58217f5900
WOO HOO!
1402 lines
34 KiB
C
1402 lines
34 KiB
C
/*---------------------------------------------------------------------------+
|
|
| reg_ld_str.c |
|
|
| |
|
|
| All of the functions which transfer data between user memory and FPU_REGs.|
|
|
| |
|
|
| Copyright (C) 1992,1993,1994 |
|
|
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
|
|
| Australia. E-mail billm@vaxc.cc.monash.edu.au |
|
|
| |
|
|
| |
|
|
+---------------------------------------------------------------------------*/
|
|
|
|
/*---------------------------------------------------------------------------+
|
|
| Note: |
|
|
| The file contains code which accesses user memory. |
|
|
| Emulator static data may change when user memory is accessed, due to |
|
|
| other processes using the emulator while swapping is in progress. |
|
|
+---------------------------------------------------------------------------*/
|
|
|
|
#include <asm/segment.h>
|
|
|
|
#include "fpu_system.h"
|
|
#include "exception.h"
|
|
#include "reg_constant.h"
|
|
#include "fpu_emu.h"
|
|
#include "control_w.h"
|
|
#include "status_w.h"
|
|
|
|
|
|
#define EXTENDED_Ebias 0x3fff
|
|
#define EXTENDED_Emin (-0x3ffe) /* smallest valid exponent */
|
|
|
|
#define DOUBLE_Emax 1023 /* largest valid exponent */
|
|
#define DOUBLE_Ebias 1023
|
|
#define DOUBLE_Emin (-1022) /* smallest valid exponent */
|
|
|
|
#define SINGLE_Emax 127 /* largest valid exponent */
|
|
#define SINGLE_Ebias 127
|
|
#define SINGLE_Emin (-126) /* smallest valid exponent */
|
|
|
|
static void write_to_extended(FPU_REG *rp, char *d);
|
|
|
|
FPU_REG FPU_loaded_data;
|
|
|
|
|
|
/* Get a long double from user memory */
|
|
int reg_load_extended(overrides override)
|
|
{
|
|
long double *s = (long double *)FPU_data_address;
|
|
unsigned long sigl, sigh, exp;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_READ, s, 10);
|
|
/* Use temporary variables here because FPU_loaded data is
|
|
static and hence re-entrancy problems can arise */
|
|
sigl = get_fs_long((unsigned long *) s);
|
|
sigh = get_fs_long(1 + (unsigned long *) s);
|
|
exp = get_fs_word(4 + (unsigned short *) s);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
FPU_loaded_data.tag = TW_Valid; /* Default */
|
|
FPU_loaded_data.sigl = sigl;
|
|
FPU_loaded_data.sigh = sigh;
|
|
if (exp & 0x8000)
|
|
FPU_loaded_data.sign = SIGN_NEG;
|
|
else
|
|
FPU_loaded_data.sign = SIGN_POS;
|
|
exp &= 0x7fff;
|
|
FPU_loaded_data.exp = exp - EXTENDED_Ebias + EXP_BIAS;
|
|
|
|
/* Assume that optimisation can keep sigl, sigh, and exp in
|
|
registers, otherwise it would be more efficient to work
|
|
with FPU_loaded_data (which is static) here. */
|
|
if ( exp == 0 )
|
|
{
|
|
if ( !(sigh | sigl) )
|
|
{
|
|
FPU_loaded_data.tag = TW_Zero;
|
|
return 0;
|
|
}
|
|
/* The number is a de-normal or pseudodenormal. */
|
|
if (sigh & 0x80000000)
|
|
{
|
|
/* Is a pseudodenormal. */
|
|
/* Convert it for internal use. */
|
|
/* This is non-80486 behaviour because the number
|
|
loses its 'denormal' identity. */
|
|
FPU_loaded_data.exp++;
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
/* Is a denormal. */
|
|
/* Convert it for internal use. */
|
|
FPU_loaded_data.exp++;
|
|
normalize_nuo(&FPU_loaded_data);
|
|
return 0;
|
|
}
|
|
}
|
|
else if ( exp == 0x7fff )
|
|
{
|
|
if ( !((sigh ^ 0x80000000) | sigl) )
|
|
{
|
|
/* Matches the bit pattern for Infinity. */
|
|
FPU_loaded_data.exp = EXP_Infinity;
|
|
FPU_loaded_data.tag = TW_Infinity;
|
|
return 0;
|
|
}
|
|
|
|
FPU_loaded_data.exp = EXP_NaN;
|
|
FPU_loaded_data.tag = TW_NaN;
|
|
if ( !(sigh & 0x80000000) )
|
|
{
|
|
/* NaNs have the ms bit set to 1. */
|
|
/* This is therefore an Unsupported NaN data type. */
|
|
/* This is non 80486 behaviour */
|
|
/* This should generate an Invalid Operand exception
|
|
later, so we convert it to a SNaN */
|
|
FPU_loaded_data.sigh = 0x80000000;
|
|
FPU_loaded_data.sigl = 0x00000001;
|
|
FPU_loaded_data.sign = SIGN_NEG;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if ( !(sigh & 0x80000000) )
|
|
{
|
|
/* Unsupported data type. */
|
|
/* Valid numbers have the ms bit set to 1. */
|
|
/* Unnormal. */
|
|
/* Convert it for internal use. */
|
|
/* This is non-80486 behaviour */
|
|
/* This should generate an Invalid Operand exception
|
|
later, so we convert it to a SNaN */
|
|
FPU_loaded_data.sigh = 0x80000000;
|
|
FPU_loaded_data.sigl = 0x00000001;
|
|
FPU_loaded_data.sign = SIGN_NEG;
|
|
FPU_loaded_data.exp = EXP_NaN;
|
|
FPU_loaded_data.tag = TW_NaN;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Get a double from user memory */
|
|
int reg_load_double(overrides override)
|
|
{
|
|
