58217f5900
WOO HOO!
905 lines
23 KiB
C
905 lines
23 KiB
C
/*
|
|
* linux/fs/exec.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* #!-checking implemented by tytso.
|
|
*/
|
|
|
|
/*
|
|
* Demand-loading implemented 01.12.91 - no need to read anything but
|
|
* the header into memory. The inode of the executable is put into
|
|
* "current->executable", and page faults do the actual loading. Clean.
|
|
*
|
|
* Once more I can proudly say that linux stood up to being changed: it
|
|
* was less than 2 hours work to get demand-loading completely implemented.
|
|
*
|
|
* Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
|
|
* current->executable is only used by the procfs. This allows a dispatch
|
|
* table to check for several different types of binary formats. We keep
|
|
* trying until we recognize the file or we run out of supported binary
|
|
* formats.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/a.out.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/string.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/user.h>
|
|
#include <linux/segment.h>
|
|
#include <linux/malloc.h>
|
|
|
|
#include <asm/system.h>
|
|
|
|
#include <linux/binfmts.h>
|
|
|
|
#include <asm/segment.h>
|
|
#include <asm/system.h>
|
|
|
|
asmlinkage int sys_exit(int exit_code);
|
|
asmlinkage int sys_close(unsigned fd);
|
|
asmlinkage int sys_open(const char *, int, int);
|
|
asmlinkage int sys_brk(unsigned long);
|
|
|
|
extern void shm_exit (void);
|
|
|
|
int open_inode(struct inode * inode, int mode)
|
|
{
|
|
int error, fd;
|
|
struct file *f, **fpp;
|
|
|
|
if (!inode->i_op || !inode->i_op->default_file_ops)
|
|
return -EINVAL;
|
|
f = get_empty_filp();
|
|
if (!f)
|
|
return -EMFILE;
|
|
fd = 0;
|
|
fpp = current->filp;
|
|
for (;;) {
|
|
if (!*fpp)
|
|
break;
|
|
if (++fd > NR_OPEN)
|
|
return -ENFILE;
|
|
fpp++;
|
|
}
|
|
*fpp = f;
|
|
f->f_flags = mode;
|
|
f->f_mode = (mode+1) & O_ACCMODE;
|
|
f->f_inode = inode;
|
|
f->f_pos = 0;
|
|
f->f_reada = 0;
|
|
f->f_op = inode->i_op->default_file_ops;
|
|
if (f->f_op->open) {
|
|
error = f->f_op->open(inode,f);
|
|
if (error) {
|
|
*fpp = NULL;
|
|
f->f_count--;
|
|
return error;
|
|
}
|
|
}
|
|
inode->i_count++;
|
|
return fd;
|
|
}
|
|
|
|
/*
|
|
* These are the only things you should do on a core-file: use only these
|
|
* macros to write out all the necessary info.
|
|
*/
|
|
#define DUMP_WRITE(addr,nr) \
|
|
while (file.f_op->write(inode,&file,(char *)(addr),(nr)) != (nr)) goto close_coredump
|
|
|
|
#define DUMP_SEEK(offset) \
|
|
if (file.f_op->lseek) { \
|
|
if (file.f_op->lseek(inode,&file,(offset),0) != (offset)) \
|
|
goto close_coredump; \
|
|
} else file.f_pos = (offset)
|
|
|
|
/*
|
|
* Routine writes a core dump image in the current directory.
|
|
* Currently only a stub-function.
|
|
*
|
|
* Note that setuid/setgid files won't make a core-dump if the uid/gid
|
|
* changed due to the set[u|g]id. It's enforced by the "current->dumpable"
|
|
* field, which also makes sure the core-dumps won't be recursive if the
|
|
* dumping of the process results in another error..
