern unsigned int nmbclusters; /* number of mapped clusters */ extern int njcl; /* # of jumbo clusters */ extern int njclbytes; /* size of a jumbo cluster */ extern int max_hdr; /* largest link+protocol header */ extern int max_datalen; /* MHLEN - max_hdr */ extern int max_linkhdr; /* largest link-level header */ /* Use max_protohdr instead of _max_protohdr */ extern int max_protohdr; /* largest protocol header */ __private_extern__ unsigned int mbuf_default_ncl(uint64_t); __private_extern__ void mbinit(void); __private_extern__ struct mbuf *m_clattach(struct mbuf *, int, caddr_t, void (*)(caddr_t, u_int, caddr_t), size_t, caddr_t, int, int); __private_extern__ caddr_t m_bigalloc(int); __private_extern__ void m_bigfree(caddr_t, u_int, caddr_t); __private_extern__ struct mbuf *m_mbigget(struct mbuf *, int); __private_extern__ caddr_t m_16kalloc(int); __private_extern__ void m_16kfree(caddr_t, u_int, caddr_t); __private_extern__ struct mbuf *m_m16kget(struct mbuf *, int); __private_extern__ int m_reinit(struct mbuf *, int); __private_extern__ struct mbuf *m_free(struct mbuf *) __XNU_INTERNAL(m_free); __private_extern__ struct mbuf *m_getclr(int, int); __private_extern__ struct mbuf *m_getptr(struct mbuf *, int, int *); __private_extern__ unsigned int m_length(struct mbuf *); __private_extern__ unsigned int m_length2(struct mbuf *, struct mbuf **); __private_extern__ unsigned int m_fixhdr(struct mbuf *); __private_extern__ struct mbuf *m_defrag(struct mbuf *, int); __private_extern__ struct mbuf *m_defrag_offset(struct mbuf *, u_int32_t, int); __private_extern__ struct mbuf *m_prepend(struct mbuf *, int, int); __private_extern__ struct mbuf *m_copyup(struct mbuf *, int, int); __private_extern__ struct mbuf *m_retry(int, int); __private_extern__ struct mbuf *m_retryhdr(int, int); __private_extern__ int m_freem_list(struct mbuf *); __private_extern__ int m_append(struct mbuf *, int, caddr_t); __private_extern__ struct mbuf *m_last(struct mbuf *); __private_extern__ struct mbuf *m_devget(char *, int, int, struct ifnet *, void (*)(const void *, void *, size_t)); __private_extern__ struct mbuf *m_pulldown(struct mbuf *, int, int, int *); __private_extern__ struct mbuf *m_getcl(int, int, int); __private_extern__ caddr_t m_mclalloc(int); __private_extern__ int m_mclhasreference(struct mbuf *); __private_extern__ void m_copy_pkthdr(struct mbuf *, struct mbuf *); __private_extern__ int m_dup_pkthdr(struct mbuf *, struct mbuf *, int); __private_extern__ void m_copy_pftag(struct mbuf *, struct mbuf *); __private_extern__ void m_copy_necptag(struct mbuf *, struct mbuf *); __private_extern__ void m_copy_classifier(struct mbuf *, struct mbuf *); __private_extern__ struct mbuf *m_dtom(void *); __private_extern__ int m_mtocl(void *); __private_extern__ union mcluster *m_cltom(int); __private_extern__ void m_align(struct mbuf *, int); __private_extern__ struct mbuf *m_normalize(struct mbuf *m); __private_extern__ void m_mchtype(struct mbuf *m, int t); __private_extern__ void m_mcheck(struct mbuf *); __private_extern__ void m_copyback(struct mbuf *, int, int, const void *); __private_extern__ struct mbuf *m_copyback_cow(struct mbuf *, int, int, const void *, int); __private_extern__ int m_makewritable(struct mbuf **, int, int, int); __private_extern__ struct mbuf *m_dup(struct mbuf *m, int how); __private_extern__ struct mbuf *m_copym_with_hdrs(struct mbuf *, int, int, int, struct mbuf **, int *, uint32_t); __private_extern__ struct mbuf *m_getpackethdrs(int, int); __private_extern__ struct mbuf *m_getpacket_how(int); __private_extern__ struct mbuf *m_getpackets_internal(unsigned int *, int, int, int, size_t); __private_extern__ struct mbuf *m_allocpacket_internal(unsigned int *, size_t, unsigned int *, int, int, size_t); __private_extern__ int m_ext_set_prop(struct mbuf *, uint32_t, uint32_t); __private_extern__ uint32_t m_ext_get_prop(struct mbuf *); __private_extern__ int m_ext_paired_is_active(struct mbuf *); __private_extern__ void m_ext_paired_activate(struct mbuf *); __private_extern__ void m_add_crumb(struct mbuf *, uint16_t); __private_extern__ void mbuf_drain(boolean_t); /* * Packets may have annotations attached by affixing a list of "packet * tags" to the pkthdr structure. Packet tags are dynamically allocated * semi-opaque data structures that have a fixed header (struct m_tag) * that specifies the size of the memory block and an pair that * identifies it. The id identifies the module and the type identifies the * type of data for that module. The id of zero is reserved for the kernel. * * By default packet tags are allocated via kalloc except on