double *dfloat = (double *)FPU_data_address;
|
|
int exp;
|
|
unsigned m64, l64;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_READ, dfloat, 8);
|
|
m64 = get_fs_long(1 + (unsigned long *) dfloat);
|
|
l64 = get_fs_long((unsigned long *) dfloat);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
if (m64 & 0x80000000)
|
|
FPU_loaded_data.sign = SIGN_NEG;
|
|
else
|
|
FPU_loaded_data.sign = SIGN_POS;
|
|
exp = ((m64 & 0x7ff00000) >> 20) - DOUBLE_Ebias;
|
|
m64 &= 0xfffff;
|
|
if (exp > DOUBLE_Emax)
|
|
{
|
|
/* Infinity or NaN */
|
|
if ((m64 == 0) && (l64 == 0))
|
|
{
|
|
/* +- infinity */
|
|
FPU_loaded_data.sigh = 0x80000000;
|
|
FPU_loaded_data.sigl = 0x00000000;
|
|
FPU_loaded_data.exp = EXP_Infinity;
|
|
FPU_loaded_data.tag = TW_Infinity;
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* Must be a signaling or quiet NaN */
|
|
FPU_loaded_data.exp = EXP_NaN;
|
|
FPU_loaded_data.tag = TW_NaN;
|
|
FPU_loaded_data.sigh = (m64 << 11) | 0x80000000;
|
|
FPU_loaded_data.sigh |= l64 >> 21;
|
|
FPU_loaded_data.sigl = l64 << 11;
|
|
return 0; /* The calling function must look for NaNs */
|
|
}
|
|
}
|
|
else if ( exp < DOUBLE_Emin )
|
|
{
|
|
/* Zero or de-normal */
|
|
if ((m64 == 0) && (l64 == 0))
|
|
{
|
|
/* Zero */
|
|
int c = FPU_loaded_data.sign;
|
|
reg_move(&CONST_Z, &FPU_loaded_data);
|
|
FPU_loaded_data.sign = c;
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* De-normal */
|
|
FPU_loaded_data.exp = DOUBLE_Emin + EXP_BIAS;
|
|
FPU_loaded_data.tag = TW_Valid;
|
|
FPU_loaded_data.sigh = m64 << 11;
|
|
FPU_loaded_data.sigh |= l64 >> 21;
|
|
FPU_loaded_data.sigl = l64 << 11;
|
|
normalize_nuo(&FPU_loaded_data);
|
|
return denormal_operand();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
FPU_loaded_data.exp = exp + EXP_BIAS;
|
|
FPU_loaded_data.tag = TW_Valid;
|
|
FPU_loaded_data.sigh = (m64 << 11) | 0x80000000;
|
|
FPU_loaded_data.sigh |= l64 >> 21;
|
|
FPU_loaded_data.sigl = l64 << 11;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Get a float from user memory */
|
|
int reg_load_single(overrides override)
|
|
{
|
|
float *single = (float *)FPU_data_address;
|
|
unsigned m32;
|
|
int exp;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_READ, single, 4);
|
|
m32 = get_fs_long((unsigned long *) single);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
if (m32 & 0x80000000)
|
|
FPU_loaded_data.sign = SIGN_NEG;
|
|
else
|
|
FPU_loaded_data.sign = SIGN_POS;
|
|
if (!(m32 & 0x7fffffff))
|
|
{
|
|
/* Zero */
|
|
int c = FPU_loaded_data.sign;
|
|
reg_move(&CONST_Z, &FPU_loaded_data);
|
|
FPU_loaded_data.sign = c;
|
|
return 0;
|
|
}
|
|
exp = ((m32 & 0x7f800000) >> 23) - SINGLE_Ebias;
|
|
m32 = (m32 & 0x7fffff) << 8;
|
|
if ( exp < SINGLE_Emin )
|
|
{
|
|
/* De-normals */
|
|
FPU_loaded_data.exp = SINGLE_Emin + EXP_BIAS;
|
|
FPU_loaded_data.tag = TW_Valid;
|
|
FPU_loaded_data.sigh = m32;
|
|
FPU_loaded_data.sigl = 0;
|
|
normalize_nuo(&FPU_loaded_data);
|
|
return denormal_operand();
|
|
}
|
|
else if ( exp > SINGLE_Emax )
|
|
{
|
|
/* Infinity or NaN */
|
|
if ( m32 == 0 )
|
|
{
|
|
/* +- infinity */
|
|
FPU_loaded_data.sigh = 0x80000000;
|
|
FPU_loaded_data.sigl = 0x00000000;
|
|
FPU_loaded_data.exp = EXP_Infinity;
|
|
FPU_loaded_data.tag = TW_Infinity;
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* Must be a signaling or quiet NaN */
|
|
FPU_loaded_data.exp = EXP_NaN;
|
|
FPU_loaded_data.tag = TW_NaN;
|
|
FPU_loaded_data.sigh = m32 | 0x80000000;
|
|
FPU_loaded_data.sigl = 0;
|
|
return 0; /* The calling function must look for NaNs */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
FPU_loaded_data.exp = exp + EXP_BIAS;
|
|
FPU_loaded_data.sigh = m32 | 0x80000000;
|
|
FPU_loaded_data.sigl = 0;
|
|
FPU_loaded_data.tag = TW_Valid;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Get a long long from user memory */
|
|
void reg_load_int64(overrides override)
|
|
{
|
|
long long *_s = (long long *)FPU_data_address;
|
|
int e;
|
|
long long s;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_READ, _s, 8);
|
|
((unsigned long *)&s)[0] = get_fs_long((unsigned long *) _s);
|
|
((unsigned long *)&s)[1] = get_fs_long(1 + (unsigned long *) _s);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
if (s == 0)
|
|
{ reg_move(&CONST_Z, &FPU_loaded_data); return; }
|
|
|
|
if (s > 0)
|
|
FPU_loaded_data.sign = SIGN_POS;
|
|
else
|
|
{
|
|
s = -s;
|
|
FPU_loaded_data.sign = SIGN_NEG;
|
|
}
|
|
|
|
e = EXP_BIAS + 63;
|
|
significand(&FPU_loaded_data) = s;
|
|
FPU_loaded_data.exp = e;
|
|
FPU_loaded_data.tag = TW_Valid;
|
|
normalize_nuo(&FPU_loaded_data);
|
|
}
|
|
|
|
|
|
/* Get a long from user memory */
|
|
