gems-kernel/source/THIRDPARTY/linux-old/drivers/scsi/seagate.c
2024-06-03 11:16:15 -05:00

1711 lines
41 KiB
C

/*
* seagate.c Copyright (C) 1992, 1993 Drew Eckhardt
* low level scsi driver for ST01/ST02, Future Domain TMC-885,
* TMC-950 by
*
* Drew Eckhardt
*
* <drew@colorado.edu>
*
* Note : TMC-880 boards don't work because they have two bits in
* the status register flipped, I'll fix this "RSN"
*
* This card does all the I/O via memory mapped I/O, so there is no need
* to check or snarf a region of the I/O address space.
*/
/*
* Configuration :
* To use without BIOS -DOVERRIDE=base_address -DCONTROLLER=FD or SEAGATE
* -DIRQ will overide the default of 5.
* Note: You can now set these options from the kernel's "command line".
* The syntax is:
*
* st0x=ADDRESS,IRQ (for a Seagate controller)
* or:
* tmc8xx=ADDRESS,IRQ (for a TMC-8xx or TMC-950 controller)
* eg:
* tmc8xx=0xC8000,15
*
* will configure the driver for a TMC-8xx style controller using IRQ 15
* with a base address of 0xC8000.
*
* -DFAST or -DFAST32 will use blind transfers where possible
*
* -DARBITRATE will cause the host adapter to arbitrate for the
* bus for better SCSI-II compatability, rather than just
* waiting for BUS FREE and then doing its thing. Should
* let us do one command per Lun when I integrate my
* reorganization changes into the distribution sources.
*
* -DSLOW_HANDSHAKE will allow compatability with broken devices that don't
* handshake fast enough (ie, some CD ROM's) for the Seagate
* code.
*
* -DSLOW_RATE=x, x some number will let you specify a default
* transfer rate if handshaking isn't working correctly.
*/
#include <linux/config.h>
#if defined(CONFIG_SCSI_SEAGATE) || defined(CONFIG_SCSI_FD_8xx)
#include <asm/io.h>
#include <asm/system.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/string.h>
#include "../block/blk.h"
#include "scsi.h"
#include "hosts.h"
#include "seagate.h"
#include "constants.h"
#ifndef IRQ
#define IRQ 5
#endif
#if (defined(FAST32) && !defined(FAST))
#define FAST
#endif
#if defined(SLOW_RATE) && !defined(SLOW_HANDSHAKE)
#define SLOW_HANDSHAKE
#endif
#if defined(SLOW_HANDSHAKE) && !defined(SLOW_RATE)
#define SLOW_RATE 50
#endif
#if defined(LINKED)
#undef LINKED /* Linked commands are currently broken ! */
#endif
static int internal_command(unsigned char target, unsigned char lun,
const void *cmnd,
void *buff, int bufflen, int reselect);
static int incommand; /*
set if arbitration has finished and we are
in some command phase.
*/
static void *base_address = NULL; /*
Where the card ROM starts,
used to calculate memory mapped
register location.
*/
static volatile int abort_confirm = 0;
static volatile void *st0x_cr_sr; /*
control register write,
status register read.
256 bytes in length.
Read is status of SCSI BUS,
as per STAT masks.
*/
static volatile void *st0x_dr; /*
data register, read write
256 bytes in length.
*/
static volatile int st0x_aborted=0; /*
set when we are aborted, ie by a time out, etc.
*/
static unsigned char controller_type = 0; /* set to SEAGATE for ST0x boards or FD for TMC-8xx boards */
static unsigned char irq = IRQ;
#define retcode(result) (((result) << 16) | (message << 8) | status)
#define STATUS (*(volatile unsigned char *) st0x_cr_sr)
#define CONTROL STATUS
#define DATA (*(volatile unsigned char *) st0x_dr)
void st0x_setup (char *str, int *ints) {
controller_type = SEAGATE;
base_address = (void *) ints[1];
irq = ints[2];
}
void tmc8xx_setup (char *str, int *ints) {
controller_type = FD;
base_address = (void *) ints[1];
irq = ints[2];
}
#ifndef OVERRIDE
static const char * seagate_bases[] = {
(char *) 0xc8000, (char *) 0xca000, (char *) 0xcc000,
(char *) 0xce000, (char *) 0xdc000, (char *) 0xde000
};
typedef struct {
char *signature ;
unsigned offset;
unsigned length;
unsigned char type;
} Signature;
static const Signature signatures[] = {
#ifdef CONFIG_SCSI_SEAGATE
{"ST01 v1.7 (C) Copyright 1987 Seagate", 15, 37, SEAGATE},
{"SCSI BIOS 2.00 (C) Copyright 1987 Seagate", 15, 40, SEAGATE},
/*
* The following two lines are NOT mistakes. One detects ROM revision
* 3.0.0, the other 3.2. Since seagate has only one type of SCSI adapter,
* and this is not going to change, the "SEAGATE" and "SCSI" together
* are probably "good enough"
*/
{"SEAGATE SCSI BIOS ",16, 17, SEAGATE},
{"SEAGATE SCSI BIOS ",17, 17, SEAGATE},
/*
* However, future domain makes several incompatable SCSI boards, so specific
* signatures must be used.
*/
{"FUTURE DOMAIN CORP. (C) 1986-1989 V5.0C2/14/89", 5, 46, FD},
{"FUTURE DOMAIN CORP. (C) 1986-1989 V6.0A7/28/89", 5, 46, FD},
{"FUTURE DOMAIN CORP. (C) 1986-1990 V6.0105/31/90",5, 47, FD},
{"FUTURE DOMAIN CORP. (C) 1986-1990 V6.0209/18/90",5, 47, FD},
{"FUTURE DOMAIN CORP. (C) 1986-1990 V7.009/18/90", 5, 46, FD},
{"FUTURE DOMAIN CORP. (C) 1992 V8.00.004/02/92", 5, 44, FD},
{"FUTURE DOMAIN TMC-950", 5, 21, FD},
#endif /* CONFIG_SCSI_SEAGATE */
}
;
#define NUM_SIGNATURES (sizeof(signatures) / sizeof(Signature))
#endif /* n OVERRIDE */
/*
* hostno stores the hostnumber, as told to us by the init routine.
