gems-kernel/source/THIRDPARTY/linux-old/fs/buffer.c
2024-06-03 11:16:15 -05:00

1000 lines
23 KiB
C

/*
* linux/fs/buffer.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* 'buffer.c' implements the buffer-cache functions. Race-conditions have
* been avoided by NEVER letting an interrupt change a buffer (except for the
* data, of course), but instead letting the caller do it.
*/
/*
* NOTE! There is one discordant note here: checking floppies for
* disk change. This is where it fits best, I think, as it should
* invalidate changed floppy-disk-caches.
*/
#include <stdarg.h>
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/locks.h>
#include <linux/errno.h>
#include <asm/system.h>
#include <asm/io.h>
#ifdef CONFIG_SCSI
#ifdef CONFIG_BLK_DEV_SR
extern int check_cdrom_media_change(int, int);
#endif
#ifdef CONFIG_BLK_DEV_SD
extern int check_scsidisk_media_change(int, int);
extern int revalidate_scsidisk(int, int);
#endif
#endif
#ifdef CONFIG_CDU31A
extern int check_cdu31a_media_change(int, int);
#endif
#ifdef CONFIG_MCD
extern int check_mcd_media_change(int, int);
#endif
static int grow_buffers(int pri, int size);
static struct buffer_head * hash_table[NR_HASH];
static struct buffer_head * free_list = NULL;
static struct buffer_head * unused_list = NULL;
static struct wait_queue * buffer_wait = NULL;
int nr_buffers = 0;
int buffermem = 0;
int nr_buffer_heads = 0;
static int min_free_pages = 20; /* nr free pages needed before buffer grows */
extern int *blksize_size[];
/*
* Rewrote the wait-routines to use the "new" wait-queue functionality,
* and getting rid of the cli-sti pairs. The wait-queue routines still
* need cli-sti, but now it's just a couple of 386 instructions or so.
*
* Note that the real wait_on_buffer() is an inline function that checks
* if 'b_wait' is set before calling this, so that the queues aren't set
* up unnecessarily.
*/
void __wait_on_buffer(struct buffer_head * bh)
{
struct wait_queue wait = { current, NULL };
bh->b_count++;
add_wait_queue(&bh->b_wait, &wait);
repeat:
current->state = TASK_UNINTERRUPTIBLE;
if (bh->b_lock) {
schedule();
goto repeat;
}
remove_wait_queue(&bh->b_wait, &wait);
bh->b_count--;
current->state = TASK_RUNNING;
}
/* Call sync_buffers with wait!=0 to ensure that the call does not
return until all buffer writes have completed. Sync() may return
before the writes have finished; fsync() may not. */
static int sync_buffers(dev_t dev, int wait)
{
int i, retry, pass = 0, err = 0;
struct buffer_head * bh;
/* One pass for no-wait, three for wait:
0) write out all dirty, unlocked buffers;
1) write out all dirty buffers, waiting if locked;
2) wait for completion by waiting for all buffers to unlock.