|
|
*/
|
|
int core_dump(long signr, struct pt_regs * regs)
|
|
{
|
|
struct inode * inode = NULL;
|
|
struct file file;
|
|
unsigned short fs;
|
|
int has_dumped = 0;
|
|
char corefile[6+sizeof(current->comm)];
|
|
int i;
|
|
register int dump_start, dump_size;
|
|
struct user dump;
|
|
|
|
if (!current->dumpable)
|
|
return 0;
|
|
current->dumpable = 0;
|
|
|
|
/* See if we have enough room to write the upage. */
|
|
if (current->rlim[RLIMIT_CORE].rlim_cur < PAGE_SIZE)
|
|
return 0;
|
|
fs = get_fs();
|
|
set_fs(KERNEL_DS);
|
|
memcpy(corefile,"core.",5);
|
|
memcpy(corefile+5,current->comm,sizeof(current->comm));
|
|
if (open_namei(corefile,O_CREAT | 2 | O_TRUNC,0600,&inode,NULL)) {
|
|
inode = NULL;
|
|
goto end_coredump;
|
|
}
|
|
if (!S_ISREG(inode->i_mode))
|
|
goto end_coredump;
|
|
if (!inode->i_op || !inode->i_op->default_file_ops)
|
|
goto end_coredump;
|
|
file.f_mode = 3;
|
|
file.f_flags = 0;
|
|
file.f_count = 1;
|
|
file.f_inode = inode;
|
|
file.f_pos = 0;
|
|
file.f_reada = 0;
|
|
file.f_op = inode->i_op->default_file_ops;
|
|
if (file.f_op->open)
|
|
if (file.f_op->open(inode,&file))
|
|
goto end_coredump;
|
|
if (!file.f_op->write)
|
|
goto close_coredump;
|
|
has_dumped = 1;
|
|
/* changed the size calculations - should hopefully work better. lbt */
|
|
dump.magic = CMAGIC;
|
|
dump.start_code = 0;
|
|
dump.start_stack = regs->esp & ~(PAGE_SIZE - 1);
|
|
dump.u_tsize = ((unsigned long) current->end_code) >> 12;
|
|
dump.u_dsize = ((unsigned long) (current->brk + (PAGE_SIZE-1))) >> 12;
|
|
dump.u_dsize -= dump.u_tsize;
|
|
dump.u_ssize = 0;
|
|
for(i=0; i<8; i++) dump.u_debugreg[i] = current->debugreg[i];
|
|
if (dump.start_stack < TASK_SIZE)
|
|
dump.u_ssize = ((unsigned long) (TASK_SIZE - dump.start_stack)) >> 12;
|
|
/* If the size of the dump file exceeds the rlimit, then see what would happen
|
|
if we wrote the stack, but not the data area. */
|
|
if ((dump.u_dsize+dump.u_ssize+1) * PAGE_SIZE >
|
|
current->rlim[RLIMIT_CORE].rlim_cur)
|
|
dump.u_dsize = 0;
|
|
/* Make sure we have enough room to write the stack and data areas. */
|
|
if ((dump.u_ssize+1) * PAGE_SIZE >
|
|
current->rlim[RLIMIT_CORE].rlim_cur)
|
|
dump.u_ssize = 0;
|
|
strncpy(dump.u_comm, current->comm, sizeof(current->comm));
|
|
dump.u_ar0 = (struct pt_regs *)(((int)(&dump.regs)) -((int)(&dump)));
|
|
dump.signal = signr;
|
|
dump.regs = *regs;
|
|
/* Flag indicating the math stuff is valid. We don't support this for the
|
|
soft-float routines yet */
|
|
if (hard_math) {
|
|
if ((dump.u_fpvalid = current->used_math) != 0) {
|
|
if (last_task_used_math == current)
|
|
__asm__("clts ; fnsave %0": :"m" (dump.i387));
|
|
else
|
|
memcpy(&dump.i387,¤t->tss.i387.hard,sizeof(dump.i387));
|
|
}
|
|
} else {
|
|
/* we should dump the emulator state here, but we need to
|
|
convert it into standard 387 format first.. */
|
|
dump.u_fpvalid = 0;
|
|
}
|
|
set_fs(KERNEL_DS);
|
|
/* struct user */
|
|
DUMP_WRITE(&dump,sizeof(dump));
|
|
/* Now dump all of the user data. Include malloced stuff as well */
|
|
DUMP_SEEK(PAGE_SIZE);
|
|
/* now we start writing out the user space info */
|
|
set_fs(USER_DS);
|
|
/* Dump the data area */
|
|
if (dump.u_dsize != 0) {
|
|
dump_start = dump.u_tsize << 12;
|
|
dump_size = dump.u_dsize << 12;
|
|
DUMP_WRITE(dump_start,dump_size);
|
|
};
|
|
/* Now prepare to dump the stack area */
|
|
if (dump.u_ssize != 0) {
|
|
dump_start = dump.start_stack;
|
|
dump_size = dump.u_ssize << 12;
|
|
DUMP_WRITE(dump_start,dump_size);
|
|
};
|
|
/* Finally dump the task struct. Not be used by gdb, but could be useful */
|
|
set_fs(KERNEL_DS);
|
|
DUMP_WRITE(current,sizeof(*current));
|
|
close_coredump:
|
|
if (file.f_op->release)
|
|
file.f_op->release(inode,&file);
|
|
end_coredump:
|
|
set_fs(fs);
|
|
iput(inode);
|
|
return has_dumped;
|
|
}
|
|
|
|
/*
|
|
* Note that a shared library must be both readable and executable due to
|
|
* security reasons.
