2286 lines
61 KiB
C
2286 lines
61 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#include <sys/fasttrap_isa.h>
|
|
#include <sys/fasttrap_impl.h>
|
|
#include <sys/dtrace.h>
|
|
#include <sys/dtrace_impl.h>
|
|
extern dtrace_id_t dtrace_probeid_error;
|
|
|
|
#include "fasttrap_regset.h"
|
|
|
|
#include <sys/dtrace_ptss.h>
|
|
#include <kern/debug.h>
|
|
|
|
#include <machine/pal_routines.h>
|
|
|
|
/* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
|
|
#define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
|
|
|
|
/*
|
|
* Lossless User-Land Tracing on x86
|
|
* ---------------------------------
|
|
*
|
|
* The execution of most instructions is not dependent on the address; for
|
|
* these instructions it is sufficient to copy them into the user process's
|
|
* address space and execute them. To effectively single-step an instruction
|
|
* in user-land, we copy out the following sequence of instructions to scratch
|
|
* space in the user thread's ulwp_t structure.
|
|
*
|
|
* We then set the program counter (%eip or %rip) to point to this scratch
|
|
* space. Once execution resumes, the original instruction is executed and
|
|
* then control flow is redirected to what was originally the subsequent
|
|
* instruction. If the kernel attemps to deliver a signal while single-
|
|
* stepping, the signal is deferred and the program counter is moved into the
|
|
* second sequence of instructions. The second sequence ends in a trap into
|
|
* the kernel where the deferred signal is then properly handled and delivered.
|
|
*
|
|
* For instructions whose execute is position dependent, we perform simple
|
|
* emulation. These instructions are limited to control transfer
|
|
* instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
|
|
* of %rip-relative addressing that means that almost any instruction can be
|
|
* position dependent. For all the details on how we emulate generic
|
|
* instructions included %rip-relative instructions, see the code in
|
|
* fasttrap_pid_probe() below where we handle instructions of type
|
|
* FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
|
|
*/
|
|
|
|
#define FASTTRAP_MODRM_MOD(modrm) (((modrm) >> 6) & 0x3)
|
|
#define FASTTRAP_MODRM_REG(modrm) (((modrm) >> 3) & 0x7)
|
|
#define FASTTRAP_MODRM_RM(modrm) ((modrm) & 0x7)
|
|
#define FASTTRAP_MODRM(mod, reg, rm) (((mod) << 6) | ((reg) << 3) | (rm))
|
|
|
|
#define FASTTRAP_SIB_SCALE(sib) (((sib) >> 6) & 0x3)
|
|
#define FASTTRAP_SIB_INDEX(sib) (((sib) >> 3) & 0x7)
|
|
#define FASTTRAP_SIB_BASE(sib) ((sib) & 0x7)
|
|
|
|
#define FASTTRAP_REX_W(rex) (((rex) >> 3) & 1)
|
|
#define FASTTRAP_REX_R(rex) (((rex) >> 2) & 1)
|
|
#define FASTTRAP_REX_X(rex) (((rex) >> 1) & 1)
|
|
#define FASTTRAP_REX_B(rex) ((rex) & 1)
|
|
#define FASTTRAP_REX(w, r, x, b) \
|
|
(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
|
|
|
|
/*
|
|
* Single-byte op-codes.
|
|
*/
|
|
#define FASTTRAP_PUSHL_EBP 0x55
|
|
|
|
#define FASTTRAP_JO 0x70
|
|
#define FASTTRAP_JNO 0x71
|
|
#define FASTTRAP_JB 0x72
|
|
#define FASTTRAP_JAE 0x73
|
|
#define FASTTRAP_JE 0x74
|
|
#define FASTTRAP_JNE 0x75
|
|
#define FASTTRAP_JBE 0x76
|
|
#define FASTTRAP_JA 0x77
|
|
#define FASTTRAP_JS 0x78
|
|
#define FASTTRAP_JNS 0x79
|
|
#define FASTTRAP_JP 0x7a
|
|
#define FASTTRAP_JNP 0x7b
|
|
#define FASTTRAP_JL 0x7c
|
|
#define FASTTRAP_JGE 0x7d
|
|
#define FASTTRAP_JLE 0x7e
|
|
#define FASTTRAP_JG 0x7f
|
|
|
|
#define FASTTRAP_NOP 0x90
|
|
|
|
#define FASTTRAP_MOV_EAX 0xb8
|
|
#define FASTTRAP_MOV_ECX 0xb9
|
|
|
|
#define FASTTRAP_RET16 0xc2
|
|
#define FASTTRAP_RET 0xc3
|
|
|
|
#define FASTTRAP_LOOPNZ 0xe0
|
|
#define FASTTRAP_LOOPZ 0xe1
|
|
#define FASTTRAP_LOOP 0xe2
|
|
#define FASTTRAP_JCXZ 0xe3
|
|
|
|
#define FASTTRAP_CALL 0xe8
|
|
#define FASTTRAP_JMP32 0xe9
|
|
#define FASTTRAP_JMP8 0xeb
|
|
|
|
#define FASTTRAP_INT3 0xcc
|
|
#define FASTTRAP_INT 0xcd
|
|
|
|
#define FASTTRAP_2_BYTE_OP 0x0f
|
|
#define FASTTRAP_GROUP5_OP 0xff
|
|
|
|
/*
|
|
* Two-byte op-codes (second byte only).
|
|
*/
|
|
#define FASTTRAP_0F_JO 0x80
|
|
#define FASTTRAP_0F_JNO 0x81
|
|
#define FASTTRAP_0F_JB 0x82
|
|
#define FASTTRAP_0F_JAE 0x83
|
|
#define FASTTRAP_0F_JE 0x84
|
|
#define FASTTRAP_0F_JNE 0x85
|
|
#define FASTTRAP_0F_JBE 0x86
|
|
#define FASTTRAP_0F_JA 0x87
|
|
#define FASTTRAP_0F_JS 0x88
|
|
#define FASTTRAP_0F_JNS 0x89
|
|
#define FASTTRAP_0F_JP 0x8a
|
|
#define FASTTRAP_0F_JNP 0x8b
|
|
#define FASTTRAP_0F_JL 0x8c
|
|
#define FASTTRAP_0F_JGE 0x8d
|
|
#define FASTTRAP_0F_JLE 0x8e
|
|
#define FASTTRAP_0F_JG 0x8f
|
|
|
|
#define FASTTRAP_EFLAGS_OF 0x800
|
|
#define FASTTRAP_EFLAGS_DF 0x400
|
|
#define FASTTRAP_EFLAGS_SF 0x080
|
|
#define FASTTRAP_EFLAGS_ZF 0x040
|
|
#define FASTTRAP_EFLAGS_AF 0x010
|
|
#define FASTTRAP_EFLAGS_PF 0x004
|
|
#define FASTTRAP_EFLAGS_CF 0x001
|
|
|
|
/*
|
|
* Instruction prefixes.
|
|
*/
|
|
#define FASTTRAP_PREFIX_OPERAND 0x66
|
|
#define FASTTRAP_PREFIX_ADDRESS 0x67
|
|
#define FASTTRAP_PREFIX_CS 0x2E
|
|
#define FASTTRAP_PREFIX_DS 0x3E
|
|
#define FASTTRAP_PREFIX_ES 0x26
|
|
#define FASTTRAP_PREFIX_FS 0x64
|
|
#define FASTTRAP_PREFIX_GS 0x65
|
|
#define FASTTRAP_PREFIX_SS 0x36
|
|
#define FASTTRAP_PREFIX_LOCK 0xF0
|
|
#define FASTTRAP_PREFIX_REP 0xF3
|
|
#define FASTTRAP_PREFIX_REPNE 0xF2
|
|
|
|
#define FASTTRAP_NOREG 0xff
|
|
|
|
/*
|
|
* Map between instruction register encodings and the kernel constants which
|
|
* correspond to indicies into struct regs.
|
|
*/
|
|
|
|
/*
|
|
* APPLE NOTE: We are cheating here. The regmap is used to decode which register
|
|
* a given instruction is trying to reference. OS X does not have extended registers
|
|
* for 32 bit apps, but the *order* is the same. So for 32 bit state, we will return:
|
|
*
|
|
* REG_RAX -> EAX
|
|
* REG_RCX -> ECX
|
|
* REG_RDX -> EDX
|
|
* REG_RBX -> EBX
|
|
* REG_RSP -> UESP
|
|
* REG_RBP -> EBP
|
|
* REG_RSI -> ESI
|
|
* REG_RDI -> EDI
|
|
*
|
|
* The fasttrap_getreg function knows how to make the correct transformation.
|
|
*/
|
|
static const uint8_t regmap[16] = {
|
|
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
|
|
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
|
|
};
|
|
|
|
static user_addr_t fasttrap_getreg(x86_saved_state_t *, uint_t);
|
|
|
|
static uint64_t
|
|
fasttrap_anarg(x86_saved_state_t *regs, int function_entry, int argno)
|
|
{
|
|
uint64_t value;
|
|
int shift = function_entry ? 1 : 0;
|
|
|
|
x86_saved_state64_t *regs64;
|
|
x86_saved_state32_t *regs32;
|
|
unsigned int p_model;
|
|
|
|
if (is_saved_state64(regs)) {
|
|
regs64 = saved_state64(regs);
|
|
regs32 = NULL;
|
|
p_model = DATAMODEL_LP64;
|
|
} else {
|
|
regs64 = NULL;
|
|
regs32 = saved_state32(regs);
|
|
p_model = DATAMODEL_ILP32;
|
|
}
|
|
|
|
if (p_model == DATAMODEL_LP64) {
|
|
user_addr_t stack;
|
|
|
|
/*
|
|
* In 64-bit mode, the first six arguments are stored in
|
|
* registers.