*/
repeat:
retry = 0;
bh = free_list;
for (i = nr_buffers*2 ; i-- > 0 ; bh = bh->b_next_free) {
if (dev && bh->b_dev != dev)
continue;
#ifdef 0 /* Disable bad-block debugging code */
if (bh->b_req && !bh->b_lock &&
!bh->b_dirt && !bh->b_uptodate)
printk ("Warning (IO error) - orphaned block %08x on %04x\n",
bh->b_blocknr, bh->b_dev);
#endif
if (bh->b_lock)
{
/* Buffer is locked; skip it unless wait is
requested AND pass > 0. */
if (!wait || !pass) {
retry = 1;
continue;
}
wait_on_buffer (bh);
}
/* If an unlocked buffer is not uptodate, there has been
an IO error. Skip it. */
if (wait && bh->b_req && !bh->b_lock &&
!bh->b_dirt && !bh->b_uptodate)
{
err = 1;
continue;
}
/* Don't write clean buffers. Don't write ANY buffers
on the third pass. */
if (!bh->b_dirt || pass>=2)
continue;
bh->b_count++;
ll_rw_block(WRITE, 1, &bh);
bh->b_count--;
retry = 1;
}
/* If we are waiting for the sync to succeed, and if any dirty
blocks were written, then repeat; on the second pass, only
wait for buffers being written (do not pass to write any
more buffers on the second pass). */
if (wait && retry && ++pass<=2)
goto repeat;
return err;
}
void sync_dev(dev_t dev)
{
sync_buffers(dev, 0);
sync_supers(dev);
sync_inodes(dev);
sync_buffers(dev, 0);
}
int fsync_dev(dev_t dev)
{
sync_buffers(dev, 0);
sync_supers(dev);
sync_inodes(dev);
return sync_buffers(dev, 1);
}
asmlinkage int sys_sync(void)
{
sync_dev(0);
return 0;
}
int file_fsync (struct inode *inode, struct file *filp)
{
return fsync_dev(inode->i_dev);
}
asmlinkage int sys_fsync(unsigned int fd)
{
struct file * file;
struct inode * inode;
if (fd>=NR_OPEN || !(file=current->filp[fd]) || !(inode=file->f_inode))
return -EBADF;
if (!file->f_op || !file->f_op->fsync)
return -EINVAL;
if (file->f_op->fsync(inode,file))
return -EIO;
return 0;
}
void invalidate_buffers(dev_t dev)
{
int i;
struct buffer_head * bh;
bh = free_list;
for (i = nr_buffers*2 ; --i > 0 ; bh = bh->b_next_free) {
if (bh->b_dev != dev)
continue;
wait_on_buffer(bh);
if (bh->b_dev == dev)
bh->b_uptodate = bh->b_dirt = bh->b_req = 0;
}
}
/*
* This routine checks whether a floppy has been changed, and
* invalidates all buffer-cache-entries in that case. This
* is a relatively slow routine, so we have to try to minimize using
* it. Thus it is called only upon a 'mount' or 'open'. This
* is the best way of combining speed and utility, I think.
* People changing diskettes in the middle of an operation deserve
* to loose :-)
*
* NOTE! Although currently this is only for floppies, the idea is
* that any additional removable block-device will use this routine,
* and that mount/open needn't know that floppies/whatever are
* special.
*/
void check_disk_change(dev_t dev)
{
int i;
struct buffer_head * bh;
switch(MAJOR(dev)){
case FLOPPY_MAJOR:
if (!(bh = getblk(dev,0,1024)))
return;
i = floppy_change(bh);
brelse(bh);
break;
#if defined(CONFIG_BLK_DEV_SD) && defined(CONFIG_SCSI)
case SCSI_DISK_MAJOR:
i = check_scsidisk_media_change(dev, 0);
break;
#endif
#if defined(CONFIG_BLK_DEV_SR) && defined(CONFIG_SCSI)
case SCSI_CDROM_MAJOR:
i = check_cdrom_media_change(dev, 0);
break;
#endif
#if defined(CONFIG_CDU31A)
case CDU31A_CDROM_MAJOR:
i = check_cdu31a_media_change(dev, 0);
break;
#endif
#if defined(CONFIG_MCD)
