gems-kernel/source/THIRDPARTY/xnu/bsd/dev/dtrace/fbt.c
2024-06-03 11:29:39 -05:00

613 lines
16 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <mach-o/loader.h>
#include <libkern/kernel_mach_header.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <miscfs/devfs/devfs.h>
#include <pexpert/pexpert.h>
#include <sys/dtrace.h>
#include <sys/dtrace_impl.h>
#include <sys/fbt.h>
#include <sys/dtrace_glue.h>
#include <san/kasan.h>
#include <ptrauth.h>
/* #include <machine/trap.h> */
struct savearea_t; /* Used anonymously */
#if defined(__arm64__)
typedef kern_return_t (*perfCallback)(int, struct savearea_t *, __unused int, __unused int);
extern perfCallback tempDTraceTrapHook;
extern kern_return_t fbt_perfCallback(int, struct savearea_t *, __unused int, __unused int);
#elif defined(__x86_64__)
typedef kern_return_t (*perfCallback)(int, struct savearea_t *, uintptr_t *, __unused int);
extern perfCallback tempDTraceTrapHook;
extern kern_return_t fbt_perfCallback(int, struct savearea_t *, uintptr_t *, __unused int);
#else
#error Unknown architecture
#endif
__private_extern__
void
qsort(void *a, size_t n, size_t es, int (*cmp)(const void *, const void *));
#define FBT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & fbt_probetab_mask)
#define FBT_PROBETAB_SIZE 0x8000 /* 32k entries -- 128K total */
static int fbt_probetab_size;
dtrace_provider_id_t fbt_id;
fbt_probe_t **fbt_probetab;
int fbt_probetab_mask;
static int fbt_verbose = 0;
extern int ignore_fbt_blacklist;
extern int dtrace_kernel_symbol_mode;
void fbt_init( void );
/*ARGSUSED*/
static void
fbt_destroy(void *arg, dtrace_id_t id, void *parg)
{
#pragma unused(arg,id)
fbt_probe_t *fbt = parg, *next, *hash, *last;
int ndx;
do {
/*
* Now we need to remove this probe from the fbt_probetab.
*/
ndx = FBT_ADDR2NDX(fbt->fbtp_patchpoint);
last = NULL;
hash = fbt_probetab[ndx];
while (hash != fbt) {
ASSERT(hash != NULL);
last = hash;
hash = hash->fbtp_hashnext;
}
if (last != NULL) {
last->fbtp_hashnext = fbt->fbtp_hashnext;
} else {
fbt_probetab[ndx] = fbt->fbtp_hashnext;
}
next = fbt->fbtp_next;
kmem_free(fbt, sizeof(fbt_probe_t));
fbt = next;
} while (fbt != NULL);
}
/*ARGSUSED*/
int
fbt_enable(void *arg, dtrace_id_t id, void *parg)
{
#pragma unused(arg,id)
fbt_probe_t *fbt = parg;
struct modctl *ctl = NULL;
for (; fbt != NULL; fbt = fbt->fbtp_next) {
ctl = fbt->fbtp_ctl;
if (!ctl->mod_loaded) {
if (fbt_verbose) {
cmn_err(CE_NOTE, "fbt is failing for probe %s "
"(module %s unloaded)",
fbt->fbtp_name, ctl->mod_modname);
}
continue;
}
/*
* Now check that our modctl has the expected load count. If it
* doesn't, this module must have been unloaded and reloaded -- and
* we're not going to touch it.
