836 lines
24 KiB
C
836 lines
24 KiB
C
/*-
|
|
***********************************************************************
|
|
* *
|
|
* Copyright (c) David L. Mills 1993-2001 *
|
|
* *
|
|
* Permission to use, copy, modify, and distribute this software and *
|
|
* its documentation for any purpose and without fee is hereby *
|
|
* granted, provided that the above copyright notice appears in all *
|
|
* copies and that both the copyright notice and this permission *
|
|
* notice appear in supporting documentation, and that the name *
|
|
* University of Delaware not be used in advertising or publicity *
|
|
* pertaining to distribution of the software without specific, *
|
|
* written prior permission. The University of Delaware makes no *
|
|
* representations about the suitability this software for any *
|
|
* purpose. It is provided "as is" without express or implied *
|
|
* warranty. *
|
|
* *
|
|
**********************************************************************/
|
|
|
|
|
|
/*
|
|
* Adapted from the original sources for FreeBSD and timecounters by:
|
|
* Poul-Henning Kamp <phk@FreeBSD.org>.
|
|
*
|
|
* The 32bit version of the "LP" macros seems a bit past its "sell by"
|
|
* date so I have retained only the 64bit version and included it directly
|
|
* in this file.
|
|
*
|
|
* Only minor changes done to interface with the timecounters over in
|
|
* sys/kern/kern_clock.c. Some of the comments below may be (even more)
|
|
* confusing and/or plain wrong in that context.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2017 Apple Computer, Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/time.h>
|
|
#include <sys/timex.h>
|
|
#include <kern/clock.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/kauth.h>
|
|
#include <kern/thread_call.h>
|
|
#include <kern/timer_call.h>
|
|
#include <machine/machine_routines.h>
|
|
#if CONFIG_MACF
|
|
#include <security/mac_framework.h>
|
|
#endif
|
|
#include <IOKit/IOBSD.h>
|
|
#include <os/log.h>
|
|
|
|
typedef int64_t l_fp;
|
|
#define L_ADD(v, u) ((v) += (u))
|
|
#define L_SUB(v, u) ((v) -= (u))
|
|
#define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
|
|
#define L_NEG(v) ((v) = -(v))
|
|
#define L_RSHIFT(v, n) \
|
|
do { \
|
|
if ((v) < 0) \
|
|
(v) = -(-(v) >> (n)); \
|
|
else \
|
|
(v) = (v) >> (n); \
|
|
} while (0)
|
|
#define L_MPY(v, a) ((v) *= (a))
|
|
#define L_CLR(v) ((v) = 0)
|
|
#define L_ISNEG(v) ((v) < 0)
|
|
#define L_LINT(v, a) \
|
|
do { \
|
|
if ((a) > 0) \
|
|
((v) = (int64_t)(a) << 32); \
|
|
else \
|
|
((v) = -((int64_t)(-(a)) << 32)); \
|
|
} while (0)
|
|
#define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
|
|
|
|
/*
|
|
* Generic NTP kernel interface
|
|
*
|
|
* These routines constitute the Network Time Protocol (NTP) interfaces
|
|
* for user and daemon application programs. The ntp_gettime() routine
|
|
* provides the time, maximum error (synch distance) and estimated error
|
|
* (dispersion) to client user application programs. The ntp_adjtime()
|
|
* routine is used by the NTP daemon to adjust the calendar clock to an
|
|
* externally derived time. The time offset and related variables set by
|
|
* this routine are used by other routines in this module to adjust the
|
|
* phase and frequency of the clock discipline loop which controls the
|
|
* system clock.
|
|
*
|
|
* When the kernel time is reckoned directly in nanoseconds (NTP_NANO
|
|
* defined), the time at each tick interrupt is derived directly from
|
|
* the kernel time variable. When the kernel time is reckoned in
|
|
* microseconds, (NTP_NANO undefined), the time is derived from the
|
|
* kernel time variable together with a variable representing the
|
|
* leftover nanoseconds at the last tick interrupt. In either case, the
|
|
* current nanosecond time is reckoned from these values plus an
|
|
* interpolated value derived by the clock routines in another
|
|
* architecture-specific module. The interpolation can use either a
|
|
* dedicated counter or a processor cycle counter (PCC) implemented in
|
|
* some architectures.