void reg_load_int32(overrides override)
|
|
{
|
|
long *_s = (long *)FPU_data_address;
|
|
long s;
|
|
int e;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_READ, _s, 4);
|
|
s = (long)get_fs_long((unsigned long *) _s);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
if (s == 0)
|
|
{ reg_move(&CONST_Z, &FPU_loaded_data); return; }
|
|
|
|
if (s > 0)
|
|
FPU_loaded_data.sign = SIGN_POS;
|
|
else
|
|
{
|
|
s = -s;
|
|
FPU_loaded_data.sign = SIGN_NEG;
|
|
}
|
|
|
|
e = EXP_BIAS + 31;
|
|
FPU_loaded_data.sigh = s;
|
|
FPU_loaded_data.sigl = 0;
|
|
FPU_loaded_data.exp = e;
|
|
FPU_loaded_data.tag = TW_Valid;
|
|
normalize_nuo(&FPU_loaded_data);
|
|
}
|
|
|
|
|
|
/* Get a short from user memory */
|
|
void reg_load_int16(overrides override)
|
|
{
|
|
short *_s = (short *)FPU_data_address;
|
|
int s, e;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_READ, _s, 2);
|
|
/* Cast as short to get the sign extended. */
|
|
s = (short)get_fs_word((unsigned short *) _s);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
if (s == 0)
|
|
{ reg_move(&CONST_Z, &FPU_loaded_data); return; }
|
|
|
|
if (s > 0)
|
|
FPU_loaded_data.sign = SIGN_POS;
|
|
else
|
|
{
|
|
s = -s;
|
|
FPU_loaded_data.sign = SIGN_NEG;
|
|
}
|
|
|
|
e = EXP_BIAS + 15;
|
|
FPU_loaded_data.sigh = s << 16;
|
|
|
|
FPU_loaded_data.sigl = 0;
|
|
FPU_loaded_data.exp = e;
|
|
FPU_loaded_data.tag = TW_Valid;
|
|
normalize_nuo(&FPU_loaded_data);
|
|
}
|
|
|
|
|
|
/* Get a packed bcd array from user memory */
|
|
void reg_load_bcd(overrides override)
|
|
{
|
|
char *s = (char *)FPU_data_address;
|
|
int pos;
|
|
unsigned char bcd;
|
|
long long l=0;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_READ, s, 10);
|
|
RE_ENTRANT_CHECK_ON;
|
|
for ( pos = 8; pos >= 0; pos--)
|
|
{
|
|
l *= 10;
|
|
RE_ENTRANT_CHECK_OFF;
|
|
bcd = (unsigned char)get_fs_byte((unsigned char *) s+pos);
|
|
RE_ENTRANT_CHECK_ON;
|
|
l += bcd >> 4;
|
|
l *= 10;
|
|
l += bcd & 0x0f;
|
|
}
|
|
|
|
/* Finish all access to user memory before putting stuff into
|
|
the static FPU_loaded_data */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_loaded_data.sign =
|
|
((unsigned char)get_fs_byte((unsigned char *) s+9)) & 0x80 ?
|
|
SIGN_NEG : SIGN_POS;
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
if (l == 0)
|
|
{
|
|
char sign = FPU_loaded_data.sign;
|
|
reg_move(&CONST_Z, &FPU_loaded_data);
|
|
FPU_loaded_data.sign = sign;
|
|
}
|
|
else
|
|
{
|
|
significand(&FPU_loaded_data) = l;
|
|
FPU_loaded_data.exp = EXP_BIAS + 63;
|
|
FPU_loaded_data.tag = TW_Valid;
|
|
normalize_nuo(&FPU_loaded_data);
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*/
|
|
|
|
/* Put a long double into user memory */
|
|
int reg_store_extended(overrides override)
|
|
{
|
|
/*
|
|
The only exception raised by an attempt to store to an
|
|
extended format is the Invalid Stack exception, i.e.
|
|
attempting to store from an empty register.
|
|
*/
|
|
long double *d = (long double *)FPU_data_address;
|
|
|
|
if ( FPU_st0_tag != TW_Empty )
|
|
{
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE, d, 10);
|
|
RE_ENTRANT_CHECK_ON;
|
|
write_to_extended(FPU_st0_ptr, (char *) FPU_data_address);
|
|
return 1;
|
|
}
|
|
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* The masked response */
|
|
/* Put out the QNaN indefinite */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,d,10);
|
|
put_fs_long(0, (unsigned long *) d);
|
|
put_fs_long(0xc0000000, 1 + (unsigned long *) d);
|
|
put_fs_word(0xffff, 4 + (short *) d);
|
|
RE_ENTRANT_CHECK_ON;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
/* Put a double into user memory */
|
|
int reg_store_double(overrides override)
|
|
{
|
|
double *dfloat = (double *)FPU_data_address;
|
|
unsigned long l[2];
|
|
unsigned long increment = 0; /* avoid gcc warnings */
|
|
|
|
if (FPU_st0_tag == TW_Valid)
|
|
{
|
|
int exp;
|
|
FPU_REG tmp;
|
|
|
|
reg_move(FPU_st0_ptr, &tmp);
|
|
exp = tmp.exp - EXP_BIAS;
|
|
|
|
if ( exp < DOUBLE_Emin ) /* It may be a denormal */
|
|
{
|
|
int precision_loss;
|
|
|
|
/* A denormal will always underflow. */
|
|
#ifndef PECULIAR_486
|
|
/* An 80486 is supposed to be able to generate
|
|
a denormal exception here, but... */
|
|
if ( FPU_st0_ptr->exp <= EXP_UNDER )
|
|
{
|
|
/* Underflow has priority. */
|
|
if ( control_word & CW_Underflow )
|
|
denormal_operand();
|
|
}
|
|
#endif PECULIAR_486
|
|
|
|
tmp.exp += -DOUBLE_Emin + 52; /* largest exp to be 51 */
|
|
|
|
if ( (precision_loss = round_to_int(&tmp)) )
|
|
{
|
|
#ifdef PECULIAR_486
|
|
/* Did it round to a non-denormal ? */
|
|
/* This behaviour might be regarded as peculiar, it appears
|
|
