2991 lines
77 KiB
C
2991 lines
77 KiB
C
/*
|
|
* Copyright (c) 2000-2021 Apple Inc. All rights reserved.
|
|
*
|
|
* @Apple_LICENSE_HEADER_START@
|
|
*
|
|
* The contents of this file constitute Original Code as defined in and
|
|
* are subject to the Apple Public Source License Version 1.1 (the
|
|
* "License"). You may not use this file except in compliance with the
|
|
* License. Please obtain a copy of the License at
|
|
* http://www.apple.com/publicsource and read it before using this file.
|
|
*
|
|
* This Original Code and all software distributed under the License are
|
|
* distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
|
|
* License for the specific language governing rights and limitations
|
|
* under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
|
|
#include <sys/errno.h>
|
|
#include <sys/kdebug_private.h>
|
|
#include <sys/proc_internal.h>
|
|
#include <sys/vm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/kdebug_common.h>
|
|
#include <sys/kdebug.h>
|
|
#include <sys/kdebug_triage.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/ktrace.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/bsdtask_info.h>
|
|
#include <sys/random.h>
|
|
|
|
#include <mach/mach_vm.h>
|
|
#include <machine/atomic.h>
|
|
|
|
#include <mach/machine.h>
|
|
#include <mach/vm_map.h>
|
|
#include <kern/clock.h>
|
|
|
|
#include <kern/task.h>
|
|
#include <kern/debug.h>
|
|
#include <kern/kalloc.h>
|
|
#include <kern/telemetry.h>
|
|
#include <kern/sched_prim.h>
|
|
#include <sys/lock.h>
|
|
#include <pexpert/device_tree.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/vnode.h>
|
|
#include <sys/vnode_internal.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/file_internal.h>
|
|
#include <sys/ubc.h>
|
|
#include <sys/param.h> /* for isset() */
|
|
|
|
#include <libkern/OSAtomic.h>
|
|
|
|
#include <machine/pal_routines.h>
|
|
#include <machine/atomic.h>
|
|
|
|
|
|
extern unsigned int wake_nkdbufs;
|
|
extern unsigned int trace_wrap;
|
|
|
|
// Coprocessors (or "IOP"s)
|
|
//
|
|
// Coprocessors are auxiliary cores that want to participate in kdebug event
|
|
// logging. They are registered dynamically, as devices match hardware, and are
|
|
// each assigned an ID at registration.
|
|
//
|
|
// Once registered, a coprocessor is permanent; it cannot be unregistered.
|
|
// The current implementation depends on this for thread safety.
|
|
//
|
|
// The `kd_coprocs` list may be safely walked at any time, without holding
|
|
// locks.
|
|
//
|
|
// When starting a trace session, the current `kd_coprocs` head is captured. Any
|
|
// operations that depend on the buffer state (such as flushing IOP traces on
|
|
// reads, etc.) should use the captured list head. This will allow registrations
|
|
// to take place while trace is in use, though their events will be rejected
|
|
// until the next time a trace session is started.
|
|
|
|
struct kd_coproc {
|
|
char full_name[32];
|
|
kdebug_coproc_flags_t flags;
|
|
kd_callback_t callback;
|
|
uint32_t cpu_id;
|
|
struct kd_coproc *next;
|
|
struct mpsc_queue_chain chain;
|
|
};
|
|
|
|
static struct kd_coproc *kd_coprocs = NULL;
|
|
|
|
// Use an MPSC queue to notify coprocessors of the current trace state during
|
|
// registration, if space is available for them in the current trace session.
|
|
static struct mpsc_daemon_queue _coproc_notify_queue;
|
|
|
|
// Typefilter(s)
|
|
//
|
|
// A typefilter is a 8KB bitmap that is used to selectively filter events
|
|
// being recorded. It is able to individually address every class & subclass.
|
|
//
|
|
// There is a shared typefilter in the kernel which is lazily allocated. Once
|
|
// allocated, the shared typefilter is never deallocated. The shared typefilter
|
|
// is also mapped on demand into userspace processes that invoke kdebug_trace
|
|
// API from Libsyscall. When mapped into a userspace process, the memory is
|
|
// read only, and does not have a fixed address.
