gems-kernel/source/THIRDPARTY/xnu/bsd/vfs/vfs_bio.c
2024-06-03 11:29:39 -05:00

5024 lines
111 KiB
C

/*
* Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*-
* Copyright (c) 1994 Christopher G. Demetriou
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
*/
/*
* Some references:
* Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
* Leffler, et al.: The Design and Implementation of the 4.3BSD
* UNIX Operating System (Addison Welley, 1989)
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc_internal.h>
#include <sys/buf_internal.h>
#include <sys/vnode_internal.h>
#include <sys/mount_internal.h>
#include <sys/trace.h>
#include <kern/kalloc.h>
#include <sys/resourcevar.h>
#include <miscfs/specfs/specdev.h>
#include <sys/ubc.h>
#include <sys/kauth.h>
#if DIAGNOSTIC
#include <kern/assert.h>
#endif /* DIAGNOSTIC */
#include <kern/task.h>
#include <kern/zalloc.h>
#include <kern/locks.h>
#include <kern/thread.h>
#include <sys/fslog.h> /* fslog_io_error() */
#include <sys/disk.h> /* dk_error_description_t */
#include <mach/mach_types.h>
#include <mach/memory_object_types.h>
#include <kern/sched_prim.h> /* thread_block() */
#include <vm/vm_kern.h>
#include <vm/vm_pageout.h>
#include <sys/kdebug.h>
#include <libkern/OSAtomic.h>
#include <libkern/OSDebug.h>
#include <sys/ubc_internal.h>
#include <sys/sdt.h>
int bcleanbuf(buf_t bp, boolean_t discard);
static int brecover_data(buf_t bp);
static boolean_t incore(vnode_t vp, daddr64_t blkno);
/* timeout is in msecs */
static buf_t getnewbuf(int slpflag, int slptimeo, int *queue);
static void bremfree_locked(buf_t bp);
static void buf_reassign(buf_t bp, vnode_t newvp);
static errno_t buf_acquire_locked(buf_t bp, int flags, int slpflag, int slptimeo);
static int buf_iterprepare(vnode_t vp, struct buflists *, int flags);
static void buf_itercomplete(vnode_t vp, struct buflists *, int flags);
static boolean_t buffer_cache_gc(int);
static buf_t buf_brelse_shadow(buf_t bp);
static void buf_free_meta_store(buf_t bp);
static buf_t buf_create_shadow_internal(buf_t bp, boolean_t force_copy,
uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg, int priv);
int bdwrite_internal(buf_t, int);
extern void disk_conditioner_delay(buf_t, int, int, uint64_t);
/* zone allocated buffer headers */
static void bcleanbuf_thread_init(void);
static void bcleanbuf_thread(void);
static ZONE_DEFINE_TYPE(buf_hdr_zone, "buf headers", struct buf, ZC_NONE);
static int buf_hdr_count;
/*
* Definitions for the buffer hash lists.
*/
#define BUFHASH(dvp, lbn) \
(&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
LIST_HEAD(bufhashhdr, buf) * bufhashtbl, invalhash;
u_long bufhash;
static buf_t incore_locked(vnode_t vp, daddr64_t blkno, struct bufhashhdr *dp);
/* Definitions for the buffer stats. */
struct bufstats bufstats;
/* Number of delayed write buffers */
long nbdwrite = 0;
int blaundrycnt = 0;
static int boot_nbuf_headers = 0;
static TAILQ_HEAD(delayqueue, buf) delaybufqueue;
static TAILQ_HEAD(ioqueue, buf) iobufqueue;
static TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
static int needbuffer;
static int need_iobuffer;
static LCK_GRP_DECLARE(buf_mtx_grp, "buffer cache");
static LCK_ATTR_DECLARE(buf_mtx_attr, 0, 0);
static LCK_MTX_DECLARE_ATTR(iobuffer_mtxp, &buf_mtx_grp, &buf_mtx_attr);
static LCK_MTX_DECLARE_ATTR(buf_mtx, &buf_mtx_grp, &buf_mtx_attr);
static LCK_MTX_DECLARE_ATTR(buf_gc_callout, &buf_mtx_grp, &buf_mtx_attr);
static uint32_t buf_busycount;
#define FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE 16
typedef struct {
void (* callout)(int, void *);
void *context;
} fs_buffer_cache_gc_callout_t;
fs_buffer_cache_gc_callout_t fs_callouts[FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE] = { {NULL, NULL} };
static __inline__ int
buf_timestamp(void)
{
struct timeval t;
microuptime(&t);
return (int)t.tv_sec;
}
/*
* Insq/Remq for the buffer free lists.
*/
#define binsheadfree(bp, dp, whichq) do { \
TAILQ_INSERT_HEAD(dp, bp, b_freelist); \
} while (0)
#define binstailfree(bp, dp, whichq) do { \
TAILQ_INSERT_TAIL(dp, bp, b_freelist); \
} while (0)
#define BHASHENTCHECK(bp) \
if ((bp)->b_hash.le_prev != (struct buf **)0xdeadbeef) \
panic("%p: b_hash.le_prev is not deadbeef", (bp));
#define BLISTNONE(bp) \
(bp)->b_hash.le_next = (struct buf *)0; \
(bp)->b_hash.le_prev = (struct buf **)0xdeadbeef;
/*
* Insq/Remq for the vnode usage lists.
*/
#define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs)
#define bufremvn(bp) { \
LIST_REMOVE(bp, b_vnbufs); \
(bp)->b_vnbufs.le_next = NOLIST; \
}
/*
* Time in seconds before a buffer on a list is
* considered as a stale buffer
*/
#define LRU_IS_STALE 120 /* default value for the LRU */
#define AGE_IS_STALE 60 /* default value for the AGE */
#define META_IS_STALE 180 /* default value for the BQ_META */
int lru_is_stale = LRU_IS_STALE;
int age_is_stale = AGE_IS_STALE;
int meta_is_stale = META_IS_STALE;
#define MAXLAUNDRY 10
/* LIST_INSERT_HEAD() with assertions */
static __inline__ void
blistenterhead(struct bufhashhdr * head, buf_t bp)
{
if ((bp->b_hash.le_next = (head)->lh_first) != NULL) {
(head)->lh_first->b_hash.le_prev = &(bp)->b_hash.le_next;
}
(head)->lh_first = bp;
bp->b_hash.le_prev = &(head)->lh_first;
if (bp->b_hash.le_prev == (struct buf **)0xdeadbeef) {
panic("blistenterhead: le_prev is deadbeef");
}
}
static __inline__ void
binshash(buf_t bp, struct bufhashhdr *dp)
{
#if DIAGNOSTIC
buf_t nbp;
#endif /* DIAGNOSTIC */
BHASHENTCHECK(bp);
#if DIAGNOSTIC
nbp = dp->lh_first;
for (; nbp != NULL; nbp = nbp->b_hash.le_next) {
if (nbp == bp) {
panic("buf already in hashlist");
}
}
#endif /* DIAGNOSTIC */
blistenterhead(dp, bp);
}
static __inline__ void
bremhash(buf_t bp)
{
if (bp->b_hash.le_prev == (struct buf **)0xdeadbeef) {
panic("bremhash le_prev is deadbeef");
}
if (bp->b_hash.le_next == bp) {
panic("bremhash: next points to self");
}
if (bp->b_hash.le_next != NULL) {
bp->b_hash.le_next->b_hash.le_prev = bp->b_hash.le_prev;
}
*bp->b_hash.le_prev = (bp)->b_hash.le_next;
}
/*
* buf_mtx held.
*/
static __inline__ void
bmovelaundry(buf_t bp)
{
bp->b_whichq = BQ_LAUNDRY;
bp->b_timestamp = buf_timestamp();
binstailfree(bp, &bufqueues[BQ_LAUNDRY], BQ_LAUNDRY);
blaundrycnt++;
}
static __inline__ void
buf_release_credentials(buf_t bp)
{
if (IS_VALID_CRED(bp->b_rcred)) {
kauth_cred_unref(&bp->b_rcred);
}
if (IS_VALID_CRED(bp->b_wcred)) {
kauth_cred_unref(&bp->b_wcred);
}
}
int
buf_valid(buf_t bp)
{
if ((bp->b_flags & (B_DONE | B_DELWRI))) {
return 1;
}
return 0;
}
int
buf_fromcache(buf_t bp)
{
if ((bp->b_flags & B_CACHE)) {
return 1;
}
return 0;
}
void
buf_markinvalid(buf_t bp)
{
SET(bp->b_flags, B_INVAL);
}
void
buf_markdelayed(buf_t bp)
{
if (!ISSET(bp->b_flags, B_DELWRI)) {
SET(bp->b_flags, B_DELWRI);
OSAddAtomicLong(1, &nbdwrite);
buf_reassign(bp, bp->b_vp);
}
SET(bp->b_flags, B_DONE);
}
void
buf_markclean(buf_t bp)
{
if (ISSET(bp->b_flags, B_DELWRI)) {
CLR(bp->b_flags, B_DELWRI);
OSAddAtomicLong(-1, &nbdwrite);
buf_reassign(bp, bp->b_vp);
}
}
void
buf_markeintr(buf_t bp)
{
SET(bp->b_flags, B_EINTR);
}
void
buf_markaged(buf_t bp)
{
SET(bp->b_flags, B_AGE);
}
int
buf_fua(buf_t bp)
{
if ((bp->b_flags & B_FUA) == B_FUA) {
return 1;
}
return 0;
}
void
buf_markfua(buf_t bp)
{
SET(bp->b_flags, B_FUA);
}
#if CONFIG_PROTECT
cpx_t
bufattr_cpx(bufattr_t bap)
{
return bap->ba_cpx;
}
void
bufattr_setcpx(bufattr_t bap, cpx_t cpx)
{
bap->ba_cpx = cpx;
}
void
buf_setcpoff(buf_t bp, uint64_t foffset)
{
bp->b_attr.ba_cp_file_off = foffset;
}
uint64_t
bufattr_cpoff(bufattr_t bap)
{
return bap->ba_cp_file_off;
}
void
bufattr_setcpoff(bufattr_t bap, uint64_t foffset)
{
bap->ba_cp_file_off = foffset;
}
#else // !CONTECT_PROTECT
uint64_t
bufattr_cpoff(bufattr_t bap __unused)
{
return 0;
}
void
bufattr_setcpoff(__unused bufattr_t bap, __unused uint64_t foffset)
{
return;
}
struct cpx *
bufattr_cpx(__unused bufattr_t bap)
{
return NULL;
}
void
bufattr_setcpx(__unused bufattr_t bap, __unused struct cpx *cpx)
{
}
#endif /* !CONFIG_PROTECT */
bufattr_t
bufattr_alloc(void)
{
return kalloc_type(struct bufattr, Z_WAITOK | Z_ZERO);
}
void
bufattr_free(bufattr_t bap)
{
kfree_type(struct bufattr, bap);
}
bufattr_t
bufattr_dup(bufattr_t bap)
{
bufattr_t new_bufattr;
new_bufattr = kalloc_type(struct bufattr, Z_WAITOK | Z_NOFAIL);
/* Copy the provided one into the new copy */
memcpy(new_bufattr, bap, sizeof(struct bufattr));
return new_bufattr;
}
int
bufattr_rawencrypted(bufattr_t bap)
{
if ((bap->ba_flags & BA_RAW_ENCRYPTED_IO)) {
return 1;
}
return 0;
}
int
bufattr_throttled(bufattr_t bap)
{
return GET_BUFATTR_IO_TIER(bap);
}
int
bufattr_passive(bufattr_t bap)
{
if ((bap->ba_flags & BA_PASSIVE)) {
return 1;
}
return 0;
}
int
bufattr_nocache(bufattr_t bap)
{
if ((bap->ba_flags & BA_NOCACHE)) {
return 1;
}
return 0;
}
int
bufattr_meta(bufattr_t bap)
{
if ((bap->ba_flags & BA_META)) {
return 1;
}
return 0;
}
void
bufattr_markmeta(bufattr_t bap)
{
SET(bap->ba_flags, BA_META);
}
int
bufattr_delayidlesleep(bufattr_t bap)
{
if ((bap->ba_flags & BA_DELAYIDLESLEEP)) {
return 1;
}
return 0;
}
bufattr_t
buf_attr(buf_t bp)
{
return &bp->b_attr;
}
void
buf_markstatic(buf_t bp __unused)
{
SET(bp->b_flags, B_STATICCONTENT);
}
int
buf_static(buf_t bp)
{
if ((bp->b_flags & B_STATICCONTENT)) {
return 1;
}
return 0;
}
void
bufattr_markgreedymode(bufattr_t bap)
{
SET(bap->ba_flags, BA_GREEDY_MODE);
}
int
bufattr_greedymode(bufattr_t bap)
{
if ((bap->ba_flags & BA_GREEDY_MODE)) {
return 1;
}
return 0;
}
void
bufattr_markisochronous(bufattr_t bap)
{
SET(bap->ba_flags, BA_ISOCHRONOUS);
}
int
bufattr_isochronous(bufattr_t bap)
{
if ((bap->ba_flags & BA_ISOCHRONOUS)) {
return 1;
}
return 0;
}
void
bufattr_markquickcomplete(bufattr_t bap)
{
SET(bap->ba_flags, BA_QUICK_COMPLETE);
}
int
bufattr_quickcomplete(bufattr_t bap)
{
if ((bap->ba_flags & BA_QUICK_COMPLETE)) {
return 1;
}
return 0;
}
void
bufattr_markioscheduled(bufattr_t bap)
{
SET(bap->ba_flags, BA_IO_SCHEDULED);
}
int
bufattr_ioscheduled(bufattr_t bap)
{
if ((bap->ba_flags & BA_IO_SCHEDULED)) {
return 1;
}
return 0;
}
void
bufattr_markexpeditedmeta(bufattr_t bap)
{
SET(bap->ba_flags, BA_EXPEDITED_META_IO);
}
int
bufattr_expeditedmeta(bufattr_t bap)
{
if ((bap->ba_flags & BA_EXPEDITED_META_IO)) {
return 1;
}
return 0;
}
int
bufattr_willverify(bufattr_t bap)
{
if ((bap->ba_flags & BA_WILL_VERIFY)) {
return 1;
}
return 0;
}
errno_t
buf_error(buf_t bp)
{
return bp->b_error;
}
void
buf_seterror(buf_t bp, errno_t error)
{
if ((bp->b_error = error)) {
SET(bp->b_flags, B_ERROR);
} else {
CLR(bp->b_flags, B_ERROR);
}
}
void
buf_setflags(buf_t bp, int32_t flags)
{
SET(bp->b_flags, (flags & BUF_X_WRFLAGS));
}
void
buf_clearflags(buf_t bp, int32_t flags)
{
CLR(bp->b_flags, (flags & BUF_X_WRFLAGS));
}
int32_t
buf_flags(buf_t bp)
{
return bp->b_flags & BUF_X_RDFLAGS;
}
void
buf_reset(buf_t bp, int32_t io_flags)
{
CLR(bp->b_flags, (B_READ | B_WRITE | B_ERROR | B_DONE | B_INVAL | B_ASYNC | B_NOCACHE | B_FUA));
SET(bp->b_flags, (io_flags & (B_ASYNC | B_READ | B_WRITE | B_NOCACHE)));
bp->b_error = 0;
}
uint32_t
buf_count(buf_t bp)
{
return bp->b_bcount;
}
void
buf_setcount(buf_t bp, uint32_t bcount)
{
bp->b_bcount = bcount;
}
uint32_t
buf_size(buf_t bp)
{
return bp->b_bufsize;
}
void
buf_setsize(buf_t bp, uint32_t bufsize)
{
bp->b_bufsize = bufsize;
}
uint32_t
buf_resid(buf_t bp)
{
return bp->b_resid;
}
void
buf_setresid(buf_t bp, uint32_t resid)
{
bp->b_resid = resid;
}
uint32_t
buf_dirtyoff(buf_t bp)
{
return bp->b_dirtyoff;
}
uint32_t
buf_dirtyend(buf_t bp)
{
return bp->b_dirtyend;
}
void
buf_setdirtyoff(buf_t bp, uint32_t dirtyoff)
{
bp->b_dirtyoff = dirtyoff;
}
void
buf_setdirtyend(buf_t bp, uint32_t dirtyend)
{
bp->b_dirtyend = dirtyend;
}
uintptr_t
buf_dataptr(buf_t bp)
{
return bp->b_datap;
}
void
buf_setdataptr(buf_t bp, uintptr_t data)
{
bp->b_datap = data;
}
vnode_t
buf_vnode(buf_t bp)
{
return bp->b_vp;
}
void
buf_setvnode(buf_t bp, vnode_t vp)
{
bp->b_vp = vp;
}
vnode_t
buf_vnop_vnode(buf_t bp)
{
return bp->b_vnop_vp ? bp->b_vnop_vp : bp->b_vp;
}
void *
buf_callback(buf_t bp)
{
if (!(bp->b_flags & B_CALL)) {
return (void *) NULL;
}
return (void *)bp->b_iodone;
}
errno_t
buf_setcallback(buf_t bp, void (*callback)(buf_t, void *), void *transaction)
{
assert(!ISSET(bp->b_flags, B_FILTER) && ISSET(bp->b_lflags, BL_BUSY));