*/
if (ctl->mod_loadcnt != fbt->fbtp_loadcnt) {
if (fbt_verbose) {
cmn_err(CE_NOTE, "fbt is failing for probe %s "
"(module %s reloaded)",
fbt->fbtp_name, ctl->mod_modname);
}
continue;
}
dtrace_casptr(&tempDTraceTrapHook, NULL, ptrauth_nop_cast(void *, &fbt_perfCallback));
if (tempDTraceTrapHook != (perfCallback)fbt_perfCallback) {
if (fbt_verbose) {
cmn_err(CE_NOTE, "fbt_enable is failing for probe %s "
"in module %s: tempDTraceTrapHook already occupied.",
fbt->fbtp_name, ctl->mod_modname);
}
continue;
}
if (fbt->fbtp_currentval != fbt->fbtp_patchval) {
#if KASAN_CLASSIC
/* Since dtrace probes can call into KASan and vice versa, things can get
* very slow if we have a lot of probes. This call will disable the KASan
* fakestack after a threshold of probes is reached. */
kasan_fakestack_suspend();
#endif /* KASAN_CLASSIC */
(void)ml_nofault_copy((vm_offset_t)&fbt->fbtp_patchval, (vm_offset_t)fbt->fbtp_patchpoint,
sizeof(fbt->fbtp_patchval));
/*
* Make the patched instruction visible via a data + instruction
* cache flush for the platforms that need it
*/
flush_dcache((vm_offset_t)fbt->fbtp_patchpoint, (vm_size_t)sizeof(fbt->fbtp_patchval), 0);
invalidate_icache((vm_offset_t)fbt->fbtp_patchpoint, (vm_size_t)sizeof(fbt->fbtp_patchval), 0);
fbt->fbtp_currentval = fbt->fbtp_patchval;
ctl->mod_nenabled++;
}
}
dtrace_membar_consumer();
return 0;
}
/*ARGSUSED*/
static void
fbt_disable(void *arg, dtrace_id_t id, void *parg)
{
#pragma unused(arg,id)
fbt_probe_t *fbt = parg;
struct modctl *ctl = NULL;
for (; fbt != NULL; fbt = fbt->fbtp_next) {
ctl = fbt->fbtp_ctl;
if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) {
continue;
}
if (fbt->fbtp_currentval != fbt->fbtp_savedval) {
(void)ml_nofault_copy((vm_offset_t)&fbt->fbtp_savedval, (vm_offset_t)fbt->fbtp_patchpoint,
sizeof(fbt->fbtp_savedval));
/*
* Make the patched instruction visible via a data + instruction
* cache flush for the platforms that need it
*/
flush_dcache((vm_offset_t)fbt->fbtp_patchpoint, (vm_size_t)sizeof(fbt->fbtp_patchval), 0);
invalidate_icache((vm_offset_t)fbt->fbtp_patchpoint, (vm_size_t)sizeof(fbt->fbtp_patchval), 0);
fbt->fbtp_currentval = fbt->fbtp_savedval;
ASSERT(ctl->mod_nenabled > 0);
ctl->mod_nenabled--;
#if KASAN && KASAN_CLASSIC
kasan_fakestack_resume();
#endif /* KASAN && KASAN_CLASSIC */
}
}
dtrace_membar_consumer();
}
/*ARGSUSED*/
static void
fbt_suspend(void *arg, dtrace_id_t id, void *parg)
{
#pragma unused(arg,id)
fbt_probe_t *fbt = parg;
struct modctl *ctl = NULL;
for (; fbt != NULL; fbt = fbt->fbtp_next) {
ctl = fbt->fbtp_ctl;
ASSERT(ctl->mod_nenabled > 0);
if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) {
continue;
}
(void)ml_nofault_copy((vm_offset_t)&fbt->fbtp_savedval, (vm_offset_t)fbt->fbtp_patchpoint,
sizeof(fbt->fbtp_savedval));
/*
* Make the patched instruction visible via a data + instruction
* cache flush for the platforms that need it
*/
flush_dcache((vm_offset_t)fbt->fbtp_patchpoint, (vm_size_t)sizeof(fbt->fbtp_savedval), 0);
invalidate_icache((vm_offset_t)fbt->fbtp_patchpoint, (vm_size_t)sizeof(fbt->fbtp_savedval), 0);
fbt->fbtp_currentval = fbt->fbtp_savedval;
}
dtrace_membar_consumer();
}
/*ARGSUSED*/
static void
fbt_resume(void *arg, dtrace_id_t id, void *parg)
{
#pragma unused(arg,id)
fbt_probe_t *fbt = parg;
struct modctl *ctl = NULL;
for (; fbt != NULL; fbt = fbt->fbtp_next) {
ctl = fbt->fbtp_ctl;
ASSERT(ctl->mod_nenabled > 0);
if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) {
continue;
}
dtrace_casptr(&tempDTraceTrapHook, NULL, ptrauth_nop_cast(void *, &fbt_perfCallback));
if (tempDTraceTrapHook != (perfCallback)fbt_perfCallback) {
if (fbt_verbose) {
cmn_err(CE_NOTE, "fbt_resume is failing for probe %s "
"in module %s: tempDTraceTrapHook already occupied.",
fbt->fbtp_name, ctl->mod_modname);
}
return;
}
(void)ml_nofault_copy((vm_offset_t)&fbt->fbtp_patchval, (vm_offset_t)fbt->fbtp_patchpoint,
sizeof(fbt->fbtp_patchval));
/*
* Make the patched instruction visible via a data + instruction cache flush.
