gems-kernel/source/THIRDPARTY/xnu/bsd/dev/dtrace/profile_prvd.c
2024-06-03 11:29:39 -05:00

704 lines
18 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <kern/cpu_data.h>
#include <kern/thread.h>
#include <kern/assert.h>
#include <mach/thread_status.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <miscfs/devfs/devfs.h>
#include <sys/dtrace.h>
#include <sys/dtrace_impl.h>
#include <sys/dtrace_glue.h>
#include <machine/pal_routines.h>
#if defined(__x86_64__)
extern x86_saved_state_t *find_kern_regs(thread_t);
#elif defined(__arm64__)
extern struct arm_saved_state *find_kern_regs(thread_t);
#else
#error Unknown architecture
#endif
extern void profile_init(void);
static dtrace_provider_id_t profile_id;
/*
* Regardless of platform, the stack frames look like this in the case of the
* profile provider:
*
* profile_fire
* cyclic_expire
* cyclic_fire
* [ cbe ]
* [ interrupt code ]
*
* On x86, there are five frames from the generic interrupt code; further, the
* interrupted instruction appears as its own stack frame, giving us a total of
* 10.
*
* On SPARC, the picture is further complicated because the compiler
* optimizes away tail-calls -- so the following frames are optimized away:
*
* profile_fire
* cyclic_expire
*
* This gives three frames. However, on DEBUG kernels, the cyclic_expire
* frame cannot be tail-call eliminated, yielding four frames in this case.
*
* All of the above constraints lead to the mess below. Yes, the profile
* provider should ideally figure this out on-the-fly by hitting one of its own
* probes and then walking its own stack trace. This is complicated, however,
* and the static definition doesn't seem to be overly brittle. Still, we
* allow for a manual override in case we get it completely wrong.
*/
#if defined(__x86_64__)
#define PROF_ARTIFICIAL_FRAMES 9
#elif defined(__arm64__)
#define PROF_ARTIFICIAL_FRAMES 8
#else
#error Unknown architecture
#endif
#define PROF_NAMELEN 15
#define PROF_PROFILE 0
#define PROF_TICK 1
#define PROF_PREFIX_PROFILE "profile-"
#define PROF_PREFIX_TICK "tick-"
typedef struct profile_probe {
char prof_name[PROF_NAMELEN];
dtrace_id_t prof_id;
int prof_kind;
hrtime_t prof_interval;
cyclic_id_t prof_cyclic;
} profile_probe_t;
typedef struct profile_probe_percpu {
hrtime_t profc_expected;
hrtime_t profc_interval;
profile_probe_t *profc_probe;
} profile_probe_percpu_t;
hrtime_t profile_interval_min = NANOSEC / 5000; /* 5000 hz */
int profile_aframes = 0; /* override */
static int profile_rates[] = {
97, 199, 499, 997, 1999,
4001, 4999, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0
};
static int profile_ticks[] = {
1, 10, 100, 500, 1000,
5000, 0, 0, 0, 0,
0, 0, 0, 0, 0
};
/*
* profile_max defines the upper bound on the number of profile probes that
* can exist (this is to prevent malicious or clumsy users from exhausing
* system resources by creating a slew of profile probes). At mod load time,
* this gets its value from PROFILE_MAX_DEFAULT or profile-max-probes if it's
* present in the profile.conf file.