|
|
*/
|
|
if (argno < 6)
|
|
return ((®s64->rdi)[argno]);
|
|
|
|
stack = regs64->isf.rsp + sizeof(uint64_t) * (argno - 6 + shift);
|
|
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
|
|
value = dtrace_fuword64(stack);
|
|
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
|
|
} else {
|
|
uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp);
|
|
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
|
|
value = dtrace_fuword32((user_addr_t)(unsigned long)&stack[argno + shift]);
|
|
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
|
|
}
|
|
|
|
return (value);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, user_addr_t pc,
|
|
fasttrap_probe_type_t type)
|
|
{
|
|
#pragma unused(type)
|
|
uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
|
|
size_t len = FASTTRAP_MAX_INSTR_SIZE;
|
|
size_t first = MIN(len, PAGE_SIZE - (pc & PAGE_MASK));
|
|
uint_t start = 0;
|
|
size_t size;
|
|
int rmindex;
|
|
uint8_t seg, rex = 0;
|
|
unsigned int p_model = (p->p_flag & P_LP64) ? DATAMODEL_LP64 : DATAMODEL_ILP32;
|
|
|
|
/*
|
|
* Read the instruction at the given address out of the process's
|
|
* address space. We don't have to worry about a debugger
|
|
* changing this instruction before we overwrite it with our trap
|
|
* instruction since P_PR_LOCK is set. Since instructions can span
|
|
* pages, we potentially read the instruction in two parts. If the
|
|
* second part fails, we just zero out that part of the instruction.
|
|
*/
|
|
/*
|
|
* APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey...
|
|
*/
|
|
if (uread(p, &instr[0], first, pc) != 0)
|
|
return (-1);
|
|
if (len > first &&
|
|
uread(p, &instr[first], len - first, pc + first) != 0) {
|
|
bzero(&instr[first], len - first);
|
|
len = first;
|
|
}
|
|
|
|
/*
|
|
* If the disassembly fails, then we have a malformed instruction.
|
|
*/
|
|
if ((size = dtrace_instr_size_isa(instr, p_model, &rmindex)) <= 0)
|
|
return (-1);
|
|
|
|
/*
|
|
* Make sure the disassembler isn't completely broken.
|
|
*/
|
|
ASSERT(-1 <= rmindex && rmindex < (int)size);
|
|
|
|
/*
|
|
* If the computed size is greater than the number of bytes read,
|
|
* then it was a malformed instruction possibly because it fell on a
|
|
* page boundary and the subsequent page was missing or because of
|
|
* some malicious user.
|
|
*/
|
|
if (size > len)
|
|
return (-1);
|
|
|
|
tp->ftt_size = (uint8_t)size;
|
|
tp->ftt_segment = FASTTRAP_SEG_NONE;
|
|
|
|
/*
|
|
* Find the start of the instruction's opcode by processing any
|
|
* legacy prefixes.
|
|
*/
|
|
for (;;) {
|
|
seg = 0;
|
|
switch (instr[start]) {
|
|
case FASTTRAP_PREFIX_SS:
|
|
seg++;
|
|
OS_FALLTHROUGH;
|
|
case FASTTRAP_PREFIX_GS:
|
|
seg++;
|
|
OS_FALLTHROUGH;
|
|
case FASTTRAP_PREFIX_FS:
|
|
seg++;
|
|
OS_FALLTHROUGH;
|
|
case FASTTRAP_PREFIX_ES:
|
|
seg++;
|
|
OS_FALLTHROUGH;
|
|
case FASTTRAP_PREFIX_DS:
|
|
seg++;
|
|
OS_FALLTHROUGH;
|
|
case FASTTRAP_PREFIX_CS:
|
|
seg++;
|
|
OS_FALLTHROUGH;
|
|
case FASTTRAP_PREFIX_OPERAND:
|
|
case FASTTRAP_PREFIX_ADDRESS:
|
|
case FASTTRAP_PREFIX_LOCK:
|
|
case FASTTRAP_PREFIX_REP:
|
|
case FASTTRAP_PREFIX_REPNE:
|
|
if (seg != 0) {
|
|
/*
|
|
* It's illegal for an instruction to specify
|
|
* two segment prefixes -- give up on this
|
|
* illegal instruction.
|
|
*/
|
|
if (tp->ftt_segment != FASTTRAP_SEG_NONE)
|
|
return (-1);
|
|
|
|
tp->ftt_segment = seg;
|
|
}
|
|
start++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Identify the REX prefix on 64-bit processes.
|
|
*/
|
|
if (p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
|
|
rex = instr[start++];
|
|
|
|
/*
|
|
* Now that we're pretty sure that the instruction is okay, copy the
|
|
* valid part to the tracepoint.
|
|
*/
|
|
bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
|
|
|
|
tp->ftt_type = FASTTRAP_T_COMMON;
|
|
if (instr[start] == FASTTRAP_2_BYTE_OP) {
|
|
switch (instr[start + 1]) {
|
|
case FASTTRAP_0F_JO:
|
|
case FASTTRAP_0F_JNO:
|
|
case FASTTRAP_0F_JB:
|
|
case FASTTRAP_0F_JAE:
|
|
case FASTTRAP_0F_JE:
|
|
case FASTTRAP_0F_JNE:
|
|
case FASTTRAP_0F_JBE:
|
|
case FASTTRAP_0F_JA:
|
|
case FASTTRAP_0F_JS:
|
|
case FASTTRAP_0F_JNS:
|
|
case FASTTRAP_0F_JP:
|
|
case FASTTRAP_0F_JNP:
|
|
case FASTTRAP_0F_JL:
|
|
case FASTTRAP_0F_JGE:
|
|
case FASTTRAP_0F_JLE:
|
|
case FASTTRAP_0F_JG:
|
|
tp->ftt_type = FASTTRAP_T_JCC;
|
|
tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
|
|
tp->ftt_dest = pc + tp->ftt_size +
|
|
/* LINTED - alignment */
|
|
*(int32_t *)&instr[start + 2];
|
|
break;
|
|
}
|
|
} else if (instr[start] == FASTTRAP_GROUP5_OP) {
|
|
uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
|
|
uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
|
|
uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
|
|
|
|
if (reg == 2 || reg == 4) {
|
|
uint_t i, sz;
|
|
|
|
if (reg == 2)
|
|
tp->ftt_type = FASTTRAP_T_CALL;
|
|
else
|
|
tp->ftt_type = FASTTRAP_T_JMP;
|
|
|
|
if (mod == 3)
|
|
tp->ftt_code = 2;
|
|
else
|
|
tp->ftt_code = 1;
|
|
|
|
ASSERT(p_model == DATAMODEL_LP64 || rex == 0);
|
|
|
|
/*
|
|
* See AMD x86-64 Architecture Programmer's Manual
|
|
* Volume 3, Section 1.2.7, Table 1-12, and
|
|
* Appendix A.3.1, Table A-15.
|
|
*/
|
|
if (mod != 3 && rm == 4) {
|
|
uint8_t sib = instr[start + 2];
|
|
uint_t index = FASTTRAP_SIB_INDEX(sib);
|
|
uint_t base = FASTTRAP_SIB_BASE(sib);
|
|
|
|
tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
|
|
|
|
tp->ftt_index = (index == 4) ?
|
|
FASTTRAP_NOREG :
|
|
regmap[index | (FASTTRAP_REX_X(rex) << 3)];
|
|
tp->ftt_base = (mod == 0 && base == 5) ?
|
|
FASTTRAP_NOREG :
|
|
regmap[base | (FASTTRAP_REX_B(rex) << 3)];
|
|
|
|
i = 3;
|
|
sz = mod == 1 ? 1 : 4;
|
|
} else {
|
|
/*
|
|
* In 64-bit mode, mod == 0 and r/m == 5
|
|
* denotes %rip-relative addressing; in 32-bit
|
|
* mode, the base register isn't used. In both
|
|
* modes, there is a 32-bit operand.
|
|
*/
|
|
if (mod == 0 && rm == 5) {
|
|
if (p_model == DATAMODEL_LP64)
|
|
tp->ftt_base = REG_RIP;
|
|
else
|
|
tp->ftt_base = FASTTRAP_NOREG;
|
|
sz = 4;
|
|
} else {
|
|
uint8_t base = rm |
|
|
(FASTTRAP_REX_B(rex) << 3);
|
|
|
|
tp->ftt_base = regmap[base];
|
|
sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
|
|
}
|
|
tp->ftt_index = FASTTRAP_NOREG;
|
|
i = 2;
|
|
}
|
|
|
|
if (sz == 1) {
|
|
tp->ftt_dest = *(int8_t *)&instr[start + i];
|
|
} else if (sz == 4) {
|
|
/* LINTED - alignment */
|
|
tp->ftt_dest = *(int32_t *)&instr[start + i];
|
|
} else {
|
|
tp->ftt_dest = 0;
|
|
}
|
|
}
|
|
} else {
|
|
switch (instr[start]) {
|
|
case FASTTRAP_RET:
|
|
tp->ftt_type = FASTTRAP_T_RET;
|
|
break;
|
|
|
|
case FASTTRAP_RET16:
|
|
tp->ftt_type = FASTTRAP_T_RET16;
|
|
/* LINTED - alignment */
|
|
tp->ftt_dest = *(uint16_t *)&instr[start + 1];
|
|
break;
|
|
|
|
case FASTTRAP_JO:
|
|
case FASTTRAP_JNO:
|
|
case FASTTRAP_JB:
|
|
case FASTTRAP_JAE:
|
|
case FASTTRAP_JE:
|
|
case FASTTRAP_JNE:
|
|
case FASTTRAP_JBE:
|
|
case FASTTRAP_JA:
|
|
case FASTTRAP_JS:
|
|
case FASTTRAP_JNS:
|
|
case FASTTRAP_JP:
|
|
case FASTTRAP_JNP:
|
|
case FASTTRAP_JL:
|
|
case FASTTRAP_JGE:
|
|
case FASTTRAP_JLE:
|
|
case FASTTRAP_JG:
|
|
tp->ftt_type = FASTTRAP_T_JCC;
|
|
tp->ftt_code = instr[start];
|
|
tp->ftt_dest = pc + tp->ftt_size +
|
|
(int8_t)instr[start + 1];
|
|
break;
|
|
|
|
case FASTTRAP_LOOPNZ:
|
|
case FASTTRAP_LOOPZ:
|
|
case FASTTRAP_LOOP:
|
|
tp->ftt_type = FASTTRAP_T_LOOP;
|
|
tp->ftt_code = instr[start];
|
|
tp->ftt_dest = pc + tp->ftt_size +
|
|
(int8_t)instr[start + 1];
|
|
break;
|
|
|
|
case FASTTRAP_JCXZ:
|
|
tp->ftt_type = FASTTRAP_T_JCXZ;
|
|
tp->ftt_dest = pc + tp->ftt_size +
|
|
(int8_t)instr[start + 1];
|
|
break;
|
|
|
|
case FASTTRAP_CALL:
|
|
tp->ftt_type = FASTTRAP_T_CALL;
|
|
tp->ftt_dest = pc + tp->ftt_size +
|
|
/* LINTED - alignment */
|
|
*(int32_t *)&instr[start + 1];
|
|
tp->ftt_code = 0;
|
|
break;
|
|
|
|
case FASTTRAP_JMP32:
|
|
tp->ftt_type = FASTTRAP_T_JMP;
|
|
tp->ftt_dest = pc + tp->ftt_size +
|
|
/* LINTED - alignment */
|
|
*(int32_t *)&instr[start + 1];
|
|
break;
|
|
case FASTTRAP_JMP8:
|
|
tp->ftt_type = FASTTRAP_T_JMP;
|
|
tp->ftt_dest = pc + tp->ftt_size +
|
|
(int8_t)instr[start + 1];
|
|
break;
|
|
|
|
case FASTTRAP_PUSHL_EBP:
|
|
if (start == 0)
|
|
tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
|
|
break;
|
|
|
|
case FASTTRAP_NOP:
|
|
ASSERT(p_model == DATAMODEL_LP64 || rex == 0);
|
|
|
|
/*
|
|
* On sol64 we have to be careful not to confuse a nop
|
|
* (actually xchgl %eax, %eax) with an instruction using
|
|
* the same opcode, but that does something different
|
|
* (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
|
|
*/
|
|
if (FASTTRAP_REX_B(rex) == 0)
|
|
tp->ftt_type = FASTTRAP_T_NOP;
|
|
break;
|
|
|
|
case FASTTRAP_INT3:
|
|
/*
|
|
* The pid provider shares the int3 trap with debugger
|
|
* breakpoints so we can't instrument them.