*/
flush_dcache((vm_offset_t)fbt->fbtp_patchpoint, (vm_size_t)sizeof(fbt->fbtp_patchval), 0);
invalidate_icache((vm_offset_t)fbt->fbtp_patchpoint, (vm_size_t)sizeof(fbt->fbtp_patchval), 0);
fbt->fbtp_currentval = fbt->fbtp_patchval;
}
dtrace_membar_consumer();
}
static void
fbt_provide_module_user_syms(struct modctl *ctl)
{
unsigned int i;
char *modname = ctl->mod_modname;
dtrace_module_symbols_t* module_symbols = ctl->mod_user_symbols;
if (module_symbols) {
for (i = 0; i < module_symbols->dtmodsyms_count; i++) {
/*
* symbol->dtsym_addr (the symbol address) passed in from
* user space, is already slid for both kexts and kernel.
*/
dtrace_symbol_t* symbol = &module_symbols->dtmodsyms_symbols[i];
char* name = symbol->dtsym_name;
/* Lop off omnipresent leading underscore. */
if (*name == '_') {
name += 1;
}
if (fbt_excluded(name)) {
continue;
}
/*
* Ignore symbols with a null address
*/
if (!symbol->dtsym_addr) {
continue;
}
/*
* Ignore symbols not part of this module
*/
if (!dtrace_addr_in_module((void*)symbol->dtsym_addr, ctl)) {
continue;
}
fbt_provide_probe(ctl, modname, name, (machine_inst_t*)(uintptr_t)symbol->dtsym_addr, (machine_inst_t*)(uintptr_t)(symbol->dtsym_addr + symbol->dtsym_size));
}
}
}
static void
fbt_provide_kernel_section(struct modctl *ctl, kernel_section_t *sect, kernel_nlist_t *sym, uint32_t nsyms, const char *strings)
{
uintptr_t sect_start = (uintptr_t)sect->addr;
uintptr_t sect_end = (uintptr_t)sect->size + sect->addr;
unsigned int i;
if ((sect->flags & S_ATTR_PURE_INSTRUCTIONS) != S_ATTR_PURE_INSTRUCTIONS) {
return;
}
for (i = 0; i < nsyms; i++) {
uint8_t n_type = sym[i].n_type & (N_TYPE | N_EXT);
const char *name = strings + sym[i].n_un.n_strx;
uint64_t limit;
if (sym[i].n_value < sect_start || sym[i].n_value > sect_end) {
continue;
}
/* Check that the symbol is a global and that it has a name. */
if (((N_SECT | N_EXT) != n_type && (N_ABS | N_EXT) != n_type)) {
continue;
}
if (0 == sym[i].n_un.n_strx) { /* iff a null, "", name. */
continue;
}
/* Lop off omnipresent leading underscore. */
if (*name == '_') {
name += 1;
}
if (fbt_excluded(name)) {
continue;
}
/*
* Find the function boundary by looking at either the
* end of the section or the beginning of the next symbol
*/
if (i == nsyms - 1 || sym[i + 1].n_value > sect_end) {
limit = sect_end;
} else {
limit = sym[i + 1].n_value;
}
fbt_provide_probe(ctl, ctl->mod_modname, name, (machine_inst_t*)sym[i].n_value, (machine_inst_t*)limit);
}
}
static int
fbt_sym_cmp(const void *ap, const void *bp)