*/
#define PROFILE_MAX_DEFAULT 1000 /* default max. number of probes */
static uint32_t profile_max; /* maximum number of profile probes */
static uint32_t profile_total; /* current number of profile probes */
static void
profile_fire(void *arg)
{
profile_probe_percpu_t *pcpu = arg;
profile_probe_t *prof = pcpu->profc_probe;
hrtime_t late;
late = dtrace_gethrtime() - pcpu->profc_expected;
pcpu->profc_expected += pcpu->profc_interval;
#if defined(__x86_64__)
x86_saved_state_t *kern_regs = find_kern_regs(current_thread());
if (NULL != kern_regs) {
/* Kernel was interrupted. */
dtrace_probe(prof->prof_id, saved_state64(kern_regs)->isf.rip, 0x0, late, 0, 0);
} else {
pal_register_cache_state(current_thread(), VALID);
/* Possibly a user interrupt */
x86_saved_state_t *tagged_regs = (x86_saved_state_t *)find_user_regs(current_thread());
if (NULL == tagged_regs) {
/* Too bad, so sad, no useful interrupt state. */
dtrace_probe(prof->prof_id, 0xcafebabe,
0x0, late, 0, 0); /* XXX_BOGUS also see profile_usermode() below. */
} else if (is_saved_state64(tagged_regs)) {
x86_saved_state64_t *regs = saved_state64(tagged_regs);
dtrace_probe(prof->prof_id, 0x0, regs->isf.rip, late, 0, 0);
} else {
x86_saved_state32_t *regs = saved_state32(tagged_regs);
dtrace_probe(prof->prof_id, 0x0, regs->eip, late, 0, 0);
}
}
#elif defined(__arm64__)
{
arm_saved_state_t *arm_kern_regs = (arm_saved_state_t *) find_kern_regs(current_thread());
// We should only come in here from interrupt context, so we should always have valid kernel regs
assert(NULL != arm_kern_regs);
if (saved_state64(arm_kern_regs)->cpsr & 0xF) {
const uint64_t pc = ml_get_backtrace_pc(arm_kern_regs);
/* Kernel was interrupted. */
dtrace_probe(prof->prof_id, pc, 0x0, late, 0, 0);
} else {
/* Possibly a user interrupt */
arm_saved_state_t *arm_user_regs = (arm_saved_state_t *)find_user_regs(current_thread());
if (NULL == arm_user_regs) {
/* Too bad, so sad, no useful interrupt state. */
dtrace_probe(prof->prof_id, 0xcafebabe, 0x0, late, 0, 0); /* XXX_BOGUS also see profile_usermode() below. */
} else {
dtrace_probe(prof->prof_id, 0x0, get_saved_state_pc(arm_user_regs), late, 0, 0);
}
}
}
#else
#error Unknown architecture
#endif
}
static void
profile_tick(void *arg)
{
profile_probe_t *prof = arg;
#if defined(__x86_64__)
x86_saved_state_t *kern_regs = find_kern_regs(current_thread());
if (NULL != kern_regs) {
/* Kernel was interrupted. */
dtrace_probe(prof->prof_id, saved_state64(kern_regs)->isf.rip, 0x0, 0, 0, 0);
} else {
pal_register_cache_state(current_thread(), VALID);
/* Possibly a user interrupt */
x86_saved_state_t *tagged_regs = (x86_saved_state_t *)find_user_regs(current_thread());
if (NULL == tagged_regs) {
/* Too bad, so sad, no useful interrupt state. */
dtrace_probe(prof->prof_id, 0xcafebabe,
0x0, 0, 0, 0); /* XXX_BOGUS also see profile_usermode() below. */
} else if (is_saved_state64(tagged_regs)) {
x86_saved_state64_t *regs = saved_state64(tagged_regs);
dtrace_probe(prof->prof_id, 0x0, regs->isf.rip, 0, 0, 0);
} else {
x86_saved_state32_t *regs = saved_state32(tagged_regs);
dtrace_probe(prof->prof_id, 0x0, regs->eip, 0, 0, 0);
}
}
#elif defined(__arm64__)
{
arm_saved_state_t *arm_kern_regs = (arm_saved_state_t *) find_kern_regs(current_thread());
if (NULL != arm_kern_regs) {
const uint64_t pc = ml_get_backtrace_pc(arm_kern_regs);
/* Kernel was interrupted. */