if (callback) {
bp->b_flags |= (B_CALL | B_ASYNC);
} else {
bp->b_flags &= ~B_CALL;
}
bp->b_transaction = transaction;
bp->b_iodone = callback;
return 0;
}
errno_t
buf_setupl(buf_t bp, upl_t upl, uint32_t offset)
{
if (!(bp->b_lflags & BL_IOBUF)) {
return EINVAL;
}
if (upl) {
bp->b_flags |= B_CLUSTER;
} else {
bp->b_flags &= ~B_CLUSTER;
}
bp->b_upl = upl;
bp->b_uploffset = offset;
return 0;
}
buf_t
buf_clone(buf_t bp, int io_offset, int io_size, void (*iodone)(buf_t, void *), void *arg)
{
buf_t io_bp;
int add1, add2;
if (io_offset < 0 || io_size < 0) {
return NULL;
}
if ((unsigned)(io_offset + io_size) > (unsigned)bp->b_bcount) {
return NULL;
}
if (bp->b_flags & B_CLUSTER) {
if (io_offset && ((bp->b_uploffset + io_offset) & PAGE_MASK)) {
return NULL;
}
if (os_add_overflow(io_offset, io_size, &add1) || os_add_overflow(add1, bp->b_uploffset, &add2)) {
return NULL;
}
if ((add2 & PAGE_MASK) && ((uint32_t)add1 < (uint32_t)bp->b_bcount)) {
return NULL;
}
}
io_bp = alloc_io_buf(bp->b_vp, 0);
io_bp->b_flags = bp->b_flags & (B_COMMIT_UPL | B_META | B_PAGEIO | B_CLUSTER | B_PHYS | B_RAW | B_ASYNC | B_READ | B_FUA);
if (iodone) {
io_bp->b_transaction = arg;
io_bp->b_iodone = iodone;
io_bp->b_flags |= B_CALL;
}
if (bp->b_flags & B_CLUSTER) {
io_bp->b_upl = bp->b_upl;
io_bp->b_uploffset = bp->b_uploffset + io_offset;
} else {
io_bp->b_datap = (uintptr_t)(((char *)bp->b_datap) + io_offset);
}
io_bp->b_bcount = io_size;
return io_bp;
}
int
buf_shadow(buf_t bp)
{
if (bp->b_lflags & BL_SHADOW) {
return 1;
}
return 0;
}
buf_t
buf_create_shadow_priv(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg)
{
return buf_create_shadow_internal(bp, force_copy, external_storage, iodone, arg, 1);
}
buf_t
buf_create_shadow(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg)
{
return buf_create_shadow_internal(bp, force_copy, external_storage, iodone, arg, 0);
}
static buf_t
buf_create_shadow_internal(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg, int priv)
{
buf_t io_bp;
KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_START, bp, 0, 0, 0, 0);
if (!(bp->b_flags & B_META) || (bp->b_lflags & BL_IOBUF)) {
KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_END, bp, 0, 0, 0, 0);
return NULL;
}
#ifdef BUF_MAKE_PRIVATE
if (bp->b_shadow_ref && bp->b_data_ref == 0 && external_storage == 0) {
panic("buf_create_shadow: %p is in the private state (%d, %d)", bp, bp->b_shadow_ref, bp->b_data_ref);
}
#endif
io_bp = alloc_io_buf(bp->b_vp, priv);
io_bp->b_flags = bp->b_flags & (B_META | B_ZALLOC | B_ASYNC | B_READ | B_FUA);
io_bp->b_blkno = bp->b_blkno;
io_bp->b_lblkno = bp->b_lblkno;
io_bp->b_lblksize = bp->b_lblksize;
if (iodone) {
io_bp->b_transaction = arg;
io_bp->b_iodone = iodone;
io_bp->b_flags |= B_CALL;
}
if (force_copy == FALSE) {
io_bp->b_bcount = bp->b_bcount;
io_bp->b_bufsize = bp->b_bufsize;
if (external_storage) {
io_bp->b_datap = external_storage;
#ifdef BUF_MAKE_PRIVATE
io_bp->b_data_store = NULL;
#endif
} else {
io_bp->b_datap = bp->b_datap;
#ifdef BUF_MAKE_PRIVATE
io_bp->b_data_store = bp;
#endif
}
*(buf_t *)(&io_bp->b_orig) = bp;
lck_mtx_lock_spin(&buf_mtx);
io_bp->b_lflags |= BL_SHADOW;
io_bp->b_shadow = bp->b_shadow;
bp->b_shadow = io_bp;
bp->b_shadow_ref++;
#ifdef BUF_MAKE_PRIVATE
if (external_storage) {
io_bp->b_lflags |= BL_EXTERNAL;
} else {
bp->b_data_ref++;
}
#endif
lck_mtx_unlock(&buf_mtx);
} else {
if (external_storage) {
#ifdef BUF_MAKE_PRIVATE
io_bp->b_lflags |= BL_EXTERNAL;
#endif
io_bp->b_bcount = bp->b_bcount;
io_bp->b_bufsize = bp->b_bufsize;
io_bp->b_datap = external_storage;
} else {
allocbuf(io_bp, bp->b_bcount);
io_bp->b_lflags |= BL_IOBUF_ALLOC;
}
bcopy((caddr_t)bp->b_datap, (caddr_t)io_bp->b_datap, bp->b_bcount);
#ifdef BUF_MAKE_PRIVATE
io_bp->b_data_store = NULL;
#endif
}
KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, io_bp, 0);
return io_bp;
}
#ifdef BUF_MAKE_PRIVATE
errno_t
buf_make_private(buf_t bp)
{
buf_t ds_bp;
buf_t t_bp;
struct buf my_buf;
KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_START, bp, bp->b_shadow_ref, 0, 0, 0);
if (bp->b_shadow_ref == 0 || bp->b_data_ref == 0 || ISSET(bp->b_lflags, BL_SHADOW)) {
KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, EINVAL, 0);
return EINVAL;
}
my_buf.b_flags = B_META;
my_buf.b_datap = (uintptr_t)NULL;
allocbuf(&my_buf, bp->b_bcount);
bcopy((caddr_t)bp->b_datap, (caddr_t)my_buf.b_datap, bp->b_bcount);
lck_mtx_lock_spin(&buf_mtx);
for (t_bp = bp->b_shadow; t_bp; t_bp = t_bp->b_shadow) {
if (!ISSET(bp->b_lflags, BL_EXTERNAL)) {
break;
}
}
ds_bp = t_bp;
if (ds_bp == NULL && bp->b_data_ref) {
panic("buf_make_private: b_data_ref != 0 && ds_bp == NULL");
}
if (ds_bp && (bp->b_data_ref == 0 || bp->b_shadow_ref == 0)) {
panic("buf_make_private: ref_count == 0 && ds_bp != NULL");
}
if (ds_bp == NULL) {
lck_mtx_unlock(&buf_mtx);
buf_free_meta_store(&my_buf);
KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, EINVAL, 0);
return EINVAL;
}
for (t_bp = bp->b_shadow; t_bp; t_bp = t_bp->b_shadow) {
if (!ISSET(t_bp->b_lflags, BL_EXTERNAL)) {
t_bp->b_data_store = ds_bp;
}
}
ds_bp->b_data_ref = bp->b_data_ref;
bp->b_data_ref = 0;
bp->b_datap = my_buf.b_datap;
lck_mtx_unlock(&buf_mtx);
KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, 0, 0);
return 0;
}
#endif
void
buf_setfilter(buf_t bp, void (*filter)(buf_t, void *), void *transaction,
void(**old_iodone)(buf_t, void *), void **old_transaction)
{
assert(ISSET(bp->b_lflags, BL_BUSY));
if (old_iodone) {
*old_iodone = bp->b_iodone;
}
if (old_transaction) {
*old_transaction = bp->b_transaction;
}
bp->b_transaction = transaction;
bp->b_iodone = filter;
if (filter) {
bp->b_flags |= B_FILTER;
} else {
bp->b_flags &= ~B_FILTER;
}
}
daddr64_t
buf_blkno(buf_t bp)
{
return bp->b_blkno;
}
daddr64_t
buf_lblkno(buf_t bp)
{
return bp->b_lblkno;
}
uint32_t
buf_lblksize(buf_t bp)
{
return bp->b_lblksize;
}
void
buf_setblkno(buf_t bp, daddr64_t blkno)
{
bp->b_blkno = blkno;
}
void
buf_setlblkno(buf_t bp, daddr64_t lblkno)
{
bp->b_lblkno = lblkno;
}
void
buf_setlblksize(buf_t bp, uint32_t lblksize)
{
bp->b_lblksize = lblksize;
}
dev_t
buf_device(buf_t bp)
{
return bp->b_dev;
}
errno_t
buf_setdevice(buf_t bp, vnode_t vp)
{
if ((vp->v_type != VBLK) && (vp->v_type != VCHR)) {
return EINVAL;
}
bp->b_dev = vp->v_rdev;
return 0;
}
void *
buf_drvdata(buf_t bp)
{
return bp->b_drvdata;
}
void
buf_setdrvdata(buf_t bp, void *drvdata)
{
bp->b_drvdata = drvdata;
}
void *
buf_fsprivate(buf_t bp)
{
return bp->b_fsprivate;
}
void
buf_setfsprivate(buf_t bp, void *fsprivate)
{
bp->b_fsprivate = fsprivate;
}
kauth_cred_t
buf_rcred(buf_t bp)
{
return bp->b_rcred;
}
kauth_cred_t
buf_wcred(buf_t bp)
{
return bp->b_wcred;
}
void *
buf_upl(buf_t bp)
{
return bp->b_upl;
}
uint32_t
buf_uploffset(buf_t bp)
{
return (uint32_t)(bp->b_uploffset);
}
proc_t
buf_proc(buf_t bp)
{
return bp->b_proc;
}
static errno_t
buf_map_range_internal(buf_t bp, caddr_t *io_addr, boolean_t legacymode,
vm_prot_t prot)
{
buf_t real_bp;
vm_offset_t vaddr;
kern_return_t kret;
if (!(bp->b_flags & B_CLUSTER)) {
*io_addr = (caddr_t)bp->b_datap;
return 0;
}
real_bp = (buf_t)(bp->b_real_bp);
if (real_bp && real_bp->b_datap) {
/*
* b_real_bp is only valid if B_CLUSTER is SET
* if it's non-zero, than someone did a cluster_bp call
* if the backing physical pages were already mapped
* in before the call to cluster_bp (non-zero b_datap),
* than we just use that mapping
*/
*io_addr = (caddr_t)real_bp->b_datap;
return 0;
}
if (legacymode) {
kret = ubc_upl_map(bp->b_upl, &vaddr); /* Map it in */
if (kret == KERN_SUCCESS) {
vaddr += bp->b_uploffset;
}
} else {
kret = ubc_upl_map_range(bp->b_upl, bp->b_uploffset, bp->b_bcount, prot, &vaddr); /* Map it in */
}
if (kret != KERN_SUCCESS) {
*io_addr = NULL;
return ENOMEM;
}
*io_addr = (caddr_t)vaddr;
return 0;
}
errno_t
buf_map_range(buf_t bp, caddr_t *io_addr)
{
return buf_map_range_internal(bp, io_addr, false, VM_PROT_DEFAULT);
}
errno_t
buf_map_range_with_prot(buf_t bp, caddr_t *io_addr, vm_prot_t prot)
{
/* Only VM_PROT_READ and/or VM_PROT_WRITE is allowed. */
prot &= (VM_PROT_READ | VM_PROT_WRITE);
if (prot == VM_PROT_NONE) {
*io_addr = NULL;
return EINVAL;
}
return buf_map_range_internal(bp, io_addr, false, prot);
}
errno_t
buf_map(buf_t bp, caddr_t *io_addr)
{
return buf_map_range_internal(bp, io_addr, true, VM_PROT_DEFAULT);
}
static errno_t
buf_unmap_range_internal(buf_t bp, boolean_t legacymode)
{
buf_t real_bp;
kern_return_t kret;
if (!(bp->b_flags & B_CLUSTER)) {
return 0;
}
/*
* see buf_map for the explanation
*/
real_bp = (buf_t)(bp->b_real_bp);
if (real_bp && real_bp->b_datap) {
return 0;
}
if ((bp->b_lflags & BL_IOBUF) &&
((bp->b_flags & (B_PAGEIO | B_READ)) != (B_PAGEIO | B_READ))) {
/*
* ignore pageins... the 'right' thing will
* happen due to the way we handle speculative
* clusters...
*
* when we commit these pages, we'll hit
* it with UPL_COMMIT_INACTIVE which
* will clear the reference bit that got
* turned on when we touched the mapping
*/
bp->b_flags |= B_AGE;
}
if (legacymode) {
kret = ubc_upl_unmap(bp->b_upl);
} else {
kret = ubc_upl_unmap_range(bp->b_upl, bp->b_uploffset, bp->b_bcount);
}
if (kret != KERN_SUCCESS) {
return EINVAL;
}
return 0;
}
errno_t
buf_unmap_range(buf_t bp)
{
return buf_unmap_range_internal(bp, false);
}
errno_t
buf_unmap(buf_t bp)
{
return buf_unmap_range_internal(bp, true);
}
void
buf_clear(buf_t bp)
{
caddr_t baddr;
if (buf_map(bp, &baddr) == 0) {
bzero(baddr, bp->b_bcount);
buf_unmap(bp);
}
bp->b_resid = 0;
}
/*
* Read or write a buffer that is not contiguous on disk.
* buffer is marked done/error at the conclusion
*/
static int
buf_strategy_fragmented(vnode_t devvp, buf_t bp, off_t f_offset, size_t contig_bytes)
{
vnode_t vp = buf_vnode(bp);
buf_t io_bp; /* For reading or writing a single block */
int io_direction;
int io_resid;
size_t io_contig_bytes;
daddr64_t io_blkno;
int error = 0;
int bmap_flags;
/*
* save our starting point... the bp was already mapped
* in buf_strategy before we got called
* no sense doing it again.
*/
io_blkno = bp->b_blkno;
/*
* Make sure we redo this mapping for the next I/O
* i.e. this can never be a 'permanent' mapping
*/
bp->b_blkno = bp->b_lblkno;
/*
* Get an io buffer to do the deblocking
*/
io_bp = alloc_io_buf(devvp, 0);
io_bp->b_lblkno = bp->b_lblkno;
io_bp->b_lblksize = bp->b_lblksize;
io_bp->b_datap = bp->b_datap;
io_resid = bp->b_bcount;
io_direction = bp->b_flags & B_READ;
io_contig_bytes = contig_bytes;
if (bp->b_flags & B_READ) {
bmap_flags = VNODE_READ;
} else {
bmap_flags = VNODE_WRITE;
}
for (;;) {
if (io_blkno == -1) {
/*
* this is unexepected, but we'll allow for it
*/
bzero((caddr_t)io_bp->b_datap, (int)io_contig_bytes);
} else {
io_bp->b_bcount = (uint32_t)io_contig_bytes;
io_bp->b_bufsize = (uint32_t)io_contig_bytes;
io_bp->b_resid = (uint32_t)io_contig_bytes;
io_bp->b_blkno = io_blkno;
buf_reset(io_bp, io_direction);
/*
* Call the device to do the I/O and wait for it. Make sure the appropriate party is charged for write
*/
if (!ISSET(bp->b_flags, B_READ)) {
OSAddAtomic(1, &devvp->v_numoutput);
}
if ((error = VNOP_STRATEGY(io_bp))) {
break;
}
if ((error = (int)buf_biowait(io_bp))) {
break;
}
if (io_bp->b_resid) {
io_resid -= (io_contig_bytes - io_bp->b_resid);
break;
}
}
if ((io_resid -= io_contig_bytes) == 0) {
break;
}
f_offset += io_contig_bytes;
io_bp->b_datap += io_contig_bytes;
/*
* Map the current position to a physical block number
*/
if ((error = VNOP_BLOCKMAP(vp, f_offset, io_resid, &io_blkno, &io_contig_bytes, NULL, bmap_flags, NULL))) {
break;
}
}
buf_free(io_bp);
if (error) {
buf_seterror(bp, error);
}
bp->b_resid = io_resid;
/*
* This I/O is now complete
*/
buf_biodone(bp);
return error;
}
/*
* struct vnop_strategy_args {
* struct buf *a_bp;
* } *ap;
*/
errno_t
buf_strategy(vnode_t devvp, void *ap)
{
buf_t bp = ((struct vnop_strategy_args *)ap)->a_bp;
vnode_t vp = bp->b_vp;
int bmap_flags;
errno_t error;
#if CONFIG_DTRACE
int dtrace_io_start_flag = 0; /* We only want to trip the io:::start
* probe once, with the true physical
* block in place (b_blkno)
*/
#endif
if (vp == NULL || vp->v_type == VCHR || vp->v_type == VBLK) {
panic("buf_strategy: b_vp == NULL || vtype == VCHR | VBLK");
}
/*
* associate the physical device with
* with this buf_t even if we don't
* end up issuing the I/O...