*/
static int hostno = -1;
static void seagate_reconnect_intr(int);
#ifdef FAST
static int fast = 1;
#endif
#ifdef SLOW_HANDSHAKE
/*
* Support for broken devices :
* The Seagate board has a handshaking problem. Namely, a lack
* thereof for slow devices. You can blast 600K/second through
* it if you are polling for each byte, more if you do a blind
* transfer. In the first case, with a fast device, REQ will
* transition high-low or high-low-high before your loop restarts
* and you'll have no problems. In the second case, the board
* will insert wait states for up to 13.2 usecs for REQ to
* transition low->high, and everything will work.
*
* However, there's nothing in the state machine that says
* you *HAVE* to see a high-low-high set of transitions before
* sending the next byte, and slow things like the Trantor CD ROMS
* will break because of this.
*
* So, we need to slow things down, which isn't as simple as it
* seems. We can't slow things down period, because then people
* who don't recompile their kernels will shoot me for ruining
* their performance. We need to do it on a case per case basis.
*
* The best for performance will be to, only for borken devices
* (this is stored on a per-target basis in the scsi_devices array)
*
* Wait for a low->high transition before continuing with that
* transfer. If we timeout, continue anyways. We don't need
* a long timeout, because REQ should only be asserted until the
* corresponding ACK is recieved and processed.
*
* Note that we can't use the system timer for this, because of
* resolution, and we *really* can't use the timer chip since
* gettimeofday() and the beeper routines use that. So,
* the best thing for us to do will be to calibrate a timing
* loop in the initialization code using the timer chip before
* gettimeofday() can screw with it.
*/
static int borken_calibration = 0;
static void borken_init (void) {
register int count = 0, start = jiffies + 1, stop = start + 25;
while (jiffies < start);
for (;jiffies < stop; ++count);
/*
* Ok, we now have a count for .25 seconds. Convert to a
* count per second and divide by transer rate in K.
*/
borken_calibration = (count * 4) / (SLOW_RATE*1024);
if (borken_calibration < 1)
borken_calibration = 1;
#if (DEBUG & DEBUG_BORKEN)
printk("scsi%d : borken calibrated to %dK/sec, %d cycles per transfer\n",
hostno, BORKEN_RATE, borken_calibration);
#endif
}
static inline void borken_wait(void) {
register int count;
for (count = borken_calibration; count && (STATUS & STAT_REQ);
--count);
if (count)
#if (DEBUG & DEBUG_BORKEN)
printk("scsi%d : borken timeout\n", hostno);
#else
;
#endif
}
#endif /* def SLOW_HANDSHAKE */
int seagate_st0x_detect (int hostnum)
{
#ifndef OVERRIDE
int i,j;
#endif
static struct sigaction seagate_sigaction = {
&seagate_reconnect_intr,
0,
SA_INTERRUPT,
NULL
};
/*
* First, we try for the manual override.
*/
#ifdef DEBUG
printk("Autodetecting seagate ST0x\n");
#endif
if (hostno != -1)
{
printk ("ERROR : seagate_st0x_detect() called twice.\n");
return 0;
}
/* If the user specified the controller type from the command line,
controller_type will be non-zero, so don't try and detect one */
if (!controller_type) {
#ifdef OVERRIDE
base_address = (void *) OVERRIDE;
/* CONTROLLER is used to override controller (SEAGATE or FD). PM: 07/01/93 */
#ifdef CONTROLLER
controller_type = CONTROLLER;
#else
#error Please use -DCONTROLLER=SEAGATE or -DCONTROLLER=FD to override controller type
#endif /* CONTROLLER */
#ifdef DEBUG
printk("Base address overridden to %x, controller type is %s\n",
base_address,controller_type == SEAGATE ? "SEAGATE" : "FD");
#endif
#else /* OVERIDE */
/*
* To detect this card, we simply look for the signature
* from the BIOS version notice in all the possible locations
* of the ROM's. This has a nice sideeffect of not trashing
* any register locations that might be used by something else.
*
* XXX - note that we probably should be probing the address
* space for the on-board RAM instead.
*/
for (i = 0; i < (sizeof (seagate_bases) / sizeof (char * )); ++i)
for (j = 0; !base_address && j < NUM_SIGNATURES; ++j)
if (!memcmp ((void *) (seagate_bases[i] +
signatures[j].offset), (void *) signatures[j].signature,
signatures[j].length)) {
base_address = (void *) seagate_bases[i];
controller_type = signatures[j].type;
}
#endif /* OVERIDE */
} /* (! controller_type) */
scsi_hosts[hostnum].this_id = (controller_type == SEAGATE) ? 7 : 6;
if (base_address)
{
st0x_cr_sr =(void *) (((unsigned char *) base_address) + (controller_type == SEAGATE ? 0x1a00 : 0x1c00));
st0x_dr = (void *) (((unsigned char *) base_address ) + (controller_type == SEAGATE ? 0x1c00 : 0x1e00));
#ifdef DEBUG
printk("ST0x detected. Base address = %x, cr = %x, dr = %x\n", base_address, st0x_cr_sr, st0x_dr);
#endif
/*
* At all times, we will use IRQ 5. Should also check for IRQ3 if we
* loose our first interrupt.