|
|
*
|
|
*/
|
|
/*
|
|
* Phase/frequency-lock loop (PLL/FLL) definitions
|
|
*
|
|
* The nanosecond clock discipline uses two variable types, time
|
|
* variables and frequency variables. Both types are represented as 64-
|
|
* bit fixed-point quantities with the decimal point between two 32-bit
|
|
* halves. On a 32-bit machine, each half is represented as a single
|
|
* word and mathematical operations are done using multiple-precision
|
|
* arithmetic. On a 64-bit machine, ordinary computer arithmetic is
|
|
* used.
|
|
*
|
|
* A time variable is a signed 64-bit fixed-point number in ns and
|
|
* fraction. It represents the remaining time offset to be amortized
|
|
* over succeeding tick interrupts. The maximum time offset is about
|
|
* 0.5 s and the resolution is about 2.3e-10 ns.
|
|
*
|
|
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
|
|
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
|
|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
* |s s s| ns |
|
|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
* | fraction |
|
|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
*
|
|
* A frequency variable is a signed 64-bit fixed-point number in ns/s
|
|
* and fraction. It represents the ns and fraction to be added to the
|
|
* kernel time variable at each second. The maximum frequency offset is
|
|
* about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
|
|
*
|
|
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
|
|
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
|
|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
* |s s s s s s s s s s s s s| ns/s |
|
|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
* | fraction |
|
|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
*/
|
|
|
|
#define SHIFT_PLL 4
|
|
#define SHIFT_FLL 2
|
|
|
|
static int time_state = TIME_OK;
|
|
int time_status = STA_UNSYNC;
|
|
static long time_tai;
|
|
static long time_constant;
|
|
static long time_precision = 1;
|
|
static long time_maxerror = MAXPHASE / 1000;
|
|
static unsigned long last_time_maxerror_update;
|
|
long time_esterror = MAXPHASE / 1000;
|
|
static long time_reftime;
|
|
static l_fp time_offset;
|
|
static l_fp time_freq;
|
|
static int64_t time_adjtime;
|
|
static int updated;
|
|
|
|
static LCK_GRP_DECLARE(ntp_lock_grp, "ntp_lock");
|
|
static LCK_SPIN_DECLARE(ntp_lock, &ntp_lock_grp);
|
|
|
|
#define NTP_LOCK(enable) \
|
|
enable = ml_set_interrupts_enabled(FALSE); \
|
|
lck_spin_lock(&ntp_lock);
|
|
|
|
#define NTP_UNLOCK(enable) \
|
|
lck_spin_unlock(&ntp_lock);\
|
|
ml_set_interrupts_enabled(enable);
|
|
|
|
#define NTP_ASSERT_LOCKED() LCK_SPIN_ASSERT(&ntp_lock, LCK_ASSERT_OWNED)
|
|
|
|
static timer_call_data_t ntp_loop_update;
|
|
static uint64_t ntp_loop_deadline;
|
|
static uint32_t ntp_loop_active;