|
|
*
|
|
* Also note that we take the address to load from from the file itself.
|
|
*/
|
|
asmlinkage int sys_uselib(const char * library)
|
|
{
|
|
int fd, retval;
|
|
struct file * file;
|
|
struct linux_binfmt * fmt;
|
|
|
|
fd = sys_open(library, 0, 0);
|
|
if (fd < 0)
|
|
return fd;
|
|
file = current->filp[fd];
|
|
retval = -ENOEXEC;
|
|
if (file && file->f_inode && file->f_op && file->f_op->read) {
|
|
fmt = formats;
|
|
do {
|
|
int (*fn)(int) = fmt->load_shlib;
|
|
if (!fn)
|
|
break;
|
|
retval = fn(fd);
|
|
fmt++;
|
|
} while (retval == -ENOEXEC);
|
|
}
|
|
sys_close(fd);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* create_tables() parses the env- and arg-strings in new user
|
|
* memory and creates the pointer tables from them, and puts their
|
|
* addresses on the "stack", returning the new stack pointer value.
|
|
*/
|
|
unsigned long * create_tables(char * p,int argc,int envc,int ibcs)
|
|
{
|
|
unsigned long *argv,*envp;
|
|
unsigned long * sp;
|
|
struct vm_area_struct *mpnt;
|
|
|
|
mpnt = (struct vm_area_struct *)kmalloc(sizeof(*mpnt), GFP_KERNEL);
|
|
if (mpnt) {
|
|
mpnt->vm_task = current;
|
|
mpnt->vm_start = PAGE_MASK & (unsigned long) p;
|
|
mpnt->vm_end = TASK_SIZE;
|
|
mpnt->vm_page_prot = PAGE_PRIVATE|PAGE_DIRTY;
|
|
mpnt->vm_share = NULL;
|
|
mpnt->vm_inode = NULL;
|
|
mpnt->vm_offset = 0;
|
|
mpnt->vm_ops = NULL;
|
|
insert_vm_struct(current, mpnt);
|
|
current->stk_vma = mpnt;
|
|
}
|
|
sp = (unsigned long *) (0xfffffffc & (unsigned long) p);
|
|
sp -= envc+1;
|
|
envp = sp;
|
|
sp -= argc+1;
|
|
argv = sp;
|
|
if (!ibcs) {
|
|
put_fs_long((unsigned long)envp,--sp);
|
|
put_fs_long((unsigned long)argv,--sp);
|
|
}
|
|
put_fs_long((unsigned long)argc,--sp);
|
|
current->arg_start = (unsigned long) p;
|
|
while (argc-->0) {
|
|
put_fs_long((unsigned long) p,argv++);
|
|
while (get_fs_byte(p++)) /* nothing */ ;
|
|
}
|
|
put_fs_long(0,argv);
|
|
current->arg_end = current->env_start = (unsigned long) p;
|
|
while (envc-->0) {
|
|
put_fs_long((unsigned long) p,envp++);
|
|
while (get_fs_byte(p++)) /* nothing */ ;
|
|
}
|
|
put_fs_long(0,envp);
|
|
current->env_end = (unsigned long) p;
|
|
return sp;
|
|
}
|
|
|
|
/*
|
|
* count() counts the number of arguments/envelopes
|
|
*/
|
|
static int count(char ** argv)
|
|
{
|
|
int i=0;
|
|
char ** tmp;
|
|
|
|
if ((tmp = argv) != 0)
|
|
while (get_fs_long((unsigned long *) (tmp++)))
|
|
i++;
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* 'copy_string()' copies argument/envelope strings from user
|
|
* memory to free pages in kernel mem. These are in a format ready
|
|
* to be put directly into the top of new user memory.
|
|
*
|
|
* Modified by TYT, 11/24/91 to add the from_kmem argument, which specifies
|
|
* whether the string and the string array are from user or kernel segments:
|
|
*
|
|
* from_kmem argv * argv **
|
|
* 0 user space user space
|
|
* 1 kernel space user space
|
|
* 2 kernel space kernel space
|
|
*
|
|
* We do this by playing games with the fs segment register. Since it
|
|
* it is expensive to load a segment register, we try to avoid calling
|
|
* set_fs() unless we absolutely have to.