|
|
*/
|
|
ASSERT(instr[start] == FASTTRAP_INSTR);
|
|
return (-1);
|
|
|
|
case FASTTRAP_INT:
|
|
/*
|
|
* Interrupts seem like they could be traced with
|
|
* no negative implications, but it's possible that
|
|
* a thread could be redirected by the trap handling
|
|
* code which would eventually return to the
|
|
* instruction after the interrupt. If the interrupt
|
|
* were in our scratch space, the subsequent
|
|
* instruction might be overwritten before we return.
|
|
* Accordingly we refuse to instrument any interrupt.
|
|
*/
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
if (p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
|
|
/*
|
|
* If the process is 64-bit and the instruction type is still
|
|
* FASTTRAP_T_COMMON -- meaning we're going to copy it out an
|
|
* execute it -- we need to watch for %rip-relative
|
|
* addressing mode. See the portion of fasttrap_pid_probe()
|
|
* below where we handle tracepoints with type
|
|
* FASTTRAP_T_COMMON for how we emulate instructions that
|
|
* employ %rip-relative addressing.
|
|
*/
|
|
if (rmindex != -1) {
|
|
uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
|
|
uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
|
|
uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
|
|
|
|
ASSERT(rmindex > (int)start);
|
|
|
|
if (mod == 0 && rm == 5) {
|
|
/*
|
|
* We need to be sure to avoid other
|
|
* registers used by this instruction. While
|
|
* the reg field may determine the op code
|
|
* rather than denoting a register, assuming
|
|
* that it denotes a register is always safe.
|
|
* We leave the REX field intact and use
|
|
* whatever value's there for simplicity.
|
|
*/
|
|
if (reg != 0) {
|
|
tp->ftt_ripmode = FASTTRAP_RIP_1 |
|
|
(FASTTRAP_RIP_X *
|
|
FASTTRAP_REX_B(rex));
|
|
rm = 0;
|
|
} else {
|
|
tp->ftt_ripmode = FASTTRAP_RIP_2 |
|
|
(FASTTRAP_RIP_X *
|
|
FASTTRAP_REX_B(rex));
|
|
rm = 1;
|
|
}
|
|
|
|
tp->ftt_modrm = tp->ftt_instr[rmindex];
|
|
tp->ftt_instr[rmindex] =
|
|
FASTTRAP_MODRM(2, reg, rm);
|
|
}
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
|
|
{
|
|
fasttrap_instr_t instr = FASTTRAP_INSTR;
|
|
|
|
if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
|
|
return (-1);
|
|
|
|
tp->ftt_installed = 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
|
|
{
|
|
uint8_t instr;
|
|
|
|
/*
|
|
* Distinguish between read or write failures and a changed
|
|
* instruction.
|
|
*/
|
|
if (uread(p, &instr, 1, tp->ftt_pc) != 0)
|
|
goto end;
|
|
if (instr != FASTTRAP_INSTR)
|
|
goto end;
|
|
if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
|
|
return (-1);
|
|
end:
|
|
tp->ftt_installed = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
fasttrap_return_common(x86_saved_state_t *regs, user_addr_t pc, pid_t pid,
|
|
user_addr_t new_pc)
|
|
{
|
|
x86_saved_state64_t *regs64;
|
|
x86_saved_state32_t *regs32;
|
|
unsigned int p_model;
|
|
int retire_tp = 1;
|
|
|
|
dtrace_icookie_t cookie;
|
|
|
|
if (is_saved_state64(regs)) {
|
|
regs64 = saved_state64(regs);
|
|
regs32 = NULL;
|
|
p_model = DATAMODEL_LP64;
|
|
} else {
|
|
regs64 = NULL;
|
|
regs32 = saved_state32(regs);
|
|
p_model = DATAMODEL_ILP32;
|
|
}
|
|
|
|
fasttrap_tracepoint_t *tp;
|
|
fasttrap_bucket_t *bucket;
|
|
fasttrap_id_t *id;
|
|
lck_mtx_t *pid_mtx;
|
|
|
|
pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
|
|
lck_mtx_lock(pid_mtx);
|
|
bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
|
|
|
|
for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
|
|
if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
|
|
tp->ftt_proc->ftpc_acount != 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Don't sweat it if we can't find the tracepoint again; unlike
|
|
* when we're in fasttrap_pid_probe(), finding the tracepoint here
|
|
* is not essential to the correct execution of the process.
|
|
*/
|
|
if (tp == NULL) {
|
|
lck_mtx_unlock(pid_mtx);
|
|
return;
|
|
}
|
|
|
|
for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
|
|
fasttrap_probe_t *probe = id->fti_probe;
|
|
/*
|
|
* If there's a branch that could act as a return site, we
|
|
* need to trace it, and check here if the program counter is
|
|
* external to the function.
|
|
*/
|
|
if (tp->ftt_type != FASTTRAP_T_RET &&
|
|
tp->ftt_type != FASTTRAP_T_RET16 &&
|
|
new_pc - probe->ftp_faddr < probe->ftp_fsize)
|
|
continue;
|
|
|
|
if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) {
|
|
if (os_atomic_xchg(&probe->ftp_triggered, 1, relaxed)) {
|
|
/* already triggered */
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* If we have at least one probe associated that
|
|
* is not a oneshot probe, don't remove the
|
|
* tracepoint
|
|
*/
|
|
else {
|
|
retire_tp = 0;
|
|
}
|
|
/*
|
|
* Provide a hint to the stack trace functions to add the
|
|
* following pc to the top of the stack since it's missing
|
|
* on a return probe yet highly desirable for consistency.
|
|
*/
|
|
cookie = dtrace_interrupt_disable();
|
|
cpu_core[CPU->cpu_id].cpuc_missing_tos = pc;
|
|
if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
|
|
dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id,
|
|
1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV);
|
|
} else if (p_model == DATAMODEL_LP64) {
|
|
dtrace_probe(probe->ftp_id,
|
|
pc - id->fti_probe->ftp_faddr,
|
|
regs64->rax, regs64->rdx, 0, 0);
|
|
} else {
|
|
dtrace_probe(probe->ftp_id,
|
|
pc - id->fti_probe->ftp_faddr,
|
|
regs32->eax, regs32->edx, 0, 0);
|
|
}
|
|
/* remove the hint */
|
|
cpu_core[CPU->cpu_id].cpuc_missing_tos = 0;
|
|
dtrace_interrupt_enable(cookie);
|
|
}
|
|
|
|
lck_mtx_unlock(pid_mtx);
|
|
}
|
|
|
|
static void
|
|
fasttrap_sigsegv(proc_t *p, uthread_t t, user_addr_t addr)
|
|
{
|
|
proc_lock(p);
|
|
|
|
/* Set fault address and mark signal */
|
|
t->uu_code = addr;
|
|
t->uu_siglist |= sigmask(SIGSEGV);
|
|
|
|
/*
|
|
* XXX These two line may be redundant; if not, then we need
|
|
* XXX to potentially set the data address in the machine
|
|
* XXX specific thread state structure to indicate the address.
