gems-kernel/source/THIRDPARTY/xnu/bsd/dev/arm64/fbt_arm.c
2024-06-03 11:29:39 -05:00

511 lines
15 KiB
C

/*
* Copyright (c) 2007-2018 Apple Inc. All rights reserved.
*/
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <kern/thread.h>
#include <mach/thread_status.h>
#include <arm64/proc_reg.h>
#include <arm/caches_internal.h>
#include <mach-o/loader.h>
#include <mach-o/nlist.h>
#include <libkern/kernel_mach_header.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <miscfs/devfs/devfs.h>
#include <sys/dtrace.h>
#include <sys/dtrace_impl.h>
#include <sys/fbt.h>
#include <sys/dtrace_glue.h>
#if __has_include(<ptrauth.h>)
#include <ptrauth.h>
#endif
#define DTRACE_INVOP_PUSH_FRAME 11
#define DTRACE_INVOP_NOP_SKIP 4
#define DTRACE_INVOP_ADD_FP_SP_SKIP 4
#define DTRACE_INVOP_POP_PC_SKIP 2
/*
* stp fp, lr, [sp, #val]
* stp fp, lr, [sp, #val]!
*/
#define FBT_IS_ARM64_FRAME_PUSH(x) \
(((x) & 0xffc07fff) == 0xa9007bfd || ((x) & 0xffc07fff) == 0xa9807bfd)
/*
* stp Xt1, Xt2, [sp, #val]
* stp Xt1, Xt2, [sp, #val]!
*/
#define FBT_IS_ARM64_PUSH(x) \
(((x) & 0xffc003e0) == 0xa90003e0 || ((x) & 0xffc003e0) == 0xa98003e0)
/*
* ldp fp, lr, [sp, #val]
* ldp fp, lr, [sp], #val
*/
#define FBT_IS_ARM64_FRAME_POP(x) \
(((x) & 0xffc07fff) == 0xa9407bfd || ((x) & 0xffc07fff) == 0xa8c07bfd)
#define FBT_IS_ARM64_ADD_FP_SP(x) (((x) & 0xffc003ff) == 0x910003fd) /* add fp, sp, #val (add fp, sp, #0 == mov fp, sp) */
#define FBT_IS_ARM64_RET(x) (((x) == 0xd65f03c0) || ((x) == 0xd65f0fff)) /* ret, retab */
#define FBT_B_MASK 0xff000000
#define FBT_B_IMM_MASK 0x00ffffff
#define FBT_B_INSTR 0x14000000
#define FBT_IS_ARM64_B_INSTR(x) ((x & FBT_B_MASK) == FBT_B_INSTR)
#define FBT_GET_ARM64_B_IMM(x) ((x & FBT_B_IMM_MASK) << 2)
#define FBT_PATCHVAL 0xe7eeee7e
#define FBT_AFRAMES_ENTRY 7
#define FBT_AFRAMES_RETURN 7
#define FBT_ENTRY "entry"
#define FBT_RETURN "return"
#define FBT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & fbt_probetab_mask)
extern dtrace_provider_id_t fbt_id;
extern fbt_probe_t **fbt_probetab;
extern int fbt_probetab_mask;
kern_return_t fbt_perfCallback(int, struct arm_saved_state *, __unused int, __unused int);
int
fbt_invop(uintptr_t addr, uintptr_t * stack, uintptr_t rval)
{
fbt_probe_t *fbt = fbt_probetab[FBT_ADDR2NDX(addr)];
for (; fbt != NULL; fbt = fbt->fbtp_hashnext) {
if ((uintptr_t) fbt->fbtp_patchpoint == addr) {
if (0 == CPU->cpu_dtrace_invop_underway) {
CPU->cpu_dtrace_invop_underway = 1; /* Race not possible on
* this per-cpu state */
/*
* Stack looks like this:
*
* [Higher addresses]
*
* Frame of caller
* Extra args for callee
* ------------------------
* fbt entry probe:
* Frame from traced function: <previous sp (e.g. 0x1000), return address>
* fbt return probe:
* Missing as the return probe has already popped the frame in the callee and
* traps with LR set to the return address in caller.
* ------------------------
* arm_context_t
* ------------------------
* Frame from trap handler: <previous sp (e.g. 0x1000) , traced PC >
* The traced function has either never pushed the frame
* or already popped it. So there is no frame in the
* backtrace pointing to the frame on the stack containing
* the LR in the caller.