*/
bp->b_dev = devvp->v_rdev;
if (bp->b_flags & B_READ) {
bmap_flags = VNODE_READ;
} else {
bmap_flags = VNODE_WRITE;
}
if (!(bp->b_flags & B_CLUSTER)) {
if ((bp->b_upl)) {
/*
* we have a UPL associated with this bp
* go through cluster_bp which knows how
* to deal with filesystem block sizes
* that aren't equal to the page size
*/
DTRACE_IO1(start, buf_t, bp);
return cluster_bp(bp);
}
if (bp->b_blkno == bp->b_lblkno) {
off_t f_offset;
size_t contig_bytes;
if (bp->b_lblksize && bp->b_lblkno >= 0) {
f_offset = bp->b_lblkno * bp->b_lblksize;
} else if ((error = VNOP_BLKTOOFF(vp, bp->b_lblkno, &f_offset))) {
DTRACE_IO1(start, buf_t, bp);
buf_seterror(bp, error);
buf_biodone(bp);
return error;
}
if ((error = VNOP_BLOCKMAP(vp, f_offset, bp->b_bcount, &bp->b_blkno, &contig_bytes, NULL, bmap_flags, NULL))) {
DTRACE_IO1(start, buf_t, bp);
buf_seterror(bp, error);
buf_biodone(bp);
return error;
}
DTRACE_IO1(start, buf_t, bp);
#if CONFIG_DTRACE
dtrace_io_start_flag = 1;
#endif /* CONFIG_DTRACE */
if ((bp->b_blkno == -1) || (contig_bytes == 0)) {
/* Set block number to force biodone later */
bp->b_blkno = -1;
buf_clear(bp);
} else if (contig_bytes < (size_t)bp->b_bcount) {
return buf_strategy_fragmented(devvp, bp, f_offset, contig_bytes);
}
}
#if CONFIG_DTRACE
if (dtrace_io_start_flag == 0) {
DTRACE_IO1(start, buf_t, bp);
dtrace_io_start_flag = 1;
}
#endif /* CONFIG_DTRACE */
if (bp->b_blkno == -1) {
buf_biodone(bp);
return 0;
}
}
#if CONFIG_DTRACE
if (dtrace_io_start_flag == 0) {
DTRACE_IO1(start, buf_t, bp);
}
#endif /* CONFIG_DTRACE */
#if CONFIG_PROTECT
/* Capture f_offset in the bufattr*/
cpx_t cpx = bufattr_cpx(buf_attr(bp));
if (cpx) {
/* No need to go here for older EAs */
if (cpx_use_offset_for_iv(cpx) && !cpx_synthetic_offset_for_iv(cpx)) {
off_t f_offset;
/*
* this assert should be changed if cluster_io ever
* changes its logical block size.
*/
assert((bp->b_lblksize == CLUSTER_IO_BLOCK_SIZE) || !(bp->b_flags & B_CLUSTER));
if (bp->b_lblksize && bp->b_lblkno >= 0) {
f_offset = bp->b_lblkno * bp->b_lblksize;
} else if ((error = VNOP_BLKTOOFF(bp->b_vp, bp->b_lblkno, &f_offset))) {
return error;
}
/*
* Attach the file offset to this buffer. The
* bufattr attributes will be passed down the stack
* until they reach the storage driver (whether
* IOFlashStorage, ASP, or IONVMe). The driver
* will retain the offset in a local variable when it
* issues its I/Os to the NAND controller.
*
* Note that LwVM may end up splitting this I/O
* into sub-I/Os if it crosses a chunk boundary. In this
* case, LwVM will update this field when it dispatches
* each I/O to IOFlashStorage. But from our perspective
* we have only issued a single I/O.
*
* In the case of APFS we do not bounce through another
* intermediate layer (such as CoreStorage). APFS will
* issue the I/Os directly to the block device / IOMedia
* via buf_strategy on the specfs node.
*/
buf_setcpoff(bp, f_offset);
CP_DEBUG((CPDBG_OFFSET_IO | DBG_FUNC_NONE), (uint32_t) f_offset, (uint32_t) bp->b_lblkno, (uint32_t) bp->b_blkno, (uint32_t) bp->b_bcount, 0);
}
}
#endif
/*
* we can issue the I/O because...
* either B_CLUSTER is set which
* means that the I/O is properly set
* up to be a multiple of the page size, or
* we were able to successfully set up the
* physical block mapping
*/
bp->b_vnop_vp = devvp;
error = VOCALL(devvp->v_op, VOFFSET(vnop_strategy), ap);
bp->b_vnop_vp = NULLVP;
DTRACE_FSINFO(strategy, vnode_t, vp);
return error;
}
buf_t
buf_alloc(vnode_t vp)
{
return alloc_io_buf(vp, is_vm_privileged());
}
void
buf_free(buf_t bp)
{
free_io_buf(bp);
}
/*
* iterate buffers for the specified vp.
* if BUF_SCAN_DIRTY is set, do the dirty list
* if BUF_SCAN_CLEAN is set, do the clean list
* if neither flag is set, default to BUF_SCAN_DIRTY
* if BUF_NOTIFY_BUSY is set, call the callout function using a NULL bp for busy pages
*/
struct buf_iterate_info_t {
int flag;
struct buflists *listhead;
};
void
buf_iterate(vnode_t vp, int (*callout)(buf_t, void *), int flags, void *arg)
{
buf_t bp;
int retval;
struct buflists local_iterblkhd;
int lock_flags = BAC_NOWAIT | BAC_REMOVE;
int notify_busy = flags & BUF_NOTIFY_BUSY;
struct buf_iterate_info_t list[2];
int num_lists, i;
if (flags & BUF_SKIP_LOCKED) {
lock_flags |= BAC_SKIP_LOCKED;
}
if (flags & BUF_SKIP_NONLOCKED) {
lock_flags |= BAC_SKIP_NONLOCKED;
}
if (!(flags & (BUF_SCAN_DIRTY | BUF_SCAN_CLEAN))) {
flags |= BUF_SCAN_DIRTY;
}
num_lists = 0;
if (flags & BUF_SCAN_DIRTY) {
list[num_lists].flag = VBI_DIRTY;
list[num_lists].listhead = &vp->v_dirtyblkhd;
num_lists++;
}
if (flags & BUF_SCAN_CLEAN) {
list[num_lists].flag = VBI_CLEAN;
list[num_lists].listhead = &vp->v_cleanblkhd;
num_lists++;
}
for (i = 0; i < num_lists; i++) {
lck_mtx_lock(&buf_mtx);
if (buf_iterprepare(vp, &local_iterblkhd, list[i].flag)) {
lck_mtx_unlock(&buf_mtx);
continue;
}
while (!LIST_EMPTY(&local_iterblkhd)) {
bp = LIST_FIRST(&local_iterblkhd);
LIST_REMOVE(bp, b_vnbufs);
LIST_INSERT_HEAD(list[i].listhead, bp, b_vnbufs);
if (buf_acquire_locked(bp, lock_flags, 0, 0)) {
if (notify_busy) {
bp = NULL;
} else {
continue;
}
}
lck_mtx_unlock(&buf_mtx);
retval = callout(bp, arg);
switch (retval) {
case BUF_RETURNED:
if (bp) {
buf_brelse(bp);
}
break;
case BUF_CLAIMED:
break;
case BUF_RETURNED_DONE:
if (bp) {
buf_brelse(bp);
}
lck_mtx_lock(&buf_mtx);
goto out;
case BUF_CLAIMED_DONE:
lck_mtx_lock(&buf_mtx);
goto out;
}
lck_mtx_lock(&buf_mtx);
} /* while list has more nodes */
out:
buf_itercomplete(vp, &local_iterblkhd, list[i].flag);
lck_mtx_unlock(&buf_mtx);
} /* for each list */
} /* buf_iterate */
/*
* Flush out and invalidate all buffers associated with a vnode.
*/
int
buf_invalidateblks(vnode_t vp, int flags, int slpflag, int slptimeo)
{
buf_t bp;
int aflags;
int error = 0;
int must_rescan = 1;
struct buflists local_iterblkhd;
if (LIST_EMPTY(&vp->v_cleanblkhd) && LIST_EMPTY(&vp->v_dirtyblkhd)) {
return 0;
}
lck_mtx_lock(&buf_mtx);
for (;;) {
if (must_rescan == 0) {
/*
* the lists may not be empty, but all that's left at this
* point are metadata or B_LOCKED buffers which are being
* skipped... we know this because we made it through both
* the clean and dirty lists without dropping buf_mtx...
* each time we drop buf_mtx we bump "must_rescan"
*/
break;
}
if (LIST_EMPTY(&vp->v_cleanblkhd) && LIST_EMPTY(&vp->v_dirtyblkhd)) {
break;
}
must_rescan = 0;
/*
* iterate the clean list
*/
if (buf_iterprepare(vp, &local_iterblkhd, VBI_CLEAN)) {
goto try_dirty_list;
}
while (!LIST_EMPTY(&local_iterblkhd)) {
bp = LIST_FIRST(&local_iterblkhd);
LIST_REMOVE(bp, b_vnbufs);
LIST_INSERT_HEAD(&vp->v_cleanblkhd, bp, b_vnbufs);
/*
* some filesystems distinguish meta data blocks with a negative logical block #
*/
if ((flags & BUF_SKIP_META) && (bp->b_lblkno < 0 || ISSET(bp->b_flags, B_META))) {
continue;
}
aflags = BAC_REMOVE;
if (!(flags & BUF_INVALIDATE_LOCKED)) {
aflags |= BAC_SKIP_LOCKED;
}
if ((error = (int)buf_acquire_locked(bp, aflags, slpflag, slptimeo))) {
if (error == EDEADLK) {
/*
* this buffer was marked B_LOCKED...
* we didn't drop buf_mtx, so we
* we don't need to rescan
*/
continue;
}
if (error == EAGAIN) {
/*
* found a busy buffer... we blocked and
* dropped buf_mtx, so we're going to
* need to rescan after this pass is completed
*/
must_rescan++;
continue;
}
/*
* got some kind of 'real' error out of the msleep
* in buf_acquire_locked, terminate the scan and return the error
*/
buf_itercomplete(vp, &local_iterblkhd, VBI_CLEAN);
lck_mtx_unlock(&buf_mtx);
return error;
}
lck_mtx_unlock(&buf_mtx);
if (bp->b_flags & B_LOCKED) {
KERNEL_DEBUG(0xbbbbc038, bp, 0, 0, 0, 0);
}
CLR(bp->b_flags, B_LOCKED);
SET(bp->b_flags, B_INVAL);
buf_brelse(bp);
lck_mtx_lock(&buf_mtx);
/*
* by dropping buf_mtx, we allow new
* buffers to be added to the vnode list(s)
* we'll have to rescan at least once more
* if the queues aren't empty
*/
must_rescan++;
}
buf_itercomplete(vp, &local_iterblkhd, VBI_CLEAN);
try_dirty_list:
/*
* Now iterate on dirty blks
*/
if (buf_iterprepare(vp, &local_iterblkhd, VBI_DIRTY)) {
continue;
}
while (!LIST_EMPTY(&local_iterblkhd)) {
bp = LIST_FIRST(&local_iterblkhd);
LIST_REMOVE(bp, b_vnbufs);
LIST_INSERT_HEAD(&vp->v_dirtyblkhd, bp, b_vnbufs);
/*
* some filesystems distinguish meta data blocks with a negative logical block #
*/
if ((flags & BUF_SKIP_META) && (bp->b_lblkno < 0 || ISSET(bp->b_flags, B_META))) {
continue;
}
aflags = BAC_REMOVE;
if (!(flags & BUF_INVALIDATE_LOCKED)) {
aflags |= BAC_SKIP_LOCKED;
}
if ((error = (int)buf_acquire_locked(bp, aflags, slpflag, slptimeo))) {
if (error == EDEADLK) {
/*
* this buffer was marked B_LOCKED...
* we didn't drop buf_mtx, so we
* we don't need to rescan
*/
continue;
}
if (error == EAGAIN) {
/*
* found a busy buffer... we blocked and
* dropped buf_mtx, so we're going to
* need to rescan after this pass is completed
*/
must_rescan++;
continue;
}
/*
* got some kind of 'real' error out of the msleep
* in buf_acquire_locked, terminate the scan and return the error
*/
buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
lck_mtx_unlock(&buf_mtx);
return error;
}
lck_mtx_unlock(&buf_mtx);
if (bp->b_flags & B_LOCKED) {
KERNEL_DEBUG(0xbbbbc038, bp, 0, 0, 1, 0);
}
CLR(bp->b_flags, B_LOCKED);
SET(bp->b_flags, B_INVAL);
if (ISSET(bp->b_flags, B_DELWRI) && (flags & BUF_WRITE_DATA)) {
(void) VNOP_BWRITE(bp);
} else {
buf_brelse(bp);
}
lck_mtx_lock(&buf_mtx);
/*
* by dropping buf_mtx, we allow new
* buffers to be added to the vnode list(s)
* we'll have to rescan at least once more
* if the queues aren't empty
*/
must_rescan++;
}
buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
}
lck_mtx_unlock(&buf_mtx);
return 0;
}
void
buf_flushdirtyblks(vnode_t vp, int wait, int flags, const char *msg)
{
(void) buf_flushdirtyblks_skipinfo(vp, wait, flags, msg);
return;
}
int
buf_flushdirtyblks_skipinfo(vnode_t vp, int wait, int flags, const char *msg)
{
buf_t bp;
int writes_issued = 0;
errno_t error;
int busy = 0;
struct buflists local_iterblkhd;
int lock_flags = BAC_NOWAIT | BAC_REMOVE;
int any_locked = 0;
if (flags & BUF_SKIP_LOCKED) {
lock_flags |= BAC_SKIP_LOCKED;
}
if (flags & BUF_SKIP_NONLOCKED) {
lock_flags |= BAC_SKIP_NONLOCKED;
}
loop:
lck_mtx_lock(&buf_mtx);
if (buf_iterprepare(vp, &local_iterblkhd, VBI_DIRTY) == 0) {
while (!LIST_EMPTY(&local_iterblkhd)) {
bp = LIST_FIRST(&local_iterblkhd);
LIST_REMOVE(bp, b_vnbufs);
LIST_INSERT_HEAD(&vp->v_dirtyblkhd, bp, b_vnbufs);
if ((error = buf_acquire_locked(bp, lock_flags, 0, 0)) == EBUSY) {
busy++;
}
if (error) {
/*
* If we passed in BUF_SKIP_LOCKED or BUF_SKIP_NONLOCKED,
* we may want to do somethign differently if a locked or unlocked
* buffer was encountered (depending on the arg specified).
* In this case, we know that one of those two was set, and the
* buf acquisition failed above.
*
* If it failed with EDEADLK, then save state which can be emitted
* later on to the caller. Most callers should not care.
*/
if (error == EDEADLK) {
any_locked++;
}
continue;
}
lck_mtx_unlock(&buf_mtx);
bp->b_flags &= ~B_LOCKED;
/*
* Wait for I/O associated with indirect blocks to complete,
* since there is no way to quickly wait for them below.
*/
if ((bp->b_vp == vp) || (wait == 0)) {
(void) buf_bawrite(bp);
} else {
(void) VNOP_BWRITE(bp);
}
writes_issued++;
lck_mtx_lock(&buf_mtx);
}
buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
}
lck_mtx_unlock(&buf_mtx);
if (wait) {
(void)vnode_waitforwrites(vp, 0, 0, 0, msg);
if (vp->v_dirtyblkhd.lh_first && busy) {
/*
* we had one or more BUSY buffers on
* the dirtyblock list... most likely
* these are due to delayed writes that
* were moved to the bclean queue but
* have not yet been 'written'.
* if we issued some writes on the
* previous pass, we try again immediately
* if we didn't, we'll sleep for some time
* to allow the state to change...
*/
if (writes_issued == 0) {
(void)tsleep((caddr_t)&vp->v_numoutput,
PRIBIO + 1, "vnode_flushdirtyblks", hz / 20);
}
writes_issued = 0;
busy = 0;
goto loop;
}
}
return any_locked;
}
/*
* called with buf_mtx held...