|
|
static uint32_t ntp_loop_period;
|
|
#define NTP_LOOP_PERIOD_INTERVAL (NSEC_PER_SEC) /*1 second interval*/
|
|
|
|
void ntp_init(void);
|
|
static void hardupdate(long offset);
|
|
static void ntp_gettime1(struct ntptimeval *ntvp);
|
|
static bool ntp_is_time_error(int tsl);
|
|
|
|
static void ntp_loop_update_call(void);
|
|
static void refresh_ntp_loop(void);
|
|
static void start_ntp_loop(void);
|
|
|
|
#if DEVELOPMENT || DEBUG
|
|
uint32_t g_should_log_clock_adjustments = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, log_clock_adjustments, CTLFLAG_RW | CTLFLAG_LOCKED, &g_should_log_clock_adjustments, 0, "enable kernel clock adjustment logging");
|
|
#endif
|
|
|
|
static bool
|
|
ntp_is_time_error(int tsl)
|
|
{
|
|
if (tsl & (STA_UNSYNC | STA_CLOCKERR)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
ntp_gettime1(struct ntptimeval *ntvp)
|
|
{
|
|
struct timespec atv;
|
|
|
|
NTP_ASSERT_LOCKED();
|
|
|
|
nanotime(&atv);
|
|
ntvp->time.tv_sec = atv.tv_sec;
|
|
ntvp->time.tv_nsec = atv.tv_nsec;
|
|
if ((unsigned long)atv.tv_sec > last_time_maxerror_update) {
|
|
time_maxerror += (MAXFREQ / 1000) * (atv.tv_sec - last_time_maxerror_update);
|
|
last_time_maxerror_update = atv.tv_sec;
|
|
}
|
|
ntvp->maxerror = time_maxerror;
|
|
ntvp->esterror = time_esterror;
|
|
ntvp->tai = time_tai;
|
|
ntvp->time_state = time_state;
|
|
|
|
if (ntp_is_time_error(time_status)) {
|
|
ntvp->time_state = TIME_ERROR;
|
|
}
|
|
}
|
|
|
|
int
|
|
ntp_gettime(struct proc *p, struct ntp_gettime_args *uap, __unused int32_t *retval)
|
|
{
|
|
struct ntptimeval ntv;
|
|
int error;
|
|
boolean_t enable;
|
|
|
|
NTP_LOCK(enable);
|
|
ntp_gettime1(&ntv);
|
|
NTP_UNLOCK(enable);
|
|
|
|
if (IS_64BIT_PROCESS(p)) {
|
|
struct user64_ntptimeval user_ntv = {};
|
|
user_ntv.time.tv_sec = ntv.time.tv_sec;
|
|
user_ntv.time.tv_nsec = ntv.time.tv_nsec;
|
|
user_ntv.maxerror = ntv.maxerror;
|
|
user_ntv.esterror = ntv.esterror;
|
|
user_ntv.tai = ntv.tai;
|
|
user_ntv.time_state = ntv.time_state;
|
|
error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv));
|
|
} else {
|
|
struct user32_ntptimeval user_ntv = {};
|
|
user_ntv.time.tv_sec = (user32_long_t)ntv.time.tv_sec;
|
|
user_ntv.time.tv_nsec = (user32_long_t)ntv.time.tv_nsec;
|
|
user_ntv.maxerror = (user32_long_t)ntv.maxerror;
|
|
user_ntv.esterror = (user32_long_t)ntv.esterror;
|
|
user_ntv.tai = (user32_long_t)ntv.tai;
|
|
user_ntv.time_state = ntv.time_state;
|
|
error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv));
|
|
}
|
|
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
return ntv.time_state;
|
|
}
|
|
|
|
int
|
|
ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap, int32_t *retval)
|
|
{
|
|
struct timex ntv = {};
|
|
long freq;
|
|
unsigned int modes;
|
|