* ------------------------
* |
* |
* | stack grows this way
* |
* |
* v
* [Lower addresses]
*
* cpu_dtrace_caller compensates for fact that the LR is not stored on stack as explained
* above. When walking the stack, when we reach the frame where we extract a PC in the
* patched function, we put the cpu_dtrace_caller in the backtrace instead. The next
* frame we extract will be in the caller's caller, so we output a backtrace starting
* at the caller and going sequentially up the stack.
*/
arm_saved_state_t *regs = (arm_saved_state_t *)(&((arm_context_t *)stack)->ss);
CPU->cpu_dtrace_caller = get_saved_state_lr(regs);
/* When fbt_roffset is non-zero, we know we are handling a return probe point. */
if (fbt->fbtp_roffset == 0) {
dtrace_probe(fbt->fbtp_id, get_saved_state_reg(regs, 0), get_saved_state_reg(regs, 1),
get_saved_state_reg(regs, 2), get_saved_state_reg(regs, 3), get_saved_state_reg(regs, 4));
} else {
dtrace_probe(fbt->fbtp_id, fbt->fbtp_roffset, rval, 0, 0, 0);
}
CPU->cpu_dtrace_caller = 0;
CPU->cpu_dtrace_invop_underway = 0;
}
/*
* On other architectures, we return a DTRACE constant to let the callback function
* know what was replaced. On the ARM, since the function prologue/epilogue machine code
* can vary, we need the actual bytes of the instruction, so return the savedval instead.
*/
return fbt->fbtp_savedval;
}
}
return 0;
}
#define IS_USER_TRAP(regs) (PSR64_IS_USER(get_saved_state_cpsr(regs)))
#define T_INVALID_OPCODE EXC_BAD_INSTRUCTION
#define FBT_EXCEPTION_CODE T_INVALID_OPCODE
kern_return_t
fbt_perfCallback(
int trapno,
struct arm_saved_state * regs,
__unused int unused1,
__unused int unused2)
{
kern_return_t retval = KERN_FAILURE;
if (FBT_EXCEPTION_CODE == trapno && !IS_USER_TRAP(regs)) {
boolean_t oldlevel = 0;
machine_inst_t emul = 0;
uint64_t sp, lr;
uint32_t imm;
oldlevel = ml_set_interrupts_enabled(FALSE);
__asm__ volatile (
"Ldtrace_invop_callsite_pre_label:\n"
".data\n"
".private_extern _dtrace_invop_callsite_pre\n"
"_dtrace_invop_callsite_pre:\n"
" .quad Ldtrace_invop_callsite_pre_label\n"
".text\n"
);
emul = dtrace_invop(get_saved_state_pc(regs), (uintptr_t*) regs, get_saved_state_reg(regs, 0));
__asm__ volatile (
"Ldtrace_invop_callsite_post_label:\n"
".data\n"
".private_extern _dtrace_invop_callsite_post\n"
"_dtrace_invop_callsite_post:\n"
" .quad Ldtrace_invop_callsite_post_label\n"
".text\n"
);
if (emul == DTRACE_INVOP_NOP) {
/*
* Skip over the patched NOP planted by sdt
*/
add_saved_state_pc(regs, DTRACE_INVOP_NOP_SKIP);
retval = KERN_SUCCESS;
} else if (FBT_IS_ARM64_ADD_FP_SP(emul)) {
/* retrieve the value to add */
uint64_t val = (emul >> 10) & 0xfff;
assert(val < 4096);
/* retrieve sp */
sp = get_saved_state_sp(regs);
/*
* emulate the instruction:
* add fp, sp, #val
*/
assert(sp < (UINT64_MAX - val));
set_saved_state_fp(regs, sp + val);
/* skip over the bytes of the patched instruction */
add_saved_state_pc(regs, DTRACE_INVOP_ADD_FP_SP_SKIP);
retval = KERN_SUCCESS;
} else if (FBT_IS_ARM64_RET(emul)) {
lr = get_saved_state_lr(regs);
#if __has_feature(ptrauth_calls)
lr = (user_addr_t) ptrauth_strip((void *)lr, ptrauth_key_return_address);
#endif
set_saved_state_pc(regs, lr);
retval = KERN_SUCCESS;
} else if (FBT_IS_ARM64_B_INSTR(emul)) {
imm = FBT_GET_ARM64_B_IMM(emul);
add_saved_state_pc(regs, imm);
retval = KERN_SUCCESS;
} else if (emul == FBT_PATCHVAL) {
/* Means we encountered an error but handled it, try same inst again */
retval = KERN_SUCCESS;
} else {
retval = KERN_FAILURE;
}
ml_set_interrupts_enabled(oldlevel);
}
return retval;
}
void
fbt_provide_probe(struct modctl *ctl, const char *modname, const char* symbolName, machine_inst_t* symbolStart, machine_inst_t *instrHigh)
{
int doenable = 0;
dtrace_id_t thisid;
fbt_probe_t *newfbt, *retfbt, *entryfbt;
machine_inst_t *instr, *pushinstr = NULL, *limit, theInstr;
int foundPushLR, savedRegs;
/*
* Guard against null and invalid symbols
*/
if (!symbolStart || !instrHigh || instrHigh < symbolStart) {
kprintf("dtrace: %s has an invalid address\n", symbolName);
return;
}
/*
* Assume the compiler doesn't schedule instructions in the prologue.