* this lock protects the queue manipulation
*/
static int
buf_iterprepare(vnode_t vp, struct buflists *iterheadp, int flags)
{
struct buflists * listheadp;
if (flags & VBI_DIRTY) {
listheadp = &vp->v_dirtyblkhd;
} else {
listheadp = &vp->v_cleanblkhd;
}
while (vp->v_iterblkflags & VBI_ITER) {
vp->v_iterblkflags |= VBI_ITERWANT;
msleep(&vp->v_iterblkflags, &buf_mtx, 0, "buf_iterprepare", NULL);
}
if (LIST_EMPTY(listheadp)) {
LIST_INIT(iterheadp);
return EINVAL;
}
vp->v_iterblkflags |= VBI_ITER;
iterheadp->lh_first = listheadp->lh_first;
listheadp->lh_first->b_vnbufs.le_prev = &iterheadp->lh_first;
LIST_INIT(listheadp);
return 0;
}
/*
* called with buf_mtx held...
* this lock protects the queue manipulation
*/
static void
buf_itercomplete(vnode_t vp, struct buflists *iterheadp, int flags)
{
struct buflists * listheadp;
buf_t bp;
if (flags & VBI_DIRTY) {
listheadp = &vp->v_dirtyblkhd;
} else {
listheadp = &vp->v_cleanblkhd;
}
while (!LIST_EMPTY(iterheadp)) {
bp = LIST_FIRST(iterheadp);
LIST_REMOVE(bp, b_vnbufs);
LIST_INSERT_HEAD(listheadp, bp, b_vnbufs);
}
vp->v_iterblkflags &= ~VBI_ITER;
if (vp->v_iterblkflags & VBI_ITERWANT) {
vp->v_iterblkflags &= ~VBI_ITERWANT;
wakeup(&vp->v_iterblkflags);
}
}
static void
bremfree_locked(buf_t bp)
{
struct bqueues *dp = NULL;
int whichq;
whichq = bp->b_whichq;
if (whichq == -1) {
if (bp->b_shadow_ref == 0) {
panic("bremfree_locked: %p not on freelist", bp);
}
/*
* there are clones pointing to 'bp'...
* therefore, it was not put on a freelist
* when buf_brelse was last called on 'bp'
*/
return;
}
/*
* We only calculate the head of the freelist when removing
* the last element of the list as that is the only time that
* it is needed (e.g. to reset the tail pointer).
*
* NB: This makes an assumption about how tailq's are implemented.
*/
if (bp->b_freelist.tqe_next == NULL) {
dp = &bufqueues[whichq];
if (dp->tqh_last != &bp->b_freelist.tqe_next) {
panic("bremfree: lost tail");
}
}
TAILQ_REMOVE(dp, bp, b_freelist);
if (whichq == BQ_LAUNDRY) {
blaundrycnt--;
}
bp->b_whichq = -1;
bp->b_timestamp = 0;
bp->b_shadow = 0;
}
/*
* Associate a buffer with a vnode.
* buf_mtx must be locked on entry
*/
static void
bgetvp_locked(vnode_t vp, buf_t bp)
{
if (bp->b_vp != vp) {
panic("bgetvp_locked: not free");
}
if (vp->v_type == VBLK || vp->v_type == VCHR) {
bp->b_dev = vp->v_rdev;
} else {
bp->b_dev = NODEV;
}
/*
* Insert onto list for new vnode.
*/
bufinsvn(bp, &vp->v_cleanblkhd);
}
/*
* Disassociate a buffer from a vnode.
* buf_mtx must be locked on entry
*/
static void
brelvp_locked(buf_t bp)
{
/*
* Delete from old vnode list, if on one.
*/
if (bp->b_vnbufs.le_next != NOLIST) {
bufremvn(bp);
}
bp->b_vp = (vnode_t)NULL;
}
/*
* Reassign a buffer from one vnode to another.
* Used to assign file specific control information
* (indirect blocks) to the vnode to which they belong.
*/
static void
buf_reassign(buf_t bp, vnode_t newvp)
{
struct buflists *listheadp;
if (newvp == NULL) {
printf("buf_reassign: NULL");
return;
}
lck_mtx_lock_spin(&buf_mtx);
/*
* Delete from old vnode list, if on one.
*/
if (bp->b_vnbufs.le_next != NOLIST) {
bufremvn(bp);
}
/*
* If dirty, put on list of dirty buffers;
* otherwise insert onto list of clean buffers.
*/
if (ISSET(bp->b_flags, B_DELWRI)) {
listheadp = &newvp->v_dirtyblkhd;
} else {
listheadp = &newvp->v_cleanblkhd;
}
bufinsvn(bp, listheadp);
lck_mtx_unlock(&buf_mtx);
}
static __inline__ void
bufhdrinit(buf_t bp)
{
bzero((char *)bp, sizeof *bp);
bp->b_dev = NODEV;
bp->b_rcred = NOCRED;
bp->b_wcred = NOCRED;
bp->b_vnbufs.le_next = NOLIST;
bp->b_flags = B_INVAL;
return;
}
/*
* Initialize buffers and hash links for buffers.
*/
__private_extern__ void
bufinit(void)
{
buf_t bp;
struct bqueues *dp;
int i;
nbuf_headers = 0;
/* Initialize the buffer queues ('freelists') and the hash table */
for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
TAILQ_INIT(dp);
}
bufhashtbl = hashinit(nbuf_hashelements, M_CACHE, &bufhash);
buf_busycount = 0;
/* Initialize the buffer headers */
for (i = 0; i < max_nbuf_headers; i++) {
nbuf_headers++;
bp = &buf_headers[i];
bufhdrinit(bp);
BLISTNONE(bp);
dp = &bufqueues[BQ_EMPTY];
bp->b_whichq = BQ_EMPTY;
bp->b_timestamp = buf_timestamp();
binsheadfree(bp, dp, BQ_EMPTY);
binshash(bp, &invalhash);
}
boot_nbuf_headers = nbuf_headers;
TAILQ_INIT(&iobufqueue);
TAILQ_INIT(&delaybufqueue);
for (; i < nbuf_headers + niobuf_headers; i++) {
bp = &buf_headers[i];
bufhdrinit(bp);
bp->b_whichq = -1;
binsheadfree(bp, &iobufqueue, -1);
}
/*
* allocate and initialize cluster specific global locks...
*/
cluster_init();
printf("using %d buffer headers and %d cluster IO buffer headers\n",
nbuf_headers, niobuf_headers);
/* start the bcleanbuf() thread */
bcleanbuf_thread_init();
/* Register a callout for relieving vm pressure */
if (vm_set_buffer_cleanup_callout(buffer_cache_gc) != KERN_SUCCESS) {
panic("Couldn't register buffer cache callout for vm pressure!");
}
}
/*
* Zones for the meta data buffers
*/
#define MINMETA 512
#define MAXMETA 16384
KALLOC_HEAP_DEFINE(KHEAP_VFS_BIO, "vfs_bio", KHEAP_ID_DATA_BUFFERS);
static struct buf *
bio_doread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, int async, int queuetype)
{
buf_t bp;
bp = buf_getblk(vp, blkno, size, 0, 0, queuetype);
/*
* If buffer does not have data valid, start a read.
* Note that if buffer is B_INVAL, buf_getblk() won't return it.
* Therefore, it's valid if it's I/O has completed or been delayed.
*/
if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
struct proc *p;
p = current_proc();
/* Start I/O for the buffer (keeping credentials). */
SET(bp->b_flags, B_READ | async);
if (IS_VALID_CRED(cred) && !IS_VALID_CRED(bp->b_rcred)) {
kauth_cred_ref(cred);
bp->b_rcred = cred;
}
VNOP_STRATEGY(bp);
trace(TR_BREADMISS, pack(vp, size), blkno);
/* Pay for the read. */
if (p && p->p_stats) {
OSIncrementAtomicLong(&p->p_stats->p_ru.ru_inblock); /* XXX */
}
if (async) {
/*
* since we asked for an ASYNC I/O
* the biodone will do the brelse
* we don't want to pass back a bp
* that we don't 'own'
*/
bp = NULL;
}
} else if (async) {
buf_brelse(bp);
bp = NULL;
}
trace(TR_BREADHIT, pack(vp, size), blkno);
return bp;
}
/*
* Perform the reads for buf_breadn() and buf_meta_breadn().
* Trivial modification to the breada algorithm presented in Bach (p.55).
*/
static errno_t
do_breadn_for_type(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes,
int nrablks, kauth_cred_t cred, buf_t *bpp, int queuetype)
{
buf_t bp;
int i;
bp = *bpp = bio_doread(vp, blkno, size, cred, 0, queuetype);
/*
* For each of the read-ahead blocks, start a read, if necessary.
*/
for (i = 0; i < nrablks; i++) {
/* If it's in the cache, just go on to next one. */
if (incore(vp, rablks[i])) {
continue;
}
/* Get a buffer for the read-ahead block */
(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC, queuetype);
}
/* Otherwise, we had to start a read for it; wait until it's valid. */
return buf_biowait(bp);
}
/*
* Read a disk block.
* This algorithm described in Bach (p.54).
*/
errno_t
buf_bread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, buf_t *bpp)
{
buf_t bp;
/* Get buffer for block. */
bp = *bpp = bio_doread(vp, blkno, size, cred, 0, BLK_READ);
/* Wait for the read to complete, and return result. */
return buf_biowait(bp);
}
/*
* Read a disk block. [bread() for meta-data]
* This algorithm described in Bach (p.54).
*/
errno_t
buf_meta_bread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, buf_t *bpp)
{
buf_t bp;
/* Get buffer for block. */
bp = *bpp = bio_doread(vp, blkno, size, cred, 0, BLK_META);
/* Wait for the read to complete, and return result. */
return buf_biowait(bp);
}
/*
* Read-ahead multiple disk blocks. The first is sync, the rest async.
*/
errno_t
buf_breadn(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes, int nrablks, kauth_cred_t cred, buf_t *bpp)
{
return do_breadn_for_type(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp, BLK_READ);
}
/*
* Read-ahead multiple disk blocks. The first is sync, the rest async.
* [buf_breadn() for meta-data]
*/
errno_t
buf_meta_breadn(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes, int nrablks, kauth_cred_t cred, buf_t *bpp)
{
return do_breadn_for_type(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp, BLK_META);
}
/*
* Block write. Described in Bach (p.56)
*/
errno_t
buf_bwrite(buf_t bp)
{
int sync, wasdelayed;
errno_t rv;
proc_t p = current_proc();
vnode_t vp = bp->b_vp;
if (bp->b_datap == 0) {
if (brecover_data(bp) == 0) {
return 0;
}
}
/* Remember buffer type, to switch on it later. */
sync = !ISSET(bp->b_flags, B_ASYNC);
wasdelayed = ISSET(bp->b_flags, B_DELWRI);
CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
if (wasdelayed) {
OSAddAtomicLong(-1, &nbdwrite);
}
if (!sync) {
/*
* If not synchronous, pay for the I/O operation and make
* sure the buf is on the correct vnode queue. We have
* to do this now, because if we don't, the vnode may not
* be properly notified that its I/O has completed.
*/
if (wasdelayed) {
buf_reassign(bp, vp);
} else if (p && p->p_stats) {
OSIncrementAtomicLong(&p->p_stats->p_ru.ru_oublock); /* XXX */
}
}
trace(TR_BUFWRITE, pack(vp, bp->b_bcount), bp->b_lblkno);
/* Initiate disk write. Make sure the appropriate party is charged. */
OSAddAtomic(1, &vp->v_numoutput);
VNOP_STRATEGY(bp);
if (sync) {
/*
* If I/O was synchronous, wait for it to complete.
*/
rv = buf_biowait(bp);
/*
* Pay for the I/O operation, if it's not been paid for, and
* make sure it's on the correct vnode queue. (async operatings
* were payed for above.)
*/
if (wasdelayed) {
buf_reassign(bp, vp);
} else if (p && p->p_stats) {
OSIncrementAtomicLong(&p->p_stats->p_ru.ru_oublock); /* XXX */
}
/* Release the buffer. */
buf_brelse(bp);
return rv;
} else {
return 0;
}
}
int
vn_bwrite(struct vnop_bwrite_args *ap)
{
return buf_bwrite(ap->a_bp);
}
/*
* Delayed write.
*
* The buffer is marked dirty, but is not queued for I/O.
* This routine should be used when the buffer is expected
* to be modified again soon, typically a small write that
* partially fills a buffer.
*
* NB: magnetic tapes cannot be delayed; they must be
* written in the order that the writes are requested.
*
* Described in Leffler, et al. (pp. 208-213).
*
* Note: With the ability to allocate additional buffer
* headers, we can get in to the situation where "too" many
* buf_bdwrite()s can create situation where the kernel can create
* buffers faster than the disks can service. Doing a buf_bawrite() in
* cases where we have "too many" outstanding buf_bdwrite()s avoids that.
*/
int
bdwrite_internal(buf_t bp, int return_error)
{
proc_t p = current_proc();
vnode_t vp = bp->b_vp;
/*
* If the block hasn't been seen before:
* (1) Mark it as having been seen,
* (2) Charge for the write.
* (3) Make sure it's on its vnode's correct block list,
*/
if (!ISSET(bp->b_flags, B_DELWRI)) {
SET(bp->b_flags, B_DELWRI);
if (p && p->p_stats) {
OSIncrementAtomicLong(&p->p_stats->p_ru.ru_oublock); /* XXX */
}
OSAddAtomicLong(1, &nbdwrite);
buf_reassign(bp, vp);
}
/*
* if we're not LOCKED, but the total number of delayed writes
* has climbed above 75% of the total buffers in the system
* return an error if the caller has indicated that it can
* handle one in this case, otherwise schedule the I/O now
* this is done to prevent us from allocating tons of extra
* buffers when dealing with virtual disks (i.e. DiskImages),
* because additional buffers are dynamically allocated to prevent
* deadlocks from occurring
*
* however, can't do a buf_bawrite() if the LOCKED bit is set because the
* buffer is part of a transaction and can't go to disk until
* the LOCKED bit is cleared.
*/
if (!ISSET(bp->b_flags, B_LOCKED) && nbdwrite > ((nbuf_headers / 4) * 3)) {
if (return_error) {
return EAGAIN;
}
/*
* If the vnode has "too many" write operations in progress
* wait for them to finish the IO
*/
(void)vnode_waitforwrites(vp, VNODE_ASYNC_THROTTLE, 0, 0, "buf_bdwrite");
return buf_bawrite(bp);
}
/* Otherwise, the "write" is done, so mark and release the buffer. */
SET(bp->b_flags, B_DONE);
buf_brelse(bp);
return 0;
}
errno_t
buf_bdwrite(buf_t bp)
{
return bdwrite_internal(bp, 0);
}
/*
* Asynchronous block write; just an asynchronous buf_bwrite().
*
* Note: With the abilitty to allocate additional buffer
* headers, we can get in to the situation where "too" many
* buf_bawrite()s can create situation where the kernel can create
* buffers faster than the disks can service.
* We limit the number of "in flight" writes a vnode can have to
* avoid this.
*/
static int
bawrite_internal(buf_t bp, int throttle)
{
vnode_t vp = bp->b_vp;
if (vp) {
if (throttle) {
/*
* If the vnode has "too many" write operations in progress
* wait for them to finish the IO
*/
(void)vnode_waitforwrites(vp, VNODE_ASYNC_THROTTLE, 0, 0, (const char *)"buf_bawrite");
} else if (vp->v_numoutput >= VNODE_ASYNC_THROTTLE) {
/*
* return to the caller and
* let him decide what to do
*/
return EWOULDBLOCK;
}
}
SET(bp->b_flags, B_ASYNC);
return VNOP_BWRITE(bp);
}
errno_t
buf_bawrite(buf_t bp)
{
return bawrite_internal(bp, 1);
}
static void
buf_free_meta_store(buf_t bp)
{
if (bp->b_bufsize) {
uintptr_t datap = bp->b_datap;
int bufsize = bp->b_bufsize;
bp->b_datap = (uintptr_t)NULL;
bp->b_bufsize = 0;
/*
* Ensure the assignment of b_datap has global visibility
* before we free the region.