case MITSUMI_CDROM_MAJOR:
i = check_mcd_media_change(dev, 0);
break;
#endif
default:
return;
};
if (!i) return;
printk("VFS: Disk change detected on device %d/%d\n",
MAJOR(dev), MINOR(dev));
for (i=0 ; i<NR_SUPER ; i++)
if (super_blocks[i].s_dev == dev)
put_super(super_blocks[i].s_dev);
invalidate_inodes(dev);
invalidate_buffers(dev);
#if defined(CONFIG_BLK_DEV_SD) && defined(CONFIG_SCSI)
/* This is trickier for a removable hardisk, because we have to invalidate
all of the partitions that lie on the disk. */
if (MAJOR(dev) == SCSI_DISK_MAJOR)
revalidate_scsidisk(dev, 0);
#endif
}
#define _hashfn(dev,block) (((unsigned)(dev^block))%NR_HASH)
#define hash(dev,block) hash_table[_hashfn(dev,block)]
static inline void remove_from_hash_queue(struct buffer_head * bh)
{
if (bh->b_next)
bh->b_next->b_prev = bh->b_prev;
if (bh->b_prev)
bh->b_prev->b_next = bh->b_next;
if (hash(bh->b_dev,bh->b_blocknr) == bh)
hash(bh->b_dev,bh->b_blocknr) = bh->b_next;
bh->b_next = bh->b_prev = NULL;
}
static inline void remove_from_free_list(struct buffer_head * bh)
{
if (!(bh->b_prev_free) || !(bh->b_next_free))
panic("VFS: Free block list corrupted");
bh->b_prev_free->b_next_free = bh->b_next_free;
bh->b_next_free->b_prev_free = bh->b_prev_free;
if (free_list == bh)
free_list = bh->b_next_free;
bh->b_next_free = bh->b_prev_free = NULL;
}
static inline void remove_from_queues(struct buffer_head * bh)
{
remove_from_hash_queue(bh);
remove_from_free_list(bh);
}
static inline void put_first_free(struct buffer_head * bh)
{
if (!bh || (bh == free_list))
return;
remove_from_free_list(bh);
/* add to front of free list */
bh->b_next_free = free_list;
bh->b_prev_free = free_list->b_prev_free;
free_list->b_prev_free->b_next_free = bh;
free_list->b_prev_free = bh;
free_list = bh;
}
static inline void put_last_free(struct buffer_head * bh)
{
if (!bh)
return;
if (bh == free_list) {
free_list = bh->b_next_free;
return;
}
remove_from_free_list(bh);
/* add to back of free list */
bh->b_next_free = free_list;
bh->b_prev_free = free_list->b_prev_free;
free_list->b_prev_free->b_next_free = bh;
free_list->b_prev_free = bh;
}
static inline void insert_into_queues(struct buffer_head * bh)
{
/* put at end of free list */
bh->b_next_free = free_list;
bh->b_prev_free = free_list->b_prev_free;
free_list->b_prev_free->b_next_free = bh;
free_list->b_prev_free = bh;
/* put the buffer in new hash-queue if it has a device */
bh->b_prev = NULL;
bh->b_next = NULL;
if (!bh->b_dev)
return;
bh->b_next = hash(bh->b_dev,bh->b_blocknr);
hash(bh->b_dev,bh->b_blocknr) = bh;
if (bh->b_next)
bh->b_next->b_prev = bh;
}
static struct buffer_head * find_buffer(dev_t dev, int block, int size)
{
struct buffer_head * tmp;
for (tmp = hash(dev,block) ; tmp != NULL ; tmp = tmp->b_next)
if (tmp->b_dev==dev && tmp->b_blocknr==block)
if (tmp->b_size == size)
return tmp;
else {
printk("VFS: Wrong blocksize on device %d/%d\n",
MAJOR(dev), MINOR(dev));
return NULL;
}
return NULL;
}
/*
* Why like this, I hear you say... The reason is race-conditions.
* As we don't lock buffers (unless we are readint them, that is),
* something might happen to it while we sleep (ie a read-error
* will force it bad). This shouldn't really happen currently, but
* the code is ready.