*/
foundPushLR = 0;
savedRegs = -1;
limit = (machine_inst_t *)instrHigh;
assert(sizeof(*instr) == 4);
for (instr = symbolStart, theInstr = 0; instr < instrHigh; instr++) {
/*
* Count the number of time we pushed something onto the stack
* before hitting a frame push. That will give us an estimation
* of how many stack pops we should expect when looking for the
* RET instruction.
*/
theInstr = *instr;
if (FBT_IS_ARM64_FRAME_PUSH(theInstr)) {
foundPushLR = 1;
pushinstr = instr;
}
if (foundPushLR && (FBT_IS_ARM64_ADD_FP_SP(theInstr))) {
/* Guard against a random setting of fp from sp, we make sure we found the push first */
break;
}
if (FBT_IS_ARM64_RET(theInstr)) { /* We've gone too far, bail. */
break;
}
if (FBT_IS_ARM64_FRAME_POP(theInstr)) { /* We've gone too far, bail. */
break;
}
}
if (!(foundPushLR && (FBT_IS_ARM64_ADD_FP_SP(theInstr)))) {
return;
}
thisid = dtrace_probe_lookup(fbt_id, modname, symbolName, FBT_ENTRY);
newfbt = kmem_zalloc(sizeof(fbt_probe_t), KM_SLEEP);
newfbt->fbtp_next = NULL;
strlcpy((char *)&(newfbt->fbtp_name), symbolName, MAX_FBTP_NAME_CHARS );
if (thisid != 0) {
/*
* The dtrace_probe previously existed, so we have to hook
* the newfbt entry onto the end of the existing fbt's
* chain.
* If we find an fbt entry that was previously patched to
* fire, (as indicated by the current patched value), then
* we want to enable this newfbt on the spot.
*/
entryfbt = dtrace_probe_arg(fbt_id, thisid);
ASSERT(entryfbt != NULL);
for (; entryfbt != NULL; entryfbt = entryfbt->fbtp_next) {
if (entryfbt->fbtp_currentval == entryfbt->fbtp_patchval) {
doenable++;
}
if (entryfbt->fbtp_next == NULL) {
entryfbt->fbtp_next = newfbt;
newfbt->fbtp_id = entryfbt->fbtp_id;
break;
}
}
} else {
/*
* The dtrace_probe did not previously exist, so we
* create it and hook in the newfbt. Since the probe is
* new, we obviously do not need to enable it on the spot.
*/
newfbt->fbtp_id = dtrace_probe_create(fbt_id, modname, symbolName, FBT_ENTRY, FBT_AFRAMES_ENTRY, newfbt);
doenable = 0;
}
newfbt->fbtp_patchpoint = instr;
newfbt->fbtp_ctl = ctl;
newfbt->fbtp_loadcnt = ctl->mod_loadcnt;
newfbt->fbtp_rval = DTRACE_INVOP_PUSH_FRAME;
newfbt->fbtp_savedval = theInstr;
newfbt->fbtp_patchval = FBT_PATCHVAL;
newfbt->fbtp_currentval = 0;
newfbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)];
fbt_probetab[FBT_ADDR2NDX(instr)] = newfbt;
if (doenable) {
fbt_enable(NULL, newfbt->fbtp_id, newfbt);
}
/*
* The fbt entry chain is in place, one entry point per symbol.