*/
hostno = hostnum;
if (irqaction((int) irq, &seagate_sigaction)) {
printk("scsi%d : unable to allocate IRQ%d\n",
hostno, (int) irq);
return 0;
}
#ifdef SLOW_HANDSHAKE
borken_init();
#endif
return 1;
}
else
{
#ifdef DEBUG
printk("ST0x not detected.\n");
#endif
return 0;
}
}
const char *seagate_st0x_info(void) {
static char buffer[256];
sprintf(buffer, "scsi%d : %s at irq %d address %p options :"
#ifdef ARBITRATE
" ARBITRATE"
#endif
#ifdef SLOW_HANDSHAKE
" SLOW_HANDSHAKE"
#endif
#ifdef FAST
#ifdef FAST32
" FAST32"
#else
" FAST"
#endif
#endif
#ifdef LINKED
" LINKED"
#endif
"\n", hostno, (controller_type == SEAGATE) ? "seagate" :
"FD TMC-8xx", irq, base_address);
return buffer;
}
/*
* These are our saved pointers for the outstanding command that is
* waiting for a reconnect
*/
static unsigned char current_target, current_lun;
static unsigned char *current_cmnd, *current_data;
static int current_nobuffs;
static struct scatterlist *current_buffer;
static int current_bufflen;
#ifdef LINKED
/*
* linked_connected indicates weather or not we are currently connected to
* linked_target, linked_lun and in an INFORMATION TRANSFER phase,
* using linked commands.
*/
static int linked_connected = 0;
static unsigned char linked_target, linked_lun;
#endif
static void (*done_fn)(Scsi_Cmnd *) = NULL;
static Scsi_Cmnd * SCint = NULL;
/*
* These control whether or not disconnect / reconnect will be attempted,
* or are being attempted.
*/
#define NO_RECONNECT 0
#define RECONNECT_NOW 1
#define CAN_RECONNECT 2
#ifdef LINKED
/*
* LINKED_RIGHT indicates that we are currently connected to the correct target
* for this command, LINKED_WRONG indicates that we are connected to the wrong
* target. Note that these imply CAN_RECONNECT.
*/
#define LINKED_RIGHT 3
#define LINKED_WRONG 4
#endif
/*
* This determines if we are expecting to reconnect or not.
*/
static int should_reconnect = 0;
/*
* The seagate_reconnect_intr routine is called when a target reselects the
* host adapter. This occurs on the interrupt triggered by the target
* asserting SEL.
*/
static void seagate_reconnect_intr (int unused)
{
int temp;
Scsi_Cmnd * SCtmp;
/* enable all other interrupts. */
sti();
#if (DEBUG & PHASE_RESELECT)
printk("scsi%d : seagate_reconnect_intr() called\n", hostno);
#endif
if (!should_reconnect)
printk("scsi%d: unexpected interrupt.\n", hostno);
else {
should_reconnect = 0;
#if (DEBUG & PHASE_RESELECT)
printk("scsi%d : internal_command("
"%d, %08x, %08x, %d, RECONNECT_NOW\n", hostno,
current_target, current_data, current_bufflen);
#endif
temp = internal_command (current_target, current_lun,
current_cmnd, current_data, current_bufflen,
RECONNECT_NOW);
if (msg_byte(temp) != DISCONNECT) {
if (done_fn) {
#if (DEBUG & PHASE_RESELECT)
printk("scsi%d : done_fn(%d,%08x)", hostno,
hostno, temp);
#endif
if(!SCint) panic("SCint == NULL in seagate");
SCtmp = SCint;
SCint = NULL;
SCtmp->result = temp;
done_fn (SCtmp);
} else
printk("done_fn() not defined.\n");
}
}
}
/*
* The seagate_st0x_queue_command() function provides a queued interface
* to the seagate SCSI driver. Basically, it just passes control onto the
* seagate_command() function, after fixing it so that the done_fn()
* is set to the one passed to the function. We have to be very careful,
* because there are some commands on some devices that do not disconnect,
* and if we simply call the done_fn when the command is done then another
* command is started and queue_command is called again... We end up
* overflowing the kernel stack, and this tends not to be such a good idea.
*/
static int recursion_depth = 0;
int seagate_st0x_queue_command (Scsi_Cmnd * SCpnt, void (*done)(Scsi_Cmnd *))
{
int result, reconnect;
Scsi_Cmnd * SCtmp;
done_fn = done;
current_target = SCpnt->target;
current_lun = SCpnt->lun;
(const void *) current_cmnd = SCpnt->cmnd;
current_data = (unsigned char *) SCpnt->request_buffer;
current_bufflen = SCpnt->request_bufflen;
SCint = SCpnt;
if(recursion_depth) {
return 0;
};
recursion_depth++;
do{
#ifdef LINKED
/*
* Set linked command bit in control field of SCSI command.
*/
current_cmnd[COMMAND_SIZE(current_cmnd[0])] |= 0x01;
if (linked_connected) {
#if (DEBUG & DEBUG_LINKED)
printk("scsi%d : using linked commands, current I_T_L nexus is ",
hostno);
#endif
if ((linked_target == current_target) &&
(linked_lun == current_lun)) {
#if (DEBUG & DEBUG_LINKED)
printk("correct\n");
#endif
reconnect = LINKED_RIGHT;
} else {
#if (DEBUG & DEBUG_LINKED)
printk("incorrect\n");
#endif
reconnect = LINKED_WRONG;
}
} else
#endif /* LINKED */
reconnect = CAN_RECONNECT;
result = internal_command (SCint->target, SCint->lun, SCint->cmnd, SCint->request_buffer,
SCint->request_bufflen,
reconnect);
if (msg_byte(result) == DISCONNECT) break;
SCtmp = SCint;
SCint = NULL;
SCtmp->result = result;
done_fn (SCtmp);
} while(SCint);
recursion_depth--;
return 0;
}
int seagate_st0x_command (Scsi_Cmnd * SCpnt) {
return internal_command (SCpnt->target, SCpnt->lun, SCpnt->cmnd, SCpnt->request_buffer,
SCpnt->request_bufflen,
(int) NO_RECONNECT);
}
static int internal_command(unsigned char target, unsigned char lun, const void *cmnd,
void *buff, int bufflen, int reselect) {
int len = 0;
unsigned char *data = NULL;
struct scatterlist *buffer = NULL;
int nobuffs = 0;
int clock;
int temp;
#ifdef SLOW_HANDSHAKE
int borken; /* Does the current target require Very Slow I/O ? */
#endif
#if (DEBUG & PHASE_DATAIN) || (DEBUG & PHASE_DATOUT)
int transfered = 0;
#endif
#if (((DEBUG & PHASE_ETC) == PHASE_ETC) || (DEBUG & PRINT_COMMAND) || \
(DEBUG & PHASE_EXIT))
int i;
#endif
#if ((DEBUG & PHASE_ETC) == PHASE_ETC)
int phase=0, newphase;
#endif
int done = 0;
unsigned char status = 0;
unsigned char message = 0;
register unsigned char status_read;
unsigned transfersize = 0, underflow = 0;
incommand = 0;
st0x_aborted = 0;
#ifdef SLOW_HANDSHAKE
borken = (int) scsi_devices[SCint->index].borken;
#endif
#if (DEBUG & PRINT_COMMAND)
printk ("scsi%d : target = %d, command = ", hostno, target);
print_command((unsigned char *) cmnd);
printk("\n");
#endif
#if (DEBUG & PHASE_RESELECT)
switch (reselect) {
case RECONNECT_NOW :
printk("scsi%d : reconnecting\n", hostno);
break;
#ifdef LINKED
case LINKED_RIGHT :
printk("scsi%d : connected, can reconnect\n", hostno);
break;
case LINKED_WRONG :
printk("scsi%d : connected to wrong target, can reconnect\n",
hostno);
break;
#endif
case CAN_RECONNECT :
printk("scsi%d : allowed to reconnect\n", hostno);
break;
default :
printk("scsi%d : not allowed to reconnect\n", hostno);
}
#endif
if (target == (controller_type == SEAGATE ? 7 : 6))
return DID_BAD_TARGET;
/*
* We work it differently depending on if this is is "the first time,"
* or a reconnect. If this is a reselct phase, then SEL will
* be asserted, and we must skip selection / arbitration phases.