int error, ret = 0;
|
|
clock_sec_t sec;
|
|
clock_usec_t microsecs;
|
|
boolean_t enable;
|
|
|
|
if (IS_64BIT_PROCESS(p)) {
|
|
struct user64_timex user_ntv;
|
|
error = copyin(uap->tp, &user_ntv, sizeof(user_ntv));
|
|
ntv.modes = user_ntv.modes;
|
|
ntv.offset = (long)user_ntv.offset;
|
|
ntv.freq = (long)user_ntv.freq;
|
|
ntv.maxerror = (long)user_ntv.maxerror;
|
|
ntv.esterror = (long)user_ntv.esterror;
|
|
ntv.status = user_ntv.status;
|
|
ntv.constant = (long)user_ntv.constant;
|
|
ntv.precision = (long)user_ntv.precision;
|
|
ntv.tolerance = (long)user_ntv.tolerance;
|
|
} else {
|
|
struct user32_timex user_ntv;
|
|
error = copyin(uap->tp, &user_ntv, sizeof(user_ntv));
|
|
ntv.modes = user_ntv.modes;
|
|
ntv.offset = user_ntv.offset;
|
|
ntv.freq = user_ntv.freq;
|
|
ntv.maxerror = user_ntv.maxerror;
|
|
ntv.esterror = user_ntv.esterror;
|
|
ntv.status = user_ntv.status;
|
|
ntv.constant = user_ntv.constant;
|
|
ntv.precision = user_ntv.precision;
|
|
ntv.tolerance = user_ntv.tolerance;
|
|
}
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
#if DEVELOPMENT || DEBUG
|
|
if (g_should_log_clock_adjustments) {
|
|
os_log(OS_LOG_DEFAULT, "%s: BEFORE modes %u offset %ld freq %ld status %d constant %ld time_adjtime %lld\n",
|
|
__func__, ntv.modes, ntv.offset, ntv.freq, ntv.status, ntv.constant, time_adjtime);
|
|
}
|
|
#endif
|
|
/*
|
|
* Update selected clock variables - only the superuser can
|
|
* change anything. Note that there is no error checking here on
|
|
* the assumption the superuser should know what it is doing.
|
|
* Note that either the time constant or TAI offset are loaded
|
|
* from the ntv.constant member, depending on the mode bits. If
|
|
* the STA_PLL bit in the status word is cleared, the state and
|
|
* status words are reset to the initial values at boot.
|
|
*/
|
|
modes = ntv.modes;
|
|
if (modes) {
|
|
/* Check that this task is entitled to set the time or it is root */
|
|
if (!IOCurrentTaskHasEntitlement(SETTIME_ENTITLEMENT)) {
|
|
#if CONFIG_MACF
|
|
error = mac_system_check_settime(kauth_cred_get());
|
|
if (error) {
|
|
return error;
|
|
}
|
|
#endif
|
|
if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0))) {
|
|
return error;
|
|
}
|
|
}
|
|
}
|
|
|
|
NTP_LOCK(enable);
|
|
|
|
if (modes & MOD_MAXERROR) {
|
|
clock_gettimeofday(&sec, µsecs);
|
|
time_maxerror = ntv.maxerror;
|
|
last_time_maxerror_update = sec;
|
|
}
|
|
if (modes & MOD_ESTERROR) {
|
|
time_esterror = ntv.esterror;
|
|
}
|
|
if (modes & MOD_STATUS) {
|
|
if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
|
|
time_state = TIME_OK;
|
|
time_status = STA_UNSYNC;
|
|
}
|
|
time_status &= STA_RONLY;
|
|
time_status |= ntv.status & ~STA_RONLY;
|
|
/*
|
|
* Nor PPS or leaps seconds are supported.
|
|
* Filter out unsupported bits.