*/
OSMemoryBarrier();
if (ISSET(bp->b_flags, B_ZALLOC)) {
kheap_free(KHEAP_VFS_BIO, datap, bufsize);
} else {
kmem_free(kernel_map, datap, bufsize);
}
}
}
static buf_t
buf_brelse_shadow(buf_t bp)
{
buf_t bp_head;
buf_t bp_temp;
buf_t bp_return = NULL;
#ifdef BUF_MAKE_PRIVATE
buf_t bp_data;
int data_ref = 0;
#endif
int need_wakeup = 0;
lck_mtx_lock_spin(&buf_mtx);
__IGNORE_WCASTALIGN(bp_head = (buf_t)bp->b_orig);
if (bp_head->b_whichq != -1) {
panic("buf_brelse_shadow: bp_head on freelist %d", bp_head->b_whichq);
}
#ifdef BUF_MAKE_PRIVATE
if (bp_data = bp->b_data_store) {
bp_data->b_data_ref--;
/*
* snapshot the ref count so that we can check it
* outside of the lock... we only want the guy going
* from 1 -> 0 to try and release the storage
*/
data_ref = bp_data->b_data_ref;
}
#endif
KERNEL_DEBUG(0xbbbbc008 | DBG_FUNC_START, bp, bp_head, bp_head->b_shadow_ref, 0, 0);
bp_head->b_shadow_ref--;
for (bp_temp = bp_head; bp_temp && bp != bp_temp->b_shadow; bp_temp = bp_temp->b_shadow) {
;
}
if (bp_temp == NULL) {
panic("buf_brelse_shadow: bp not on list %p", bp_head);
}
bp_temp->b_shadow = bp_temp->b_shadow->b_shadow;
#ifdef BUF_MAKE_PRIVATE
/*
* we're about to free the current 'owner' of the data buffer and
* there is at least one other shadow buf_t still pointing at it
* so transfer it to the first shadow buf left in the chain
*/
if (bp == bp_data && data_ref) {
if ((bp_data = bp_head->b_shadow) == NULL) {
panic("buf_brelse_shadow: data_ref mismatch bp(%p)", bp);
}
for (bp_temp = bp_data; bp_temp; bp_temp = bp_temp->b_shadow) {
bp_temp->b_data_store = bp_data;
}
bp_data->b_data_ref = data_ref;
}
#endif
if (bp_head->b_shadow_ref == 0 && bp_head->b_shadow) {
panic("buf_relse_shadow: b_shadow != NULL && b_shadow_ref == 0 bp(%p)", bp);
}
if (bp_head->b_shadow_ref && bp_head->b_shadow == 0) {
panic("buf_relse_shadow: b_shadow == NULL && b_shadow_ref != 0 bp(%p)", bp);
}
if (bp_head->b_shadow_ref == 0) {
if (!ISSET(bp_head->b_lflags, BL_BUSY)) {
CLR(bp_head->b_flags, B_AGE);
bp_head->b_timestamp = buf_timestamp();
if (ISSET(bp_head->b_flags, B_LOCKED)) {
bp_head->b_whichq = BQ_LOCKED;
binstailfree(bp_head, &bufqueues[BQ_LOCKED], BQ_LOCKED);
} else {
bp_head->b_whichq = BQ_META;
binstailfree(bp_head, &bufqueues[BQ_META], BQ_META);
}
} else if (ISSET(bp_head->b_lflags, BL_WAITSHADOW)) {
CLR(bp_head->b_lflags, BL_WAITSHADOW);
bp_return = bp_head;
}
if (ISSET(bp_head->b_lflags, BL_WANTED_REF)) {
CLR(bp_head->b_lflags, BL_WANTED_REF);
need_wakeup = 1;
}
}
lck_mtx_unlock(&buf_mtx);
if (need_wakeup) {
wakeup(bp_head);
}
#ifdef BUF_MAKE_PRIVATE
if (bp == bp_data && data_ref == 0) {
buf_free_meta_store(bp);
}
bp->b_data_store = NULL;
#endif
KERNEL_DEBUG(0xbbbbc008 | DBG_FUNC_END, bp, 0, 0, 0, 0);
return bp_return;
}
/*
* Release a buffer on to the free lists.
* Described in Bach (p. 46).
*/
void
buf_brelse(buf_t bp)
{
struct bqueues *bufq;
int whichq;
upl_t upl;
int need_wakeup = 0;
int need_bp_wakeup = 0;
if (bp->b_whichq != -1 || !(bp->b_lflags & BL_BUSY)) {
panic("buf_brelse: bad buffer = %p", bp);
}
#ifdef JOE_DEBUG
(void) OSBacktrace(&bp->b_stackbrelse[0], 6);
bp->b_lastbrelse = current_thread();
bp->b_tag = 0;
#endif
if (bp->b_lflags & BL_IOBUF) {
buf_t shadow_master_bp = NULL;
if (ISSET(bp->b_lflags, BL_SHADOW)) {
shadow_master_bp = buf_brelse_shadow(bp);
} else if (ISSET(bp->b_lflags, BL_IOBUF_ALLOC)) {
buf_free_meta_store(bp);
}
free_io_buf(bp);
if (shadow_master_bp) {
bp = shadow_master_bp;
goto finish_shadow_master;
}
return;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 388)) | DBG_FUNC_START,
bp->b_lblkno * PAGE_SIZE, bp, bp->b_datap,
bp->b_flags, 0);
trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
/*
* if we're invalidating a buffer that has the B_FILTER bit
* set then call the b_iodone function so it gets cleaned
* up properly.
*
* the HFS journal code depends on this
*/
if (ISSET(bp->b_flags, B_META) && ISSET(bp->b_flags, B_INVAL)) {
if (ISSET(bp->b_flags, B_FILTER)) { /* if necessary, call out */
void (*iodone_func)(struct buf *, void *) = bp->b_iodone;
void *arg = bp->b_transaction;
CLR(bp->b_flags, B_FILTER); /* but note callout done */
bp->b_iodone = NULL;
bp->b_transaction = NULL;
if (iodone_func == NULL) {
panic("brelse: bp @ %p has NULL b_iodone!", bp);
}
(*iodone_func)(bp, arg);
}
}
/*
* I/O is done. Cleanup the UPL state
*/
upl = bp->b_upl;
if (!ISSET(bp->b_flags, B_META) && UBCINFOEXISTS(bp->b_vp) && bp->b_bufsize) {
kern_return_t kret;
int upl_flags;
if (upl == NULL) {
if (!ISSET(bp->b_flags, B_INVAL)) {
kret = ubc_create_upl_kernel(bp->b_vp,
ubc_blktooff(bp->b_vp, bp->b_lblkno),
bp->b_bufsize,
&upl,
NULL,
UPL_PRECIOUS,
VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS) {
panic("brelse: Failed to create UPL");
}
#if UPL_DEBUG
upl_ubc_alias_set(upl, (uintptr_t) bp, (uintptr_t) 5);
#endif /* UPL_DEBUG */
}
} else {
if (bp->b_datap) {
kret = ubc_upl_unmap(upl);
if (kret != KERN_SUCCESS) {
panic("ubc_upl_unmap failed");
}
bp->b_datap = (uintptr_t)NULL;
}
}
if (upl) {
if (bp->b_flags & (B_ERROR | B_INVAL)) {
if (bp->b_flags & (B_READ | B_INVAL)) {
upl_flags = UPL_ABORT_DUMP_PAGES;
} else {
upl_flags = 0;
}
ubc_upl_abort(upl, upl_flags);
} else {
if (ISSET(bp->b_flags, B_DELWRI | B_WASDIRTY)) {
upl_flags = UPL_COMMIT_SET_DIRTY;
} else {
upl_flags = UPL_COMMIT_CLEAR_DIRTY;
}
ubc_upl_commit_range(upl, 0, bp->b_bufsize, upl_flags |
UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
}
bp->b_upl = NULL;
}
} else {
if ((upl)) {
panic("brelse: UPL set for non VREG; vp=%p", bp->b_vp);
}
}
/*
* If it's locked, don't report an error; try again later.
*/
if (ISSET(bp->b_flags, (B_LOCKED | B_ERROR)) == (B_LOCKED | B_ERROR)) {
CLR(bp->b_flags, B_ERROR);
}
/*
* If it's not cacheable, or an error, mark it invalid.
*/
if (ISSET(bp->b_flags, (B_NOCACHE | B_ERROR))) {
SET(bp->b_flags, B_INVAL);
}
if ((bp->b_bufsize <= 0) ||
ISSET(bp->b_flags, B_INVAL) ||
(ISSET(bp->b_lflags, BL_WANTDEALLOC) && !ISSET(bp->b_flags, B_DELWRI))) {
boolean_t delayed_buf_free_meta_store = FALSE;
/*
* If it's invalid or empty, dissociate it from its vnode,
* release its storage if B_META, and
* clean it up a bit and put it on the EMPTY queue
*/
if (ISSET(bp->b_flags, B_DELWRI)) {
OSAddAtomicLong(-1, &nbdwrite);
}
if (ISSET(bp->b_flags, B_META)) {
if (bp->b_shadow_ref) {
delayed_buf_free_meta_store = TRUE;
} else {
buf_free_meta_store(bp);
}
}
/*
* nuke any credentials we were holding
*/
buf_release_credentials(bp);
lck_mtx_lock_spin(&buf_mtx);
if (bp->b_shadow_ref) {
SET(bp->b_lflags, BL_WAITSHADOW);
lck_mtx_unlock(&buf_mtx);
return;
}
if (delayed_buf_free_meta_store == TRUE) {
lck_mtx_unlock(&buf_mtx);
finish_shadow_master:
buf_free_meta_store(bp);
lck_mtx_lock_spin(&buf_mtx);
}
CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
if (bp->b_vp) {
brelvp_locked(bp);
}
bremhash(bp);
BLISTNONE(bp);
binshash(bp, &invalhash);
bp->b_whichq = BQ_EMPTY;
binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
} else {
/*
* It has valid data. Put it on the end of the appropriate
* queue, so that it'll stick around for as long as possible.
*/
if (ISSET(bp->b_flags, B_LOCKED)) {
whichq = BQ_LOCKED; /* locked in core */
} else if (ISSET(bp->b_flags, B_META)) {
whichq = BQ_META; /* meta-data */
} else if (ISSET(bp->b_flags, B_AGE)) {
whichq = BQ_AGE; /* stale but valid data */
} else {
whichq = BQ_LRU; /* valid data */
}
bufq = &bufqueues[whichq];
bp->b_timestamp = buf_timestamp();
lck_mtx_lock_spin(&buf_mtx);
/*
* the buf_brelse_shadow routine doesn't take 'ownership'
* of the parent buf_t... it updates state that is protected by
* the buf_mtx, and checks for BL_BUSY to determine whether to
* put the buf_t back on a free list. b_shadow_ref is protected
* by the lock, and since we have not yet cleared B_BUSY, we need
* to check it while holding the lock to insure that one of us
* puts this buf_t back on a free list when it is safe to do so
*/
if (bp->b_shadow_ref == 0) {
CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE));
bp->b_whichq = whichq;
binstailfree(bp, bufq, whichq);
} else {
/*
* there are still cloned buf_t's pointing
* at this guy... need to keep it off the
* freelists until a buf_brelse is done on
* the last clone
*/
CLR(bp->b_flags, (B_ASYNC | B_NOCACHE));
}
}
if (needbuffer) {
/*
* needbuffer is a global
* we're currently using buf_mtx to protect it
* delay doing the actual wakeup until after
* we drop buf_mtx
*/
needbuffer = 0;
need_wakeup = 1;
}
if (ISSET(bp->b_lflags, BL_WANTED)) {
/*
* delay the actual wakeup until after we
* clear BL_BUSY and we've dropped buf_mtx
*/
need_bp_wakeup = 1;
}
/*
* Unlock the buffer.
*/
CLR(bp->b_lflags, (BL_BUSY | BL_WANTED));
buf_busycount--;
lck_mtx_unlock(&buf_mtx);
if (need_wakeup) {
/*
* Wake up any processes waiting for any buffer to become free.
*/
wakeup(&needbuffer);
}
if (need_bp_wakeup) {
/*
* Wake up any proceeses waiting for _this_ buffer to become free.
*/
wakeup(bp);
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 388)) | DBG_FUNC_END,
bp, bp->b_datap, bp->b_flags, 0, 0);
}
/*
* Determine if a block is in the cache.
* Just look on what would be its hash chain. If it's there, return
* a pointer to it, unless it's marked invalid. If it's marked invalid,
* we normally don't return the buffer, unless the caller explicitly
* wants us to.
*/
static boolean_t
incore(vnode_t vp, daddr64_t blkno)
{
boolean_t retval;
struct bufhashhdr *dp;
dp = BUFHASH(vp, blkno);
lck_mtx_lock_spin(&buf_mtx);
if (incore_locked(vp, blkno, dp)) {
retval = TRUE;
} else {
retval = FALSE;
}
lck_mtx_unlock(&buf_mtx);
return retval;
}
static buf_t
incore_locked(vnode_t vp, daddr64_t blkno, struct bufhashhdr *dp)
{
struct buf *bp;
/* Search hash chain */
for (bp = dp->lh_first; bp != NULL; bp = bp->b_hash.le_next) {
if (bp->b_lblkno == blkno && bp->b_vp == vp &&
!ISSET(bp->b_flags, B_INVAL)) {
return bp;
}
}
return NULL;
}
void
buf_wait_for_shadow_io(vnode_t vp, daddr64_t blkno)
{
buf_t bp;
struct bufhashhdr *dp;
dp = BUFHASH(vp, blkno);
lck_mtx_lock_spin(&buf_mtx);
for (;;) {
if ((bp = incore_locked(vp, blkno, dp)) == NULL) {
break;
}
if (bp->b_shadow_ref == 0) {
break;
}
SET(bp->b_lflags, BL_WANTED_REF);
(void) msleep(bp, &buf_mtx, PSPIN | (PRIBIO + 1), "buf_wait_for_shadow", NULL);
}
lck_mtx_unlock(&buf_mtx);
}
/* XXX FIXME -- Update the comment to reflect the UBC changes (please) -- */
/*
* Get a block of requested size that is associated with
* a given vnode and block offset. If it is found in the
* block cache, mark it as having been found, make it busy
* and return it. Otherwise, return an empty block of the
* correct size. It is up to the caller to insure that the
* cached blocks be of the correct size.
*/
buf_t
buf_getblk(vnode_t vp, daddr64_t blkno, int size, int slpflag, int slptimeo, int operation)
{
buf_t bp;
int err;
upl_t upl;
upl_page_info_t *pl;
kern_return_t kret;
int ret_only_valid;
struct timespec ts;
int upl_flags;
struct bufhashhdr *dp;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 386)) | DBG_FUNC_START,
(uintptr_t)(blkno * PAGE_SIZE), size, operation, 0, 0);
ret_only_valid = operation & BLK_ONLYVALID;
operation &= ~BLK_ONLYVALID;
dp = BUFHASH(vp, blkno);
start:
lck_mtx_lock_spin(&buf_mtx);
if ((bp = incore_locked(vp, blkno, dp))) {
/*
* Found in the Buffer Cache
*/
if (ISSET(bp->b_lflags, BL_BUSY)) {
/*
* but is busy
*/
switch (operation) {
case BLK_READ:
case BLK_WRITE:
case BLK_META:
SET(bp->b_lflags, BL_WANTED);
bufstats.bufs_busyincore++;
/*
* don't retake the mutex after being awakened...
* the time out is in msecs
*/
ts.tv_sec = (slptimeo / 1000);
ts.tv_nsec = (slptimeo % 1000) * 10 * NSEC_PER_USEC * 1000;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 396)) | DBG_FUNC_NONE,
(uintptr_t)blkno, size, operation, 0, 0);
err = msleep(bp, &buf_mtx, slpflag | PDROP | (PRIBIO + 1), "buf_getblk", &ts);
/*
* Callers who call with PCATCH or timeout are
* willing to deal with the NULL pointer
*/
if (err && ((slpflag & PCATCH) || ((err == EWOULDBLOCK) && slptimeo))) {
return NULL;
}
goto start;
/*NOTREACHED*/
default:
/*
* unknown operation requested
*/
panic("getblk: paging or unknown operation for incore busy buffer - %x", operation);
/*NOTREACHED*/
break;
}
} else {
int clear_bdone;
/*
* buffer in core and not busy
*/
SET(bp->b_lflags, BL_BUSY);
SET(bp->b_flags, B_CACHE);
buf_busycount++;
bremfree_locked(bp);
bufstats.bufs_incore++;
lck_mtx_unlock(&buf_mtx);
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 1;
#endif
if ((bp->b_upl)) {
panic("buffer has UPL, but not marked BUSY: %p", bp);
}
clear_bdone = FALSE;
if (!ret_only_valid) {
/*
* If the number bytes that are valid is going
* to increase (even if we end up not doing a
* reallocation through allocbuf) we have to read
* the new size first.
*
* This is required in cases where we doing a read
* modify write of a already valid data on disk but
* in cases where the data on disk beyond (blkno + b_bcount)
* is invalid, we may end up doing extra I/O.
*/
if (operation == BLK_META && bp->b_bcount < (uint32_t)size) {
/*
* Since we are going to read in the whole size first
* we first have to ensure that any pending delayed write
* is flushed to disk first.