Intel that still * uses the legacy implementation of using mbufs for packet tags. * This can be overidden via the boot-args 'mb_tag_mbuf' * * When kalloc is used for allocation, packet tags returned by m_tag_allocate have * the default memory alignment implemented by kalloc. * * When mbufs are used for allocation packets tag returned by m_tag_allocate has * the default memory alignment implemented by malloc. * * To reference the private data one should use a construct like: * struct m_tag *mtag = m_tag_allocate(...); * struct foo *p = (struct foo *)(mtag->m_tag_data); * * There should be no assumption on the location of the private data relative to the * 'struct m_tag' * * When kalloc is used, packet tags that are internal to xnu use KERNEL_MODULE_TAG_ID and * they are allocated with kalloc_type using a single container data structure that has * the 'struct m_tag' followed by a data structure for the private data * * Packet tags that are allocated by KEXTs are external to xnu and type of the private data * is unknown to xnu, so they are allocated in two chunks: * - one allocation with kalloc_type for the 'struct m_tag' * - one allocation using kheap_alloc as for the private data * * Note that packet tags of type KERNEL_TAG_TYPE_DRVAUX are allocated by KEXTs with * a variable length so they are allocated in two chunks * * In all cases the 'struct m_tag' is allocated using kalloc_type to avoid type * confusion. */ #define KERNEL_MODULE_TAG_ID 0 enum { KERNEL_TAG_TYPE_NONE = 0, KERNEL_TAG_TYPE_DUMMYNET = 1, KERNEL_TAG_TYPE_IPFILT = 2, KERNEL_TAG_TYPE_ENCAP = 3, KERNEL_TAG_TYPE_INET6 = 4, KERNEL_TAG_TYPE_IPSEC = 5, KERNEL_TAG_TYPE_CFIL_UDP = 6, KERNEL_TAG_TYPE_PF_REASS = 7, KERNEL_TAG_TYPE_AQM = 8, KERNEL_TAG_TYPE_DRVAUX = 9, KERNEL_TAG_TYPE_COUNT = 10 }; /* Packet tag routines */ __private_extern__ struct m_tag *m_tag_alloc(u_int32_t, u_int16_t, int, int); __private_extern__ struct m_tag *m_tag_create(u_int32_t, u_int16_t, int, int, struct mbuf *); __private_extern__ void m_tag_free(struct m_tag *); __private_extern__ void m_tag_prepend(struct mbuf *, struct m_tag *); __private_extern__ void m_tag_unlink(struct mbuf *, struct m_tag *); __private_extern__ void m_tag_delete(struct mbuf *, struct m_tag *); __private_extern__ void m_tag_delete_chain(struct mbuf *); __private_extern__ struct m_tag *m_tag_locate(struct mbuf *, u_int32_t, u_int16_t); __private_extern__ struct m_tag *m_tag_copy(struct m_tag *, int); __private_extern__ int m_tag_copy_chain(struct mbuf *, struct mbuf *, int); __private_extern__ void m_tag_init(struct mbuf *, int); __private_extern__ struct m_tag *m_tag_first(struct mbuf *); __private_extern__ struct m_tag *m_tag_next(struct mbuf *, struct m_tag *); typedef struct m_tag * (*m_tag_kalloc_func_t)(u_int32_t id, u_int16_t type, uint16_t len, int wait); typedef void (*m_tag_kfree_func_t)(struct m_tag *tag); int m_register_internal_tag_type(uint16_t type, uint16_t len, m_tag_kalloc_func_t alloc_func, m_tag_kfree_func_t free_func); void m_tag_create_cookie(struct m_tag *); void mbuf_tag_init(void); __private_extern__ void m_scratch_init(struct mbuf *); __private_extern__ u_int32_t m_scratch_get(struct mbuf *, u_int8_t **); __private_extern__ void m_classifier_init(struct mbuf *, uint32_t); __private_extern__ int m_set_service_class(struct mbuf *, mbuf_svc_class_t); __private_extern__ mbuf_svc_class_t m_get_service_class(struct mbuf *); __private_extern__ mbuf_svc_class_t m_service_class_from_idx(u_int32_t); __private_extern__ mbuf_svc_class_t m_service_class_from_val(u_int32_t); __private_extern__ int m_set_traffic_class(struct mbuf *, mbuf_traffic_class_t); __private_extern__ mbuf_traffic_class_t m_get_traffic_class(struct mbuf *); __private_extern__ struct m_tag *m_tag_alloc(u_int32_t, u_int16_t, int, int); __private_extern__ void mbuf_tag_init(void); #define ADDCARRY(_x) do { \ while (((_x) >> 16) != 0) \ (_x) = ((_x) >> 16) + ((_x) & 0xffff); \ } while (0) __private_extern__ u_int16_t m_adj_sum16(struct mbuf *, u_int32_t, u_int32_t, u_int32_t, u_int32_t); __private_extern__ u_int16_t m_sum16(struct mbuf *, u_int32_t, u_int32_t); __private_extern__ void m_set_ext(struct mbuf *, struct ext_ref *, m_ext_free_func_t, caddr_t); __private_extern__ struct ext_ref *m_get_rfa(struct mbuf *); __private_extern__ m_ext_free_func_t m_get_ext_free(struct mbuf *); __private_extern__ caddr_t m_get_ext_arg(struct mbuf *); __private_extern__ void m_do_tx_compl_callback(struct mbuf *, struct ifnet *); __private_extern__ mbuf_tx_compl_func m_get_tx_compl_callback(u_int32_t); __END_DECLS #endif /* XNU_KERNEL_PRIVATE */ #endif /* !_SYS_MBUF_H_ */