|
|
*/
|
|
time_status &= STA_SUPPORTED;
|
|
}
|
|
if (modes & MOD_TIMECONST) {
|
|
if (ntv.constant < 0) {
|
|
time_constant = 0;
|
|
} else if (ntv.constant > MAXTC) {
|
|
time_constant = MAXTC;
|
|
} else {
|
|
time_constant = ntv.constant;
|
|
}
|
|
}
|
|
if (modes & MOD_TAI) {
|
|
if (ntv.constant > 0) {
|
|
time_tai = ntv.constant;
|
|
}
|
|
}
|
|
if (modes & MOD_NANO) {
|
|
time_status |= STA_NANO;
|
|
}
|
|
if (modes & MOD_MICRO) {
|
|
time_status &= ~STA_NANO;
|
|
}
|
|
if (modes & MOD_CLKB) {
|
|
time_status |= STA_CLK;
|
|
}
|
|
if (modes & MOD_CLKA) {
|
|
time_status &= ~STA_CLK;
|
|
}
|
|
if (modes & MOD_FREQUENCY) {
|
|
freq = (ntv.freq * 1000LL) >> 16;
|
|
if (freq > MAXFREQ) {
|
|
L_LINT(time_freq, MAXFREQ);
|
|
} else if (freq < -MAXFREQ) {
|
|
L_LINT(time_freq, -MAXFREQ);
|
|
} else {
|
|
/*
|
|
* ntv.freq is [PPM * 2^16] = [us/s * 2^16]
|
|
* time_freq is [ns/s * 2^32]
|
|
*/
|
|
time_freq = ntv.freq * 1000LL * 65536LL;
|
|
}
|
|
}
|
|
if (modes & MOD_OFFSET) {
|
|
if (time_status & STA_NANO) {
|
|
hardupdate(ntv.offset);
|
|
} else {
|
|
hardupdate(ntv.offset * 1000);
|
|
}
|
|
}
|
|
|
|
ret = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
|
|
|
|
#if DEVELOPMENT || DEBUG
|
|
if (g_should_log_clock_adjustments) {
|
|
os_log(OS_LOG_DEFAULT, "%s: AFTER modes %u offset %lld freq %lld status %d constant %ld time_adjtime %lld\n",
|
|
__func__, modes, time_offset, time_freq, time_status, time_constant, time_adjtime);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Retrieve all clock variables. Note that the TAI offset is
|
|
* returned only by ntp_gettime();
|
|
*/
|
|
if (IS_64BIT_PROCESS(p)) {
|
|
struct user64_timex user_ntv = {};
|
|
|
|
user_ntv.modes = modes;
|
|
if (time_status & STA_NANO) {
|
|
user_ntv.offset = L_GINT(time_offset);
|
|
} else {
|
|
user_ntv.offset = L_GINT(time_offset) / 1000;
|
|
}
|
|
if (time_freq > 0) {
|
|
user_ntv.freq = L_GINT(((int64_t)(time_freq / 1000LL)) << 16);
|
|
} else {
|
|
user_ntv.freq = -L_GINT(((int64_t)(-(time_freq) / 1000LL)) << 16);
|
|
}
|
|
user_ntv.maxerror = time_maxerror;
|
|
user_ntv.esterror = time_esterror;
|
|
user_ntv.status = time_status;
|
|
user_ntv.constant = time_constant;
|
|
if (time_status & STA_NANO) {
|
|
user_ntv.precision = time_precision;
|
|
} else {
|
|
user_ntv.precision = time_precision / 1000;
|
|
}
|
|
user_ntv.tolerance = MAXFREQ * SCALE_PPM;
|
|
|
|
/* unlock before copyout */
|
|
NTP_UNLOCK(enable);
|
|
|
|
error = copyout(&user_ntv, uap->tp, sizeof(user_ntv));
|
|
} else {
|
|
struct user32_timex user_ntv = {};
|
|
|
|
user_ntv.modes = modes;
|
|
if (time_status & STA_NANO) {
|
|
user_ntv.offset = L_GINT(time_offset);
|
|
} else {
|
|
user_ntv.offset = L_GINT(time_offset) / 1000;
|
|
}
|
|
if (time_freq > 0) {
|
|
user_ntv.freq = L_GINT((time_freq / 1000LL) << 16);
|
|
} else {
|
|
user_ntv.freq = -L_GINT((-(time_freq) / 1000LL) << 16);
|
|
}
|
|
user_ntv.maxerror = (user32_long_t)time_maxerror;
|
|
user_ntv.esterror = (user32_long_t)time_esterror;
|
|
user_ntv.status = time_status;
|
|
user_ntv.constant = (user32_long_t)time_constant;
|
|
if (time_status & STA_NANO) {
|
|
user_ntv.precision = (user32_long_t)time_precision;
|
|
} else {
|
|
user_ntv.precision = (user32_long_t)(time_precision / 1000);
|
|
}
|
|
user_ntv.tolerance = MAXFREQ * SCALE_PPM;
|
|
|
|
/* unlock before copyout */
|
|
NTP_UNLOCK(enable);
|
|
|
|
error = copyout(&user_ntv, uap->tp, sizeof(user_ntv));
|
|
}
|
|
|
|
if (modes) {
|
|
start_ntp_loop();
|
|
}
|
|
|
|
if (error == 0) {
|
|
*retval = ret;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int64_t
|
|
ntp_get_freq(void)
|
|
{
|
|
return time_freq;
|
|
}
|
|
|
|
/*
|
|
* Compute the adjustment to add to the next second.