*/
if (ISSET(bp->b_flags, B_DELWRI)) {
CLR(bp->b_flags, B_CACHE);
buf_bwrite(bp);
goto start;
}
/*
* clear B_DONE before returning from
* this function so that the caller can
* can issue a read for the new size.
*/
clear_bdone = TRUE;
}
if (bp->b_bufsize != (uint32_t)size) {
allocbuf(bp, size);
}
}
upl_flags = 0;
switch (operation) {
case BLK_WRITE:
/*
* "write" operation: let the UPL subsystem
* know that we intend to modify the buffer
* cache pages we're gathering.
*/
upl_flags |= UPL_WILL_MODIFY;
OS_FALLTHROUGH;
case BLK_READ:
upl_flags |= UPL_PRECIOUS;
if (UBCINFOEXISTS(bp->b_vp) && bp->b_bufsize) {
kret = ubc_create_upl_kernel(vp,
ubc_blktooff(vp, bp->b_lblkno),
bp->b_bufsize,
&upl,
&pl,
upl_flags,
VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS) {
panic("Failed to create UPL");
}
bp->b_upl = upl;
if (upl_valid_page(pl, 0)) {
if (upl_dirty_page(pl, 0)) {
SET(bp->b_flags, B_WASDIRTY);
} else {
CLR(bp->b_flags, B_WASDIRTY);
}
} else {
CLR(bp->b_flags, (B_DONE | B_CACHE | B_WASDIRTY | B_DELWRI));
}
kret = ubc_upl_map(upl, (vm_offset_t*)&(bp->b_datap));
if (kret != KERN_SUCCESS) {
panic("getblk: ubc_upl_map() failed with (%d)", kret);
}
}
break;
case BLK_META:
/*
* VM is not involved in IO for the meta data
* buffer already has valid data
*/
break;
default:
panic("getblk: paging or unknown operation for incore buffer- %d", operation);
/*NOTREACHED*/
break;
}
if (clear_bdone) {
CLR(bp->b_flags, B_DONE);
}
}
} else { /* not incore() */
int queue = BQ_EMPTY; /* Start with no preference */
if (ret_only_valid) {
lck_mtx_unlock(&buf_mtx);
return NULL;
}
if ((vnode_isreg(vp) == 0) || (UBCINFOEXISTS(vp) == 0) /*|| (vnode_issystem(vp) == 1)*/) {
operation = BLK_META;
}
if ((bp = getnewbuf(slpflag, slptimeo, &queue)) == NULL) {
goto start;
}
/*
* getnewbuf may block for a number of different reasons...
* if it does, it's then possible for someone else to
* create a buffer for the same block and insert it into
* the hash... if we see it incore at this point we dump
* the buffer we were working on and start over
*/
if (incore_locked(vp, blkno, dp)) {
SET(bp->b_flags, B_INVAL);
binshash(bp, &invalhash);
lck_mtx_unlock(&buf_mtx);
buf_brelse(bp);
goto start;
}
/*
* NOTE: YOU CAN NOT BLOCK UNTIL binshash() HAS BEEN
* CALLED! BE CAREFUL.
*/
/*
* mark the buffer as B_META if indicated
* so that when buffer is released it will goto META queue
*/
if (operation == BLK_META) {
SET(bp->b_flags, B_META);
}
bp->b_blkno = bp->b_lblkno = blkno;
bp->b_lblksize = 0; /* Should be set by caller */
bp->b_vp = vp;
/*
* Insert in the hash so that incore() can find it
*/
binshash(bp, BUFHASH(vp, blkno));
bgetvp_locked(vp, bp);
lck_mtx_unlock(&buf_mtx);
allocbuf(bp, size);
upl_flags = 0;
switch (operation) {
case BLK_META:
/*
* buffer data is invalid...
*
* I don't want to have to retake buf_mtx,
* so the miss and vmhits counters are done
* with Atomic updates... all other counters
* in bufstats are protected with either
* buf_mtx or iobuffer_mtxp
*/
OSAddAtomicLong(1, &bufstats.bufs_miss);
break;
case BLK_WRITE:
/*
* "write" operation: let the UPL subsystem know
* that we intend to modify the buffer cache pages
* we're gathering.
*/
upl_flags |= UPL_WILL_MODIFY;
OS_FALLTHROUGH;
case BLK_READ:
{ off_t f_offset;
size_t contig_bytes;
int bmap_flags;
#if DEVELOPMENT || DEBUG
/*
* Apple implemented file systems use UBC excludively; they should
* not call in here."
*/
const char* excldfs[] = {"hfs", "afpfs", "smbfs", "acfs",
"exfat", "msdos", "webdav", NULL};
for (int i = 0; excldfs[i] != NULL; i++) {
if (vp->v_mount &&
!strcmp(vp->v_mount->mnt_vfsstat.f_fstypename,
excldfs[i])) {
panic("%s %s calls buf_getblk",
excldfs[i],
operation == BLK_READ ? "BLK_READ" : "BLK_WRITE");
}
}
#endif
if ((bp->b_upl)) {
panic("bp already has UPL: %p", bp);
}
f_offset = ubc_blktooff(vp, blkno);
upl_flags |= UPL_PRECIOUS;
kret = ubc_create_upl_kernel(vp,
f_offset,
bp->b_bufsize,
&upl,
&pl,
upl_flags,
VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS) {
panic("Failed to create UPL");
}
#if UPL_DEBUG
upl_ubc_alias_set(upl, (uintptr_t) bp, (uintptr_t) 4);
#endif /* UPL_DEBUG */
bp->b_upl = upl;
if (upl_valid_page(pl, 0)) {
if (operation == BLK_READ) {
bmap_flags = VNODE_READ;
} else {
bmap_flags = VNODE_WRITE;
}
SET(bp->b_flags, B_CACHE | B_DONE);
OSAddAtomicLong(1, &bufstats.bufs_vmhits);
bp->b_validoff = 0;
bp->b_dirtyoff = 0;
if (upl_dirty_page(pl, 0)) {
/* page is dirty */
SET(bp->b_flags, B_WASDIRTY);
bp->b_validend = bp->b_bcount;
bp->b_dirtyend = bp->b_bcount;
} else {
/* page is clean */
bp->b_validend = bp->b_bcount;
bp->b_dirtyend = 0;
}
/*
* try to recreate the physical block number associated with
* this buffer...
*/
if (VNOP_BLOCKMAP(vp, f_offset, bp->b_bcount, &bp->b_blkno, &contig_bytes, NULL, bmap_flags, NULL)) {
panic("getblk: VNOP_BLOCKMAP failed");
}
/*
* if the extent represented by this buffer
* is not completely physically contiguous on
* disk, than we can't cache the physical mapping
* in the buffer header
*/
if ((uint32_t)contig_bytes < bp->b_bcount) {
bp->b_blkno = bp->b_lblkno;
}
} else {
OSAddAtomicLong(1, &bufstats.bufs_miss);
}
kret = ubc_upl_map(upl, (vm_offset_t *)&(bp->b_datap));
if (kret != KERN_SUCCESS) {
panic("getblk: ubc_upl_map() failed with (%d)", kret);
}
break;} // end BLK_READ
default:
panic("getblk: paging or unknown operation - %x", operation);
/*NOTREACHED*/
break;
} // end switch
} //end buf_t !incore
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 386)) | DBG_FUNC_END,
bp, bp->b_datap, bp->b_flags, 3, 0);
#ifdef JOE_DEBUG
(void) OSBacktrace(&bp->b_stackgetblk[0], 6);
#endif
return bp;
}
/*
* Get an empty, disassociated buffer of given size.
*/
buf_t
buf_geteblk(int size)
{
buf_t bp = NULL;
int queue = BQ_EMPTY;
do {
lck_mtx_lock_spin(&buf_mtx);
bp = getnewbuf(0, 0, &queue);
} while (bp == NULL);
SET(bp->b_flags, (B_META | B_INVAL));
#if DIAGNOSTIC
assert(queue == BQ_EMPTY);
#endif /* DIAGNOSTIC */
/* XXX need to implement logic to deal with other queues */
binshash(bp, &invalhash);
bufstats.bufs_eblk++;
lck_mtx_unlock(&buf_mtx);
allocbuf(bp, size);
return bp;
}
uint32_t
buf_redundancy_flags(buf_t bp)
{
return bp->b_redundancy_flags;
}
void
buf_set_redundancy_flags(buf_t bp, uint32_t flags)
{
SET(bp->b_redundancy_flags, flags);
}
void
buf_clear_redundancy_flags(buf_t bp, uint32_t flags)
{
CLR(bp->b_redundancy_flags, flags);
}
static void *
recycle_buf_from_pool(int nsize)
{
buf_t bp;
void *ptr = NULL;
lck_mtx_lock_spin(&buf_mtx);
TAILQ_FOREACH(bp, &bufqueues[BQ_META], b_freelist) {
if (ISSET(bp->b_flags, B_DELWRI) || bp->b_bufsize != (uint32_t)nsize) {
continue;
}
ptr = (void *)bp->b_datap;
bp->b_bufsize = 0;
bcleanbuf(bp, TRUE);
break;
}
lck_mtx_unlock(&buf_mtx);
return ptr;
}
int zalloc_nopagewait_failed = 0;
int recycle_buf_failed = 0;
static void *
grab_memory_for_meta_buf(int nsize)
{
void *ptr;
boolean_t was_vmpriv;
/*
* make sure we're NOT priviliged so that
* if a vm_page_grab is needed, it won't
* block if we're out of free pages... if
* it blocks, then we can't honor the
* nopagewait request
*/
was_vmpriv = set_vm_privilege(FALSE);
ptr = kheap_alloc(KHEAP_VFS_BIO, nsize, Z_NOPAGEWAIT);
if (was_vmpriv == TRUE) {
set_vm_privilege(TRUE);
}
if (ptr == NULL) {
zalloc_nopagewait_failed++;
ptr = recycle_buf_from_pool(nsize);
if (ptr == NULL) {
recycle_buf_failed++;
if (was_vmpriv == FALSE) {
set_vm_privilege(TRUE);
}
ptr = kheap_alloc(KHEAP_VFS_BIO, nsize, Z_WAITOK);
if (was_vmpriv == FALSE) {
set_vm_privilege(FALSE);
}
}
}
return ptr;
}
/*
* With UBC, there is no need to expand / shrink the file data
* buffer. The VM uses the same pages, hence no waste.
* All the file data buffers can have one size.
* In fact expand / shrink would be an expensive operation.
*
* Only exception to this is meta-data buffers. Most of the
* meta data operations are smaller than PAGE_SIZE. Having the
* meta-data buffers grow and shrink as needed, optimizes use
* of the kernel wired memory.
*/
int
allocbuf(buf_t bp, int size)
{
vm_size_t desired_size;
desired_size = roundup(size, CLBYTES);
if (desired_size < PAGE_SIZE) {
desired_size = PAGE_SIZE;
}
if (desired_size > MAXBSIZE) {
panic("allocbuf: buffer larger than MAXBSIZE requested");
}
if (ISSET(bp->b_flags, B_META)) {
int nsize = roundup(size, MINMETA);
if (bp->b_datap) {
void *elem = (void *)bp->b_datap;
if (ISSET(bp->b_flags, B_ZALLOC)) {
if (bp->b_bufsize < (uint32_t)nsize) {
/* reallocate to a bigger size */
if (nsize <= MAXMETA) {
desired_size = nsize;
/* b_datap not really a ptr */
*(void **)(&bp->b_datap) = grab_memory_for_meta_buf(nsize);
} else {
bp->b_datap = (uintptr_t)NULL;
kmem_alloc(kernel_map, (vm_offset_t *)&bp->b_datap, desired_size,
KMA_KOBJECT | KMA_DATA | KMA_NOFAIL,
VM_KERN_MEMORY_FILE);
CLR(bp->b_flags, B_ZALLOC);
}
bcopy(elem, (caddr_t)bp->b_datap, bp->b_bufsize);
kheap_free(KHEAP_VFS_BIO, elem, bp->b_bufsize);
} else {
desired_size = bp->b_bufsize;
}
} else {
if ((vm_size_t)bp->b_bufsize < desired_size) {
/* reallocate to a bigger size */
bp->b_datap = (uintptr_t)NULL;
kmem_alloc(kernel_map, (vm_offset_t *)&bp->b_datap, desired_size,
KMA_KOBJECT | KMA_DATA | KMA_NOFAIL,
VM_KERN_MEMORY_FILE);
bcopy(elem, (caddr_t)bp->b_datap, bp->b_bufsize);
kmem_free(kernel_map, (vm_offset_t)elem, bp->b_bufsize);
} else {
desired_size = bp->b_bufsize;
}
}
} else {
/* new allocation */
if (nsize <= MAXMETA) {
desired_size = nsize;
/* b_datap not really a ptr */
*(void **)(&bp->b_datap) = grab_memory_for_meta_buf(nsize);
SET(bp->b_flags, B_ZALLOC);
} else {
kmem_alloc(kernel_map, (vm_offset_t *)&bp->b_datap, desired_size,
KMA_KOBJECT | KMA_DATA | KMA_NOFAIL,
VM_KERN_MEMORY_FILE);
}
}
}
bp->b_bufsize = (uint32_t)desired_size;
bp->b_bcount = size;
return 0;
}
/*
* Get a new buffer from one of the free lists.
*
* Request for a queue is passes in. The queue from which the buffer was taken
* from is returned. Out of range queue requests get BQ_EMPTY. Request for
* BQUEUE means no preference. Use heuristics in that case.
* Heuristics is as follows:
* Try BQ_AGE, BQ_LRU, BQ_EMPTY, BQ_META in that order.
* If none available block till one is made available.
* If buffers available on both BQ_AGE and BQ_LRU, check the timestamps.
* Pick the most stale buffer.
* If found buffer was marked delayed write, start the async. write
* and restart the search.
* Initialize the fields and disassociate the buffer from the vnode.
* Remove the buffer from the hash. Return the buffer and the queue
* on which it was found.
*
* buf_mtx is held upon entry
* returns with buf_mtx locked if new buf available
* returns with buf_mtx UNlocked if new buf NOT available
*/
static buf_t
getnewbuf(int slpflag, int slptimeo, int * queue)
{
buf_t bp;
buf_t lru_bp;
buf_t age_bp;
buf_t meta_bp;
int age_time, lru_time, bp_time, meta_time;
int req = *queue; /* save it for restarts */
struct timespec ts;
start:
/*
* invalid request gets empty queue
*/
if ((*queue >= BQUEUES) || (*queue < 0)
|| (*queue == BQ_LAUNDRY) || (*queue == BQ_LOCKED)) {
*queue = BQ_EMPTY;
}
if (*queue == BQ_EMPTY && (bp = bufqueues[*queue].tqh_first)) {
goto found;
}
/*
* need to grow number of bufs, add another one rather than recycling
*/
if (nbuf_headers < max_nbuf_headers) {
/*
* Increment count now as lock
* is dropped for allocation.
* That avoids over commits
*/
nbuf_headers++;
goto add_newbufs;
}
/* Try for the requested queue first */
bp = bufqueues[*queue].tqh_first;
if (bp) {
goto found;
}
/* Unable to use requested queue */
age_bp = bufqueues[BQ_AGE].tqh_first;
lru_bp = bufqueues[BQ_LRU].tqh_first;
meta_bp = bufqueues[BQ_META].tqh_first;
if (!age_bp && !lru_bp && !meta_bp) {
/*
* Unavailble on AGE or LRU or META queues
* Try the empty list first
*/
bp = bufqueues[BQ_EMPTY].tqh_first;
if (bp) {
*queue = BQ_EMPTY;
goto found;
}
/*
* We have seen is this is hard to trigger.