*/
struct buffer_head * get_hash_table(dev_t dev, int block, int size)
{
struct buffer_head * bh;
for (;;) {
if (!(bh=find_buffer(dev,block,size)))
return NULL;
bh->b_count++;
wait_on_buffer(bh);
if (bh->b_dev == dev && bh->b_blocknr == block && bh->b_size == size)
return bh;
bh->b_count--;
}
}
void set_blocksize(dev_t dev, int size)
{
int i;
struct buffer_head * bh, *bhnext;
if (!blksize_size[MAJOR(dev)])
return;
switch(size) {
default: panic("Invalid blocksize passed to set_blocksize");
case 512: case 1024: case 2048: case 4096:;
}
if (blksize_size[MAJOR(dev)][MINOR(dev)] == 0 && size == BLOCK_SIZE) {
blksize_size[MAJOR(dev)][MINOR(dev)] = size;
return;
}
if (blksize_size[MAJOR(dev)][MINOR(dev)] == size)
return;
sync_buffers(dev, 2);
blksize_size[MAJOR(dev)][MINOR(dev)] = size;
/* We need to be quite careful how we do this - we are moving entries
around on the free list, and we can get in a loop if we are not careful.*/
bh = free_list;
for (i = nr_buffers*2 ; --i > 0 ; bh = bhnext) {
bhnext = bh->b_next_free;
if (bh->b_dev != dev)
continue;
if (bh->b_size == size)
continue;
wait_on_buffer(bh);
if (bh->b_dev == dev && bh->b_size != size)
bh->b_uptodate = bh->b_dirt = 0;
remove_from_hash_queue(bh);
/* put_first_free(bh); */
}
}
/*
* Ok, this is getblk, and it isn't very clear, again to hinder
* race-conditions. Most of the code is seldom used, (ie repeating),
* so it should be much more efficient than it looks.
*
* The algoritm is changed: hopefully better, and an elusive bug removed.
*
* 14.02.92: changed it to sync dirty buffers a bit: better performance
* when the filesystem starts to get full of dirty blocks (I hope).
*/
#define BADNESS(bh) (((bh)->b_dirt<<1)+(bh)->b_lock)
struct buffer_head * getblk(dev_t dev, int block, int size)
{
struct buffer_head * bh, * tmp;
int buffers;
static int grow_size = 0;
repeat:
bh = get_hash_table(dev, block, size);
if (bh) {
if (bh->b_uptodate && !bh->b_dirt)
put_last_free(bh);
return bh;
}
grow_size -= size;
if (nr_free_pages > min_free_pages && grow_size <= 0) {
if (grow_buffers(GFP_BUFFER, size))
grow_size = PAGE_SIZE;
}
buffers = nr_buffers;
bh = NULL;
for (tmp = free_list; buffers-- > 0 ; tmp = tmp->b_next_free) {
if (tmp->b_count || tmp->b_size != size)
continue;
if (mem_map[MAP_NR((unsigned long) tmp->b_data)] != 1)
continue;
if (!bh || BADNESS(tmp)<BADNESS(bh)) {
bh = tmp;
if (!BADNESS(tmp))
break;
}
#if 0
if (tmp->b_dirt) {
tmp->b_count++;
ll_rw_block(WRITEA, 1, &tmp);
tmp->b_count--;
}
#endif
}
if (!bh && nr_free_pages > 5) {
if (grow_buffers(GFP_BUFFER, size))
goto repeat;
}
/* and repeat until we find something good */
if (!bh) {
if (!grow_buffers(GFP_ATOMIC, size))
sleep_on(&buffer_wait);
goto repeat;
}
wait_on_buffer(bh);
if (bh->b_count || bh->b_size != size)
goto repeat;
if (bh->b_dirt) {
sync_buffers(0,0);
goto repeat;
}
/* NOTE!! While we slept waiting for this block, somebody else might */
/* already have added "this" block to the cache. check it */
if (find_buffer(dev,block,size))
goto repeat;
/* OK, FINALLY we know that this buffer is the only one of its kind, */
/* and that it's unused (b_count=0), unlocked (b_lock=0), and clean */
bh->b_count=1;
bh->b_dirt=0;
bh->b_uptodate=0;
bh->b_req=0;
remove_from_queues(bh);
bh->b_dev=dev;
bh->b_blocknr=block;
insert_into_queues(bh);
return bh;
}
void brelse(struct buffer_head * buf)
{
if (!buf)
return;
wait_on_buffer(buf);
if (buf->b_count) {
if (--buf->b_count)
return;
wake_up(&buffer_wait);
return;
}
printk("VFS: brelse: Trying to free free buffer\n");
}
/*
* bread() reads a specified block and returns the buffer that contains
* it. It returns NULL if the block was unreadable.