that the 80486 rounds to the dest precision, then
|
|
converts to decide underflow. */
|
|
if ( !((tmp.sigh == 0x00100000) && (tmp.sigl == 0) &&
|
|
(FPU_st0_ptr->sigl & 0x000007ff)) )
|
|
#endif PECULIAR_486
|
|
{
|
|
EXCEPTION(EX_Underflow);
|
|
/* This is a special case: see sec 16.2.5.1 of
|
|
the 80486 book */
|
|
if ( !(control_word & CW_Underflow) )
|
|
return 0;
|
|
}
|
|
EXCEPTION(precision_loss);
|
|
if ( !(control_word & CW_Precision) )
|
|
return 0;
|
|
}
|
|
l[0] = tmp.sigl;
|
|
l[1] = tmp.sigh;
|
|
}
|
|
else
|
|
{
|
|
if ( tmp.sigl & 0x000007ff )
|
|
{
|
|
switch (control_word & CW_RC)
|
|
{
|
|
case RC_RND:
|
|
/* Rounding can get a little messy.. */
|
|
increment = ((tmp.sigl & 0x7ff) > 0x400) | /* nearest */
|
|
((tmp.sigl & 0xc00) == 0xc00); /* odd -> even */
|
|
break;
|
|
case RC_DOWN: /* towards -infinity */
|
|
increment = (tmp.sign == SIGN_POS) ? 0 : tmp.sigl & 0x7ff;
|
|
break;
|
|
case RC_UP: /* towards +infinity */
|
|
increment = (tmp.sign == SIGN_POS) ? tmp.sigl & 0x7ff : 0;
|
|
break;
|
|
case RC_CHOP:
|
|
increment = 0;
|
|
break;
|
|
}
|
|
|
|
/* Truncate the mantissa */
|
|
tmp.sigl &= 0xfffff800;
|
|
|
|
if ( increment )
|
|
{
|
|
set_precision_flag_up();
|
|
|
|
if ( tmp.sigl >= 0xfffff800 )
|
|
{
|
|
/* the sigl part overflows */
|
|
if ( tmp.sigh == 0xffffffff )
|
|
{
|
|
/* The sigh part overflows */
|
|
tmp.sigh = 0x80000000;
|
|
exp++;
|
|
if (exp >= EXP_OVER)
|
|
goto overflow;
|
|
}
|
|
else
|
|
{
|
|
tmp.sigh ++;
|
|
}
|
|
tmp.sigl = 0x00000000;
|
|
}
|
|
else
|
|
{
|
|
/* We only need to increment sigl */
|
|
tmp.sigl += 0x00000800;
|
|
}
|
|
}
|
|
else
|
|
set_precision_flag_down();
|
|
}
|
|
|
|
l[0] = (tmp.sigl >> 11) | (tmp.sigh << 21);
|
|
l[1] = ((tmp.sigh >> 11) & 0xfffff);
|
|
|
|
if ( exp > DOUBLE_Emax )
|
|
{
|
|
overflow:
|
|
EXCEPTION(EX_Overflow);
|
|
if ( !(control_word & CW_Overflow) )
|
|
return 0;
|
|
set_precision_flag_up();
|
|
if ( !(control_word & CW_Precision) )
|
|
return 0;
|
|
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book */
|
|
/* Overflow to infinity */
|
|
l[0] = 0x00000000; /* Set to */
|
|
l[1] = 0x7ff00000; /* + INF */
|
|
}
|
|
else
|
|
{
|
|
/* Add the exponent */
|
|
l[1] |= (((exp+DOUBLE_Ebias) & 0x7ff) << 20);
|
|
}
|
|
}
|
|
}
|
|
else if (FPU_st0_tag == TW_Zero)
|
|
{
|
|
/* Number is zero */
|
|
l[0] = 0;
|
|
l[1] = 0;
|
|
}
|
|
else if (FPU_st0_tag == TW_Infinity)
|
|
{
|
|
l[0] = 0;
|
|
l[1] = 0x7ff00000;
|
|
}
|
|
else if (FPU_st0_tag == TW_NaN)
|
|
{
|
|
/* See if we can get a valid NaN from the FPU_REG */
|
|
l[0] = (FPU_st0_ptr->sigl >> 11) | (FPU_st0_ptr->sigh << 21);
|
|
l[1] = ((FPU_st0_ptr->sigh >> 11) & 0xfffff);
|
|
if ( !(FPU_st0_ptr->sigh & 0x40000000) )
|
|
{
|
|
/* It is a signalling NaN */
|
|
EXCEPTION(EX_Invalid);
|
|
if ( !(control_word & CW_Invalid) )
|
|
return 0;
|
|
l[1] |= (0x40000000 >> 11);
|
|
}
|
|
l[1] |= 0x7ff00000;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Empty )
|
|
{
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* The masked response */
|
|
/* Put out the QNaN indefinite */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,(void *)dfloat,8);
|
|
put_fs_long(0, (unsigned long *) dfloat);
|
|
put_fs_long(0xfff80000, 1 + (unsigned long *) dfloat);
|
|
RE_ENTRANT_CHECK_ON;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
if (FPU_st0_ptr->sign)
|
|
l[1] |= 0x80000000;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,(void *)dfloat,8);
|
|
put_fs_long(l[0], (unsigned long *)dfloat);
|
|
put_fs_long(l[1], 1 + (unsigned long *)dfloat);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Put a float into user memory */
|
|
int reg_store_single(overrides override)
|
|
{
|
|
float *single = (float *)FPU_data_address;
|
|
long templ;
|
|
unsigned long increment = 0; /* avoid gcc warnings */
|
|
|
|
if (FPU_st0_tag == TW_Valid)
|
|
{
|
|
int exp;
|
|
FPU_REG tmp;
|
|
|
|
reg_move(FPU_st0_ptr, &tmp);
|
|
exp = tmp.exp - EXP_BIAS;
|
|
|
|
if ( exp < SINGLE_Emin )
|
|
{
|
|
int precision_loss;
|
|
|
|
/* A denormal will always underflow. */
|
|
#ifndef PECULIAR_486
|
|
/* An 80486 is supposed to be able to generate
|
|
a denormal exception here, but... */
|
|
if ( FPU_st0_ptr->exp <= EXP_UNDER )
|
|
{
|
|
/* Underflow has priority. */
|
|
if ( control_word & CW_Underflow )
|
|
denormal_operand();
|
|
}
|
|
#endif PECULIAR_486
|
|
|
|
tmp.exp += -SINGLE_Emin + 23; /* largest exp to be 22 */
|
|
|
|
if ( (precision_loss = round_to_int(&tmp)) )
|
|
{
|
|
#ifdef PECULIAR_486
|
|
/* Did it round to a non-denormal ? */
|
|
/* This behaviour might be regarded as peculiar, it appears
|
|
that the 80486 rounds to the dest precision, then
|
|