|
|
*/
|
|
t->uu_exception = KERN_INVALID_ADDRESS; /* SIGSEGV */
|
|
t->uu_subcode = 0; /* XXX pad */
|
|
|
|
proc_unlock(p);
|
|
|
|
/* raise signal */
|
|
signal_setast(get_machthread(t));
|
|
}
|
|
|
|
static void
|
|
fasttrap_usdt_args64(fasttrap_probe_t *probe, x86_saved_state64_t *regs64, int argc,
|
|
uint64_t *argv)
|
|
{
|
|
int i, x, cap = MIN(argc, probe->ftp_nargs);
|
|
user_addr_t stack = (user_addr_t)regs64->isf.rsp;
|
|
|
|
for (i = 0; i < cap; i++) {
|
|
x = probe->ftp_argmap[i];
|
|
|
|
if (x < 6) {
|
|
/* FIXME! This may be broken, needs testing */
|
|
argv[i] = (®s64->rdi)[x];
|
|
} else {
|
|
fasttrap_fuword64_noerr(stack + (x * sizeof(uint64_t)), &argv[i]);
|
|
}
|
|
}
|
|
|
|
for (; i < argc; i++) {
|
|
argv[i] = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
fasttrap_usdt_args32(fasttrap_probe_t *probe, x86_saved_state32_t *regs32, int argc,
|
|
uint32_t *argv)
|
|
{
|
|
int i, x, cap = MIN(argc, probe->ftp_nargs);
|
|
uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp);
|
|
|
|
for (i = 0; i < cap; i++) {
|
|
x = probe->ftp_argmap[i];
|
|
|
|
fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[x], &argv[i]);
|
|
}
|
|
|
|
for (; i < argc; i++) {
|
|
argv[i] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* FIXME!
|
|
*/
|
|
static int
|
|
fasttrap_do_seg(fasttrap_tracepoint_t *tp, x86_saved_state_t *rp, user_addr_t *addr) // 64 bit
|
|
{
|
|
#pragma unused(tp, rp, addr)
|
|
printf("fasttrap_do_seg() called while unimplemented.\n");
|
|
#if 0
|
|
proc_t *p = curproc;
|
|
user_desc_t *desc;
|
|
uint16_t sel, ndx, type;
|
|
uintptr_t limit;
|
|
|
|
switch (tp->ftt_segment) {
|
|
case FASTTRAP_SEG_CS:
|
|
sel = rp->r_cs;
|
|
break;
|
|
case FASTTRAP_SEG_DS:
|
|
sel = rp->r_ds;
|
|
break;
|
|
case FASTTRAP_SEG_ES:
|
|
sel = rp->r_es;
|
|
break;
|
|
case FASTTRAP_SEG_FS:
|
|
sel = rp->r_fs;
|
|
break;
|
|
case FASTTRAP_SEG_GS:
|
|
sel = rp->r_gs;
|
|
break;
|
|
case FASTTRAP_SEG_SS:
|
|
sel = rp->r_ss;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure the given segment register specifies a user priority
|
|
* selector rather than a kernel selector.
|
|
*/
|
|
if (!SELISUPL(sel))
|
|
return (-1);
|
|
|
|
ndx = SELTOIDX(sel);
|
|
|
|
/*
|
|
* Check the bounds and grab the descriptor out of the specified
|
|
* descriptor table.
|
|
*/
|
|
if (SELISLDT(sel)) {
|
|
if (ndx > p->p_ldtlimit)
|
|
return (-1);
|
|
|
|
desc = p->p_ldt + ndx;
|
|
|
|
} else {
|
|
if (ndx >= NGDT)
|
|
return (-1);
|
|
|
|
desc = cpu_get_gdt() + ndx;
|
|
}
|
|
|
|
/*
|
|
* The descriptor must have user privilege level and it must be
|
|
* present in memory.
|
|
*/
|
|
if (desc->usd_dpl != SEL_UPL || desc->usd_p != 1)
|
|
return (-1);
|
|
|
|
type = desc->usd_type;
|
|
|
|
/*
|
|
* If the S bit in the type field is not set, this descriptor can
|
|
* only be used in system context.
|
|
*/
|
|
if ((type & 0x10) != 0x10)
|
|
return (-1);
|
|
|
|
limit = USEGD_GETLIMIT(desc) * (desc->usd_gran ? PAGESIZE : 1);
|
|
|
|
if (tp->ftt_segment == FASTTRAP_SEG_CS) {
|
|
/*
|
|
* The code/data bit and readable bit must both be set.
|
|
*/
|
|
if ((type & 0xa) != 0xa)
|
|
return (-1);
|
|
|
|
if (*addr > limit)
|
|
return (-1);
|
|
} else {
|
|
/*
|
|
* The code/data bit must be clear.
|
|
*/
|
|
if ((type & 0x8) != 0)
|
|
return (-1);
|
|
|
|
/*
|
|
* If the expand-down bit is clear, we just check the limit as
|
|
* it would naturally be applied. Otherwise, we need to check
|
|
* that the address is the range [limit + 1 .. 0xffff] or
|
|
* [limit + 1 ... 0xffffffff] depending on if the default
|
|
* operand size bit is set.
|
|
*/
|
|
if ((type & 0x4) == 0) {
|
|
if (*addr > limit)
|
|
return (-1);
|
|
} else if (desc->usd_def32) {
|
|
if (*addr < limit + 1 || 0xffff < *addr)
|
|
return (-1);
|
|
} else {
|
|
if (*addr < limit + 1 || 0xffffffff < *addr)
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
*addr += USEGD_GETBASE(desc);
|
|
#endif /* 0 */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit
|
|
* code path. It still takes an x86_saved_state_t* argument, because it must sometimes
|
|
* call other methods that require a x86_saved_state_t.
|
|
*
|
|
* NOTE!!!!
|
|
*
|
|
* Any changes made to this method must be echo'd in fasttrap_pid_probe64!
|
|
*
|
|
*/
|
|
static int
|
|
fasttrap_pid_probe32(x86_saved_state_t *regs)
|
|
{
|
|
ASSERT(is_saved_state32(regs));
|
|
|
|
x86_saved_state32_t *regs32 = saved_state32(regs);
|
|
user_addr_t pc = regs32->eip - 1;
|
|
proc_t *p = current_proc();
|
|
user_addr_t new_pc = 0;
|
|
fasttrap_bucket_t *bucket;
|
|
lck_mtx_t *pid_mtx;
|
|
fasttrap_tracepoint_t *tp, tp_local;
|
|
pid_t pid;
|
|
dtrace_icookie_t cookie;
|
|
uint_t is_enabled = 0, retire_tp = 1;
|
|
|
|
uthread_t uthread = current_uthread();
|
|
|
|
/*
|
|
* It's possible that a user (in a veritable orgy of bad planning)
|
|
* could redirect this thread's flow of control before it reached the
|
|
* return probe fasttrap. In this case we need to kill the process
|
|
* since it's in a unrecoverable state.
|
|
*/
|
|
if (uthread->t_dtrace_step) {
|
|
ASSERT(uthread->t_dtrace_on);
|
|
fasttrap_sigtrap(p, uthread, pc);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Clear all user tracing flags.
|
|
*/
|
|
uthread->t_dtrace_ft = 0;
|
|
uthread->t_dtrace_pc = 0;
|
|
uthread->t_dtrace_npc = 0;
|
|
uthread->t_dtrace_scrpc = 0;
|
|
uthread->t_dtrace_astpc = 0;
|
|
|
|
|
|
pid = proc_getpid(p);
|
|
pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
|
|
lck_mtx_lock(pid_mtx);
|
|
bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
|
|
|
|
/*
|
|
* Lookup the tracepoint that the process just hit.
|
|
*/
|
|
for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
|
|
if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
|
|
tp->ftt_proc->ftpc_acount != 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we couldn't find a matching tracepoint, either a tracepoint has
|
|
* been inserted without using the pid<pid> ioctl interface (see
|
|
* fasttrap_ioctl), or somehow we have mislaid this tracepoint.
|
|
*/
|
|
if (tp == NULL) {
|
|
lck_mtx_unlock(pid_mtx);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Set the program counter to the address of the traced instruction
|
|
* so that it looks right in ustack() output.
|
|
*/
|
|
regs32->eip = pc;
|
|
|
|
if (tp->ftt_ids != NULL) {
|
|
fasttrap_id_t *id;
|
|
|
|
uint32_t s0, s1, s2, s3, s4, s5;
|
|
uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp);
|
|
|
|
/*
|
|
* In 32-bit mode, all arguments are passed on the
|
|
* stack. If this is a function entry probe, we need
|
|
* to skip the first entry on the stack as it
|
|
* represents the return address rather than a
|
|
* parameter to the function.
|
|
*/
|
|
fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[0], &s0);
|
|
fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[1], &s1);
|
|
fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[2], &s2);
|
|
fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[3], &s3);
|
|
fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[4], &s4);
|
|
fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[5], &s5);
|
|
|
|
for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
|
|
fasttrap_probe_t *probe = id->fti_probe;
|
|
|
|
if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
|
|
dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id,
|
|
1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV);
|
|
} else {
|
|
if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) {
|
|
if (os_atomic_xchg(&probe->ftp_triggered, 1, relaxed)) {
|
|
/* already triggered */
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* If we have at least one probe associated that
|
|
* is not a oneshot probe, don't remove the
|
|
* tracepoint
|
|
*/
|
|
else {
|
|
retire_tp = 0;
|
|
}
|
|
if (id->fti_ptype == DTFTP_ENTRY) {
|
|
/*
|
|
* We note that this was an entry
|
|
* probe to help ustack() find the
|
|
* first caller.
|
|
*/
|
|
cookie = dtrace_interrupt_disable();
|
|
DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
|
|
dtrace_probe(probe->ftp_id, s1, s2,
|
|
s3, s4, s5);
|
|
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
|
|
dtrace_interrupt_enable(cookie);
|
|
} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
|
|
/*
|
|
* Note that in this case, we don't
|
|
* call dtrace_probe() since it's only
|
|
* an artificial probe meant to change
|
|
* the flow of control so that it
|
|
* encounters the true probe.
|
|
*/
|
|
is_enabled = 1;
|
|
} else if (probe->ftp_argmap == NULL) {
|
|
dtrace_probe(probe->ftp_id, s0, s1,
|
|
s2, s3, s4);
|
|
} else {
|
|
uint32_t t[5];
|
|
|
|
fasttrap_usdt_args32(probe, regs32,
|
|
sizeof (t) / sizeof (t[0]), t);
|
|
|
|
dtrace_probe(probe->ftp_id, t[0], t[1],
|
|
t[2], t[3], t[4]);
|
|
}
|
|
}
|
|
}
|
|
if (retire_tp) {
|
|
fasttrap_tracepoint_retire(p, tp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We're about to do a bunch of work so we cache a local copy of
|
|
* the tracepoint to emulate the instruction, and then find the
|
|
* tracepoint again later if we need to light up any return probes.