*/
switch (reselect) {
case RECONNECT_NOW:
#if (DEBUG & PHASE_RESELECT)
printk("scsi%d : phase RESELECT \n", hostno);
#endif
/*
* At this point, we should find the logical or of our ID and the original
* target's ID on the BUS, with BSY, SEL, and I/O signals asserted.
*
* After ARBITRATION phase is completed, only SEL, BSY, and the
* target ID are asserted. A valid initator ID is not on the bus
* until IO is asserted, so we must wait for that.
*/
for (clock = jiffies + 10, temp = 0; (jiffies < clock) &&
!(STATUS & STAT_IO););
if (jiffies >= clock)
{
#if (DEBUG & PHASE_RESELECT)
printk("scsi%d : RESELECT timed out while waiting for IO .\n",
hostno);
#endif
return (DID_BAD_INTR << 16);
}
/*
* After I/O is asserted by the target, we can read our ID and its
* ID off of the BUS.
*/
if (!((temp = DATA) & (controller_type == SEAGATE ? 0x80 : 0x40)))
{
#if (DEBUG & PHASE_RESELECT)
printk("scsi%d : detected reconnect request to different target.\n"
"\tData bus = %d\n", hostno, temp);
#endif
return (DID_BAD_INTR << 16);
}
if (!(temp & (1 << current_target)))
{
printk("scsi%d : Unexpected reselect interrupt. Data bus = %d\n",
hostno, temp);
return (DID_BAD_INTR << 16);
}
buffer=current_buffer;
cmnd=current_cmnd; /* WDE add */
data=current_data; /* WDE add */
len=current_bufflen; /* WDE add */
nobuffs=current_nobuffs;
/*
* We have determined that we have been selected. At this point,
* we must respond to the reselection by asserting BSY ourselves
*/
#if 1
CONTROL = (BASE_CMD | CMD_DRVR_ENABLE | CMD_BSY);
#else
CONTROL = (BASE_CMD | CMD_BSY);
#endif
/*
* The target will drop SEL, and raise BSY, at which time we must drop
* BSY.
*/
for (clock = jiffies + 10; (jiffies < clock) && (STATUS & STAT_SEL););
if (jiffies >= clock)
{
CONTROL = (BASE_CMD | CMD_INTR);
#if (DEBUG & PHASE_RESELECT)
printk("scsi%d : RESELECT timed out while waiting for SEL.\n",
hostno);
#endif
return (DID_BAD_INTR << 16);
}
CONTROL = BASE_CMD;
/*
* At this point, we have connected with the target and can get
* on with our lives.
*/
break;
case CAN_RECONNECT:
#ifdef LINKED
/*
* This is a bletcherous hack, just as bad as the Unix #! interpreter stuff.
* If it turns out we are using the wrong I_T_L nexus, the easiest way to deal
* with it is to go into our INFORMATION TRANSFER PHASE code, send a ABORT
* message on MESSAGE OUT phase, and then loop back to here.
*/
connect_loop :
#endif
#if (DEBUG & PHASE_BUS_FREE)
printk ("scsi%d : phase = BUS FREE \n", hostno);
#endif
/*
* BUS FREE PHASE
*
* On entry, we make sure that the BUS is in a BUS FREE
* phase, by insuring that both BSY and SEL are low for
* at least one bus settle delay. Several reads help
* eliminate wire glitch.
*/
clock = jiffies + ST0X_BUS_FREE_DELAY;
#if !defined (ARBITRATE)
while (((STATUS | STATUS | STATUS) &
(STAT_BSY | STAT_SEL)) &&
(!st0x_aborted) && (jiffies < clock));
if (jiffies > clock)
return retcode(DID_BUS_BUSY);
else if (st0x_aborted)
return retcode(st0x_aborted);
#endif
#if (DEBUG & PHASE_SELECTION)
printk("scsi%d : phase = SELECTION\n", hostno);
#endif
clock = jiffies + ST0X_SELECTION_DELAY;
/*
* Arbitration/selection procedure :
* 1. Disable drivers
* 2. Write HOST adapter address bit
* 3. Set start arbitration.
* 4. We get either ARBITRATION COMPLETE or SELECT at this
* point.
* 5. OR our ID and targets on bus.