converts to decide underflow. */
|
|
if ( !((tmp.sigl == 0x00800000) &&
|
|
((FPU_st0_ptr->sigh & 0x000000ff) || FPU_st0_ptr->sigl)) )
|
|
#endif PECULIAR_486
|
|
{
|
|
EXCEPTION(EX_Underflow);
|
|
/* This is a special case: see sec 16.2.5.1 of
|
|
the 80486 book */
|
|
if ( !(control_word & EX_Underflow) )
|
|
return 0;
|
|
}
|
|
EXCEPTION(precision_loss);
|
|
if ( !(control_word & EX_Precision) )
|
|
return 0;
|
|
}
|
|
templ = tmp.sigl;
|
|
}
|
|
else
|
|
{
|
|
if ( tmp.sigl | (tmp.sigh & 0x000000ff) )
|
|
{
|
|
unsigned long sigh = tmp.sigh;
|
|
unsigned long sigl = tmp.sigl;
|
|
|
|
switch (control_word & CW_RC)
|
|
{
|
|
case RC_RND:
|
|
increment = ((sigh & 0xff) > 0x80) /* more than half */
|
|
|| (((sigh & 0xff) == 0x80) && sigl) /* more than half */
|
|
|| ((sigh & 0x180) == 0x180); /* round to even */
|
|
break;
|
|
case RC_DOWN: /* towards -infinity */
|
|
increment = (tmp.sign == SIGN_POS)
|
|
? 0 : (sigl | (sigh & 0xff));
|
|
break;
|
|
case RC_UP: /* towards +infinity */
|
|
increment = (tmp.sign == SIGN_POS)
|
|
? (sigl | (sigh & 0xff)) : 0;
|
|
break;
|
|
case RC_CHOP:
|
|
increment = 0;
|
|
break;
|
|
}
|
|
|
|
/* Truncate part of the mantissa */
|
|
tmp.sigl = 0;
|
|
|
|
if (increment)
|
|
{
|
|
set_precision_flag_up();
|
|
|
|
if ( sigh >= 0xffffff00 )
|
|
{
|
|
/* The sigh part overflows */
|
|
tmp.sigh = 0x80000000;
|
|
exp++;
|
|
if ( exp >= EXP_OVER )
|
|
goto overflow;
|
|
}
|
|
else
|
|
{
|
|
tmp.sigh &= 0xffffff00;
|
|
tmp.sigh += 0x100;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
set_precision_flag_down();
|
|
tmp.sigh &= 0xffffff00; /* Finish the truncation */
|
|
}
|
|
}
|
|
|
|
templ = (tmp.sigh >> 8) & 0x007fffff;
|
|
|
|
if ( exp > SINGLE_Emax )
|
|
{
|
|
overflow:
|
|
EXCEPTION(EX_Overflow);
|
|
if ( !(control_word & CW_Overflow) )
|
|
return 0;
|
|
set_precision_flag_up();
|
|
if ( !(control_word & CW_Precision) )
|
|
return 0;
|
|
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book. */
|
|
/* Masked respose is overflow to infinity. */
|
|
templ = 0x7f800000;
|
|
}
|
|
else
|
|
templ |= ((exp+SINGLE_Ebias) & 0xff) << 23;
|
|
}
|
|
}
|
|
else if (FPU_st0_tag == TW_Zero)
|
|
{
|
|
templ = 0;
|
|
}
|
|
else if (FPU_st0_tag == TW_Infinity)
|
|
{
|
|
templ = 0x7f800000;
|
|
}
|
|
else if (FPU_st0_tag == TW_NaN)
|
|
{
|
|
/* See if we can get a valid NaN from the FPU_REG */
|
|
templ = FPU_st0_ptr->sigh >> 8;
|
|
if ( !(FPU_st0_ptr->sigh & 0x40000000) )
|
|
{
|
|
/* It is a signalling NaN */
|
|
EXCEPTION(EX_Invalid);
|
|
if ( !(control_word & CW_Invalid) )
|
|
return 0;
|
|
templ |= (0x40000000 >> 8);
|
|
}
|
|
templ |= 0x7f800000;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Empty )
|
|
{
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
if ( control_word & EX_Invalid )
|
|
{
|
|
/* The masked response */
|
|
/* Put out the QNaN indefinite */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,(void *)single,4);
|
|
put_fs_long(0xffc00000, (unsigned long *) single);
|
|
RE_ENTRANT_CHECK_ON;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
#ifdef PARANOID
|
|
else
|
|
{
|
|
EXCEPTION(EX_INTERNAL|0x106);
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (FPU_st0_ptr->sign)
|
|
templ |= 0x80000000;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,(void *)single,4);
|
|
put_fs_long(templ,(unsigned long *) single);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Put a long long into user memory */
|
|
int reg_store_int64(overrides override)
|
|
{
|
|
long long *d = (long long *)FPU_data_address;
|
|
FPU_REG t;
|
|
long long tll;
|
|
int precision_loss;
|
|
|
|
if ( FPU_st0_tag == TW_Empty )
|
|
{
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
goto invalid_operand;
|
|
}
|
|
else if ( (FPU_st0_tag == TW_Infinity) ||
|
|
(FPU_st0_tag == TW_NaN) )
|
|
{
|
|
EXCEPTION(EX_Invalid);
|
|
goto invalid_operand;
|
|
}
|
|
|
|
reg_move(FPU_st0_ptr, &t);
|
|
precision_loss = round_to_int(&t);
|
|
((long *)&tll)[0] = t.sigl;
|
|
((long *)&tll)[1] = t.sigh;
|
|
if ( (precision_loss == 1) ||
|
|
((t.sigh & 0x80000000) &&
|
|
!((t.sigh == 0x80000000) && (t.sigl == 0) &&
|
|
(t.sign == SIGN_NEG))) )
|
|
{
|
|
EXCEPTION(EX_Invalid);
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book */
|
|
invalid_operand:
|
|
if ( control_word & EX_Invalid )
|
|
{
|
|
/* Produce something like QNaN "indefinite" */
|
|
tll = 0x8000000000000000LL;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if ( precision_loss )
|
|
set_precision_flag(precision_loss);
|
|
if ( t.sign )
|
|
tll = - tll;
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,(void *)d,8);
|
|
put_fs_long(((long *)&tll)[0],(unsigned long *) d);