|
|
*/
|
|
unsigned long copy_strings(int argc,char ** argv,unsigned long *page,
|
|
unsigned long p, int from_kmem)
|
|
{
|
|
char *tmp, *pag = NULL;
|
|
int len, offset = 0;
|
|
unsigned long old_fs, new_fs;
|
|
|
|
if (!p)
|
|
return 0; /* bullet-proofing */
|
|
new_fs = get_ds();
|
|
old_fs = get_fs();
|
|
if (from_kmem==2)
|
|
set_fs(new_fs);
|
|
while (argc-- > 0) {
|
|
if (from_kmem == 1)
|
|
set_fs(new_fs);
|
|
if (!(tmp = (char *)get_fs_long(((unsigned long *)argv)+argc)))
|
|
panic("VFS: argc is wrong");
|
|
if (from_kmem == 1)
|
|
set_fs(old_fs);
|
|
len=0; /* remember zero-padding */
|
|
do {
|
|
len++;
|
|
} while (get_fs_byte(tmp++));
|
|
if (p < len) { /* this shouldn't happen - 128kB */
|
|
set_fs(old_fs);
|
|
return 0;
|
|
}
|
|
while (len) {
|
|
--p; --tmp; --len;
|
|
if (--offset < 0) {
|
|
offset = p % PAGE_SIZE;
|
|
if (from_kmem==2)
|
|
set_fs(old_fs);
|
|
if (!(pag = (char *) page[p/PAGE_SIZE]) &&
|
|
!(pag = (char *) page[p/PAGE_SIZE] =
|
|
(unsigned long *) get_free_page(GFP_USER)))
|
|
return 0;
|
|
if (from_kmem==2)
|
|
set_fs(new_fs);
|
|
|
|
}
|
|
*(pag + offset) = get_fs_byte(tmp);
|
|
}
|
|
}
|
|
if (from_kmem==2)
|
|
set_fs(old_fs);
|
|
return p;
|
|
}
|
|
|
|
unsigned long change_ldt(unsigned long text_size,unsigned long * page)
|
|
{
|
|
unsigned long code_limit,data_limit,code_base,data_base;
|
|
int i;
|
|
|
|
code_limit = TASK_SIZE;
|
|
data_limit = TASK_SIZE;
|
|
code_base = data_base = 0;
|
|
current->start_code = code_base;
|
|
data_base += data_limit;
|
|
for (i=MAX_ARG_PAGES-1 ; i>=0 ; i--) {
|
|
data_base -= PAGE_SIZE;
|
|
if (page[i]) {
|
|
current->rss++;
|
|
put_dirty_page(current,page[i],data_base);
|
|
}
|
|
}
|
|
return data_limit;
|
|
}
|
|
|
|
/*
|
|
* Read in the complete executable. This is used for "-N" files
|
|
* that aren't on a block boundary, and for files on filesystems
|
|
* without bmap support.
|
|
*/
|
|
int read_exec(struct inode *inode, unsigned long offset,
|
|
char * addr, unsigned long count)
|
|
{
|
|
struct file file;
|
|
int result = -ENOEXEC;
|
|
|
|
if (!inode->i_op || !inode->i_op->default_file_ops)
|
|
goto end_readexec;
|
|
file.f_mode = 1;
|
|
file.f_flags = 0;
|
|
file.f_count = 1;
|
|
file.f_inode = inode;
|
|
file.f_pos = 0;
|
|
file.f_reada = 0;
|
|
file.f_op = inode->i_op->default_file_ops;
|
|
if (file.f_op->open)
|
|
if (file.f_op->open(inode,&file))
|
|
goto end_readexec;
|
|
if (!file.f_op || !file.f_op->read)
|
|
goto close_readexec;
|
|
if (file.f_op->lseek) {
|
|
if (file.f_op->lseek(inode,&file,offset,0) != offset)
|
|
goto close_readexec;
|
|
} else
|
|
file.f_pos = offset;
|
|
if (get_fs() == USER_DS) {
|
|
result = verify_area(VERIFY_WRITE, addr, count);
|
|
if (result)
|
|
goto close_readexec;
|
|
}
|
|
result = file.f_op->read(inode, &file, addr, count);
|
|
close_readexec:
|
|
if (file.f_op->release)
|
|
file.f_op->release(inode,&file);
|
|
end_readexec:
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* This function flushes out all traces of the currently running executable so
|
|
* that a new one can be started
|
|
*/
|
|
|
|
void flush_old_exec(struct linux_binprm * bprm)
|
|
{
|
|
int i;
|
|
int ch;
|
|
char * name;
|
|
struct vm_area_struct * mpnt, *mpnt1;
|
|
|
|
current->dumpable = 1;
|
|
name = bprm->filename;
|
|
for (i=0; (ch = *(name++)) != '\0';) {
|
|
if (ch == '/')
|
|
i = 0;
|
|
else
|
|
if (i < 15)
|
|
current->comm[i++] = ch;
|
|
}
|
|
current->comm[i] = '\0';
|
|
if (current->shm)
|
|
shm_exit();
|
|
if (current->executable) {