* This is an overcommit of nbufs but needed
* in some scenarios with diskiamges
*/
add_newbufs:
lck_mtx_unlock(&buf_mtx);
/* Create a new temporary buffer header */
bp = zalloc_flags(buf_hdr_zone, Z_WAITOK | Z_NOFAIL);
bufhdrinit(bp);
bp->b_whichq = BQ_EMPTY;
bp->b_timestamp = buf_timestamp();
BLISTNONE(bp);
SET(bp->b_flags, B_HDRALLOC);
*queue = BQ_EMPTY;
lck_mtx_lock_spin(&buf_mtx);
if (bp) {
binshash(bp, &invalhash);
binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
buf_hdr_count++;
goto found;
}
/* subtract already accounted bufcount */
nbuf_headers--;
bufstats.bufs_sleeps++;
/* wait for a free buffer of any kind */
needbuffer = 1;
/* hz value is 100 */
ts.tv_sec = (slptimeo / 1000);
/* the hz value is 100; which leads to 10ms */
ts.tv_nsec = (slptimeo % 1000) * NSEC_PER_USEC * 1000 * 10;
msleep(&needbuffer, &buf_mtx, slpflag | PDROP | (PRIBIO + 1), "getnewbuf", &ts);
return NULL;
}
/* Buffer available either on AGE or LRU or META */
bp = NULL;
*queue = -1;
/* Buffer available either on AGE or LRU */
if (!age_bp) {
bp = lru_bp;
*queue = BQ_LRU;
} else if (!lru_bp) {
bp = age_bp;
*queue = BQ_AGE;
} else { /* buffer available on both AGE and LRU */
int t = buf_timestamp();
age_time = t - age_bp->b_timestamp;
lru_time = t - lru_bp->b_timestamp;
if ((age_time < 0) || (lru_time < 0)) { /* time set backwards */
bp = age_bp;
*queue = BQ_AGE;
/*
* we should probably re-timestamp eveything in the
* queues at this point with the current time
*/
} else {
if ((lru_time >= lru_is_stale) && (age_time < age_is_stale)) {
bp = lru_bp;
*queue = BQ_LRU;
} else {
bp = age_bp;
*queue = BQ_AGE;
}
}
}
if (!bp) { /* Neither on AGE nor on LRU */
bp = meta_bp;
*queue = BQ_META;
} else if (meta_bp) {
int t = buf_timestamp();
bp_time = t - bp->b_timestamp;
meta_time = t - meta_bp->b_timestamp;
if (!(bp_time < 0) && !(meta_time < 0)) {
/* time not set backwards */
int bp_is_stale;
bp_is_stale = (*queue == BQ_LRU) ?
lru_is_stale : age_is_stale;
if ((meta_time >= meta_is_stale) &&
(bp_time < bp_is_stale)) {
bp = meta_bp;
*queue = BQ_META;
}
}
}
found:
if (ISSET(bp->b_flags, B_LOCKED) || ISSET(bp->b_lflags, BL_BUSY)) {
panic("getnewbuf: bp @ %p is LOCKED or BUSY! (flags 0x%x)", bp, bp->b_flags);
}
/* Clean it */
if (bcleanbuf(bp, FALSE)) {
/*
* moved to the laundry thread, buffer not ready
*/
*queue = req;
goto start;
}
return bp;
}
/*
* Clean a buffer.
* Returns 0 if buffer is ready to use,
* Returns 1 if issued a buf_bawrite() to indicate
* that the buffer is not ready.
*
* buf_mtx is held upon entry
* returns with buf_mtx locked
*/
int
bcleanbuf(buf_t bp, boolean_t discard)
{
/* Remove from the queue */
bremfree_locked(bp);
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 2;
#endif
/*
* If buffer was a delayed write, start the IO by queuing
* it on the LAUNDRY queue, and return 1
*/
if (ISSET(bp->b_flags, B_DELWRI)) {
if (discard) {
SET(bp->b_lflags, BL_WANTDEALLOC);
}
bmovelaundry(bp);
lck_mtx_unlock(&buf_mtx);
wakeup(&bufqueues[BQ_LAUNDRY]);
/*
* and give it a chance to run
*/
(void)thread_block(THREAD_CONTINUE_NULL);
lck_mtx_lock_spin(&buf_mtx);
return 1;
}
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 8;
#endif
/*
* Buffer is no longer on any free list... we own it
*/
SET(bp->b_lflags, BL_BUSY);
buf_busycount++;
bremhash(bp);
/*
* disassociate us from our vnode, if we had one...
*/
if (bp->b_vp) {
brelvp_locked(bp);
}
lck_mtx_unlock(&buf_mtx);
BLISTNONE(bp);
if (ISSET(bp->b_flags, B_META)) {
buf_free_meta_store(bp);
}
trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
buf_release_credentials(bp);
/* If discarding, just move to the empty queue */
if (discard) {
lck_mtx_lock_spin(&buf_mtx);
CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
bp->b_whichq = BQ_EMPTY;
binshash(bp, &invalhash);
binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
CLR(bp->b_lflags, BL_BUSY);
buf_busycount--;
} else {
/* Not discarding: clean up and prepare for reuse */
bp->b_bufsize = 0;
bp->b_datap = (uintptr_t)NULL;
bp->b_upl = (void *)NULL;
bp->b_fsprivate = (void *)NULL;
/*
* preserve the state of whether this buffer
* was allocated on the fly or not...
* the only other flag that should be set at
* this point is BL_BUSY...
*/
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 3;
#endif
bp->b_lflags = BL_BUSY;
bp->b_flags = (bp->b_flags & B_HDRALLOC);
bp->b_redundancy_flags = 0;
bp->b_dev = NODEV;
bp->b_blkno = bp->b_lblkno = 0;
bp->b_lblksize = 0;
bp->b_iodone = NULL;
bp->b_error = 0;
bp->b_resid = 0;
bp->b_bcount = 0;
bp->b_dirtyoff = bp->b_dirtyend = 0;
bp->b_validoff = bp->b_validend = 0;
bzero(&bp->b_attr, sizeof(struct bufattr));
lck_mtx_lock_spin(&buf_mtx);
}
return 0;
}
errno_t
buf_invalblkno(vnode_t vp, daddr64_t lblkno, int flags)
{
buf_t bp;
errno_t error;
struct bufhashhdr *dp;
dp = BUFHASH(vp, lblkno);
relook:
lck_mtx_lock_spin(&buf_mtx);
if ((bp = incore_locked(vp, lblkno, dp)) == (struct buf *)0) {
lck_mtx_unlock(&buf_mtx);
return 0;
}
if (ISSET(bp->b_lflags, BL_BUSY)) {
if (!ISSET(flags, BUF_WAIT)) {
lck_mtx_unlock(&buf_mtx);
return EBUSY;
}
SET(bp->b_lflags, BL_WANTED);
error = msleep((caddr_t)bp, &buf_mtx, PDROP | (PRIBIO + 1), "buf_invalblkno", NULL);
if (error) {
return error;
}
goto relook;
}
bremfree_locked(bp);
SET(bp->b_lflags, BL_BUSY);
SET(bp->b_flags, B_INVAL);
buf_busycount++;
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 4;
#endif
lck_mtx_unlock(&buf_mtx);
buf_brelse(bp);
return 0;
}
void
buf_drop(buf_t bp)
{
int need_wakeup = 0;
lck_mtx_lock_spin(&buf_mtx);
if (ISSET(bp->b_lflags, BL_WANTED)) {
/*
* delay the actual wakeup until after we
* clear BL_BUSY and we've dropped buf_mtx
*/
need_wakeup = 1;
}
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 9;
#endif
/*
* Unlock the buffer.
*/
CLR(bp->b_lflags, (BL_BUSY | BL_WANTED));
buf_busycount--;
lck_mtx_unlock(&buf_mtx);
if (need_wakeup) {
/*
* Wake up any proceeses waiting for _this_ buffer to become free.
*/
wakeup(bp);
}
}
errno_t
buf_acquire(buf_t bp, int flags, int slpflag, int slptimeo)
{
errno_t error;
lck_mtx_lock_spin(&buf_mtx);
error = buf_acquire_locked(bp, flags, slpflag, slptimeo);
lck_mtx_unlock(&buf_mtx);
return error;
}
static errno_t
buf_acquire_locked(buf_t bp, int flags, int slpflag, int slptimeo)
{
errno_t error;
struct timespec ts;
if (ISSET(bp->b_flags, B_LOCKED)) {
if ((flags & BAC_SKIP_LOCKED)) {
return EDEADLK;
}
} else {
if ((flags & BAC_SKIP_NONLOCKED)) {
return EDEADLK;
}
}
if (ISSET(bp->b_lflags, BL_BUSY)) {
/*
* since the lck_mtx_lock may block, the buffer
* may become BUSY, so we need to
* recheck for a NOWAIT request
*/
if (flags & BAC_NOWAIT) {
return EBUSY;
}
SET(bp->b_lflags, BL_WANTED);
/* the hz value is 100; which leads to 10ms */
ts.tv_sec = (slptimeo / 100);
ts.tv_nsec = (slptimeo % 100) * 10 * NSEC_PER_USEC * 1000;
error = msleep((caddr_t)bp, &buf_mtx, slpflag | (PRIBIO + 1), "buf_acquire", &ts);
if (error) {
return error;
}
return EAGAIN;
}
if (flags & BAC_REMOVE) {
bremfree_locked(bp);
}
SET(bp->b_lflags, BL_BUSY);
buf_busycount++;
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 5;
#endif
return 0;
}
/*
* Wait for operations on the buffer to complete.
* When they do, extract and return the I/O's error value.
*/
errno_t
buf_biowait(buf_t bp)
{
while (!ISSET(bp->b_flags, B_DONE)) {
lck_mtx_lock_spin(&buf_mtx);
if (!ISSET(bp->b_flags, B_DONE)) {
DTRACE_IO1(wait__start, buf_t, bp);
(void) msleep(bp, &buf_mtx, PDROP | (PRIBIO + 1), "buf_biowait", NULL);
DTRACE_IO1(wait__done, buf_t, bp);
} else {
lck_mtx_unlock(&buf_mtx);
}
}
/* check for interruption of I/O (e.g. via NFS), then errors. */
if (ISSET(bp->b_flags, B_EINTR)) {
CLR(bp->b_flags, B_EINTR);
return EINTR;
} else if (ISSET(bp->b_flags, B_ERROR)) {
return bp->b_error ? bp->b_error : EIO;
} else {
return 0;
}
}
/*
* Mark I/O complete on a buffer.
*
* If a callback has been requested, e.g. the pageout
* daemon, do so. Otherwise, awaken waiting processes.
*
* [ Leffler, et al., says on p.247:
* "This routine wakes up the blocked process, frees the buffer
* for an asynchronous write, or, for a request by the pagedaemon
* process, invokes a procedure specified in the buffer structure" ]
*
* In real life, the pagedaemon (or other system processes) wants
* to do async stuff to, and doesn't want the buffer buf_brelse()'d.
* (for swap pager, that puts swap buffers on the free lists (!!!),
* for the vn device, that puts malloc'd buffers on the free lists!)
*/
void
buf_biodone(buf_t bp)
{
mount_t mp;
struct bufattr *bap;
struct timeval real_elapsed;
uint64_t real_elapsed_usec = 0;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 387)) | DBG_FUNC_START,
bp, bp->b_datap, bp->b_flags, 0, 0);
/* Record our progress. */
vfs_update_last_completion_time();
if (ISSET(bp->b_flags, B_DONE)) {
panic("biodone already");
}
bap = &bp->b_attr;
if (bp->b_vp && bp->b_vp->v_mount) {
mp = bp->b_vp->v_mount;
} else {
mp = NULL;
}
if (ISSET(bp->b_flags, B_ERROR)) {
if (mp && (MNT_ROOTFS & mp->mnt_flag)) {
dk_error_description_t desc;
bzero(&desc, sizeof(desc));
desc.description = panic_disk_error_description;
desc.description_size = panic_disk_error_description_size;
VNOP_IOCTL(mp->mnt_devvp, DKIOCGETERRORDESCRIPTION, (caddr_t)&desc, 0, vfs_context_kernel());
}
}
if (mp && (bp->b_flags & B_READ) == 0) {
update_last_io_time(mp);
INCR_PENDING_IO(-(pending_io_t)buf_count(bp), mp->mnt_pending_write_size);
} else if (mp) {
INCR_PENDING_IO(-(pending_io_t)buf_count(bp), mp->mnt_pending_read_size);
}
throttle_info_end_io(bp);
if (kdebug_enable) {
int code = DKIO_DONE;
int io_tier = GET_BUFATTR_IO_TIER(bap);
if (bp->b_flags & B_READ) {
code |= DKIO_READ;
}
if (bp->b_flags & B_ASYNC) {
code |= DKIO_ASYNC;
}
if (bp->b_flags & B_META) {
code |= DKIO_META;
} else if (bp->b_flags & B_PAGEIO) {
code |= DKIO_PAGING;
}
if (io_tier != 0) {
code |= DKIO_THROTTLE;
}
code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK);
if (bp->b_flags & B_PASSIVE) {
code |= DKIO_PASSIVE;
}
if (bap->ba_flags & BA_NOCACHE) {
code |= DKIO_NOCACHE;
}
if (bap->ba_flags & BA_IO_TIER_UPGRADE) {
code |= DKIO_TIER_UPGRADE;
}
KDBG_RELEASE_NOPROCFILT(FSDBG_CODE(DBG_DKRW, code),
buf_kernel_addrperm_addr(bp),
(uintptr_t)VM_KERNEL_ADDRPERM(bp->b_vp), bp->b_resid,
bp->b_error);
}
microuptime(&real_elapsed);
timevalsub(&real_elapsed, &bp->b_timestamp_tv);
real_elapsed_usec = real_elapsed.tv_sec * USEC_PER_SEC + real_elapsed.tv_usec;
disk_conditioner_delay(bp, 1, bp->b_bcount, real_elapsed_usec);
/*
* I/O was done, so don't believe
* the DIRTY state from VM anymore...
* and we need to reset the THROTTLED/PASSIVE
* indicators
*/
CLR(bp->b_flags, (B_WASDIRTY | B_PASSIVE));
CLR(bap->ba_flags, (BA_META | BA_NOCACHE | BA_DELAYIDLESLEEP | BA_IO_TIER_UPGRADE));
SET_BUFATTR_IO_TIER(bap, 0);
DTRACE_IO1(done, buf_t, bp);
if (!ISSET(bp->b_flags, B_READ) && !ISSET(bp->b_flags, B_RAW)) {
/*
* wake up any writer's blocked
* on throttle or waiting for I/O
* to drain
*/
vnode_writedone(bp->b_vp);
}
if (ISSET(bp->b_flags, (B_CALL | B_FILTER))) { /* if necessary, call out */
void (*iodone_func)(struct buf *, void *) = bp->b_iodone;
void *arg = bp->b_transaction;
int callout = ISSET(bp->b_flags, B_CALL);
if (iodone_func == NULL) {
panic("biodone: bp @ %p has NULL b_iodone!", bp);
}
CLR(bp->b_flags, (B_CALL | B_FILTER)); /* filters and callouts are one-shot */
bp->b_iodone = NULL;
bp->b_transaction = NULL;
if (callout) {
SET(bp->b_flags, B_DONE); /* note that it's done */
}
(*iodone_func)(bp, arg);
if (callout) {
/*
* assumes that the callback function takes
* ownership of the bp and deals with releasing it if necessary
*/
goto biodone_done;
}
/*
* in this case the call back function is acting
* strictly as a filter... it does not take
* ownership of the bp and is expecting us
* to finish cleaning up... this is currently used
* by the HFS journaling code
*/
}
if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release it */
SET(bp->b_flags, B_DONE); /* note that it's done */
buf_brelse(bp);
} else { /* or just wakeup the buffer */
/*
* by taking the mutex, we serialize
* the buf owner calling buf_biowait so that we'll
* only see him in one of 2 states...
* state 1: B_DONE wasn't set and he's
* blocked in msleep
* state 2: he's blocked trying to take the
* mutex before looking at B_DONE
* BL_WANTED is cleared in case anyone else
* is blocked waiting for the buffer... note
* that we haven't cleared B_BUSY yet, so if
* they do get to run, their going to re-set
* BL_WANTED and go back to sleep
*/
lck_mtx_lock_spin(&buf_mtx);
CLR(bp->b_lflags, BL_WANTED);
SET(bp->b_flags, B_DONE); /* note that it's done */
lck_mtx_unlock(&buf_mtx);
wakeup(bp);
}
biodone_done:
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 387)) | DBG_FUNC_END,
(uintptr_t)bp, (uintptr_t)bp->b_datap, bp->b_flags, 0, 0);
}
/*
* Obfuscate buf pointers.
*/
vm_offset_t
buf_kernel_addrperm_addr(void * addr)
{
if ((vm_offset_t)addr == 0) {
return 0;
} else {
return (vm_offset_t)addr + buf_kernel_addrperm;
}
}
/*
* Return a count of buffers on the "locked" queue.
*/
int
count_lock_queue(void)
{
buf_t bp;
int n = 0;
lck_mtx_lock_spin(&buf_mtx);
for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
bp = bp->b_freelist.tqe_next) {
n++;
}
lck_mtx_unlock(&buf_mtx);
return n;
}
/*
* Return a count of 'busy' buffers. Used at the time of shutdown.
* note: This is also called from the mach side in debug context in kdp.c
*/
uint32_t
count_busy_buffers(void)
{
return buf_busycount + bufstats.bufs_iobufinuse;
}
#if DIAGNOSTIC
/*
* Print out statistics on the current allocation of the buffer pool.
* Can be enabled to print out on every ``sync'' by setting "syncprt"
* in vfs_syscalls.c using sysctl.