|
|
put_fs_long(((long *)&tll)[1],1 + (unsigned long *) d);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Put a long into user memory */
|
|
int reg_store_int32(overrides override)
|
|
{
|
|
long *d = (long *)FPU_data_address;
|
|
FPU_REG t;
|
|
int precision_loss;
|
|
|
|
if ( FPU_st0_tag == TW_Empty )
|
|
{
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
goto invalid_operand;
|
|
}
|
|
else if ( (FPU_st0_tag == TW_Infinity) ||
|
|
(FPU_st0_tag == TW_NaN) )
|
|
{
|
|
EXCEPTION(EX_Invalid);
|
|
goto invalid_operand;
|
|
}
|
|
|
|
reg_move(FPU_st0_ptr, &t);
|
|
precision_loss = round_to_int(&t);
|
|
if (t.sigh ||
|
|
((t.sigl & 0x80000000) &&
|
|
!((t.sigl == 0x80000000) && (t.sign == SIGN_NEG))) )
|
|
{
|
|
EXCEPTION(EX_Invalid);
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book */
|
|
invalid_operand:
|
|
if ( control_word & EX_Invalid )
|
|
{
|
|
/* Produce something like QNaN "indefinite" */
|
|
t.sigl = 0x80000000;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if ( precision_loss )
|
|
set_precision_flag(precision_loss);
|
|
if ( t.sign )
|
|
t.sigl = -(long)t.sigl;
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,d,4);
|
|
put_fs_long(t.sigl, (unsigned long *) d);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Put a short into user memory */
|
|
int reg_store_int16(overrides override)
|
|
{
|
|
short *d = (short *)FPU_data_address;
|
|
FPU_REG t;
|
|
int precision_loss;
|
|
|
|
if ( FPU_st0_tag == TW_Empty )
|
|
{
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
goto invalid_operand;
|
|
}
|
|
else if ( (FPU_st0_tag == TW_Infinity) ||
|
|
(FPU_st0_tag == TW_NaN) )
|
|
{
|
|
EXCEPTION(EX_Invalid);
|
|
goto invalid_operand;
|
|
}
|
|
|
|
reg_move(FPU_st0_ptr, &t);
|
|
precision_loss = round_to_int(&t);
|
|
if (t.sigh ||
|
|
((t.sigl & 0xffff8000) &&
|
|
!((t.sigl == 0x8000) && (t.sign == SIGN_NEG))) )
|
|
{
|
|
EXCEPTION(EX_Invalid);
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book */
|
|
invalid_operand:
|
|
if ( control_word & EX_Invalid )
|
|
{
|
|
/* Produce something like QNaN "indefinite" */
|
|
t.sigl = 0x8000;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if ( precision_loss )
|
|
set_precision_flag(precision_loss);
|
|
if ( t.sign )
|
|
t.sigl = -t.sigl;
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,d,2);
|
|
put_fs_word((short)t.sigl,(short *) d);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Put a packed bcd array into user memory */
|
|
int reg_store_bcd(overrides override)
|
|
{
|
|
char *d = (char *)FPU_data_address;
|
|
FPU_REG t;
|
|
unsigned long long ll;
|
|
unsigned char b;
|
|
int i, precision_loss;
|
|
unsigned char sign = (FPU_st0_ptr->sign == SIGN_NEG) ? 0x80 : 0;
|
|
|
|
if ( FPU_st0_tag == TW_Empty )
|
|
{
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
goto invalid_operand;
|
|
}
|
|
|
|
reg_move(FPU_st0_ptr, &t);
|
|
precision_loss = round_to_int(&t);
|
|
ll = significand(&t);
|
|
|
|
/* Check for overflow, by comparing with 999999999999999999 decimal. */
|
|
if ( (t.sigh > 0x0de0b6b3) ||
|
|
((t.sigh == 0x0de0b6b3) && (t.sigl > 0xa763ffff)) )
|
|
{
|
|
EXCEPTION(EX_Invalid);
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book */
|
|
invalid_operand:
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* Produce the QNaN "indefinite" */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,d,10);
|
|
for ( i = 0; i < 7; i++)
|
|
put_fs_byte(0, (unsigned char *) d+i); /* These bytes "undefined" */
|
|
put_fs_byte(0xc0, (unsigned char *) d+7); /* This byte "undefined" */
|
|
put_fs_byte(0xff, (unsigned char *) d+8);
|
|
put_fs_byte(0xff, (unsigned char *) d+9);
|
|
RE_ENTRANT_CHECK_ON;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
else if ( precision_loss )
|
|
{
|
|
/* Precision loss doesn't stop the data transfer */
|
|
set_precision_flag(precision_loss);
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,d,10);
|
|
RE_ENTRANT_CHECK_ON;
|
|
for ( i = 0; i < 9; i++)
|
|
{
|
|
b = div_small(&ll, 10);
|
|
b |= (div_small(&ll, 10)) << 4;
|
|
RE_ENTRANT_CHECK_OFF;
|
|
put_fs_byte(b,(unsigned char *) d+i);
|
|
RE_ENTRANT_CHECK_ON;
|
|
}
|
|
RE_ENTRANT_CHECK_OFF;
|
|
put_fs_byte(sign,(unsigned char *) d+9);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*===========================================================================*/
|
|
|
|
/* r gets mangled such that sig is int, sign:
|
|
it is NOT normalized */
|
|
/* The return value (in eax) is zero if the result is exact,
|
|
if bits are changed due to rounding, truncation, etc, then
|
|
a non-zero value is returned */
|
|
/* Overflow is signalled by a non-zero return value (in eax).