{
return (int)(((const kernel_nlist_t*)ap)->n_value - ((const kernel_nlist_t*)bp)->n_value);
}
static void
fbt_provide_module_kernel_syms(struct modctl *ctl)
{
kernel_mach_header_t *mh = (kernel_mach_header_t *)(ctl->mod_address);
kernel_segment_command_t *seg;
struct load_command *cmd;
kernel_segment_command_t *linkedit = NULL;
struct symtab_command *symtab = NULL;
kernel_nlist_t *syms = NULL, *sorted_syms = NULL;
const char *strings;
unsigned int i;
size_t symlen;
if (mh->magic != MH_MAGIC_KERNEL) {
return;
}
cmd = (struct load_command *) &mh[1];
for (i = 0; i < mh->ncmds; i++) {
if (cmd->cmd == LC_SEGMENT_KERNEL) {
kernel_segment_command_t *orig_sg = (kernel_segment_command_t *) cmd;
if (LIT_STRNEQL(orig_sg->segname, SEG_LINKEDIT)) {
linkedit = orig_sg;
}
} else if (cmd->cmd == LC_SYMTAB) {
symtab = (struct symtab_command *) cmd;
}
if (symtab && linkedit) {
break;
}
cmd = (struct load_command *) ((caddr_t) cmd + cmd->cmdsize);
}
if ((symtab == NULL) || (linkedit == NULL)) {
return;
}
syms = (kernel_nlist_t *)(linkedit->vmaddr + symtab->symoff - linkedit->fileoff);
strings = (const char *)(linkedit->vmaddr + symtab->stroff - linkedit->fileoff);
/*
* Make a copy of the symbol table and sort it to not cross into the next function
* when disassembling the function
*/
symlen = sizeof(kernel_nlist_t) * symtab->nsyms;
sorted_syms = kmem_alloc(symlen, KM_SLEEP);
bcopy(syms, sorted_syms, symlen);
qsort(sorted_syms, symtab->nsyms, sizeof(kernel_nlist_t), fbt_sym_cmp);
for (seg = firstsegfromheader(mh); seg != NULL; seg = nextsegfromheader(mh, seg)) {
kernel_section_t *sect = firstsect(seg);
if (strcmp(seg->segname, "__KLD") == 0 || strcmp(seg->segname, "__KLDDATA") == 0) {
continue;
}
for (sect = firstsect(seg); sect != NULL; sect = nextsect(seg, sect)) {
fbt_provide_kernel_section(ctl, sect, sorted_syms, symtab->nsyms, strings);
}
}
kmem_free(sorted_syms, symlen);
}
void
fbt_provide_module(void *arg, struct modctl *ctl)
{
#pragma unused(arg)
ASSERT(ctl != NULL);
ASSERT(dtrace_kernel_symbol_mode != DTRACE_KERNEL_SYMBOLS_NEVER);
LCK_MTX_ASSERT(&mod_lock, LCK_MTX_ASSERT_OWNED);
if (dtrace_fbt_probes_restricted()) {
return;
}
// Update the "ignore blacklist" bit
if (ignore_fbt_blacklist) {
ctl->mod_flags |= MODCTL_FBT_PROVIDE_BLACKLISTED_PROBES;
}
if (MOD_FBT_DONE(ctl)) {
return;
}
if (fbt_module_excluded(ctl)) {
ctl->mod_flags |= MODCTL_FBT_INVALID;
return;
}
if (MOD_HAS_KERNEL_SYMBOLS(ctl)) {
fbt_provide_module_kernel_syms(ctl);
ctl->mod_flags |= MODCTL_FBT_PROBES_PROVIDED;