|
|
//
|
|
// It is a requirement that the kernel's shared typefilter always pass DBG_TRACE
|
|
// events. This is enforced automatically, by having the needed bits set any
|
|
// time the shared typefilter is mutated.
|
|
|
|
typedef uint8_t *typefilter_t;
|
|
|
|
static typefilter_t kdbg_typefilter;
|
|
static mach_port_t kdbg_typefilter_memory_entry;
|
|
|
|
/*
|
|
* There are 3 combinations of page sizes:
|
|
*
|
|
* 4KB / 4KB
|
|
* 4KB / 16KB
|
|
* 16KB / 16KB
|
|
*
|
|
* The typefilter is exactly 8KB. In the first two scenarios, we would like
|
|
* to use 2 pages exactly; in the third scenario we must make certain that
|
|
* a full page is allocated so we do not inadvertantly share 8KB of random
|
|
* data to userspace. The round_page_32 macro rounds to kernel page size.
|
|
*/
|
|
#define TYPEFILTER_ALLOC_SIZE MAX(round_page_32(KDBG_TYPEFILTER_BITMAP_SIZE), KDBG_TYPEFILTER_BITMAP_SIZE)
|
|
|
|
static typefilter_t
|
|
typefilter_create(void)
|
|
{
|
|
typefilter_t tf;
|
|
if (KERN_SUCCESS == kmem_alloc(kernel_map, (vm_offset_t*)&tf,
|
|
TYPEFILTER_ALLOC_SIZE, KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_DIAG)) {
|
|
return tf;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
typefilter_deallocate(typefilter_t tf)
|
|
{
|
|
assert(tf != NULL);
|
|
assert(tf != kdbg_typefilter);
|
|
kmem_free(kernel_map, (vm_offset_t)tf, TYPEFILTER_ALLOC_SIZE);
|
|
}
|
|
|
|
static void
|
|
typefilter_copy(typefilter_t dst, typefilter_t src)
|
|
{
|
|
assert(src != NULL);
|
|
assert(dst != NULL);
|
|
memcpy(dst, src, KDBG_TYPEFILTER_BITMAP_SIZE);
|
|
}
|
|
|
|
static void
|
|
typefilter_reject_all(typefilter_t tf)
|
|
{
|
|
assert(tf != NULL);
|
|
memset(tf, 0, KDBG_TYPEFILTER_BITMAP_SIZE);
|
|
}
|
|
|
|
static void
|
|
typefilter_allow_all(typefilter_t tf)
|
|
{
|
|
assert(tf != NULL);
|
|
memset(tf, ~0, KDBG_TYPEFILTER_BITMAP_SIZE);
|
|
}
|
|
|
|
static void
|
|
typefilter_allow_class(typefilter_t tf, uint8_t class)
|
|
{
|
|
assert(tf != NULL);
|
|
const uint32_t BYTES_PER_CLASS = 256 / 8; // 256 subclasses, 1 bit each
|
|
memset(&tf[class * BYTES_PER_CLASS], 0xFF, BYTES_PER_CLASS);
|
|
}
|
|
|
|
static void
|
|
typefilter_allow_csc(typefilter_t tf, uint16_t csc)
|
|
{
|
|
assert(tf != NULL);
|
|
setbit(tf, csc);
|
|
}
|
|
|
|
static bool
|
|
typefilter_is_debugid_allowed(typefilter_t tf, uint32_t id)
|
|
{
|
|
assert(tf != NULL);
|
|
return isset(tf, KDBG_EXTRACT_CSC(id));
|
|
}
|
|
|
|
static mach_port_t
|
|
typefilter_create_memory_entry(typefilter_t tf)
|
|
{
|
|
assert(tf != NULL);
|
|
|
|
mach_port_t memory_entry = MACH_PORT_NULL;
|
|
memory_object_size_t size = TYPEFILTER_ALLOC_SIZE;
|
|
|
|
kern_return_t kr = mach_make_memory_entry_64(kernel_map,
|
|
&size,
|
|
(memory_object_offset_t)tf,
|
|
VM_PROT_READ,
|
|
&memory_entry,
|
|
MACH_PORT_NULL);
|
|
if (kr != KERN_SUCCESS) {
|
|
return MACH_PORT_NULL;
|
|
}
|
|
|
|
return memory_entry;
|
|
}
|
|
|
|