|
|
In the case of overflow, the returned significand always has the
|
|
the largest possible value */
|
|
int round_to_int(FPU_REG *r)
|
|
{
|
|
char very_big;
|
|
unsigned eax;
|
|
|
|
if (r->tag == TW_Zero)
|
|
{
|
|
/* Make sure that zero is returned */
|
|
significand(r) = 0;
|
|
return 0; /* o.k. */
|
|
}
|
|
|
|
if (r->exp > EXP_BIAS + 63)
|
|
{
|
|
r->sigl = r->sigh = ~0; /* The largest representable number */
|
|
return 1; /* overflow */
|
|
}
|
|
|
|
eax = shrxs(&r->sigl, EXP_BIAS + 63 - r->exp);
|
|
very_big = !(~(r->sigh) | ~(r->sigl)); /* test for 0xfff...fff */
|
|
#define half_or_more (eax & 0x80000000)
|
|
#define frac_part (eax)
|
|
#define more_than_half ((eax & 0x80000001) == 0x80000001)
|
|
switch (control_word & CW_RC)
|
|
{
|
|
case RC_RND:
|
|
if ( more_than_half /* nearest */
|
|
|| (half_or_more && (r->sigl & 1)) ) /* odd -> even */
|
|
{
|
|
if ( very_big ) return 1; /* overflow */
|
|
significand(r) ++;
|
|
return PRECISION_LOST_UP;
|
|
}
|
|
break;
|
|
case RC_DOWN:
|
|
if (frac_part && r->sign)
|
|
{
|
|
if ( very_big ) return 1; /* overflow */
|
|
significand(r) ++;
|
|
return PRECISION_LOST_UP;
|
|
}
|
|
break;
|
|
case RC_UP:
|
|
if (frac_part && !r->sign)
|
|
{
|
|
if ( very_big ) return 1; /* overflow */
|
|
significand(r) ++;
|
|
return PRECISION_LOST_UP;
|
|
}
|
|
break;
|
|
case RC_CHOP:
|
|
break;
|
|
}
|
|
|
|
return eax ? PRECISION_LOST_DOWN : 0;
|
|
|
|
}
|
|
|
|
/*===========================================================================*/
|
|
|
|
char *fldenv(void)
|
|
{
|
|
char *s = (char *)FPU_data_address;
|
|
unsigned short tag_word = 0;
|
|
unsigned char tag;
|
|
int i;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_READ, s, 0x1c);
|
|
control_word = get_fs_word((unsigned short *) s);
|
|
partial_status = get_fs_word((unsigned short *) (s+4));
|
|
tag_word = get_fs_word((unsigned short *) (s+8));
|
|
ip_offset = get_fs_long((unsigned long *) (s+0x0c));
|
|
cs_selector = get_fs_long((unsigned long *) (s+0x10));
|
|
data_operand_offset = get_fs_long((unsigned long *) (s+0x14));
|
|
operand_selector = get_fs_long((unsigned long *) (s+0x18));
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
top = (partial_status >> SW_Top_Shift) & 7;
|
|
|
|
if ( partial_status & ~control_word & CW_Exceptions )
|
|
partial_status |= (SW_Summary | SW_Backward);
|
|
else
|
|
partial_status &= ~(SW_Summary | SW_Backward);
|
|
|
|
for ( i = 0; i < 8; i++ )
|
|
{
|
|
tag = tag_word & 3;
|
|
tag_word >>= 2;
|
|
|
|
if ( tag == 3 )
|
|
/* New tag is empty. Accept it */
|
|
regs[i].tag = TW_Empty;
|
|
else if ( regs[i].tag == TW_Empty )
|
|
{
|
|
/* Old tag is empty and new tag is not empty. New tag is determined
|
|
by old reg contents */
|
|
if ( regs[i].exp == EXP_BIAS - EXTENDED_Ebias )
|
|
{
|
|
if ( !(regs[i].sigl | regs[i].sigh) )
|
|
regs[i].tag = TW_Zero;
|
|
else
|
|
regs[i].tag = TW_Valid;
|
|
}
|
|
else if ( regs[i].exp == 0x7fff + EXP_BIAS - EXTENDED_Ebias )
|
|
{
|
|
if ( !((regs[i].sigh & ~0x80000000) | regs[i].sigl) )
|
|
regs[i].tag = TW_Infinity;
|
|
else
|
|
regs[i].tag = TW_NaN;
|
|
}
|
|
else
|
|
regs[i].tag = TW_Valid;
|
|
}
|
|
/* Else old tag is not empty and new tag is not empty. Old tag
|
|
remains correct */
|
|
}
|
|
|
|
/* Ensure that the values just loaded are not changed by
|
|
fix-up operations. */
|
|
NO_NET_DATA_EFFECT;
|
|
NO_NET_INSTR_EFFECT;
|
|
|
|
return s + 0x1c;
|
|
}
|
|
|
|
|
|
void frstor(void)
|
|
{
|
|
int i, stnr;
|
|
unsigned char tag;
|
|
char *s = fldenv();
|
|
|
|
for ( i = 0; i < 8; i++ )
|
|
{
|
|
/* Load each register. */
|
|
FPU_data_address = (void *)(s+i*10);
|
|
reg_load_extended((overrides){0,0});
|
|
stnr = (i+top) & 7;
|
|
tag = regs[stnr].tag; /* Derived from the loaded tag word. */
|
|
reg_move(&FPU_loaded_data, ®s[stnr]);
|
|
if ( tag == TW_Empty ) /* The loaded data over-rides all other cases. */
|
|
regs[stnr].tag = tag;
|
|
}
|
|
|
|