|
|
iput(current->executable);
|
|
current->executable = NULL;
|
|
}
|
|
/* Release all of the old mmap stuff. */
|
|
|
|
mpnt = current->mmap;
|
|
current->mmap = NULL;
|
|
current->stk_vma = NULL;
|
|
while (mpnt) {
|
|
mpnt1 = mpnt->vm_next;
|
|
if (mpnt->vm_ops && mpnt->vm_ops->close)
|
|
mpnt->vm_ops->close(mpnt);
|
|
kfree(mpnt);
|
|
mpnt = mpnt1;
|
|
}
|
|
|
|
/* Flush the old ldt stuff... */
|
|
if (current->ldt) {
|
|
free_page((unsigned long) current->ldt);
|
|
current->ldt = NULL;
|
|
for (i=1 ; i<NR_TASKS ; i++) {
|
|
if (task[i] == current) {
|
|
set_ldt_desc(gdt+(i<<1)+
|
|
FIRST_LDT_ENTRY,&default_ldt, 1);
|
|
load_ldt(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i=0 ; i<8 ; i++) current->debugreg[i] = 0;
|
|
|
|
if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
|
|
!permission(bprm->inode,MAY_READ))
|
|
current->dumpable = 0;
|
|
current->signal = 0;
|
|
for (i=0 ; i<32 ; i++) {
|
|
current->sigaction[i].sa_mask = 0;
|
|
current->sigaction[i].sa_flags = 0;
|
|
if (current->sigaction[i].sa_handler != SIG_IGN)
|
|
current->sigaction[i].sa_handler = NULL;
|
|
}
|
|
for (i=0 ; i<NR_OPEN ; i++)
|
|
if (FD_ISSET(i,¤t->close_on_exec))
|
|
sys_close(i);
|
|
FD_ZERO(¤t->close_on_exec);
|
|
clear_page_tables(current);
|
|
if (last_task_used_math == current)
|
|
last_task_used_math = NULL;
|
|
current->used_math = 0;
|
|
current->elf_executable = 0;
|
|
}
|
|
|
|
/*
|
|
* sys_execve() executes a new program.
|
|
*/
|
|
static int do_execve(char * filename, char ** argv, char ** envp, struct pt_regs * regs)
|
|
{
|
|
struct linux_binprm bprm;
|
|
struct linux_binfmt * fmt;
|
|
unsigned long old_fs;
|
|
int i;
|
|
int retval;
|
|
int sh_bang = 0;
|
|
|
|
if (regs->cs != USER_CS)
|
|
return -EINVAL;
|
|
bprm.p = PAGE_SIZE*MAX_ARG_PAGES-4;
|
|
for (i=0 ; i<MAX_ARG_PAGES ; i++) /* clear page-table */
|
|
bprm.page[i] = 0;
|
|
retval = open_namei(filename, 0, 0, &bprm.inode, NULL);
|
|
if (retval)
|
|
return retval;
|
|
bprm.filename = filename;
|
|
bprm.argc = count(argv);
|
|
bprm.envc = count(envp);
|
|
|
|
restart_interp:
|
|
if (!S_ISREG(bprm.inode->i_mode)) { /* must be regular file */
|
|
retval = -EACCES;
|
|
goto exec_error2;
|
|
}
|
|
if (IS_NOEXEC(bprm.inode)) { /* FS mustn't be mounted noexec */
|
|
retval = -EPERM;
|
|
goto exec_error2;
|
|
}
|
|
if (!bprm.inode->i_sb) {
|
|
retval = -EACCES;
|
|
goto exec_error2;
|
|
}
|
|
i = bprm.inode->i_mode;
|
|
if (IS_NOSUID(bprm.inode) && (((i & S_ISUID) && bprm.inode->i_uid != current->
|
|
euid) || ((i & S_ISGID) && !in_group_p(bprm.inode->i_gid))) &&
|
|
!suser()) {
|
|
retval = -EPERM;
|
|
goto exec_error2;
|
|
}
|
|
/* make sure we don't let suid, sgid files be ptraced. */
|
|
if (current->flags & PF_PTRACED) {
|
|
bprm.e_uid = current->euid;
|
|
bprm.e_gid = current->egid;
|
|
} else {
|
|
bprm.e_uid = (i & S_ISUID) ? bprm.inode->i_uid : current->euid;
|
|
bprm.e_gid = (i & S_ISGID) ? bprm.inode->i_gid : current->egid;
|
|
}
|
|
if (current->euid == bprm.inode->i_uid)
|
|
i >>= 6;
|
|
else if (in_group_p(bprm.inode->i_gid))
|
|
i >>= 3;
|
|
if (!(i & 1) &&
|
|
!((bprm.inode->i_mode & 0111) && suser())) {
|
|
retval = -EACCES;
|
|
goto exec_error2;
|
|
}
|
|
memset(bprm.buf,0,sizeof(bprm.buf));
|
|
old_fs = get_fs();
|
|
set_fs(get_ds());
|
|
retval = read_exec(bprm.inode,0,bprm.buf,128);
|
|
set_fs(old_fs);
|
|
if (retval < 0)
|
|
goto exec_error2;
|
|
if ((bprm.buf[0] == '#') && (bprm.buf[1] == '!') && (!sh_bang)) {
|
|
/*
|
|
* This section does the #! interpretation.