|
|
*/
|
|
void
|
|
ntp_update_second(int64_t *adjustment, clock_sec_t secs)
|
|
{
|
|
int tickrate;
|
|
l_fp time_adj;
|
|
l_fp ftemp, old_time_adjtime, old_offset;
|
|
|
|
NTP_ASSERT_LOCKED();
|
|
|
|
if (secs > last_time_maxerror_update) {
|
|
time_maxerror += (MAXFREQ / 1000) * (secs - last_time_maxerror_update);
|
|
last_time_maxerror_update = secs;
|
|
}
|
|
|
|
old_offset = time_offset;
|
|
old_time_adjtime = time_adjtime;
|
|
|
|
ftemp = time_offset;
|
|
L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
|
|
time_adj = ftemp;
|
|
L_SUB(time_offset, ftemp);
|
|
L_ADD(time_adj, time_freq);
|
|
|
|
/*
|
|
* Apply any correction from adjtime. If more than one second
|
|
* off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
|
|
* until the last second is slewed the final < 500 usecs.
|
|
*/
|
|
if (time_adjtime != 0) {
|
|
if (time_adjtime > 1000000) {
|
|
tickrate = 5000;
|
|
} else if (time_adjtime < -1000000) {
|
|
tickrate = -5000;
|
|
} else if (time_adjtime > 500) {
|
|
tickrate = 500;
|
|
} else if (time_adjtime < -500) {
|
|
tickrate = -500;
|
|
} else {
|
|
tickrate = (int)time_adjtime;
|
|
}
|
|
time_adjtime -= tickrate;
|
|
L_LINT(ftemp, tickrate * 1000);
|
|
L_ADD(time_adj, ftemp);
|
|
}
|
|
|
|
if (old_time_adjtime || ((time_offset || old_offset) && (time_offset != old_offset))) {
|
|
updated = 1;
|
|
} else {
|
|
updated = 0;
|
|
}
|
|
|
|
#if DEVELOPMENT || DEBUG
|
|
if (g_should_log_clock_adjustments) {
|
|
int64_t nano = (time_adj > 0)? time_adj >> 32 : -((-time_adj) >> 32);
|
|
int64_t frac = (time_adj > 0)? ((uint32_t) time_adj) : -((uint32_t) (-time_adj));
|
|
|
|
os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld (%lld) freq %lld status %d "
|
|
"constant %ld time_adjtime %lld nano %lld frac %lld adj %lld\n",
|
|
__func__, time_offset, (time_offset > 0)? time_offset >> 32 : -((-time_offset) >> 32),
|
|
time_freq, time_status, time_constant, time_adjtime, nano, frac, time_adj);
|
|
}
|
|
#endif
|
|
|
|
*adjustment = time_adj;
|
|
}
|
|
|
|
/*
|
|
* hardupdate() - local clock update
|
|
*
|
|
* This routine is called by ntp_adjtime() when an offset is provided
|
|
* to update the local clock phase and frequency.
|
|
* The implementation is of an adaptive-parameter, hybrid
|
|
* phase/frequency-lock loop (PLL/FLL). The routine computes new
|
|
* time and frequency offset estimates for each call.
|
|
* Presumably, calls to ntp_adjtime() occur only when the caller
|
|
* believes the local clock is valid within some bound (+-128 ms with
|
|
* NTP).