* 6. Enable SCSI drivers and asserted SEL and ATTN
*/
#if defined(ARBITRATE)
cli();
CONTROL = 0;
DATA = (controller_type == SEAGATE) ? 0x80 : 0x40;
CONTROL = CMD_START_ARB;
sti();
while (!((status_read = STATUS) & (STAT_ARB_CMPL | STAT_SEL)) &&
(jiffies < clock) && !st0x_aborted);
if (!(status_read & STAT_ARB_CMPL)) {
#if (DEBUG & PHASE_SELECTION)
if (status_read & STAT_SEL)
printk("scsi%d : arbitration lost\n", hostno);
else
printk("scsi%d : arbitration timeout.\n", hostno);
#endif
CONTROL = BASE_CMD;
return retcode(DID_NO_CONNECT);
};
#if (DEBUG & PHASE_SELECTION)
printk("scsi%d : arbitration complete\n", hostno);
#endif
#endif
/*
* When the SCSI device decides that we're gawking at it, it will
* respond by asserting BUSY on the bus.
*
* Note : the Seagate ST-01/02 product manual says that we should
* twiddle the DATA register before the control register. However,
* this does not work reliably so we do it the other way arround.
*
* Probably could be a problem with arbitration too, we really should
* try this with a SCSI protocol or logic analyzer to see what is
* going on.
*/
cli();
DATA = (unsigned char) ((1 << target) | (controller_type == SEAGATE ? 0x80 : 0x40));
CONTROL = BASE_CMD | CMD_DRVR_ENABLE | CMD_SEL |
(reselect ? CMD_ATTN : 0);
sti();
while (!((status_read = STATUS) & STAT_BSY) &&
(jiffies < clock) && !st0x_aborted)
#if 0 && (DEBUG & PHASE_SELECTION)
{
temp = clock - jiffies;
if (!(jiffies % 5))
printk("seagate_st0x_timeout : %d \r",temp);
}
printk("Done. \n");
printk("scsi%d : status = %02x, seagate_st0x_timeout = %d, aborted = %02x \n",
hostno, status_read, temp, st0x_aborted);
#else
;
#endif
if ((jiffies >= clock) && !(status_read & STAT_BSY))
{
#if (DEBUG & PHASE_SELECTION)
printk ("scsi%d : NO CONNECT with target %d, status = %x \n",
hostno, target, STATUS);
#endif
return retcode(DID_NO_CONNECT);
}
/*
* If we have been aborted, and we have a command in progress, IE the
* target still has BSY asserted, then we will reset the bus, and
* notify the midlevel driver to expect sense.
*/
if (st0x_aborted) {
CONTROL = BASE_CMD;
if (STATUS & STAT_BSY) {
printk("scsi%d : BST asserted after we've been aborted.\n",
hostno);
seagate_st0x_reset(NULL);
return retcode(DID_RESET);
}
return retcode(st0x_aborted);
}
/* Establish current pointers. Take into account scatter / gather */
if ((nobuffs = SCint->use_sg)) {
#if (DEBUG & DEBUG_SG)
{
int i;
printk("scsi%d : scatter gather requested, using %d buffers.\n",
hostno, nobuffs);
for (i = 0; i < nobuffs; ++i)
printk("scsi%d : buffer %d address = %08x length = %d\n",
hostno, i, buffer[i].address, buffer[i].length);
}
#endif
buffer = (struct scatterlist *) SCint->buffer;
len = buffer->length;
data = (unsigned char *) buffer->address;
} else {
#if (DEBUG & DEBUG_SG)
printk("scsi%d : scatter gather not requested.\n", hostno);
#endif
buffer = NULL;
len = SCint->request_bufflen;
data = (unsigned char *) SCint->request_buffer;
}
#if (DEBUG & (PHASE_DATAIN | PHASE_DATAOUT))
printk("scsi%d : len = %d\n", hostno, len);
#endif
break;
#ifdef LINKED
case LINKED_RIGHT:
break;
case LINKED_WRONG:
break;
#endif
}
/*
* There are several conditions under which we wish to send a message :
* 1. When we are allowing disconnect / reconnect, and need to establish
* the I_T_L nexus via an IDENTIFY with the DiscPriv bit set.
*
* 2. When we are doing linked commands, are have the wrong I_T_L nexus
* established and want to send an ABORT message.
*/
CONTROL = BASE_CMD | CMD_DRVR_ENABLE |
(((reselect == CAN_RECONNECT)
#ifdef LINKED
|| (reselect == LINKED_WRONG)
#endif
) ? CMD_ATTN : 0) ;
/*
* INFORMATION TRANSFER PHASE
*
* The nasty looking read / write inline assembler loops we use for
* DATAIN and DATAOUT phases are approximately 4-5 times as fast as
* the 'C' versions - since we're moving 1024 bytes of data, this
* really adds up.
*/
#if ((DEBUG & PHASE_ETC) == PHASE_ETC)
printk("scsi%d : phase = INFORMATION TRANSFER\n", hostno);
#endif
incommand = 1;
transfersize = SCint->transfersize;
underflow = SCint->underflow;
/*
* Now, we poll the device for status information,
* and handle any requests it makes. Note that since we are unsure of
* how much data will be flowing across the system, etc and cannot
* make reasonable timeouts, that we will instead have the midlevel
* driver handle any timeouts that occur in this phase.
*/
while (((status_read = STATUS) & STAT_BSY) && !st0x_aborted && !done)
{
#ifdef PARITY
if (status_read & STAT_PARITY)
{
printk("scsi%d : got parity error\n", hostno);
st0x_aborted = DID_PARITY;
}
#endif
if (status_read & STAT_REQ)
{
#if ((DEBUG & PHASE_ETC) == PHASE_ETC)
if ((newphase = (status_read & REQ_MASK)) != phase)
{
phase = newphase;
switch (phase)
{
case REQ_DATAOUT:
printk("scsi%d : phase = DATA OUT\n",
hostno);
break;
case REQ_DATAIN :
printk("scsi%d : phase = DATA IN\n",
hostno);
break;
case REQ_CMDOUT :
printk("scsi%d : phase = COMMAND OUT\n",
hostno);
break;
case REQ_STATIN :
printk("scsi%d : phase = STATUS IN\n",
hostno);
break;
case REQ_MSGOUT :
printk("scsi%d : phase = MESSAGE OUT\n",
hostno);
break;
case REQ_MSGIN :
printk("scsi%d : phase = MESSAGE IN\n",
hostno);
break;
default :
printk("scsi%d : phase = UNKNOWN\n",
hostno);
st0x_aborted = DID_ERROR;
}
}
#endif
switch (status_read & REQ_MASK)
{
case REQ_DATAOUT :
/*
* If we are in fast mode, then we simply splat the data out
* in word-sized chunks as fast as we can.