|
|
* Sorta complicated, but hopefully it will work. -TYT
|
|
*/
|
|
|
|
char *cp, *interp, *i_name, *i_arg;
|
|
|
|
iput(bprm.inode);
|
|
bprm.buf[127] = '\0';
|
|
if ((cp = strchr(bprm.buf, '\n')) == NULL)
|
|
cp = bprm.buf+127;
|
|
*cp = '\0';
|
|
while (cp > bprm.buf) {
|
|
cp--;
|
|
if ((*cp == ' ') || (*cp == '\t'))
|
|
*cp = '\0';
|
|
else
|
|
break;
|
|
}
|
|
for (cp = bprm.buf+2; (*cp == ' ') || (*cp == '\t'); cp++);
|
|
if (!cp || *cp == '\0') {
|
|
retval = -ENOEXEC; /* No interpreter name found */
|
|
goto exec_error1;
|
|
}
|
|
interp = i_name = cp;
|
|
i_arg = 0;
|
|
for ( ; *cp && (*cp != ' ') && (*cp != '\t'); cp++) {
|
|
if (*cp == '/')
|
|
i_name = cp+1;
|
|
}
|
|
while ((*cp == ' ') || (*cp == '\t'))
|
|
*cp++ = '\0';
|
|
if (*cp)
|
|
i_arg = cp;
|
|
/*
|
|
* OK, we've parsed out the interpreter name and
|
|
* (optional) argument.
|
|
*/
|
|
if (sh_bang++ == 0) {
|
|
bprm.p = copy_strings(bprm.envc, envp, bprm.page, bprm.p, 0);
|
|
bprm.p = copy_strings(--bprm.argc, argv+1, bprm.page, bprm.p, 0);
|
|
}
|
|
/*
|
|
* Splice in (1) the interpreter's name for argv[0]
|
|
* (2) (optional) argument to interpreter
|
|
* (3) filename of shell script
|
|
*
|
|
* This is done in reverse order, because of how the
|
|
* user environment and arguments are stored.
|
|
*/
|
|
bprm.p = copy_strings(1, &bprm.filename, bprm.page, bprm.p, 2);
|
|
bprm.argc++;
|
|
if (i_arg) {
|
|
bprm.p = copy_strings(1, &i_arg, bprm.page, bprm.p, 2);
|
|
bprm.argc++;
|
|
}
|
|
bprm.p = copy_strings(1, &i_name, bprm.page, bprm.p, 2);
|
|
bprm.argc++;
|
|
if (!bprm.p) {
|
|
retval = -E2BIG;
|
|
goto exec_error1;
|
|
}
|
|
/*
|
|
* OK, now restart the process with the interpreter's inode.
|
|
* Note that we use open_namei() as the name is now in kernel
|
|
* space, and we don't need to copy it.
|
|
*/
|
|
retval = open_namei(interp, 0, 0, &bprm.inode, NULL);
|
|
if (retval)
|
|
goto exec_error1;
|
|
goto restart_interp;
|
|
}
|
|
if (!sh_bang) {
|
|
bprm.p = copy_strings(bprm.envc,envp,bprm.page,bprm.p,0);
|
|
bprm.p = copy_strings(bprm.argc,argv,bprm.page,bprm.p,0);
|
|
if (!bprm.p) {
|
|
retval = -E2BIG;
|
|
goto exec_error2;
|
|
}
|
|
}
|
|
|
|
bprm.sh_bang = sh_bang;
|
|
fmt = formats;
|
|
do {
|
|
int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
|
|
if (!fn)
|
|
break;
|
|
retval = fn(&bprm, regs);
|
|
if (retval == 0) {
|
|
iput(bprm.inode);
|
|
return 0;
|
|
}
|
|
fmt++;
|
|
} while (retval == -ENOEXEC);
|
|
exec_error2:
|
|
iput(bprm.inode);
|
|
exec_error1:
|
|
for (i=0 ; i<MAX_ARG_PAGES ; i++)
|
|
free_page(bprm.page[i]);
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* sys_execve() executes a new program.