|
|
*/
|
|
tp_local = *tp;
|
|
lck_mtx_unlock(pid_mtx);
|
|
tp = &tp_local;
|
|
|
|
/*
|
|
* Set the program counter to appear as though the traced instruction
|
|
* had completely executed. This ensures that fasttrap_getreg() will
|
|
* report the expected value for REG_RIP.
|
|
*/
|
|
regs32->eip = pc + tp->ftt_size;
|
|
|
|
/*
|
|
* If there's an is-enabled probe connected to this tracepoint it
|
|
* means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
|
|
* instruction that was placed there by DTrace when the binary was
|
|
* linked. As this probe is, in fact, enabled, we need to stuff 1
|
|
* into %eax or %rax. Accordingly, we can bypass all the instruction
|
|
* emulation logic since we know the inevitable result. It's possible
|
|
* that a user could construct a scenario where the 'is-enabled'
|
|
* probe was on some other instruction, but that would be a rather
|
|
* exotic way to shoot oneself in the foot.
|
|
*/
|
|
if (is_enabled) {
|
|
regs32->eax = 1;
|
|
new_pc = regs32->eip;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* We emulate certain types of instructions to ensure correctness
|
|
* (in the case of position dependent instructions) or optimize
|
|
* common cases. The rest we have the thread execute back in user-
|
|
* land.
|
|
*/
|
|
switch (tp->ftt_type) {
|
|
case FASTTRAP_T_RET:
|
|
case FASTTRAP_T_RET16:
|
|
{
|
|
user_addr_t dst;
|
|
user_addr_t addr;
|
|
int ret;
|
|
|
|
/*
|
|
* We have to emulate _every_ facet of the behavior of a ret
|
|
* instruction including what happens if the load from %esp
|
|
* fails; in that case, we send a SIGSEGV.
|
|
*/
|
|
uint32_t dst32;
|
|
ret = fasttrap_fuword32((user_addr_t)regs32->uesp, &dst32);
|
|
dst = dst32;
|
|
addr = regs32->uesp + sizeof (uint32_t);
|
|
|
|
if (ret == -1) {
|
|
fasttrap_sigsegv(p, uthread, (user_addr_t)regs32->uesp);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
if (tp->ftt_type == FASTTRAP_T_RET16)
|
|
addr += tp->ftt_dest;
|
|
|
|
regs32->uesp = addr;
|
|
new_pc = dst;
|
|
break;
|
|
}
|
|
|
|
case FASTTRAP_T_JCC:
|
|
{
|
|
uint_t taken;
|
|
|
|
switch (tp->ftt_code) {
|
|
case FASTTRAP_JO:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_OF) != 0;
|
|
break;
|
|
case FASTTRAP_JNO:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_OF) == 0;
|
|
break;
|
|
case FASTTRAP_JB:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0;
|
|
break;
|
|
case FASTTRAP_JAE:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0;
|
|
break;
|
|
case FASTTRAP_JE:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0;
|
|
break;
|
|
case FASTTRAP_JNE:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0;
|
|
break;
|
|
case FASTTRAP_JBE:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0 ||
|
|
(regs32->efl & FASTTRAP_EFLAGS_ZF) != 0;
|
|
break;
|
|
case FASTTRAP_JA:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0 &&
|
|
(regs32->efl & FASTTRAP_EFLAGS_ZF) == 0;
|
|
break;
|
|
case FASTTRAP_JS:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_SF) != 0;
|
|
break;
|
|
case FASTTRAP_JNS:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_SF) == 0;
|
|
break;
|
|
case FASTTRAP_JP:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_PF) != 0;
|
|
break;
|
|
case FASTTRAP_JNP:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_PF) == 0;
|
|
break;
|
|
case FASTTRAP_JL:
|
|
taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) !=
|
|
((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
|
|
break;
|
|
case FASTTRAP_JGE:
|
|
taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) ==
|
|
((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
|
|
break;
|
|
case FASTTRAP_JLE:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 ||
|
|
((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) !=
|
|
((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
|
|
break;
|
|
case FASTTRAP_JG:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 &&
|
|
((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) ==
|
|
((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
|
|
break;
|
|
default:
|
|
taken = FALSE;
|
|
}
|
|
|
|
if (taken)
|
|
new_pc = tp->ftt_dest;
|
|
else
|
|
new_pc = pc + tp->ftt_size;
|
|
break;
|
|
}
|
|
|
|
case FASTTRAP_T_LOOP:
|
|
{
|
|
uint_t taken;
|
|
greg_t cx = regs32->ecx--;
|
|
|
|
switch (tp->ftt_code) {
|
|
case FASTTRAP_LOOPNZ:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 &&
|
|
cx != 0;
|
|
break;
|
|
case FASTTRAP_LOOPZ:
|
|
taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 &&
|
|
cx != 0;
|
|
break;
|
|
case FASTTRAP_LOOP:
|
|
taken = (cx != 0);
|
|
break;
|
|
default:
|
|
taken = FALSE;
|
|
}
|
|
|
|
if (taken)
|
|
new_pc = tp->ftt_dest;
|
|
else
|
|
new_pc = pc + tp->ftt_size;
|
|
break;
|
|
}
|
|
|
|
case FASTTRAP_T_JCXZ:
|
|
{
|
|
greg_t cx = regs32->ecx;
|
|
|
|
if (cx == 0)
|
|
new_pc = tp->ftt_dest;
|
|
else
|
|
new_pc = pc + tp->ftt_size;
|
|
break;
|
|
}
|
|
|
|
case FASTTRAP_T_PUSHL_EBP:
|
|
{
|
|
user_addr_t addr = regs32->uesp - sizeof (uint32_t);
|
|
int ret = fasttrap_suword32(addr, (uint32_t)regs32->ebp);
|
|
|
|
if (ret == -1) {
|
|
fasttrap_sigsegv(p, uthread, addr);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
regs32->uesp = addr;
|
|
new_pc = pc + tp->ftt_size;
|
|
break;
|
|
}
|
|
|
|
case FASTTRAP_T_NOP:
|
|
new_pc = pc + tp->ftt_size;
|
|
break;
|
|
|
|
case FASTTRAP_T_JMP:
|
|
case FASTTRAP_T_CALL:
|
|
if (tp->ftt_code == 0) {
|
|
new_pc = tp->ftt_dest;
|
|
} else {
|
|
user_addr_t /* value ,*/ addr = tp->ftt_dest;
|
|
|
|
if (tp->ftt_base != FASTTRAP_NOREG)
|
|
addr += fasttrap_getreg(regs, tp->ftt_base);
|
|
if (tp->ftt_index != FASTTRAP_NOREG)
|
|
addr += fasttrap_getreg(regs, tp->ftt_index) <<
|
|
tp->ftt_scale;
|
|
|
|
if (tp->ftt_code == 1) {
|
|
/*
|
|
* If there's a segment prefix for this
|
|
* instruction, we'll need to check permissions
|
|
* and bounds on the given selector, and adjust
|
|
* the address accordingly.
|
|
*/
|
|
if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
|
|
fasttrap_do_seg(tp, regs, &addr) != 0) {
|
|
fasttrap_sigsegv(p, uthread, addr);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
uint32_t value32;
|
|
addr = (user_addr_t)(uint32_t)addr;
|
|
if (fasttrap_fuword32(addr, &value32) == -1) {
|
|
fasttrap_sigsegv(p, uthread, addr);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
new_pc = value32;
|
|
} else {
|
|
new_pc = addr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is a call instruction, we need to push the return
|
|
* address onto the stack. If this fails, we send the process
|
|
* a SIGSEGV and reset the pc to emulate what would happen if
|
|
* this instruction weren't traced.
|
|
*/
|
|
if (tp->ftt_type == FASTTRAP_T_CALL) {
|
|
user_addr_t addr = regs32->uesp - sizeof (uint32_t);
|
|
int ret = fasttrap_suword32(addr, (uint32_t)(pc + tp->ftt_size));
|
|
|
|
if (ret == -1) {
|
|
fasttrap_sigsegv(p, uthread, addr);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
regs32->uesp = addr;
|
|
}
|
|
break;
|
|
|
|
case FASTTRAP_T_COMMON:
|
|
{
|
|
user_addr_t addr, write_addr;
|
|
uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
|
|
uint_t i = 0;
|
|
|
|
/*
|
|
* Generic Instruction Tracing
|
|
* ---------------------------
|
|
*
|
|
* This is the layout of the scratch space in the user-land
|
|
* thread structure for our generated instructions.
|
|
*
|
|
* 32-bit mode bytes
|
|
* ------------------------ -----
|
|
* a: <original instruction> <= 15
|
|
* jmp <pc + tp->ftt_size> 5
|
|
* b: <original instrction> <= 15
|
|
* int T_DTRACE_RET 2
|
|
* -----
|
|
* <= 37
|
|
*
|
|
* 64-bit mode bytes
|
|
* ------------------------ -----
|
|
* a: <original instruction> <= 15
|
|
* jmp 0(%rip) 6
|
|
* <pc + tp->ftt_size> 8
|
|
* b: <original instruction> <= 15
|
|
* int T_DTRACE_RET 2
|
|
* -----
|
|
* <= 46
|
|
*
|
|
* The %pc is set to a, and curthread->t_dtrace_astpc is set
|
|
* to b. If we encounter a signal on the way out of the
|
|
* kernel, trap() will set %pc to curthread->t_dtrace_astpc
|
|
* so that we execute the original instruction and re-enter
|
|
* the kernel rather than redirecting to the next instruction.
|
|
*
|
|
* If there are return probes (so we know that we're going to
|
|
* need to reenter the kernel after executing the original
|
|
* instruction), the scratch space will just contain the
|
|
* original instruction followed by an interrupt -- the same
|
|
* data as at b.
|
|
*/
|
|
|
|
addr = uthread->t_dtrace_scratch->addr;
|
|
write_addr = uthread->t_dtrace_scratch->write_addr;
|
|
|
|
if (addr == 0LL || write_addr == 0LL) {
|
|
fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
|
|
|
|
uthread->t_dtrace_scrpc = addr;
|
|
bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
|
|
i += tp->ftt_size;
|
|
|
|
/*
|
|
* Set up the jmp to the next instruction; note that
|
|
* the size of the traced instruction cancels out.