*/
void
vfs_bufstats()
{
int i, j, count;
struct buf *bp;
struct bqueues *dp;
int counts[MAXBSIZE / CLBYTES + 1];
static char *bname[BQUEUES] =
{ "LOCKED", "LRU", "AGE", "EMPTY", "META", "LAUNDRY" };
for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
count = 0;
for (j = 0; j <= MAXBSIZE / CLBYTES; j++) {
counts[j] = 0;
}
lck_mtx_lock(&buf_mtx);
for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
counts[bp->b_bufsize / CLBYTES]++;
count++;
}
lck_mtx_unlock(&buf_mtx);
printf("%s: total-%d", bname[i], count);
for (j = 0; j <= MAXBSIZE / CLBYTES; j++) {
if (counts[j] != 0) {
printf(", %d-%d", j * CLBYTES, counts[j]);
}
}
printf("\n");
}
}
#endif /* DIAGNOSTIC */
#define NRESERVEDIOBUFS 128
#define MNT_VIRTUALDEV_MAX_IOBUFS 128
#define VIRTUALDEV_MAX_IOBUFS ((40*niobuf_headers)/100)
buf_t
alloc_io_buf(vnode_t vp, int priv)
{
buf_t bp;
mount_t mp = NULL;
int alloc_for_virtualdev = FALSE;
lck_mtx_lock_spin(&iobuffer_mtxp);
/*
* We subject iobuf requests for diskimages to additional restrictions.
*
* a) A single diskimage mount cannot use up more than
* MNT_VIRTUALDEV_MAX_IOBUFS. However,vm privileged (pageout) requests
* are not subject to this restriction.
* b) iobuf headers used by all diskimage headers by all mount
* points cannot exceed VIRTUALDEV_MAX_IOBUFS.
*/
if (vp && ((mp = vp->v_mount)) && mp != dead_mountp &&
mp->mnt_kern_flag & MNTK_VIRTUALDEV) {
alloc_for_virtualdev = TRUE;
while ((!priv && mp->mnt_iobufinuse > MNT_VIRTUALDEV_MAX_IOBUFS) ||
bufstats.bufs_iobufinuse_vdev > VIRTUALDEV_MAX_IOBUFS) {
bufstats.bufs_iobufsleeps++;
need_iobuffer = 1;
(void)msleep(&need_iobuffer, &iobuffer_mtxp,
PSPIN | (PRIBIO + 1), (const char *)"alloc_io_buf (1)",
NULL);
}
}
while ((((uint32_t)(niobuf_headers - NRESERVEDIOBUFS) < bufstats.bufs_iobufinuse) && !priv) ||
(bp = iobufqueue.tqh_first) == NULL) {
bufstats.bufs_iobufsleeps++;
need_iobuffer = 1;
(void)msleep(&need_iobuffer, &iobuffer_mtxp, PSPIN | (PRIBIO + 1),
(const char *)"alloc_io_buf (2)", NULL);
}
TAILQ_REMOVE(&iobufqueue, bp, b_freelist);
bufstats.bufs_iobufinuse++;
if (bufstats.bufs_iobufinuse > bufstats.bufs_iobufmax) {
bufstats.bufs_iobufmax = bufstats.bufs_iobufinuse;
}
if (alloc_for_virtualdev) {
mp->mnt_iobufinuse++;
bufstats.bufs_iobufinuse_vdev++;
}
lck_mtx_unlock(&iobuffer_mtxp);
/*
* initialize various fields
* we don't need to hold the mutex since the buffer
* is now private... the vp should have a reference
* on it and is not protected by this mutex in any event
*/
bp->b_timestamp = 0;
bp->b_proc = NULL;
bp->b_datap = 0;
bp->b_flags = 0;
bp->b_lflags = BL_BUSY | BL_IOBUF;
if (alloc_for_virtualdev) {
bp->b_lflags |= BL_IOBUF_VDEV;
}
bp->b_redundancy_flags = 0;
bp->b_blkno = bp->b_lblkno = 0;
bp->b_lblksize = 0;
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 6;
#endif
bp->b_iodone = NULL;
bp->b_error = 0;
bp->b_resid = 0;
bp->b_bcount = 0;
bp->b_bufsize = 0;
bp->b_upl = NULL;
bp->b_fsprivate = (void *)NULL;
bp->b_vp = vp;
bzero(&bp->b_attr, sizeof(struct bufattr));
if (vp && (vp->v_type == VBLK || vp->v_type == VCHR)) {
bp->b_dev = vp->v_rdev;
} else {
bp->b_dev = NODEV;
}
return bp;
}
void
free_io_buf(buf_t bp)
{
int need_wakeup = 0;
int free_for_virtualdev = FALSE;
mount_t mp = NULL;
/* Was this iobuf for a diskimage ? */
if (bp->b_lflags & BL_IOBUF_VDEV) {
free_for_virtualdev = TRUE;
if (bp->b_vp) {
mp = bp->b_vp->v_mount;
}
}
/*
* put buffer back on the head of the iobufqueue
*/
bp->b_vp = NULL;
bp->b_flags = B_INVAL;
/* Zero out the bufattr and its flags before relinquishing this iobuf */
bzero(&bp->b_attr, sizeof(struct bufattr));
lck_mtx_lock_spin(&iobuffer_mtxp);
binsheadfree(bp, &iobufqueue, -1);
if (need_iobuffer) {
/*
* Wake up any processes waiting because they need an io buffer
*
* do the wakeup after we drop the mutex... it's possible that the
* wakeup will be superfluous if need_iobuffer gets set again and
* another thread runs this path, but it's highly unlikely, doesn't
* hurt, and it means we don't hold up I/O progress if the wakeup blocks
* trying to grab a task related lock...
*/
need_iobuffer = 0;
need_wakeup = 1;
}
if (bufstats.bufs_iobufinuse <= 0) {
panic("free_io_buf: bp(%p) - bufstats.bufs_iobufinuse < 0", bp);
}
bufstats.bufs_iobufinuse--;
if (free_for_virtualdev) {
bufstats.bufs_iobufinuse_vdev--;
if (mp && mp != dead_mountp) {
mp->mnt_iobufinuse--;
}
}
lck_mtx_unlock(&iobuffer_mtxp);
if (need_wakeup) {
wakeup(&need_iobuffer);
}
}
void
buf_list_lock(void)
{
lck_mtx_lock_spin(&buf_mtx);
}
void
buf_list_unlock(void)
{
lck_mtx_unlock(&buf_mtx);
}
/*
* If getnewbuf() calls bcleanbuf() on the same thread
* there is a potential for stack overrun and deadlocks.
* So we always handoff the work to a worker thread for completion
*/
static void
bcleanbuf_thread_init(void)
{
thread_t thread = THREAD_NULL;
/* create worker thread */
kernel_thread_start((thread_continue_t)bcleanbuf_thread, NULL, &thread);
thread_deallocate(thread);
}
typedef int (*bcleanbufcontinuation)(int);
__attribute__((noreturn))
static void
bcleanbuf_thread(void)
{
struct buf *bp;
int error = 0;
int loopcnt = 0;
for (;;) {
lck_mtx_lock_spin(&buf_mtx);
while ((bp = TAILQ_FIRST(&bufqueues[BQ_LAUNDRY])) == NULL) {
(void)msleep0(&bufqueues[BQ_LAUNDRY], &buf_mtx, PRIBIO | PDROP, "blaundry", 0, (bcleanbufcontinuation)bcleanbuf_thread);
}
/*
* Remove from the queue
*/
bremfree_locked(bp);
/*
* Buffer is no longer on any free list
*/
SET(bp->b_lflags, BL_BUSY);
buf_busycount++;
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 10;
#endif
lck_mtx_unlock(&buf_mtx);
/*
* do the IO
*/
error = bawrite_internal(bp, 0);
if (error) {
bp->b_whichq = BQ_LAUNDRY;
bp->b_timestamp = buf_timestamp();
lck_mtx_lock_spin(&buf_mtx);
binstailfree(bp, &bufqueues[BQ_LAUNDRY], BQ_LAUNDRY);
blaundrycnt++;
/* we never leave a busy page on the laundry queue */
CLR(bp->b_lflags, BL_BUSY);
buf_busycount--;
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 11;
#endif
lck_mtx_unlock(&buf_mtx);
if (loopcnt > MAXLAUNDRY) {
/*
* bawrite_internal() can return errors if we're throttled. If we've
* done several I/Os and failed, give the system some time to unthrottle
* the vnode
*/
(void)tsleep((void *)&bufqueues[BQ_LAUNDRY], PRIBIO, "blaundry", 1);
loopcnt = 0;
} else {
/* give other threads a chance to run */
(void)thread_block(THREAD_CONTINUE_NULL);
loopcnt++;
}
}
}
}
static int
brecover_data(buf_t bp)
{
int upl_offset;
upl_t upl;
upl_page_info_t *pl;
kern_return_t kret;
vnode_t vp = bp->b_vp;
int upl_flags;
if (!UBCINFOEXISTS(vp) || bp->b_bufsize == 0) {
goto dump_buffer;
}
upl_flags = UPL_PRECIOUS;
if (!(buf_flags(bp) & B_READ)) {
/*
* "write" operation: let the UPL subsystem know
* that we intend to modify the buffer cache pages we're
* gathering.
*/
upl_flags |= UPL_WILL_MODIFY;
}
kret = ubc_create_upl_kernel(vp,
ubc_blktooff(vp, bp->b_lblkno),
bp->b_bufsize,
&upl,
&pl,
upl_flags,
VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS) {
panic("Failed to create UPL");
}
for (upl_offset = 0; (uint32_t)upl_offset < bp->b_bufsize; upl_offset += PAGE_SIZE) {
if (!upl_valid_page(pl, upl_offset / PAGE_SIZE) || !upl_dirty_page(pl, upl_offset / PAGE_SIZE)) {
ubc_upl_abort(upl, 0);
goto dump_buffer;
}
}
bp->b_upl = upl;
kret = ubc_upl_map(upl, (vm_offset_t *)&(bp->b_datap));
if (kret != KERN_SUCCESS) {
panic("getblk: ubc_upl_map() failed with (%d)", kret);
}
return 1;
dump_buffer:
bp->b_bufsize = 0;
SET(bp->b_flags, B_INVAL);
buf_brelse(bp);
return 0;
}
int
fs_buffer_cache_gc_register(void (* callout)(int, void *), void *context)
{
lck_mtx_lock(&buf_gc_callout);
for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
if (fs_callouts[i].callout == NULL) {
fs_callouts[i].callout = callout;
fs_callouts[i].context = context;
lck_mtx_unlock(&buf_gc_callout);
return 0;
}
}
lck_mtx_unlock(&buf_gc_callout);
return ENOMEM;
}
int
fs_buffer_cache_gc_unregister(void (* callout)(int, void *), void *context)
{
lck_mtx_lock(&buf_gc_callout);
for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
if (fs_callouts[i].callout == callout &&
fs_callouts[i].context == context) {
fs_callouts[i].callout = NULL;
fs_callouts[i].context = NULL;
}
}
lck_mtx_unlock(&buf_gc_callout);
return 0;
}
static void
fs_buffer_cache_gc_dispatch_callouts(int all)
{
lck_mtx_lock(&buf_gc_callout);
for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
if (fs_callouts[i].callout != NULL) {
fs_callouts[i].callout(all, fs_callouts[i].context);
}
}
lck_mtx_unlock(&buf_gc_callout);
}
static boolean_t
buffer_cache_gc(int all)
{
buf_t bp;
boolean_t did_large_zfree = FALSE;
boolean_t need_wakeup = FALSE;
int now = buf_timestamp();
uint32_t found = 0;
struct bqueues privq;
int thresh_hold = BUF_STALE_THRESHHOLD;
if (all) {
thresh_hold = 0;
}
/*
* We only care about metadata (incore storage comes from zalloc()).
* Unless "all" is set (used to evict meta data buffers in preparation
* for deep sleep), we only evict up to BUF_MAX_GC_BATCH_SIZE buffers
* that have not been accessed in the last BUF_STALE_THRESHOLD seconds.
* BUF_MAX_GC_BATCH_SIZE controls both the hold time of the global lock
* "buf_mtx" and the length of time we spend compute bound in the GC
* thread which calls this function
*/
lck_mtx_lock(&buf_mtx);
do {
found = 0;
TAILQ_INIT(&privq);
need_wakeup = FALSE;
while (((bp = TAILQ_FIRST(&bufqueues[BQ_META]))) &&
(now > bp->b_timestamp) &&
(now - bp->b_timestamp > thresh_hold) &&
(found < BUF_MAX_GC_BATCH_SIZE)) {
/* Remove from free list */
bremfree_locked(bp);
found++;
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 12;
#endif
/* If dirty, move to laundry queue and remember to do wakeup */
if (ISSET(bp->b_flags, B_DELWRI)) {
SET(bp->b_lflags, BL_WANTDEALLOC);
bmovelaundry(bp);
need_wakeup = TRUE;
continue;
}
/*
* Mark busy and put on private list. We could technically get
* away without setting BL_BUSY here.
*/
SET(bp->b_lflags, BL_BUSY);
buf_busycount++;
/*
* Remove from hash and dissociate from vp.
*/
bremhash(bp);
if (bp->b_vp) {
brelvp_locked(bp);
}
TAILQ_INSERT_TAIL(&privq, bp, b_freelist);
}
if (found == 0) {
break;
}
/* Drop lock for batch processing */
lck_mtx_unlock(&buf_mtx);
/* Wakeup and yield for laundry if need be */
if (need_wakeup) {
wakeup(&bufqueues[BQ_LAUNDRY]);
(void)thread_block(THREAD_CONTINUE_NULL);
}
/* Clean up every buffer on private list */
TAILQ_FOREACH(bp, &privq, b_freelist) {
/* Take note if we've definitely freed at least a page to a zone */
if ((ISSET(bp->b_flags, B_ZALLOC)) && (buf_size(bp) >= PAGE_SIZE)) {
did_large_zfree = TRUE;
}
trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
/* Free Storage */
buf_free_meta_store(bp);
/* Release credentials */
buf_release_credentials(bp);
/* Prepare for moving to empty queue */
CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED
| B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
bp->b_whichq = BQ_EMPTY;
BLISTNONE(bp);
}
lck_mtx_lock(&buf_mtx);
/* Back under lock, move them all to invalid hash and clear busy */
TAILQ_FOREACH(bp, &privq, b_freelist) {
binshash(bp, &invalhash);
CLR(bp->b_lflags, BL_BUSY);
buf_busycount--;
#ifdef JOE_DEBUG
if (bp->b_owner != current_thread()) {
panic("Buffer stolen from buffer_cache_gc()");
}
bp->b_owner = current_thread();
bp->b_tag = 13;
#endif
}
/* And do a big bulk move to the empty queue */
TAILQ_CONCAT(&bufqueues[BQ_EMPTY], &privq, b_freelist);
} while (all && (found == BUF_MAX_GC_BATCH_SIZE));
lck_mtx_unlock(&buf_mtx);
fs_buffer_cache_gc_dispatch_callouts(all);
return did_large_zfree;
}
/*
* disabled for now
*/
#if FLUSH_QUEUES
#define NFLUSH 32
static int
bp_cmp(void *a, void *b)
{
buf_t *bp_a = *(buf_t **)a,
*bp_b = *(buf_t **)b;
daddr64_t res;
// don't have to worry about negative block
// numbers so this is ok to do.
//
res = (bp_a->b_blkno - bp_b->b_blkno);
return (int)res;
}
int
bflushq(int whichq, mount_t mp)
{
buf_t bp, next;
int i, buf_count;
int total_writes = 0;
static buf_t flush_table[NFLUSH];
if (whichq < 0 || whichq >= BQUEUES) {
return 0;
}
restart:
lck_mtx_lock(&buf_mtx);
bp = TAILQ_FIRST(&bufqueues[whichq]);
for (buf_count = 0; bp; bp = next) {
next = bp->b_freelist.tqe_next;
if (bp->b_vp == NULL || bp->b_vp->v_mount != mp) {
continue;
}
if (ISSET(bp->b_flags, B_DELWRI) && !ISSET(bp->b_lflags, BL_BUSY)) {
bremfree_locked(bp);
#ifdef JOE_DEBUG
bp->b_owner = current_thread();
bp->b_tag = 7;
#endif
SET(bp->b_lflags, BL_BUSY);
buf_busycount++;
flush_table[buf_count] = bp;
buf_count++;
total_writes++;
if (buf_count >= NFLUSH) {
lck_mtx_unlock(&buf_mtx);
qsort(flush_table, buf_count, sizeof(struct buf *), bp_cmp);
for (i = 0; i < buf_count; i++) {
buf_bawrite(flush_table[i]);
}
goto restart;
}
}
}
lck_mtx_unlock(&buf_mtx);
if (buf_count > 0) {
qsort(flush_table, buf_count, sizeof(struct buf *), bp_cmp);
for (i = 0; i < buf_count; i++) {
buf_bawrite(flush_table[i]);
}
}
return total_writes;
}
#endif