|
|
*/
|
|
asmlinkage int sys_execve(struct pt_regs regs)
|
|
{
|
|
int error;
|
|
char * filename;
|
|
|
|
error = getname((char *) regs.ebx, &filename);
|
|
if (error)
|
|
return error;
|
|
error = do_execve(filename, (char **) regs.ecx, (char **) regs.edx, ®s);
|
|
putname(filename);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* These are the prototypes for the functions in the dispatch table, as
|
|
* well as the dispatch table itself.
|
|
*/
|
|
|
|
extern int load_aout_binary(struct linux_binprm *,
|
|
struct pt_regs * regs);
|
|
extern int load_aout_library(int fd);
|
|
|
|
#ifdef CONFIG_BINFMT_ELF
|
|
extern int load_elf_binary(struct linux_binprm *,
|
|
struct pt_regs * regs);
|
|
extern int load_elf_library(int fd);
|
|
#endif
|
|
|
|
#ifdef CONFIG_BINFMT_COFF
|
|
extern int load_coff_binary(struct linux_binprm *,
|
|
struct pt_regs * regs);
|
|
extern int load_coff_library(int fd);
|
|
#endif
|
|
|
|
/* Here are the actual binaries that will be accepted */
|
|
struct linux_binfmt formats[] = {
|
|
{load_aout_binary, load_aout_library},
|
|
#ifdef CONFIG_BINFMT_ELF
|
|
{load_elf_binary, load_elf_library},
|
|
#endif
|
|
#ifdef CONFIG_BINFMT_COFF
|
|
{load_coff_binary, load_coff_library},
|
|
#endif
|
|
{NULL, NULL}
|
|
};
|
|
|
|
/*
|
|
* These are the functions used to load a.out style executables and shared
|
|
* libraries. There is no binary dependent code anywhere else.
|
|
*/
|
|
|
|
int load_aout_binary(struct linux_binprm * bprm, struct pt_regs * regs)
|
|
{
|
|
struct exec ex;
|
|
struct file * file;
|
|
int fd, error;
|
|
unsigned long p = bprm->p;
|
|
|
|
ex = *((struct exec *) bprm->buf); /* exec-header */
|
|
if ((N_MAGIC(ex) != ZMAGIC && N_MAGIC(ex) != OMAGIC &&
|
|
N_MAGIC(ex) != QMAGIC) ||
|
|
ex.a_trsize || ex.a_drsize ||
|
|
bprm->inode->i_size < ex.a_text+ex.a_data+ex.a_syms+N_TXTOFF(ex)) {
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (N_MAGIC(ex) == ZMAGIC &&
|
|
(N_TXTOFF(ex) < bprm->inode->i_sb->s_blocksize)) {
|
|
printk("N_TXTOFF < BLOCK_SIZE. Please convert binary.");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (N_TXTOFF(ex) != BLOCK_SIZE && N_MAGIC(ex) == ZMAGIC) {
|
|
printk("N_TXTOFF != BLOCK_SIZE. See a.out.h.");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* OK, This is the point of no return */
|
|
flush_old_exec(bprm);
|
|
|
|
current->end_code = N_TXTADDR(ex) + ex.a_text;
|
|
current->end_data = ex.a_data + current->end_code;
|
|
current->start_brk = current->brk = current->end_data;
|
|
current->start_code += N_TXTADDR(ex);
|
|
current->rss = 0;
|
|
current->suid = current->euid = bprm->e_uid;
|
|
current->mmap = NULL;
|
|
current->executable = NULL; /* for OMAGIC files */
|
|
current->sgid = current->egid = bprm->e_gid;
|
|
if (N_MAGIC(ex) == OMAGIC) {
|
|
do_mmap(NULL, 0, ex.a_text+ex.a_data,
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_FIXED|MAP_PRIVATE, 0);
|
|
read_exec(bprm->inode, 32, (char *) 0, ex.a_text+ex.a_data);
|
|
} else {
|
|
if (ex.a_text & 0xfff || ex.a_data & 0xfff)
|
|
printk("%s: executable not page aligned\n", current->comm);
|
|
|
|