* The fbt return chain can have multiple return points per
* symbol.
* Here we find the end of the fbt return chain.
*/
doenable = 0;
thisid = dtrace_probe_lookup(fbt_id, modname, symbolName, FBT_RETURN);
if (thisid != 0) {
/* The dtrace_probe previously existed, so we have to
* find the end of the existing fbt chain. If we find
* an fbt return that was previously patched to fire,
* (as indicated by the currrent patched value), then
* we want to enable any new fbts on the spot.
*/
retfbt = dtrace_probe_arg(fbt_id, thisid);
ASSERT(retfbt != NULL);
for (; retfbt != NULL; retfbt = retfbt->fbtp_next) {
if (retfbt->fbtp_currentval == retfbt->fbtp_patchval) {
doenable++;
}
if (retfbt->fbtp_next == NULL) {
break;
}
}
} else {
doenable = 0;
retfbt = NULL;
}
/*
* Go back to the start of the function, in case
* the compiler emitted pcrel data loads
* before FP was adjusted.
*/
instr = pushinstr + 1;
again:
if (instr >= limit) {
return;
}
/* XXX FIXME ... extra jump table detection? */
/*
* OK, it's an instruction.
*/
theInstr = *instr;
/* Walked onto the start of the next routine? If so, bail out from this function */
if (FBT_IS_ARM64_FRAME_PUSH(theInstr)) {
if (!retfbt) {
kprintf("dtrace: fbt: No return probe for %s, walked to next routine at 0x%016llx\n", symbolName, (uint64_t)instr);
}
return;
}
/* XXX fancy detection of end of function using PC-relative loads */
/*
* Look for:
* ldp fp, lr, [sp], #val
* ldp fp, lr, [sp, #val]
*/
if (!FBT_IS_ARM64_FRAME_POP(theInstr)) {
instr++;
goto again;
}
/* go to the next instruction */
instr++;
/* Scan ahead for a ret or a branch outside the function */
for (; instr < limit; instr++) {
theInstr = *instr;
if (FBT_IS_ARM64_RET(theInstr)) {
break;
}
if (FBT_IS_ARM64_B_INSTR(theInstr)) {
machine_inst_t *dest = instr + FBT_GET_ARM64_B_IMM(theInstr);
/*
* Check whether the destination of the branch
* is outside of the function
*/
if (dest >= limit || dest < symbolStart) {
break;
}
}
}
if (!FBT_IS_ARM64_RET(theInstr) && !FBT_IS_ARM64_B_INSTR(theInstr)) {
return;
}
newfbt = kmem_zalloc(sizeof(fbt_probe_t), KM_SLEEP);
newfbt->fbtp_next = NULL;
strlcpy((char *)&(newfbt->fbtp_name), symbolName, MAX_FBTP_NAME_CHARS );
if (retfbt == NULL) {
newfbt->fbtp_id = dtrace_probe_create(fbt_id, modname,
symbolName, FBT_RETURN, FBT_AFRAMES_RETURN, newfbt);
} else {
retfbt->fbtp_next = newfbt;
newfbt->fbtp_id = retfbt->fbtp_id;
}
retfbt = newfbt;
newfbt->fbtp_patchpoint = instr;
newfbt->fbtp_ctl = ctl;
newfbt->fbtp_loadcnt = ctl->mod_loadcnt;
ASSERT(FBT_IS_ARM64_RET(theInstr) || FBT_IS_ARM64_B_INSTR(theInstr));
newfbt->fbtp_rval = DTRACE_INVOP_RET;
newfbt->fbtp_roffset = (uintptr_t) ((uint8_t*) instr - (uint8_t *)symbolStart);
newfbt->fbtp_savedval = theInstr;
newfbt->fbtp_patchval = FBT_PATCHVAL;
newfbt->fbtp_currentval = 0;
newfbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)];
fbt_probetab[FBT_ADDR2NDX(instr)] = newfbt;
if (doenable) {
fbt_enable(NULL, newfbt->fbtp_id, newfbt);
}
instr++;
goto again;
}