/* Reverse the effect which loading the registers had on the
|
|
data pointer */
|
|
NO_NET_DATA_EFFECT;
|
|
|
|
}
|
|
|
|
|
|
unsigned short tag_word(void)
|
|
{
|
|
unsigned short word = 0;
|
|
unsigned char tag;
|
|
int i;
|
|
|
|
for ( i = 7; i >= 0; i-- )
|
|
{
|
|
switch ( tag = regs[i].tag )
|
|
{
|
|
case TW_Valid:
|
|
if ( regs[i].exp <= (EXP_BIAS - EXTENDED_Ebias) )
|
|
tag = 2;
|
|
break;
|
|
case TW_Infinity:
|
|
case TW_NaN:
|
|
tag = 2;
|
|
break;
|
|
case TW_Empty:
|
|
tag = 3;
|
|
break;
|
|
/* TW_Zero already has the correct value */
|
|
}
|
|
word <<= 2;
|
|
word |= tag;
|
|
}
|
|
return word;
|
|
}
|
|
|
|
|
|
char *fstenv(void)
|
|
{
|
|
char *d = (char *)FPU_data_address;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,d,28);
|
|
#ifdef PECULIAR_486
|
|
/* An 80486 sets all the reserved bits to 1. */
|
|
put_fs_long(0xffff0040 | (control_word & ~0xe080), (unsigned long *) d);
|
|
put_fs_long(0xffff0000 | status_word(), (unsigned long *) (d+4));
|
|
put_fs_long(0xffff0000 | tag_word(), (unsigned long *) (d+8));
|
|
#else
|
|
put_fs_word(control_word, (unsigned short *) d);
|
|
put_fs_word(status_word(), (unsigned short *) (d+4));
|
|
put_fs_word(tag_word(), (unsigned short *) (d+8));
|
|
#endif PECULIAR_486
|
|
put_fs_long(ip_offset, (unsigned long *) (d+0x0c));
|
|
put_fs_long(cs_selector & ~0xf8000000, (unsigned long *) (d+0x10));
|
|
put_fs_long(data_operand_offset, (unsigned long *) (d+0x14));
|
|
#ifdef PECULIAR_486
|
|
/* An 80486 sets all the reserved bits to 1. */
|
|
put_fs_long(0xffff0000 | operand_selector, (unsigned long *) (d+0x18));
|
|
#else
|
|
put_fs_long(operand_selector, (unsigned long *) (d+0x18));
|
|
#endif PECULIAR_486
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
control_word |= CW_Exceptions;
|
|
partial_status &= ~(SW_Summary | SW_Backward);
|
|
|
|
return d + 0x1c;
|
|
}
|
|
|
|
|
|
void fsave(void)
|
|
{
|
|
char *d;
|
|
int i;
|
|
|
|
d = fstenv();
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_verify_area(VERIFY_WRITE,d,80);
|
|
RE_ENTRANT_CHECK_ON;
|
|
for ( i = 0; i < 8; i++ )
|
|
write_to_extended(®s[(top + i) & 7], d + 10 * i);
|
|
|
|
finit();
|
|
|
|
}
|
|
|
|
/*===========================================================================*/
|
|
|
|
/*
|
|
A call to this function must be preceeded by a call to
|
|
FPU_verify_area() to verify access to the 10 bytes at d
|
|
*/
|
|
static void write_to_extended(FPU_REG *rp, char *d)
|
|
{
|
|
long e;
|
|
FPU_REG tmp;
|
|
|
|
e = rp->exp - EXP_BIAS + EXTENDED_Ebias;
|
|
|
|
#ifdef PARANOID
|
|
switch ( rp->tag )
|
|
{
|
|
case TW_Zero:
|
|
if ( rp->sigh | rp->sigl | e )
|
|
EXCEPTION(EX_INTERNAL | 0x114);
|
|
break;
|
|
case TW_Infinity:
|
|
case TW_NaN:
|
|
if ( (e ^ 0x7fff) | !(rp->sigh & 0x80000000) )
|
|
EXCEPTION(EX_INTERNAL | 0x114);
|
|
break;
|
|
default:
|
|
if (e > 0x7fff || e < -63)
|
|
EXCEPTION(EX_INTERNAL | 0x114);
|
|
}
|
|
#endif PARANOID
|
|
|
|
/*
|
|
All numbers except denormals are stored internally in a
|
|
format which is compatible with the extended real number
|
|
format.
|
|
*/
|
|
if ( e > 0 )
|
|
{
|
|
/* just copy the reg */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
put_fs_long(rp->sigl, (unsigned long *) d);
|
|
put_fs_long(rp->sigh, (unsigned long *) (d + 4));
|
|
RE_ENTRANT_CHECK_ON;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
The number is a de-normal stored as a normal using our
|
|
extra exponent range, or is Zero.
|
|
Convert it back to a de-normal, or leave it as Zero.
|
|
*/
|
|
reg_move(rp, &tmp);
|
|
tmp.exp += -EXTENDED_Emin + 63; /* largest exp to be 63 */
|
|
round_to_int(&tmp);
|
|
e = 0;
|
|
RE_ENTRANT_CHECK_OFF;
|
|
put_fs_long(tmp.sigl, (unsigned long *) d);
|
|
put_fs_long(tmp.sigh, (unsigned long *) (d + 4));
|
|
RE_ENTRANT_CHECK_ON;
|
|
}
|
|
e |= rp->sign == SIGN_POS ? 0 : 0x8000;
|
|
RE_ENTRANT_CHECK_OFF;
|
|
put_fs_word(e, (unsigned short *) (d + 8));
|
|
RE_ENTRANT_CHECK_ON;
|
|
}
|