dtrace_probe(prof->prof_id, pc, 0x0, 0, 0, 0);
} else {
/* Possibly a user interrupt */
arm_saved_state_t *arm_user_regs = (arm_saved_state_t *)find_user_regs(current_thread());
if (NULL == arm_user_regs) {
/* Too bad, so sad, no useful interrupt state. */
dtrace_probe(prof->prof_id, 0xcafebabe, 0x0, 0, 0, 0); /* XXX_BOGUS also see profile_usermode() below. */
} else {
dtrace_probe(prof->prof_id, 0x0, get_saved_state_pc(arm_user_regs), 0, 0, 0);
}
}
}
#else
#error Unknown architecture
#endif
}
static void
profile_create(hrtime_t interval, const char *name, int kind)
{
profile_probe_t *prof;
if (interval < profile_interval_min) {
return;
}
if (dtrace_probe_lookup(profile_id, NULL, NULL, name) != 0) {
return;
}
os_atomic_inc(&profile_total, relaxed);
if (profile_total > profile_max) {
os_atomic_dec(&profile_total, relaxed);
return;
}
if (PROF_TICK == kind) {
prof = kmem_zalloc(sizeof(profile_probe_t), KM_SLEEP);
} else {
prof = kmem_zalloc(sizeof(profile_probe_t) + NCPU * sizeof(profile_probe_percpu_t), KM_SLEEP);
}
(void) strlcpy(prof->prof_name, name, sizeof(prof->prof_name));
prof->prof_interval = interval;
prof->prof_cyclic = CYCLIC_NONE;
prof->prof_kind = kind;
prof->prof_id = dtrace_probe_create(profile_id,
NULL, NULL, name,
profile_aframes ? profile_aframes : PROF_ARTIFICIAL_FRAMES, prof);
}
/*ARGSUSED*/
static void
profile_provide(void *arg, const dtrace_probedesc_t *desc)
{
#pragma unused(arg) /* __APPLE__ */
int i, j, rate, kind;
hrtime_t val = 0, mult = 1, len;
const char *name, *suffix = NULL;
const struct {
const char *prefix;
int kind;
} types[] = {
{ PROF_PREFIX_PROFILE, PROF_PROFILE },
{ PROF_PREFIX_TICK, PROF_TICK },
{ NULL, 0 }
};
const struct {
const char *name;
hrtime_t mult;
} suffixes[] = {
{ "ns", NANOSEC / NANOSEC },
{ "nsec", NANOSEC / NANOSEC },
{ "us", NANOSEC / MICROSEC },
{ "usec", NANOSEC / MICROSEC },
{ "ms", NANOSEC / MILLISEC },
{ "msec", NANOSEC / MILLISEC },
{ "s", NANOSEC / SEC },
{ "sec", NANOSEC / SEC },
{ "m", NANOSEC * (hrtime_t)60 },
{ "min", NANOSEC * (hrtime_t)60 },
{ "h", NANOSEC * (hrtime_t)(60 * 60) },
{ "hour", NANOSEC * (hrtime_t)(60 * 60) },
{ "d", NANOSEC * (hrtime_t)(24 * 60 * 60) },
{ "day", NANOSEC * (hrtime_t)(24 * 60 * 60) },
{ "hz", 0 },
{ NULL, 0 }
};
if (desc == NULL) {
char n[PROF_NAMELEN];
/*
* If no description was provided, provide all of our probes.
*/
for (i = 0; i < (int)(sizeof(profile_rates) / sizeof(int)); i++) {
if ((rate = profile_rates[i]) == 0) {
continue;
}
(void) snprintf(n, PROF_NAMELEN, "%s%d",
PROF_PREFIX_PROFILE, rate);
profile_create(NANOSEC / rate, n, PROF_PROFILE);
}
for (i = 0; i < (int)(sizeof(profile_ticks) / sizeof(int)); i++) {
if ((rate = profile_ticks[i]) == 0) {
continue;
}
(void) snprintf(n, PROF_NAMELEN, "%s%d",
PROF_PREFIX_TICK, rate);
profile_create(NANOSEC / rate, n, PROF_TICK);
}
return;
}
name = desc->dtpd_name;
for (i = 0; types[i].prefix != NULL; i++) {
len = strlen(types[i].prefix);
if (strncmp(name, types[i].prefix, len) != 0) {
continue;
}
break;
}
if (types[i].prefix == NULL) {
return;
}
kind = types[i].kind;
j = strlen(name) - len;
/*
* We need to start before any time suffix.
*/
for (j = strlen(name); j >= len; j--) {
if (name[j] >= '0' && name[j] <= '9') {
break;
}
suffix = &name[j];
}
if (!suffix) {
suffix = &name[strlen(name)];
}
/*
* Now determine the numerical value present in the probe name.