*/
#ifdef FAST
if (!len) {
#if 0
printk("scsi%d: underflow to target %d lun %d \n",
hostno, target, lun);
st0x_aborted = DID_ERROR;
fast = 0;
#endif
break;
}
if (fast && transfersize && !(len % transfersize) && (len >= transfersize)
#ifdef FAST32
&& !(transfersize % 4)
#endif
) {
#if (DEBUG & DEBUG_FAST)
printk("scsi%d : FAST transfer, underflow = %d, transfersize = %d\n"
" len = %d, data = %08x\n", hostno, SCint->underflow,
SCint->transfersize, len, data);
#endif
__asm__("
cld;
"
#ifdef FAST32
" shr $2, %%ecx;
1: lodsl;
movl %%eax, (%%edi);
"
#else
"1: lodsb;
movb %%al, (%%edi);
"
#endif
" loop 1b;" : :
/* input */
"D" (st0x_dr), "S" (data), "c" (SCint->transfersize) :
/* clobbered */
"eax", "ecx", "esi" );
len -= transfersize;
data += transfersize;
#if (DEBUG & DEBUG_FAST)
printk("scsi%d : FAST transfer complete len = %d data = %08x\n",
hostno, len, data);
#endif
} else
#endif
{
/*
* We loop as long as we are in a data out phase, there is data to send,
* and BSY is still active.
*/
__asm__ (
/*
Local variables :
len = ecx
data = esi
st0x_cr_sr = ebx
st0x_dr = edi
Test for any data here at all.
*/
"\torl %%ecx, %%ecx
jz 2f
cld
movl _st0x_cr_sr, %%ebx
movl _st0x_dr, %%edi
1: movb (%%ebx), %%al\n"
/*
Test for BSY
*/
"\ttest $1, %%al
jz 2f\n"
/*
Test for data out phase - STATUS & REQ_MASK should be REQ_DATAOUT, which is 0.
*/
"\ttest $0xe, %%al
jnz 2f \n"
/*
Test for REQ
*/
"\ttest $0x10, %%al
jz 1b
lodsb
movb %%al, (%%edi)
loop 1b
2:
":
/* output */
"=S" (data), "=c" (len) :
/* input */
"0" (data), "1" (len) :
/* clobbered */
"eax", "ebx", "edi");
}
if (!len && nobuffs) {
--nobuffs;
++buffer;
len = buffer->length;
data = (unsigned char *) buffer->address;
#if (DEBUG & DEBUG_SG)
printk("scsi%d : next scatter-gather buffer len = %d address = %08x\n",
hostno, len, data);
#endif
}
break;
case REQ_DATAIN :
#ifdef SLOW_HANDSHAKE
if (borken) {
#if (DEBUG & (PHASE_DATAIN))
transfered += len;
#endif
for (; len && (STATUS & (REQ_MASK | STAT_REQ)) == (REQ_DATAIN |
STAT_REQ); --len) {
*data++ = DATA;
borken_wait();
}
#if (DEBUG & (PHASE_DATAIN))
transfered -= len;
#endif
} else
#endif
#ifdef FAST
if (fast && transfersize && !(len % transfersize) && (len >= transfersize)
#ifdef FAST32
&& !(transfersize % 4)
#endif
) {
#if (DEBUG & DEBUG_FAST)
printk("scsi%d : FAST transfer, underflow = %d, transfersize = %d\n"
" len = %d, data = %08x\n", hostno, SCint->underflow,
SCint->transfersize, len, data);
#endif
__asm__("
cld;
"
#ifdef FAST32
" shr $2, %%ecx;
1: movl (%%esi), %%eax;
stosl;
"
#else
"1: movb (%%esi), %%al;
stosb;
"
#endif
" loop 1b;" : :
/* input */
"S" (st0x_dr), "D" (data), "c" (SCint->transfersize) :
/* clobbered */
"eax", "ecx", "edi");
len -= transfersize;
data += transfersize;
#if (DEBUG & PHASE_DATAIN)
printk("scsi%d: transfered += %d\n", hostno, transfersize);
transfered += transfersize;
#endif
#if (DEBUG & DEBUG_FAST)
printk("scsi%d : FAST transfer complete len = %d data = %08x\n",
hostno, len, data);
#endif
} else
#endif
{
#if (DEBUG & PHASE_DATAIN)
printk("scsi%d: transfered += %d\n", hostno, len);
transfered += len; /* Assume we'll transfer it all, then
subtract what we *didn't* transfer */
#endif
/*
* We loop as long as we are in a data in phase, there is room to read,
* and BSY is still active
*/
__asm__ (
/*
Local variables :
ecx = len
edi = data
esi = st0x_cr_sr
ebx = st0x_dr
Test for room to read
*/
"\torl %%ecx, %%ecx
jz 2f
cld
movl _st0x_cr_sr, %%esi
movl _st0x_dr, %%ebx
1: movb (%%esi), %%al\n"
/*
Test for BSY
*/
"\ttest $1, %%al
jz 2f\n"
/*
Test for data in phase - STATUS & REQ_MASK should be REQ_DATAIN, = STAT_IO, which is 4.