*/
struct buffer_head * bread(dev_t dev, int block, int size)
{
struct buffer_head * bh;
if (!(bh = getblk(dev, block, size))) {
printk("VFS: bread: READ error on device %d/%d\n",
MAJOR(dev), MINOR(dev));
return NULL;
}
if (bh->b_uptodate)
return bh;
ll_rw_block(READ, 1, &bh);
wait_on_buffer(bh);
if (bh->b_uptodate)
return bh;
brelse(bh);
return NULL;
}
/*
* Ok, breada can be used as bread, but additionally to mark other
* blocks for reading as well. End the argument list with a negative
* number.
*/
struct buffer_head * breada(dev_t dev,int first, ...)
{
va_list args;
unsigned int blocksize;
struct buffer_head * bh, *tmp;
va_start(args,first);
blocksize = BLOCK_SIZE;
if (blksize_size[MAJOR(dev)] && blksize_size[MAJOR(dev)][MINOR(dev)])
blocksize = blksize_size[MAJOR(dev)][MINOR(dev)];
if (!(bh = getblk(dev, first, blocksize))) {
printk("VFS: breada: READ error on device %d/%d\n",
MAJOR(dev), MINOR(dev));
return NULL;
}
if (!bh->b_uptodate)
ll_rw_block(READ, 1, &bh);
while ((first=va_arg(args,int))>=0) {
tmp = getblk(dev, first, blocksize);
if (tmp) {
if (!tmp->b_uptodate)
ll_rw_block(READA, 1, &tmp);
tmp->b_count--;
}
}
va_end(args);
wait_on_buffer(bh);
if (bh->b_uptodate)
return bh;
brelse(bh);
return (NULL);
}
/*
* See fs/inode.c for the weird use of volatile..
*/
static void put_unused_buffer_head(struct buffer_head * bh)
{
struct wait_queue * wait;
wait = ((volatile struct buffer_head *) bh)->b_wait;
memset((void *) bh,0,sizeof(*bh));
((volatile struct buffer_head *) bh)->b_wait = wait;
bh->b_next_free = unused_list;
unused_list = bh;
}
static void get_more_buffer_heads(void)
{
int i;
struct buffer_head * bh;
if (unused_list)
return;
if(! (bh = (struct buffer_head*) get_free_page(GFP_BUFFER)))
return;
for (nr_buffer_heads+=i=PAGE_SIZE/sizeof*bh ; i>0; i--) {
bh->b_next_free = unused_list; /* only make link */
unused_list = bh++;
}
}
static struct buffer_head * get_unused_buffer_head(void)
{
struct buffer_head * bh;
get_more_buffer_heads();
if (!unused_list)
return NULL;
bh = unused_list;
unused_list = bh->b_next_free;
bh->b_next_free = NULL;
bh->b_data = NULL;
bh->b_size = 0;
bh->b_req = 0;
return bh;
}
/*
* Create the appropriate buffers when given a page for data area and
* the size of each buffer.. Use the bh->b_this_page linked list to
* follow the buffers created. Return NULL if unable to create more
* buffers.
*/
static struct buffer_head * create_buffers(unsigned long page, unsigned long size)
{
struct buffer_head *bh, *head;
unsigned long offset;
head = NULL;
offset = PAGE_SIZE;
while ((offset -= size) < PAGE_SIZE) {
bh = get_unused_buffer_head();
if (!bh)
goto no_grow;
bh->b_this_page = head;
head = bh;
bh->b_data = (char *) (page+offset);
bh->b_size = size;
}
return head;
/*
* In case anything failed, we just free everything we got.