|
|
*
|
|
* For uncompensated quartz crystal oscillators and nominal update
|
|
* intervals less than 256 s, operation should be in phase-lock mode,
|
|
* where the loop is disciplined to phase. For update intervals greater
|
|
* than 1024 s, operation should be in frequency-lock mode, where the
|
|
* loop is disciplined to frequency. Between 256 s and 1024 s, the mode
|
|
* is selected by the STA_MODE status bit.
|
|
*/
|
|
static void
|
|
hardupdate(long offset)
|
|
{
|
|
long mtemp = 0;
|
|
long time_monitor;
|
|
clock_sec_t time_uptime;
|
|
l_fp ftemp;
|
|
|
|
NTP_ASSERT_LOCKED();
|
|
|
|
if (!(time_status & STA_PLL)) {
|
|
return;
|
|
}
|
|
|
|
if (offset > MAXPHASE) {
|
|
time_monitor = MAXPHASE;
|
|
} else if (offset < -MAXPHASE) {
|
|
time_monitor = -MAXPHASE;
|
|
} else {
|
|
time_monitor = offset;
|
|
}
|
|
L_LINT(time_offset, time_monitor);
|
|
|
|
clock_get_calendar_uptime(&time_uptime);
|
|
|
|
if (time_status & STA_FREQHOLD || time_reftime == 0) {
|
|
time_reftime = time_uptime;
|
|
}
|
|
|
|
mtemp = time_uptime - time_reftime;
|
|
L_LINT(ftemp, time_monitor);
|
|
L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
|
|
L_MPY(ftemp, mtemp);
|
|
L_ADD(time_freq, ftemp);
|
|
time_status &= ~STA_MODE;
|
|
if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
|
|
MAXSEC)) {
|
|
if (time_monitor > 0) {
|
|
L_LINT(ftemp, (time_monitor << 4) / mtemp);
|
|
} else {
|
|
L_LINT(ftemp, -((int64_t)(-(time_monitor)) << 4) / mtemp);
|
|
}
|
|
L_RSHIFT(ftemp, SHIFT_FLL + 4);
|
|
L_ADD(time_freq, ftemp);
|
|
time_status |= STA_MODE;
|
|
}
|
|
time_reftime = time_uptime;
|
|
|
|
if (L_GINT(time_freq) > MAXFREQ) {
|
|
L_LINT(time_freq, MAXFREQ);
|
|
} else if (L_GINT(time_freq) < -MAXFREQ) {
|
|
L_LINT(time_freq, -MAXFREQ);
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
kern_adjtime(struct timeval *delta)
|
|
{
|
|
struct timeval atv;
|
|
int64_t ltr, ltw;
|
|
boolean_t enable;
|
|
|
|
if (delta == NULL) {
|
|
return EINVAL;
|
|
}
|
|
|
|
ltw = (int64_t)delta->tv_sec * (int64_t)USEC_PER_SEC + delta->tv_usec;
|
|
|
|
NTP_LOCK(enable);
|
|
ltr = time_adjtime;
|
|
time_adjtime = ltw;
|
|
#if DEVELOPMENT || DEBUG
|
|
if (g_should_log_clock_adjustments) {
|
|
os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld freq %lld status %d constant %ld time_adjtime %lld\n",
|
|
__func__, time_offset, time_freq, time_status, time_constant, time_adjtime);
|
|
}
|
|
#endif
|
|
NTP_UNLOCK(enable);
|
|
|
|
atv.tv_sec = (__darwin_time_t)(ltr / (int64_t)USEC_PER_SEC);
|
|
atv.tv_usec = ltr % (int64_t)USEC_PER_SEC;
|
|
if (atv.tv_usec < 0) {
|
|
atv.tv_usec += (suseconds_t)USEC_PER_SEC;
|
|
atv.tv_sec--;
|
|
}
|
|
|
|
*delta = atv;
|
|
|
|
start_ntp_loop();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval)
|
|
{
|
|
struct timeval atv;
|
|
int error;
|
|
|
|
/* Check that this task is entitled to set the time or it is root */
|
|
if (!IOCurrentTaskHasEntitlement(SETTIME_ENTITLEMENT)) {