fd = open_inode(bprm->inode, O_RDONLY);
|
|
|
|
if (fd < 0)
|
|
return fd;
|
|
file = current->filp[fd];
|
|
if (!file->f_op || !file->f_op->mmap) {
|
|
sys_close(fd);
|
|
do_mmap(NULL, 0, ex.a_text+ex.a_data,
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_FIXED|MAP_PRIVATE, 0);
|
|
read_exec(bprm->inode, N_TXTOFF(ex),
|
|
(char *) N_TXTADDR(ex), ex.a_text+ex.a_data);
|
|
goto beyond_if;
|
|
}
|
|
error = do_mmap(file, N_TXTADDR(ex), ex.a_text,
|
|
PROT_READ | PROT_EXEC,
|
|
MAP_FIXED | MAP_SHARED, N_TXTOFF(ex));
|
|
|
|
if (error != N_TXTADDR(ex)) {
|
|
sys_close(fd);
|
|
send_sig(SIGSEGV, current, 0);
|
|
return 0;
|
|
};
|
|
|
|
error = do_mmap(file, N_TXTADDR(ex) + ex.a_text, ex.a_data,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_FIXED | MAP_PRIVATE, N_TXTOFF(ex) + ex.a_text);
|
|
sys_close(fd);
|
|
if (error != N_TXTADDR(ex) + ex.a_text) {
|
|
send_sig(SIGSEGV, current, 0);
|
|
return 0;
|
|
};
|
|
current->executable = bprm->inode;
|
|
bprm->inode->i_count++;
|
|
}
|
|
beyond_if:
|
|
sys_brk(current->brk+ex.a_bss);
|
|
|
|
p += change_ldt(ex.a_text,bprm->page);
|
|
p -= MAX_ARG_PAGES*PAGE_SIZE;
|
|
p = (unsigned long) create_tables((char *)p,bprm->argc,bprm->envc,0);
|
|
current->start_stack = p;
|
|
regs->eip = ex.a_entry; /* eip, magic happens :-) */
|
|
regs->esp = p; /* stack pointer */
|
|
if (current->flags & PF_PTRACED)
|
|
send_sig(SIGTRAP, current, 0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int load_aout_library(int fd)
|
|
{
|
|
struct file * file;
|
|
struct exec ex;
|
|
struct inode * inode;
|
|
unsigned int len;
|
|
unsigned int bss;
|
|
unsigned int start_addr;
|
|
int error;
|
|
|
|
file = current->filp[fd];
|
|
inode = file->f_inode;
|
|
|
|
set_fs(KERNEL_DS);
|
|
if (file->f_op->read(inode, file, (char *) &ex, sizeof(ex)) != sizeof(ex)) {
|
|
return -EACCES;
|
|
}
|
|
set_fs(USER_DS);
|
|
|
|
/* We come in here for the regular a.out style of shared libraries */
|
|
if ((N_MAGIC(ex) != ZMAGIC && N_MAGIC(ex) != QMAGIC) || ex.a_trsize ||
|
|
ex.a_drsize || ((ex.a_entry & 0xfff) && N_MAGIC(ex) == ZMAGIC) ||
|
|
inode->i_size < ex.a_text+ex.a_data+ex.a_syms+N_TXTOFF(ex)) {
|
|
return -ENOEXEC;
|
|
}
|
|
if (N_MAGIC(ex) == ZMAGIC && N_TXTOFF(ex) &&
|
|
(N_TXTOFF(ex) < inode->i_sb->s_blocksize)) {
|
|
printk("N_TXTOFF < BLOCK_SIZE. Please convert library\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (N_FLAGS(ex)) return -ENOEXEC;
|
|
|
|
/* For QMAGIC, the starting address is 0x20 into the page. We mask
|
|
this off to get the starting address for the page */
|
|
|
|
start_addr = ex.a_entry & 0xfffff000;
|
|
|
|
/* Now use mmap to map the library into memory. */
|
|
error = do_mmap(file, start_addr, ex.a_text + ex.a_data,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_PRIVATE,
|
|
N_TXTOFF(ex));
|
|
if (error != start_addr)
|
|
return error;
|
|
len = PAGE_ALIGN(ex.a_text + ex.a_data);
|
|
bss = ex.a_text + ex.a_data + ex.a_bss;
|
|
if (bss > len)
|
|
do_mmap(NULL, start_addr + len, bss-len,
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_PRIVATE|MAP_FIXED, 0);
|
|
return 0;
|
|
}
|