*/
no_grow:
bh = head;
while (bh) {
head = bh;
bh = bh->b_this_page;
put_unused_buffer_head(head);
}
return NULL;
}
static void read_buffers(struct buffer_head * bh[], int nrbuf)
{
int i;
int bhnum = 0;
struct buffer_head * bhr[8];
for (i = 0 ; i < nrbuf ; i++) {
if (bh[i] && !bh[i]->b_uptodate)
bhr[bhnum++] = bh[i];
}
if (bhnum)
ll_rw_block(READ, bhnum, bhr);
for (i = 0 ; i < nrbuf ; i++) {
if (bh[i]) {
wait_on_buffer(bh[i]);
}
}
}
static unsigned long check_aligned(struct buffer_head * first, unsigned long address,
dev_t dev, int *b, int size)
{
struct buffer_head * bh[8];
unsigned long page;
unsigned long offset;
int block;
int nrbuf;
page = (unsigned long) first->b_data;
if (page & ~PAGE_MASK) {
brelse(first);
return 0;
}
mem_map[MAP_NR(page)]++;
bh[0] = first;
nrbuf = 1;
for (offset = size ; offset < PAGE_SIZE ; offset += size) {
block = *++b;
if (!block)
goto no_go;
first = get_hash_table(dev, block, size);
if (!first)
goto no_go;
bh[nrbuf++] = first;
if (page+offset != (unsigned long) first->b_data)
goto no_go;
}
read_buffers(bh,nrbuf); /* make sure they are actually read correctly */
while (nrbuf-- > 0)
brelse(bh[nrbuf]);
free_page(address);
++current->min_flt;
return page;
no_go:
while (nrbuf-- > 0)
brelse(bh[nrbuf]);
free_page(page);
return 0;
}
static unsigned long try_to_load_aligned(unsigned long address,
dev_t dev, int b[], int size)
{
struct buffer_head * bh, * tmp, * arr[8];
unsigned long offset;
int * p;
int block;
bh = create_buffers(address, size);
if (!bh)
return 0;
p = b;
for (offset = 0 ; offset < PAGE_SIZE ; offset += size) {
block = *(p++);
if (!block)
goto not_aligned;
tmp = get_hash_table(dev, block, size);
if (tmp) {
brelse(tmp);
goto not_aligned;
}
}
tmp = bh;
p = b;
block = 0;
while (1) {
arr[block++] = bh;
bh->b_count = 1;
bh->b_dirt = 0;
bh->b_uptodate = 0;
bh->b_dev = dev;
bh->b_blocknr = *(p++);
nr_buffers++;
insert_into_queues(bh);
if (bh->b_this_page)
bh = bh->b_this_page;
else
break;
}
buffermem += PAGE_SIZE;
bh->b_this_page = tmp;
mem_map[MAP_NR(address)]++;
read_buffers(arr,block);
while (block-- > 0)
brelse(arr[block]);
++current->maj_flt;
return address;
not_aligned:
while ((tmp = bh) != NULL) {
bh = bh->b_this_page;
put_unused_buffer_head(tmp);
}
return 0;
}
/*
* Try-to-share-buffers tries to minimize memory use by trying to keep
* both code pages and the buffer area in the same page. This is done by
* (a) checking if the buffers are already aligned correctly in memory and
* (b) if none of the buffer heads are in memory at all, trying to load
* them into memory the way we want them.
*
* This doesn't guarantee that the memory is shared, but should under most
* circumstances work very well indeed (ie >90% sharing of code pages on
* demand-loadable executables).
*/
static inline unsigned long try_to_share_buffers(unsigned long address,
dev_t dev, int *b, int size)
{
struct buffer_head * bh;
int block;
block = b[0];
if (!block)
return 0;
bh = get_hash_table(dev, block, size);
if (bh)
return check_aligned(bh, address, dev, b, size);
return try_to_load_aligned(address, dev, b, size);
}
#define COPYBLK(size,from,to) \
__asm__ __volatile__("rep ; movsl": \
:"c" (((unsigned long) size) >> 2),"S" (from),"D" (to) \
:"cx","di","si")
/*
* bread_page reads four buffers into memory at the desired address. It's
* a function of its own, as there is some speed to be got by reading them
* all at the same time, not waiting for one to be read, and then another
* etc. This also allows us to optimize memory usage by sharing code pages
* and filesystem buffers..