*/
for (; j >= len; j--) {
if (name[j] < '0' || name[j] > '9') {
return;
}
val += (name[j] - '0') * mult;
mult *= (hrtime_t)10;
}
if (val == 0) {
return;
}
/*
* Look-up the suffix to determine the multiplier.
*/
for (i = 0, mult = 0; suffixes[i].name != NULL; i++) {
/* APPLE NOTE: Darwin employs size bounded string operations */
if (strncasecmp(suffixes[i].name, suffix, strlen(suffixes[i].name) + 1) == 0) {
mult = suffixes[i].mult;
break;
}
}
if (suffixes[i].name == NULL && *suffix != '\0') {
return;
}
if (mult == 0) {
/*
* The default is frequency-per-second.
*/
val = NANOSEC / val;
} else {
val *= mult;
}
profile_create(val, name, kind);
}
/*ARGSUSED*/
static void
profile_destroy(void *arg, dtrace_id_t id, void *parg)
{
#pragma unused(arg,id) /* __APPLE__ */
profile_probe_t *prof = parg;
ASSERT(prof->prof_cyclic == CYCLIC_NONE);
if (prof->prof_kind == PROF_TICK) {
kmem_free(prof, sizeof(profile_probe_t));
} else {
kmem_free(prof, sizeof(profile_probe_t) + NCPU * sizeof(profile_probe_percpu_t));
}
ASSERT(profile_total >= 1);
os_atomic_dec(&profile_total, relaxed);
}
/*ARGSUSED*/
static void
profile_online(void *arg, dtrace_cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
{
#pragma unused(cpu) /* __APPLE__ */
profile_probe_t *prof = arg;
profile_probe_percpu_t *pcpu;
pcpu = ((profile_probe_percpu_t *)(&(prof[1]))) + cpu_number();
pcpu->profc_probe = prof;
hdlr->cyh_func = profile_fire;
hdlr->cyh_arg = pcpu;
hdlr->cyh_level = CY_HIGH_LEVEL;
when->cyt_interval = prof->prof_interval;
when->cyt_when = dtrace_gethrtime() + when->cyt_interval;
pcpu->profc_expected = when->cyt_when;
pcpu->profc_interval = when->cyt_interval;
}
/*ARGSUSED*/
static void
profile_offline(void *arg, dtrace_cpu_t *cpu, void *oarg)
{
profile_probe_percpu_t *pcpu = oarg;
ASSERT(pcpu->profc_probe == arg);
#pragma unused(pcpu,arg,cpu) /* __APPLE__ */
}
/*ARGSUSED*/
static int
profile_enable(void *arg, dtrace_id_t id, void *parg)
{
#pragma unused(arg,id) /* __APPLE__ */
profile_probe_t *prof = parg;
cyc_omni_handler_t omni;
cyc_handler_t hdlr;
cyc_time_t when;
ASSERT(prof->prof_interval != 0);
ASSERT(MUTEX_HELD(&cpu_lock));
if (prof->prof_kind == PROF_TICK) {
hdlr.cyh_func = profile_tick;
hdlr.cyh_arg = prof;
hdlr.cyh_level = CY_HIGH_LEVEL;
when.cyt_interval = prof->prof_interval;
#if !defined(__APPLE__)
when.cyt_when = dtrace_gethrtime() + when.cyt_interval;
#else
when.cyt_when = 0;
#endif /* __APPLE__ */
} else {
ASSERT(prof->prof_kind == PROF_PROFILE);
omni.cyo_online = profile_online;
omni.cyo_offline = profile_offline;
omni.cyo_arg = prof;
}
if (prof->prof_kind == PROF_TICK) {
prof->prof_cyclic = cyclic_timer_add(&hdlr, &when);
} else {
prof->prof_cyclic = (cyclic_id_t)cyclic_add_omni(&omni); /* cast puns cyclic_id_list_t with cyclic_id_t */
}
return 0;
}
/*ARGSUSED*/
static void
profile_disable(void *arg, dtrace_id_t id, void *parg)
{
profile_probe_t *prof = parg;
ASSERT(prof->prof_cyclic != CYCLIC_NONE);
ASSERT(MUTEX_HELD(&cpu_lock));
#pragma unused(arg,id)
if (prof->prof_kind == PROF_TICK) {
cyclic_timer_remove(prof->prof_cyclic);
} else {
cyclic_remove_omni((cyclic_id_list_t)prof->prof_cyclic); /* cast puns cyclic_id_list_t with cyclic_id_t */
}
prof->prof_cyclic = CYCLIC_NONE;