|
|
#if CONFIG_MACF
|
|
error = mac_system_check_settime(kauth_cred_get());
|
|
if (error) {
|
|
return error;
|
|
}
|
|
#endif
|
|
if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0))) {
|
|
return error;
|
|
}
|
|
}
|
|
|
|
if (IS_64BIT_PROCESS(p)) {
|
|
struct user64_timeval user_atv;
|
|
error = copyin(uap->delta, &user_atv, sizeof(user_atv));
|
|
atv.tv_sec = (__darwin_time_t)user_atv.tv_sec;
|
|
atv.tv_usec = user_atv.tv_usec;
|
|
} else {
|
|
struct user32_timeval user_atv;
|
|
error = copyin(uap->delta, &user_atv, sizeof(user_atv));
|
|
atv.tv_sec = user_atv.tv_sec;
|
|
atv.tv_usec = user_atv.tv_usec;
|
|
}
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
kern_adjtime(&atv);
|
|
|
|
if (uap->olddelta) {
|
|
if (IS_64BIT_PROCESS(p)) {
|
|
struct user64_timeval user_atv = {};
|
|
user_atv.tv_sec = atv.tv_sec;
|
|
user_atv.tv_usec = atv.tv_usec;
|
|
error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
|
|
} else {
|
|
struct user32_timeval user_atv = {};
|
|
user_atv.tv_sec = (user32_time_t)atv.tv_sec;
|
|
user_atv.tv_usec = atv.tv_usec;
|
|
error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
ntp_loop_update_call(void)
|
|
{
|
|
boolean_t enable;
|
|
|
|
NTP_LOCK(enable);
|
|
|
|
/*
|
|
* Update the scale factor used by clock_calend.
|
|
* NOTE: clock_update_calendar will call ntp_update_second to compute the next adjustment.
|
|
*/
|
|
clock_update_calendar();
|
|
|
|
refresh_ntp_loop();
|
|
|
|
NTP_UNLOCK(enable);
|
|
}
|
|
|
|
static void
|
|
refresh_ntp_loop(void)
|
|
{
|
|
NTP_ASSERT_LOCKED();
|
|
if (--ntp_loop_active == 0) {
|
|
/*
|
|
* Activate the timer only if the next second adjustment might change.
|
|
* ntp_update_second checks it and sets updated accordingly.
|
|
*/
|
|
if (updated) {
|
|
clock_deadline_for_periodic_event(ntp_loop_period, mach_absolute_time(), &ntp_loop_deadline);
|
|
|
|
if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) {
|
|
ntp_loop_active++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function triggers a timer that each second will calculate the adjustment to
|
|
* provide to clock_calendar to scale the time (used by gettimeofday-family syscalls).
|
|
* The periodic timer will stop when the adjustment will reach a stable value.
|
|
*/
|
|
static void
|
|
start_ntp_loop(void)
|
|
{
|
|
boolean_t enable;
|
|
|
|
NTP_LOCK(enable);
|
|
|
|
ntp_loop_deadline = mach_absolute_time() + ntp_loop_period;
|
|
|
|
if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) {
|
|
ntp_loop_active++;
|
|
}
|
|
|
|
NTP_UNLOCK(enable);
|
|
}
|
|
|
|
|
|
static void
|
|
init_ntp_loop(void)
|
|
{
|
|
uint64_t abstime;
|
|
|
|
ntp_loop_active = 0;
|
|
nanoseconds_to_absolutetime(NTP_LOOP_PERIOD_INTERVAL, &abstime);
|
|
ntp_loop_period = (uint32_t)abstime;
|
|
timer_call_setup(&ntp_loop_update, (timer_call_func_t)ntp_loop_update_call, NULL);
|
|
}
|
|
|
|
void
|
|
ntp_init(void)
|
|
{
|
|
init_ntp_loop();
|
|
}
|