*/
"\tmovb $0xe, %%ah
andb %%al, %%ah
cmpb $0x04, %%ah
jne 2f\n"
/*
Test for REQ
*/
"\ttest $0x10, %%al
jz 1b
movb (%%ebx), %%al
stosb
loop 1b\n"
"2:\n"
:
/* output */
"=D" (data), "=c" (len) :
/* input */
"0" (data), "1" (len) :
/* clobbered */
"eax","ebx", "esi");
#if (DEBUG & PHASE_DATAIN)
printk("scsi%d: transfered -= %d\n", hostno, len);
transfered -= len; /* Since we assumed all of Len got
* transfered, correct our mistake */
#endif
}
if (!len && nobuffs) {
--nobuffs;
++buffer;
len = buffer->length;
data = (unsigned char *) buffer->address;
#if (DEBUG & DEBUG_SG)
printk("scsi%d : next scatter-gather buffer len = %d address = %08x\n",
hostno, len, data);
#endif
}
break;
case REQ_CMDOUT :
while (((status_read = STATUS) & STAT_BSY) &&
((status_read & REQ_MASK) == REQ_CMDOUT))
if (status_read & STAT_REQ) {
DATA = *(unsigned char *) cmnd;
cmnd = 1+(unsigned char *) cmnd;
#ifdef SLOW_HANDSHAKE
if (borken)
borken_wait();
#endif
}
break;
case REQ_STATIN :
status = DATA;
break;
case REQ_MSGOUT :
/*
* We can only have sent a MSG OUT if we requested to do this
* by raising ATTN. So, we must drop ATTN.
*/
CONTROL = BASE_CMD | CMD_DRVR_ENABLE;
/*
* If we are reconecting, then we must send an IDENTIFY message in
* response to MSGOUT.
*/
switch (reselect) {
case CAN_RECONNECT:
DATA = IDENTIFY(1, lun);
#if (DEBUG & (PHASE_RESELECT | PHASE_MSGOUT))
printk("scsi%d : sent IDENTIFY message.\n", hostno);
#endif
break;
#ifdef LINKED
case LINKED_WRONG:
DATA = ABORT;
linked_connected = 0;
reselect = CAN_RECONNECT;
goto connect_loop;
#if (DEBUG & (PHASE_MSGOUT | DEBUG_LINKED))
printk("scsi%d : sent ABORT message to cancle incorrect I_T_L nexus.\n", hostno);
#endif
#endif /* LINKED */
#if (DEBUG & DEBUG_LINKED)
printk("correct\n");
#endif
default:
DATA = NOP;
printk("scsi%d : target %d requested MSGOUT, sent NOP message.\n", hostno, target);
}
break;
case REQ_MSGIN :
switch (message = DATA) {
case DISCONNECT :
should_reconnect = 1;
current_data = data; /* WDE add */
current_buffer = buffer;
current_bufflen = len; /* WDE add */
current_nobuffs = nobuffs;
#ifdef LINKED
linked_connected = 0;
#endif
done=1;
#if (DEBUG & (PHASE_RESELECT | PHASE_MSGIN))
printk("scsi%d : disconnected.\n", hostno);
#endif
break;
#ifdef LINKED
case LINKED_CMD_COMPLETE:
case LINKED_FLG_CMD_COMPLETE:
#endif
case COMMAND_COMPLETE :
/*
* Note : we should check for underflow here.
*/
#if (DEBUG & PHASE_MSGIN)
printk("scsi%d : command complete.\n", hostno);
#endif
done = 1;
break;
case ABORT :
#if (DEBUG & PHASE_MSGIN)
printk("scsi%d : abort message.\n", hostno);
#endif
done=1;
break;
case SAVE_POINTERS :
current_buffer = buffer;
current_bufflen = len; /* WDE add */
current_data = data; /* WDE mod */
current_nobuffs = nobuffs;
#if (DEBUG & PHASE_MSGIN)
printk("scsi%d : pointers saved.\n", hostno);
#endif
break;
case RESTORE_POINTERS:
buffer=current_buffer;
cmnd=current_cmnd;
data=current_data; /* WDE mod */
len=current_bufflen;
nobuffs=current_nobuffs;
#if (DEBUG & PHASE_MSGIN)
printk("scsi%d : pointers restored.\n", hostno);
#endif
break;
default:
/*
* IDENTIFY distinguishes itself from the other messages by setting the
* high byte.
*
* Note : we need to handle at least one outstanding command per LUN,
* and need to hash the SCSI command for that I_T_L nexus based on the
* known ID (at this point) and LUN.
*/
if (message & 0x80) {
#if (DEBUG & PHASE_MSGIN)
printk("scsi%d : IDENTIFY message received from id %d, lun %d.\n",
hostno, target, message & 7);
#endif
} else {
/*
* We should go into a MESSAGE OUT phase, and send a MESSAGE_REJECT
* if we run into a message that we don't like. The seagate driver
* needs some serious restructuring first though.
*/
#if (DEBUG & PHASE_MSGIN)
printk("scsi%d : unknown message %d from target %d.\n",
hostno, message, target);
#endif
}
}
break;
default :
printk("scsi%d : unknown phase.\n", hostno);
st0x_aborted = DID_ERROR;
}
#ifdef SLOW_HANDSHAKE
/*
* I really don't care to deal with borken devices in each single
* byte transfer case (ie, message in, message out, status), so
* I'll do the wait here if necessary.
*/
if (borken)
borken_wait();
#endif
} /* if ends */
} /* while ends */
#if (DEBUG & (PHASE_DATAIN | PHASE_DATAOUT | PHASE_EXIT))
printk("scsi%d : Transfered %d bytes\n", hostno, transfered);
#endif
#if (DEBUG & PHASE_EXIT)
#if 0 /* Doesn't work for scatter / gather */
printk("Buffer : \n");
for (i = 0; i < 20; ++i)
printk ("%02x ", ((unsigned char *) data)[i]); /* WDE mod */
printk("\n");
#endif
printk("scsi%d : status = ", hostno);
print_status(status);
printk("message = %02x\n", message);
#endif
/* We shouldn't reach this until *after* BSY has been deasserted */
#ifdef notyet
if (st0x_aborted) {
if (STATUS & STAT_BSY) {
seagate_st0x_reset(NULL);
st0x_aborted = DID_RESET;
}
abort_confirm = 1;
}
#endif
#ifdef LINKED
else {
/*
* Fix the message byte so that unsuspecting high level drivers don't
* puke when they see a LINKED COMMAND message in place of the COMMAND
* COMPLETE they may be expecting. Shouldn't be necessary, but it's
* better to be on the safe side.