}
static uint64_t
profile_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes)
{
#pragma unused(arg, id, parg, argno, aframes)
/*
* All the required arguments for the profile probe are passed directly
* to dtrace_probe, and we do not go through dtrace_getarg which doesn't
* know how to hop to the kernel stack from the interrupt stack like
* dtrace_getpcstack
*/
return 0;
}
static void
profile_getargdesc(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc)
{
#pragma unused(arg, id)
profile_probe_t *prof = parg;
const char *argdesc = NULL;
switch (desc->dtargd_ndx) {
case 0:
argdesc = "void*";
break;
case 1:
argdesc = "user_addr_t";
break;
case 2:
if (prof->prof_kind == PROF_PROFILE) {
argdesc = "hrtime_t";
}
break;
}
if (argdesc) {
strlcpy(desc->dtargd_native, argdesc, DTRACE_ARGTYPELEN);
} else {
desc->dtargd_ndx = DTRACE_ARGNONE;
}
}
/*
* APPLE NOTE: profile_usermode call not supported.
*/
static int
profile_usermode(void *arg, dtrace_id_t id, void *parg)
{
#pragma unused(arg,id,parg)
return 1; /* XXX_BOGUS */
}
static dtrace_pattr_t profile_attr = {
{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
{ DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_UNKNOWN },
{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
};
static dtrace_pops_t profile_pops = {
.dtps_provide = profile_provide,
.dtps_provide_module = NULL,
.dtps_enable = profile_enable,
.dtps_disable = profile_disable,
.dtps_suspend = NULL,
.dtps_resume = NULL,
.dtps_getargdesc = profile_getargdesc,
.dtps_getargval = profile_getarg,
.dtps_usermode = profile_usermode,
.dtps_destroy = profile_destroy
};
static int
profile_attach(dev_info_t *devi)
{
if (ddi_create_minor_node(devi, "profile", S_IFCHR, 0,
DDI_PSEUDO, 0) == DDI_FAILURE ||
dtrace_register("profile", &profile_attr,
DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER, NULL,
&profile_pops, NULL, &profile_id) != 0) {
ddi_remove_minor_node(devi, NULL);
return DDI_FAILURE;
}
profile_max = PROFILE_MAX_DEFAULT;
return DDI_SUCCESS;
}
/*
* APPLE NOTE: profile_detach not implemented
*/
#if !defined(__APPLE__)
static int
profile_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
{
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
return DDI_SUCCESS;
default:
return DDI_FAILURE;
}
if (dtrace_unregister(profile_id) != 0) {
return DDI_FAILURE;
}
ddi_remove_minor_node(devi, NULL);
return DDI_SUCCESS;
}
#endif /* __APPLE__ */
d_open_t _profile_open;
int
_profile_open(dev_t dev, int flags, int devtype, struct proc *p)
{
#pragma unused(dev,flags,devtype,p)
return 0;
}
#define PROFILE_MAJOR -24 /* let the kernel pick the device number */
static const struct cdevsw profile_cdevsw =
{
.d_open = _profile_open,
.d_close = eno_opcl,
.d_read = eno_rdwrt,
.d_write = eno_rdwrt,
.d_ioctl = eno_ioctl,
.d_stop = eno_stop,
.d_reset = eno_reset,
.d_select = eno_select,
.d_mmap = eno_mmap,
.d_strategy = eno_strat,
.d_reserved_1 = eno_getc,
.d_reserved_2 = eno_putc,
};
void
profile_init( void )
{
int majdevno = cdevsw_add(PROFILE_MAJOR, &profile_cdevsw);
if (majdevno < 0) {
printf("profile_init: failed to allocate a major number!\n");
return;
}
profile_attach((dev_info_t*)(uintptr_t)majdevno);
}
#undef PROFILE_MAJOR