if (MOD_FBT_PROVIDE_BLACKLISTED_PROBES(ctl)) {
ctl->mod_flags |= MODCTL_FBT_BLACKLISTED_PROBES_PROVIDED;
}
return;
}
if (MOD_HAS_USERSPACE_SYMBOLS(ctl)) {
fbt_provide_module_user_syms(ctl);
ctl->mod_flags |= MODCTL_FBT_PROBES_PROVIDED;
if (MOD_FBT_PROVIDE_BLACKLISTED_PROBES(ctl)) {
ctl->mod_flags |= MODCTL_FBT_BLACKLISTED_PROBES_PROVIDED;
}
return;
}
}
static dtrace_pattr_t fbt_attr = {
{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
};
static dtrace_pops_t fbt_pops = {
.dtps_provide = NULL,
.dtps_provide_module = fbt_provide_module,
.dtps_enable = fbt_enable,
.dtps_disable = fbt_disable,
.dtps_suspend = fbt_suspend,
.dtps_resume = fbt_resume,
.dtps_getargdesc = NULL, /* APPLE NOTE: fbt_getargdesc implemented in userspace */
.dtps_getargval = NULL,
.dtps_usermode = NULL,
.dtps_destroy = fbt_destroy
};
static void
fbt_cleanup(dev_info_t *devi)
{
dtrace_invop_remove(fbt_invop);
ddi_remove_minor_node(devi, NULL);
kmem_free(fbt_probetab, fbt_probetab_size * sizeof(fbt_probe_t *));
fbt_probetab = NULL;
fbt_probetab_mask = 0;
}
static int
fbt_attach(dev_info_t *devi)
{
if (fbt_probetab_size == 0) {
fbt_probetab_size = FBT_PROBETAB_SIZE;
}
fbt_probetab_mask = fbt_probetab_size - 1;
fbt_probetab =
kmem_zalloc(fbt_probetab_size * sizeof(fbt_probe_t *), KM_SLEEP);
dtrace_invop_add(fbt_invop);
if (ddi_create_minor_node(devi, "fbt", S_IFCHR, 0,
DDI_PSEUDO, 0) == DDI_FAILURE ||
dtrace_register("fbt", &fbt_attr, DTRACE_PRIV_KERNEL, NULL,
&fbt_pops, NULL, &fbt_id) != 0) {
fbt_cleanup(devi);
return DDI_FAILURE;
}
return DDI_SUCCESS;
}
static d_open_t _fbt_open;
static int
_fbt_open(dev_t dev, int flags, int devtype, struct proc *p)
{
#pragma unused(dev,flags,devtype,p)
return 0;
}
#define FBT_MAJOR -24 /* let the kernel pick the device number */
static const struct cdevsw fbt_cdevsw =
{
.d_open = _fbt_open,
.d_close = eno_opcl,
.d_read = eno_rdwrt,
.d_write = eno_rdwrt,
.d_ioctl = eno_ioctl,
.d_stop = eno_stop,
.d_reset = eno_reset,
.d_select = eno_select,
.d_mmap = eno_mmap,
.d_strategy = eno_strat,
.d_reserved_1 = eno_getc,
.d_reserved_2 = eno_putc,
};
#undef kmem_alloc /* from its binding to dt_kmem_alloc glue */
#undef kmem_free /* from its binding to dt_kmem_free glue */
#include <vm/vm_kern.h>
void
fbt_init( void )
{
int majdevno = cdevsw_add(FBT_MAJOR, &fbt_cdevsw);
if (majdevno < 0) {
printf("fbt_init: failed to allocate a major number!\n");
return;
}
fbt_blacklist_init();
fbt_attach((dev_info_t*)(uintptr_t)majdevno);
}
#undef FBT_MAJOR