*
* A non LINKED* message byte will indicate that the command completed,
* and we are now disconnected.
*/
switch (message) {
case LINKED_CMD_COMPLETE :
case LINKED_FLG_CMD_COMPLETE :
message = COMMAND_COMPLETE;
linked_target = current_target;
linked_lun = current_lun;
linked_connected = 1;
#if (DEBUG & DEBUG_LINKED)
printk("scsi%d : keeping I_T_L nexus established for linked command.\n",
hostno);
#endif
/*
* We also will need to adjust status to accomodate intermediate conditions.
*/
if ((status == INTERMEDIATE_GOOD) ||
(status == INTERMEDIATE_C_GOOD))
status = GOOD;
break;
/*
* We should also handle what are "normal" termination messages
* here (ABORT, BUS_DEVICE_RESET?, and COMMAND_COMPLETE individually,
* and flake if things aren't right.
*/
default :
#if (DEBUG & DEBUG_LINKED)
printk("scsi%d : closing I_T_L nexus.\n", hostno);
#endif
linked_connected = 0;
}
}
#endif /* LINKED */
if (should_reconnect) {
#if (DEBUG & PHASE_RESELECT)
printk("scsi%d : exiting seagate_st0x_queue_command() with reconnect enabled.\n",
hostno);
#endif
CONTROL = BASE_CMD | CMD_INTR ;
} else
CONTROL = BASE_CMD;
return retcode (st0x_aborted);
}
int seagate_st0x_abort (Scsi_Cmnd * SCpnt, int code)
{
if (code)
st0x_aborted = code;
else
st0x_aborted = DID_ABORT;
return 0;
}
/*
the seagate_st0x_reset function resets the SCSI bus
*/
int seagate_st0x_reset (Scsi_Cmnd * SCpnt)
{
unsigned clock;
/*
No timeouts - this command is going to fail because
it was reset.
*/
#ifdef DEBUG
printk("In seagate_st0x_reset()\n");
#endif
/* assert RESET signal on SCSI bus. */
CONTROL = BASE_CMD | CMD_RST;
clock=jiffies+2;
/* Wait. */
while (jiffies < clock);
CONTROL = BASE_CMD;
st0x_aborted = DID_RESET;
#ifdef DEBUG
printk("SCSI bus reset.\n");
#endif
if(SCpnt) SCpnt->flags |= NEEDS_JUMPSTART;
return 0;
}
#ifdef CONFIG_BLK_DEV_SD
#include <asm/segment.h>
#include "sd.h"
#include "scsi_ioctl.h"
int seagate_st0x_biosparam(int size, int dev, int* ip) {
unsigned char buf[256 + sizeof(int) * 2], cmd[6], *data, *page;
int *sizes, result, formatted_sectors, total_sectors;
int cylinders, heads, sectors;
Scsi_Device *disk;
disk = rscsi_disks[MINOR(dev) >> 4].device;
/*
* Only SCSI-I CCS drives and later implement the necessary mode sense
* pages.
*/
if (disk->scsi_level < 2)
return -1;
sizes = (int *) buf;
data = (unsigned char *) (sizes + 2);
cmd[0] = MODE_SENSE;
cmd[1] = (disk->lun << 5) & 0xe5;
cmd[2] = 0x04; /* Read page 4, rigid disk geometry page current values */
cmd[3] = 0;
cmd[4] = 255;
cmd[5] = 0;
/*
* We are transfering 0 bytes in the out direction, and expect to get back
* 24 bytes for each mode page.
*/
sizes[0] = 0;
sizes[1] = 256;
memcpy (data, cmd, 6);
if (!(result = kernel_scsi_ioctl (disk, SCSI_IOCTL_SEND_COMMAND, (void *) buf))) {
/*
* The mode page lies beyond the MODE SENSE header, with length 4, and
* the BLOCK DESCRIPTOR, with length header[3].
*/
page = data + 4 + data[3];
heads = (int) page[5];
cylinders = (page[2] << 16) | (page[3] << 8) | page[4];
cmd[2] = 0x03; /* Read page 3, format page current values */
memcpy (data, cmd, 6);
if (!(result = kernel_scsi_ioctl (disk, SCSI_IOCTL_SEND_COMMAND, (void *) buf))) {
page = data + 4 + data[3];
sectors = (page[10] << 8) | page[11];
/*
* Get the total number of formatted sectors from the block descriptor,
* so we can tell how many are being used for alternates.
*/
formatted_sectors = (data[4 + 1] << 16) | (data[4 + 2] << 8) |
data[4 + 3] ;
total_sectors = (heads * cylinders * sectors);
/*
* Adjust the real geometry by subtracting
* (spare sectors / (heads * tracks)) cylinders from the number of cylinders.
*
* It appears that the CE cylinder CAN be a partial cylinder.
*/
printk("scsi%d : heads = %d cylinders = %d sectors = %d total = %d formatted = %d\n",
hostno, heads, cylinders, sectors, total_sectors, formatted_sectors);
if (!heads || !sectors || !cylinders)
result = -1;
else
cylinders -= ((total_sectors - formatted_sectors) / (heads * sectors));
/*
* Now, we need to do a sanity check on the geometry to see if it is
* BIOS compatable. The maximum BIOS geometry is 1024 cylinders *
* 256 heads * 64 sectors.
*/
if ((cylinders > 1024) || (sectors > 64))
result = -1;
else {
ip[0] = heads;
ip[1] = sectors;
ip[2] = cylinders;
}
/*
* There should be an alternate mapping for things the seagate doesn't
* understand, but I couldn't say what it is with reasonable certainty.
*/
}
}
return result;
}
#endif /* CONFIG_BLK_DEV_SD */
#endif /* defined(CONFIG_SCSI_SEGATE) */