|
|
*/
|
|
scratch[i++] = FASTTRAP_JMP32;
|
|
/* LINTED - alignment */
|
|
*(uint32_t *)&scratch[i] = pc - addr - 5;
|
|
i += sizeof (uint32_t);
|
|
|
|
uthread->t_dtrace_astpc = addr + i;
|
|
bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
|
|
i += tp->ftt_size;
|
|
scratch[i++] = FASTTRAP_INT;
|
|
scratch[i++] = T_DTRACE_RET;
|
|
|
|
ASSERT(i <= sizeof (scratch));
|
|
|
|
if (fasttrap_copyout(scratch, write_addr, i)) {
|
|
fasttrap_sigtrap(p, uthread, pc);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
if (tp->ftt_retids != NULL) {
|
|
uthread->t_dtrace_step = 1;
|
|
uthread->t_dtrace_ret = 1;
|
|
new_pc = uthread->t_dtrace_astpc;
|
|
} else {
|
|
new_pc = uthread->t_dtrace_scrpc;
|
|
}
|
|
|
|
uthread->t_dtrace_pc = pc;
|
|
uthread->t_dtrace_npc = pc + tp->ftt_size;
|
|
uthread->t_dtrace_on = 1;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
panic("fasttrap: mishandled an instruction");
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* APPLE NOTE:
|
|
*
|
|
* We're setting this earlier than Solaris does, to get a "correct"
|
|
* ustack() output. In the Sun code, a() -> b() -> c() -> d() is
|
|
* reported at: d, b, a. The new way gives c, b, a, which is closer
|
|
* to correct, as the return instruction has already exectued.
|
|
*/
|
|
regs32->eip = new_pc;
|
|
|
|
/*
|
|
* If there were no return probes when we first found the tracepoint,
|
|
* we should feel no obligation to honor any return probes that were
|
|
* subsequently enabled -- they'll just have to wait until the next
|
|
* time around.
|
|
*/
|
|
if (tp->ftt_retids != NULL) {
|
|
/*
|
|
* We need to wait until the results of the instruction are
|
|
* apparent before invoking any return probes. If this
|
|
* instruction was emulated we can just call
|
|
* fasttrap_return_common(); if it needs to be executed, we
|
|
* need to wait until the user thread returns to the kernel.
|
|
*/
|
|
if (tp->ftt_type != FASTTRAP_T_COMMON) {
|
|
fasttrap_return_common(regs, pc, pid, new_pc);
|
|
} else {
|
|
ASSERT(uthread->t_dtrace_ret != 0);
|
|
ASSERT(uthread->t_dtrace_pc == pc);
|
|
ASSERT(uthread->t_dtrace_scrpc != 0);
|
|
ASSERT(new_pc == uthread->t_dtrace_astpc);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit
|
|
* code path. It still takes an x86_saved_state_t* argument, because it must sometimes
|
|
* call other methods that require a x86_saved_state_t.
|
|
*
|
|
* NOTE!!!!
|
|
*
|
|
* Any changes made to this method must be echo'd in fasttrap_pid_probe32!
|
|
*
|
|
*/
|
|
static int
|
|
fasttrap_pid_probe64(x86_saved_state_t *regs)
|
|
{
|
|
ASSERT(is_saved_state64(regs));
|
|
|
|
x86_saved_state64_t *regs64 = saved_state64(regs);
|
|
user_addr_t pc = regs64->isf.rip - 1;
|
|
proc_t *p = current_proc();
|
|
user_addr_t new_pc = 0;
|
|
fasttrap_bucket_t *bucket;
|
|
lck_mtx_t *pid_mtx;
|
|
fasttrap_tracepoint_t *tp, tp_local;
|
|
pid_t pid;
|
|
dtrace_icookie_t cookie;
|
|
uint_t is_enabled = 0;
|
|
int retire_tp = 1;
|
|
|
|
uthread_t uthread = current_uthread();
|
|
|
|
/*
|
|
* It's possible that a user (in a veritable orgy of bad planning)
|
|
* could redirect this thread's flow of control before it reached the
|
|
* return probe fasttrap. In this case we need to kill the process
|
|
* since it's in a unrecoverable state.
|
|
*/
|
|
if (uthread->t_dtrace_step) {
|
|
ASSERT(uthread->t_dtrace_on);
|
|
fasttrap_sigtrap(p, uthread, pc);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Clear all user tracing flags.
|
|
*/
|
|
uthread->t_dtrace_ft = 0;
|
|
uthread->t_dtrace_pc = 0;
|
|
uthread->t_dtrace_npc = 0;
|
|
uthread->t_dtrace_scrpc = 0;
|
|
uthread->t_dtrace_astpc = 0;
|
|
uthread->t_dtrace_regv = 0;
|
|
|
|
|
|
pid = proc_getpid(p);
|
|
pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
|
|
lck_mtx_lock(pid_mtx);
|
|
bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
|
|
|
|
/*
|
|
* Lookup the tracepoint that the process just hit.
|
|
*/
|
|
for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
|
|
if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
|
|
tp->ftt_proc->ftpc_acount != 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we couldn't find a matching tracepoint, either a tracepoint has
|
|
* been inserted without using the pid<pid> ioctl interface (see
|
|
* fasttrap_ioctl), or somehow we have mislaid this tracepoint.
|
|
*/
|
|
if (tp == NULL) {
|
|
lck_mtx_unlock(pid_mtx);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Set the program counter to the address of the traced instruction
|
|
* so that it looks right in ustack() output.
|
|
*/
|
|
regs64->isf.rip = pc;
|
|
|
|
if (tp->ftt_ids != NULL) {
|
|
fasttrap_id_t *id;
|
|
|
|
for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
|
|
fasttrap_probe_t *probe = id->fti_probe;
|
|
|
|
if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) {
|
|
if (os_atomic_xchg(&probe->ftp_triggered, 1, relaxed)) {
|
|
/* already triggered */
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* If we have at least probe associated that
|
|
* is not a oneshot probe, don't remove the
|
|
* tracepoint
|
|
*/
|
|
else {
|
|
retire_tp = 0;
|
|
}
|
|
if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
|
|
dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id,
|
|
1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV);
|
|
} else if (id->fti_ptype == DTFTP_ENTRY) {
|
|
/*
|
|
* We note that this was an entry
|
|
* probe to help ustack() find the
|
|
* first caller.
|
|
*/
|
|
cookie = dtrace_interrupt_disable();
|
|
DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
|
|
dtrace_probe(probe->ftp_id, regs64->rdi,
|
|
regs64->rsi, regs64->rdx, regs64->rcx,
|
|
regs64->r8);
|
|
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
|
|
dtrace_interrupt_enable(cookie);
|
|
} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
|
|
/*
|
|
* Note that in this case, we don't
|
|
* call dtrace_probe() since it's only
|
|
* an artificial probe meant to change
|
|
* the flow of control so that it
|
|
* encounters the true probe.
|
|
*/
|
|
is_enabled = 1;
|
|
} else if (probe->ftp_argmap == NULL) {
|
|
dtrace_probe(probe->ftp_id, regs64->rdi,
|
|
regs64->rsi, regs64->rdx, regs64->rcx,
|
|
regs64->r8);
|
|
} else {
|
|
uint64_t t[5];
|
|
|
|
fasttrap_usdt_args64(probe, regs64,
|
|
sizeof (t) / sizeof (t[0]), t);
|
|
|
|
dtrace_probe(probe->ftp_id, t[0], t[1],
|
|
t[2], t[3], t[4]);
|
|
}
|
|
|
|
}
|
|
if (retire_tp) {
|
|
fasttrap_tracepoint_retire(p, tp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We're about to do a bunch of work so we cache a local copy of
|
|
* the tracepoint to emulate the instruction, and then find the
|
|
* tracepoint again later if we need to light up any return probes.
|
|
*/
|
|
tp_local = *tp;
|
|
lck_mtx_unlock(pid_mtx);
|
|
tp = &tp_local;
|
|
|
|
/*
|
|
* Set the program counter to appear as though the traced instruction
|
|
* had completely executed. This ensures that fasttrap_getreg() will
|
|
* report the expected value for REG_RIP.
|
|
*/
|
|
regs64->isf.rip = pc + tp->ftt_size;
|
|
|
|
/*
|
|
* If there's an is-enabled probe connected to this tracepoint it
|
|
* means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
|
|
* instruction that was placed there by DTrace when the binary was
|
|
* linked. As this probe is, in fact, enabled, we need to stuff 1
|
|
* into %eax or %rax. Accordingly, we can bypass all the instruction
|
|
* emulation logic since we know the inevitable result. It's possible
|
|
* that a user could construct a scenario where the 'is-enabled'
|
|
* probe was on some other instruction, but that would be a rather
|
|
* exotic way to shoot oneself in the foot.
|
|
*/
|
|
if (is_enabled) {
|
|
regs64->rax = 1;
|
|
new_pc = regs64->isf.rip;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* We emulate certain types of instructions to ensure correctness
|
|
* (in the case of position dependent instructions) or optimize
|
|
* common cases. The rest we have the thread execute back in user-
|
|
* land.
|
|
*/
|
|
switch (tp->ftt_type) {
|
|
case FASTTRAP_T_RET:
|
|
case FASTTRAP_T_RET16:
|
|
{
|
|
user_addr_t dst;
|
|
user_addr_t addr;
|
|
int ret;
|
|
|
|
/*
|
|
* We have to emulate _every_ facet of the behavior of a ret
|
|
* instruction including what happens if the load from %esp
|
|
* fails; in that case, we send a SIGSEGV.