*/
unsigned long bread_page(unsigned long address, dev_t dev, int b[], int size, int prot)
{
struct buffer_head * bh[8];
unsigned long where;
int i, j;
if (!(prot & PAGE_RW)) {
where = try_to_share_buffers(address,dev,b,size);
if (where)
return where;
}
++current->maj_flt;
for (i=0, j=0; j<PAGE_SIZE ; i++, j+= size) {
bh[i] = NULL;
if (b[i])
bh[i] = getblk(dev, b[i], size);
}
read_buffers(bh,i);
where = address;
for (i=0, j=0; j<PAGE_SIZE ; i++, j += size,address += size) {
if (bh[i]) {
if (bh[i]->b_uptodate)
COPYBLK(size, (unsigned long) bh[i]->b_data,address);
brelse(bh[i]);
}
}
return where;
}
/*
* Try to increase the number of buffers available: the size argument
* is used to determine what kind of buffers we want.
*/
static int grow_buffers(int pri, int size)
{
unsigned long page;
struct buffer_head *bh, *tmp;
if ((size & 511) || (size > PAGE_SIZE)) {
printk("VFS: grow_buffers: size = %d\n",size);
return 0;
}
if(!(page = __get_free_page(pri)))
return 0;
bh = create_buffers(page, size);
if (!bh) {
free_page(page);
return 0;
}
tmp = bh;
while (1) {
if (free_list) {
tmp->b_next_free = free_list;
tmp->b_prev_free = free_list->b_prev_free;
free_list->b_prev_free->b_next_free = tmp;
free_list->b_prev_free = tmp;
} else {
tmp->b_prev_free = tmp;
tmp->b_next_free = tmp;
}
free_list = tmp;
++nr_buffers;
if (tmp->b_this_page)
tmp = tmp->b_this_page;
else
break;
}
tmp->b_this_page = bh;
buffermem += PAGE_SIZE;
return 1;
}
/*
* try_to_free() checks if all the buffers on this particular page
* are unused, and free's the page if so.
*/
static int try_to_free(struct buffer_head * bh, struct buffer_head ** bhp)
{
unsigned long page;
struct buffer_head * tmp, * p;
*bhp = bh;
page = (unsigned long) bh->b_data;
page &= PAGE_MASK;
tmp = bh;
do {
if (!tmp)
return 0;
if (tmp->b_count || tmp->b_dirt || tmp->b_lock)
return 0;
tmp = tmp->b_this_page;
} while (tmp != bh);
tmp = bh;
do {
p = tmp;
tmp = tmp->b_this_page;
nr_buffers--;
if (p == *bhp)
*bhp = p->b_prev_free;
remove_from_queues(p);
put_unused_buffer_head(p);
} while (tmp != bh);
buffermem -= PAGE_SIZE;
free_page(page);
return !mem_map[MAP_NR(page)];
}
/*
* Try to free up some pages by shrinking the buffer-cache
*
* Priority tells the routine how hard to try to shrink the
* buffers: 3 means "don't bother too much", while a value
* of 0 means "we'd better get some free pages now".
*/
int shrink_buffers(unsigned int priority)
{
struct buffer_head *bh;
int i;
if (priority < 2)
sync_buffers(0,0);
bh = free_list;
i = nr_buffers >> priority;
for ( ; i-- > 0 ; bh = bh->b_next_free) {
if (bh->b_count || !bh->b_this_page)
continue;
if (bh->b_lock)
if (priority)
continue;
else
wait_on_buffer(bh);
if (bh->b_dirt) {
bh->b_count++;
ll_rw_block(WRITEA, 1, &bh);
bh->b_count--;
continue;
}
if (try_to_free(bh, &bh))
return 1;
}
return 0;
}
/*
* This initializes the initial buffer free list. nr_buffers is set
* to one less the actual number of buffers, as a sop to backwards
* compatibility --- the old code did this (I think unintentionally,
* but I'm not sure), and programs in the ps package expect it.
* - TYT 8/30/92
*/
void buffer_init(void)
{
int i;
if (high_memory >= 4*1024*1024)
min_free_pages = 200;
else
min_free_pages = 20;
for (i = 0 ; i < NR_HASH ; i++)
hash_table[i] = NULL;
free_list = 0;
grow_buffers(GFP_KERNEL, BLOCK_SIZE);
if (!free_list)
panic("VFS: Unable to initialize buffer free list!");
return;
}