|
|
*/
|
|
ret = fasttrap_fuword64((user_addr_t)regs64->isf.rsp, &dst);
|
|
addr = regs64->isf.rsp + sizeof (uint64_t);
|
|
|
|
if (ret == -1) {
|
|
fasttrap_sigsegv(p, uthread, (user_addr_t)regs64->isf.rsp);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
if (tp->ftt_type == FASTTRAP_T_RET16)
|
|
addr += tp->ftt_dest;
|
|
|
|
regs64->isf.rsp = addr;
|
|
new_pc = dst;
|
|
break;
|
|
}
|
|
|
|
case FASTTRAP_T_JCC:
|
|
{
|
|
uint_t taken;
|
|
|
|
switch (tp->ftt_code) {
|
|
case FASTTRAP_JO:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) != 0;
|
|
break;
|
|
case FASTTRAP_JNO:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0;
|
|
break;
|
|
case FASTTRAP_JB:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0;
|
|
break;
|
|
case FASTTRAP_JAE:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0;
|
|
break;
|
|
case FASTTRAP_JE:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0;
|
|
break;
|
|
case FASTTRAP_JNE:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0;
|
|
break;
|
|
case FASTTRAP_JBE:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0 ||
|
|
(regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0;
|
|
break;
|
|
case FASTTRAP_JA:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0 &&
|
|
(regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0;
|
|
break;
|
|
case FASTTRAP_JS:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) != 0;
|
|
break;
|
|
case FASTTRAP_JNS:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0;
|
|
break;
|
|
case FASTTRAP_JP:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) != 0;
|
|
break;
|
|
case FASTTRAP_JNP:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) == 0;
|
|
break;
|
|
case FASTTRAP_JL:
|
|
taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) !=
|
|
((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
|
|
break;
|
|
case FASTTRAP_JGE:
|
|
taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) ==
|
|
((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
|
|
break;
|
|
case FASTTRAP_JLE:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
|
|
((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) !=
|
|
((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
|
|
break;
|
|
case FASTTRAP_JG:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
|
|
((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) ==
|
|
((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
|
|
break;
|
|
default:
|
|
taken = FALSE;
|
|
}
|
|
|
|
if (taken)
|
|
new_pc = tp->ftt_dest;
|
|
else
|
|
new_pc = pc + tp->ftt_size;
|
|
break;
|
|
}
|
|
|
|
case FASTTRAP_T_LOOP:
|
|
{
|
|
uint_t taken;
|
|
uint64_t cx = regs64->rcx--;
|
|
|
|
switch (tp->ftt_code) {
|
|
case FASTTRAP_LOOPNZ:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
|
|
cx != 0;
|
|
break;
|
|
case FASTTRAP_LOOPZ:
|
|
taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
|
|
cx != 0;
|
|
break;
|
|
case FASTTRAP_LOOP:
|
|
taken = (cx != 0);
|
|
break;
|
|
default:
|
|
taken = FALSE;
|
|
}
|
|
|
|
if (taken)
|
|
new_pc = tp->ftt_dest;
|
|
else
|
|
new_pc = pc + tp->ftt_size;
|
|
break;
|
|
}
|
|
|
|
case FASTTRAP_T_JCXZ:
|
|
{
|
|
uint64_t cx = regs64->rcx;
|
|
|
|
if (cx == 0)
|
|
new_pc = tp->ftt_dest;
|
|
else
|
|
new_pc = pc + tp->ftt_size;
|
|
break;
|
|
}
|
|
|
|
case FASTTRAP_T_PUSHL_EBP:
|
|
{
|
|
user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t);
|
|
int ret = fasttrap_suword64(addr, (uint64_t)regs64->rbp);
|
|
|
|
if (ret == -1) {
|
|
fasttrap_sigsegv(p, uthread, addr);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
regs64->isf.rsp = addr;
|
|
new_pc = pc + tp->ftt_size;
|
|
break;
|
|
}
|
|
|
|
case FASTTRAP_T_NOP:
|
|
new_pc = pc + tp->ftt_size;
|
|
break;
|
|
|
|
case FASTTRAP_T_JMP:
|
|
case FASTTRAP_T_CALL:
|
|
if (tp->ftt_code == 0) {
|
|
new_pc = tp->ftt_dest;
|
|
} else {
|
|
user_addr_t value, addr = tp->ftt_dest;
|
|
|
|
if (tp->ftt_base != FASTTRAP_NOREG)
|
|
addr += fasttrap_getreg(regs, tp->ftt_base);
|
|
if (tp->ftt_index != FASTTRAP_NOREG)
|
|
addr += fasttrap_getreg(regs, tp->ftt_index) <<
|
|
tp->ftt_scale;
|
|
|
|
if (tp->ftt_code == 1) {
|
|
/*
|
|
* If there's a segment prefix for this
|
|
* instruction, we'll need to check permissions
|
|
* and bounds on the given selector, and adjust
|
|
* the address accordingly.
|
|
*/
|
|
if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
|
|
fasttrap_do_seg(tp, regs, &addr) != 0) {
|
|
fasttrap_sigsegv(p, uthread, addr);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
if (fasttrap_fuword64(addr, &value) == -1) {
|
|
fasttrap_sigsegv(p, uthread, addr);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
new_pc = value;
|
|
} else {
|
|
new_pc = addr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is a call instruction, we need to push the return
|
|
* address onto the stack. If this fails, we send the process
|
|
* a SIGSEGV and reset the pc to emulate what would happen if
|
|
* this instruction weren't traced.
|
|
*/
|
|
if (tp->ftt_type == FASTTRAP_T_CALL) {
|
|
user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t);
|
|
int ret = fasttrap_suword64(addr, pc + tp->ftt_size);
|
|
|
|
if (ret == -1) {
|
|
fasttrap_sigsegv(p, uthread, addr);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
regs64->isf.rsp = addr;
|
|
}
|
|
break;
|
|
|
|
case FASTTRAP_T_COMMON:
|
|
{
|
|
user_addr_t addr, write_addr;
|
|
uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
|
|
uint_t i = 0;
|
|
|
|
/*
|
|
* Generic Instruction Tracing
|
|
* ---------------------------
|
|
*
|
|
* This is the layout of the scratch space in the user-land
|
|
* thread structure for our generated instructions.
|
|
*
|
|
* 32-bit mode bytes
|
|
* ------------------------ -----
|
|
* a: <original instruction> <= 15
|
|
* jmp <pc + tp->ftt_size> 5
|
|
* b: <original instrction> <= 15
|
|
* int T_DTRACE_RET 2
|
|
* -----
|
|
* <= 37
|
|
*
|
|
* 64-bit mode bytes
|
|
* ------------------------ -----
|
|
* a: <original instruction> <= 15
|
|
* jmp 0(%rip) 6
|
|
* <pc + tp->ftt_size> 8
|
|
* b: <original instruction> <= 15
|
|
* int T_DTRACE_RET 2
|
|
* -----
|
|
* <= 46
|
|
*
|
|
* The %pc is set to a, and curthread->t_dtrace_astpc is set
|
|
* to b. If we encounter a signal on the way out of the
|
|
* kernel, trap() will set %pc to curthread->t_dtrace_astpc
|
|
* so that we execute the original instruction and re-enter
|
|
* the kernel rather than redirecting to the next instruction.
|
|
*
|
|
* If there are return probes (so we know that we're going to
|
|
* need to reenter the kernel after executing the original
|
|
* instruction), the scratch space will just contain the
|
|
* original instruction followed by an interrupt -- the same
|
|
* data as at b.
|
|
*
|
|
* %rip-relative Addressing
|
|
* ------------------------
|
|
*
|
|
* There's a further complication in 64-bit mode due to %rip-
|
|
* relative addressing. While this is clearly a beneficial
|
|
* architectural decision for position independent code, it's
|
|
* hard not to see it as a personal attack against the pid
|
|
* provider since before there was a relatively small set of
|
|
* instructions to emulate; with %rip-relative addressing,
|
|
* almost every instruction can potentially depend on the
|
|
* address at which it's executed. Rather than emulating
|
|
* the broad spectrum of instructions that can now be
|
|
* position dependent, we emulate jumps and others as in
|
|
* 32-bit mode, and take a different tack for instructions
|
|
* using %rip-relative addressing.
|
|
*
|
|
* For every instruction that uses the ModRM byte, the
|
|
* in-kernel disassembler reports its location. We use the
|
|
* ModRM byte to identify that an instruction uses
|
|
* %rip-relative addressing and to see what other registers
|
|
* the instruction uses. To emulate those instructions,
|
|
* we modify the instruction to be %rax-relative rather than
|
|
* %rip-relative (or %rcx-relative if the instruction uses
|
|
* %rax; or %r8- or %r9-relative if the REX.B is present so
|
|
* we don't have to rewrite the REX prefix). We then load
|
|
* the value that %rip would have been into the scratch
|
|
* register and generate an instruction to reset the scratch
|
|
* register back to its original value. The instruction
|
|
* sequence looks like this:
|
|
*
|
|
* 64-mode %rip-relative bytes
|
|
* ------------------------ -----
|
|
* a: <modified instruction> <= 15
|
|
* movq $<value>, %<scratch> 6
|
|
* jmp 0(%rip) 6
|
|
* <pc + tp->ftt_size> 8
|
|
* b: <modified instruction> <= 15
|
|
* int T_DTRACE_RET 2
|
|
* -----
|
|
* 52
|
|
*
|
|
* We set curthread->t_dtrace_regv so that upon receiving
|
|
* a signal we can reset the value of the scratch register.
|
|
*/
|
|
|
|
addr = uthread->t_dtrace_scratch->addr;
|
|
write_addr = uthread->t_dtrace_scratch->write_addr;
|
|
|
|
if (addr == 0LL || write_addr == 0LL) {
|
|
fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
|
|
|
|
uthread->t_dtrace_scrpc = addr;
|
|
bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
|
|
i += tp->ftt_size;
|
|
|
|
if (tp->ftt_ripmode != 0) {
|
|
uint64_t* reg;
|
|
|
|
ASSERT(tp->ftt_ripmode &
|
|
(FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
|
|
|
|
/*
|
|
* If this was a %rip-relative instruction, we change
|
|
* it to be either a %rax- or %rcx-relative
|
|
* instruction (depending on whether those registers
|
|
* are used as another operand; or %r8- or %r9-
|
|
* relative depending on the value of REX.B). We then
|
|
* set that register and generate a movq instruction
|
|
* to reset the value.
|
|
*/
|
|
if (tp->ftt_ripmode & FASTTRAP_RIP_X)
|
|
scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
|
|
else
|
|
scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
|
|
|
|
if (tp->ftt_ripmode & FASTTRAP_RIP_1)
|
|
scratch[i++] = FASTTRAP_MOV_EAX;
|
|
else
|
|
scratch[i++] = FASTTRAP_MOV_ECX;
|
|
|
|
switch (tp->ftt_ripmode) {
|
|
case FASTTRAP_RIP_1:
|
|
reg = ®s64->rax;
|
|
uthread->t_dtrace_reg = REG_RAX;
|
|
break;
|
|
case FASTTRAP_RIP_2:
|
|
reg = ®s64->rcx;
|
|
uthread->t_dtrace_reg = REG_RCX;
|
|
break;
|
|
case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
|
|
reg = ®s64->r8;
|
|
uthread->t_dtrace_reg = REG_R8;
|
|
break;
|
|
case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
|
|
reg = ®s64->r9;
|
|
uthread->t_dtrace_reg = REG_R9;
|
|
break;
|
|
default:
|
|
reg = NULL;
|
|
panic("unhandled ripmode in fasttrap_pid_probe64");
|
|
}
|
|
|
|
/* LINTED - alignment */
|
|
*(uint64_t *)&scratch[i] = *reg;
|
|
uthread->t_dtrace_regv = *reg;
|
|
*reg = pc + tp->ftt_size;
|
|
i += sizeof (uint64_t);
|
|
}
|
|
|
|
/*
|
|
* Generate the branch instruction to what would have
|
|
* normally been the subsequent instruction. In 32-bit mode,
|
|
* this is just a relative branch; in 64-bit mode this is a
|
|
* %rip-relative branch that loads the 64-bit pc value
|
|
* immediately after the jmp instruction.
|
|
*/
|
|
scratch[i++] = FASTTRAP_GROUP5_OP;
|
|
scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
|
|
/* LINTED - alignment */
|
|
*(uint32_t *)&scratch[i] = 0;
|
|
i += sizeof (uint32_t);
|
|
/* LINTED - alignment */
|
|
*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
|
|
i += sizeof (uint64_t);
|
|
|
|
uthread->t_dtrace_astpc = addr + i;
|
|
bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
|
|
i += tp->ftt_size;
|
|
scratch[i++] = FASTTRAP_INT;
|
|
scratch[i++] = T_DTRACE_RET;
|
|
|
|
ASSERT(i <= sizeof (scratch));
|
|
|
|
if (fasttrap_copyout(scratch, write_addr, i)) {
|
|
fasttrap_sigtrap(p, uthread, pc);
|
|
new_pc = pc;
|
|
break;
|
|
}
|
|
|
|
if (tp->ftt_retids != NULL) {
|
|
uthread->t_dtrace_step = 1;
|
|
uthread->t_dtrace_ret = 1;
|
|
new_pc = uthread->t_dtrace_astpc;
|
|
} else {
|
|
new_pc = uthread->t_dtrace_scrpc;
|
|
}
|
|
|
|
uthread->t_dtrace_pc = pc;
|
|
uthread->t_dtrace_npc = pc + tp->ftt_size;
|
|
uthread->t_dtrace_on = 1;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
panic("fasttrap: mishandled an instruction");
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* APPLE NOTE:
|
|
*
|
|
* We're setting this earlier than Solaris does, to get a "correct"
|
|
* ustack() output. In the Sun code, a() -> b() -> c() -> d() is
|
|
* reported at: d, b, a. The new way gives c, b, a, which is closer
|
|
* to correct, as the return instruction has already exectued.
|
|
*/
|
|
regs64->isf.rip = new_pc;
|
|
|
|
|
|
/*
|
|
* If there were no return probes when we first found the tracepoint,
|
|
* we should feel no obligation to honor any return probes that were
|
|
* subsequently enabled -- they'll just have to wait until the next
|
|
* time around.
|
|
*/
|
|
if (tp->ftt_retids != NULL) {
|
|
/*
|
|
* We need to wait until the results of the instruction are
|
|
* apparent before invoking any return probes. If this
|
|
* instruction was emulated we can just call
|
|
* fasttrap_return_common(); if it needs to be executed, we
|
|
* need to wait until the user thread returns to the kernel.
|
|
*/
|
|
if (tp->ftt_type != FASTTRAP_T_COMMON) {
|
|
fasttrap_return_common(regs, pc, pid, new_pc);
|
|
} else {
|
|
ASSERT(uthread->t_dtrace_ret != 0);
|
|
ASSERT(uthread->t_dtrace_pc == pc);
|
|
ASSERT(uthread->t_dtrace_scrpc != 0);
|
|
ASSERT(new_pc == uthread->t_dtrace_astpc);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fasttrap_pid_probe(x86_saved_state_t *regs)
|
|
{
|
|
if (is_saved_state64(regs))
|
|
return fasttrap_pid_probe64(regs);
|
|
|
|
return fasttrap_pid_probe32(regs);
|
|
}
|
|
|
|
int
|
|
fasttrap_return_probe(x86_saved_state_t *regs)
|
|
{
|
|
x86_saved_state64_t *regs64;
|
|
x86_saved_state32_t *regs32;
|
|
unsigned int p_model;
|
|
|
|
if (is_saved_state64(regs)) {
|
|
regs64 = saved_state64(regs);
|
|
regs32 = NULL;
|
|
p_model = DATAMODEL_LP64;
|
|
} else {
|
|
regs64 = NULL;
|
|
regs32 = saved_state32(regs);
|
|
p_model = DATAMODEL_ILP32;
|
|
}
|
|
|
|
proc_t *p = current_proc();
|
|
uthread_t uthread = current_uthread();
|
|
user_addr_t pc = uthread->t_dtrace_pc;
|
|
user_addr_t npc = uthread->t_dtrace_npc;
|
|
|
|
uthread->t_dtrace_pc = 0;
|
|
uthread->t_dtrace_npc = 0;
|
|
uthread->t_dtrace_scrpc = 0;
|
|
uthread->t_dtrace_astpc = 0;
|
|
|
|
|
|
/*
|
|
* We set rp->r_pc to the address of the traced instruction so
|
|
* that it appears to dtrace_probe() that we're on the original
|
|
* instruction, and so that the user can't easily detect our
|
|
* complex web of lies. dtrace_return_probe() (our caller)
|
|
* will correctly set %pc after we return.
|
|
*/
|
|
if (p_model == DATAMODEL_LP64)
|
|
regs64->isf.rip = pc;
|
|
else
|
|
regs32->eip = pc;
|
|
|
|
fasttrap_return_common(regs, pc, proc_getpid(p), npc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
uint64_t
|
|
fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
|
|
int aframes)
|
|
{
|
|
pal_register_cache_state(current_thread(), VALID);
|
|
#pragma unused(arg, id, parg, aframes)
|
|
return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 1, argno));
|
|
}
|
|
|
|
uint64_t
|
|
fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
|
|
int aframes)
|
|
{
|
|
pal_register_cache_state(current_thread(), VALID);
|
|
#pragma unused(arg, id, parg, aframes)
|
|
return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 0, argno));
|
|
}
|
|
|
|
/*
|
|
* APPLE NOTE: See comments by regmap array definition. We are cheating
|
|
* when returning 32 bit registers.
|
|
*/
|
|
static user_addr_t
|
|
fasttrap_getreg(x86_saved_state_t *regs, uint_t reg)
|
|
{
|
|
if (is_saved_state64(regs)) {
|
|
x86_saved_state64_t *regs64 = saved_state64(regs);
|
|
|
|
switch (reg) {
|
|
case REG_RAX: return regs64->rax;
|
|
case REG_RCX: return regs64->rcx;
|
|
case REG_RDX: return regs64->rdx;
|
|
case REG_RBX: return regs64->rbx;
|
|
case REG_RSP: return regs64->isf.rsp;
|
|
case REG_RBP: return regs64->rbp;
|
|
case REG_RSI: return regs64->rsi;
|
|
case REG_RDI: return regs64->rdi;
|
|
case REG_R8: return regs64->r8;
|
|
case REG_R9: return regs64->r9;
|
|
case REG_R10: return regs64->r10;
|
|
case REG_R11: return regs64->r11;
|
|
case REG_R12: return regs64->r12;
|
|
case REG_R13: return regs64->r13;
|
|
case REG_R14: return regs64->r14;
|
|
case REG_R15: return regs64->r15;
|
|
case REG_TRAPNO: return regs64->isf.trapno;
|
|
case REG_ERR: return regs64->isf.err;
|
|
case REG_RIP: return regs64->isf.rip;
|
|
case REG_CS: return regs64->isf.cs;
|
|
case REG_RFL: return regs64->isf.rflags;
|
|
case REG_SS: return regs64->isf.ss;
|
|
case REG_FS: return regs64->fs;
|
|
case REG_GS: return regs64->gs;
|
|
case REG_ES:
|
|
case REG_DS:
|
|
case REG_FSBASE:
|
|
case REG_GSBASE:
|
|
// Important to distinguish these requests (which should be legal) from other values.
|
|
panic("dtrace: unimplemented x86_64 getreg()");
|
|
}
|
|
|
|
panic("dtrace: unhandled x86_64 getreg() constant");
|
|
} else {
|
|
x86_saved_state32_t *regs32 = saved_state32(regs);
|
|
|
|
switch (reg) {
|
|
case REG_RAX: return regs32->eax;
|
|
case REG_RCX: return regs32->ecx;
|
|
case REG_RDX: return regs32->edx;
|
|
case REG_RBX: return regs32->ebx;
|
|
case REG_RSP: return regs32->uesp;
|
|
case REG_RBP: return regs32->ebp;
|
|
case REG_RSI: return regs32->esi;
|
|
case REG_RDI: return regs32->edi;
|
|
}
|
|
|
|
panic("dtrace: unhandled i386 getreg() constant");
|
|
}
|
|
|
|
return 0;
|
|
}
|