static int kdbg_copyin_typefilter(user_addr_t addr, size_t size);
|
|
static void kdbg_enable_typefilter(void);
|
|
static void kdbg_disable_typefilter(void);
|
|
|
|
// External prototypes
|
|
|
|
void commpage_update_kdebug_state(void);
|
|
|
|
static int kdbg_readcurthrmap(user_addr_t, size_t *);
|
|
static int kdbg_setpidex(kd_regtype *);
|
|
static int kdbg_setpid(kd_regtype *);
|
|
static int kdbg_reinit(unsigned int extra_cpus);
|
|
#if DEVELOPMENT || DEBUG
|
|
static int kdbg_test(size_t flavor);
|
|
#endif /* DEVELOPMENT || DEBUG */
|
|
|
|
static int _write_legacy_header(bool write_thread_map, vnode_t vp,
|
|
vfs_context_t ctx);
|
|
static int kdbg_write_thread_map(vnode_t vp, vfs_context_t ctx);
|
|
static int kdbg_copyout_thread_map(user_addr_t buffer, size_t *buffer_size);
|
|
static void _clear_thread_map(void);
|
|
|
|
static bool kdbg_wait(uint64_t timeout_ms);
|
|
static void kdbg_wakeup(void);
|
|
|
|
static int _copy_cpu_map(int version, void **dst, size_t *size);
|
|
|
|
static kd_threadmap *_thread_map_create_live(size_t max_count,
|
|
vm_size_t *map_size, vm_size_t *map_count);
|
|
|
|
static bool kdebug_current_proc_enabled(uint32_t debugid);
|
|
static errno_t kdebug_check_trace_string(uint32_t debugid, uint64_t str_id);
|
|
|
|
int kernel_debug_trace_write_to_file(user_addr_t *buffer, size_t *number,
|
|
size_t *count, size_t tempbuf_number, vnode_t vp, vfs_context_t ctx,
|
|
bool chunk);
|
|
|
|
extern void IOSleep(int);
|
|
|
|
unsigned int kdebug_enable = 0;
|
|
|
|
// A static buffer to record events prior to the start of regular logging.
|
|
|
|
#define KD_EARLY_BUFFER_SIZE (16 * 1024)
|
|
#define KD_EARLY_EVENT_COUNT (KD_EARLY_BUFFER_SIZE / sizeof(kd_buf))
|
|
#if defined(__x86_64__)
|
|
__attribute__((aligned(KD_EARLY_BUFFER_SIZE)))
|
|
static kd_buf kd_early_buffer[KD_EARLY_EVENT_COUNT];
|
|
#else /* defined(__x86_64__) */
|
|
// On ARM, the space for this is carved out by osfmk/arm/data.s -- clang
|
|
// has problems aligning to greater than 4K.
|
|
extern kd_buf kd_early_buffer[KD_EARLY_EVENT_COUNT];
|
|
#endif /* !defined(__x86_64__) */
|
|
|
|
static __security_const_late unsigned int kd_early_index = 0;
|
|
static __security_const_late bool kd_early_overflow = false;
|
|
static __security_const_late bool kd_early_done = false;
|
|
|
|
static bool kd_waiter = false;
|
|
static LCK_SPIN_DECLARE(kd_wait_lock, &kdebug_lck_grp);
|
|
// Synchronize access to coprocessor list for kdebug trace.
|
|
static LCK_SPIN_DECLARE(kd_coproc_spinlock, &kdebug_lck_grp);
|
|
|
|
#define TRACE_KDCOPYBUF_COUNT 8192
|
|
#define TRACE_KDCOPYBUF_SIZE (TRACE_KDCOPYBUF_COUNT * sizeof(kd_buf))
|
|
|
|
struct kd_control kd_control_trace = {
|
|
.kds_free_list = {.raw = KDS_PTR_NULL},
|
|
.enabled = 0,
|
|
.mode = KDEBUG_MODE_TRACE,
|
|
.kdebug_events_per_storage_unit = TRACE_EVENTS_PER_STORAGE_UNIT,
|
|
.kdebug_min_storage_units_per_cpu = TRACE_MIN_STORAGE_UNITS_PER_CPU,
|
|
.kdebug_kdcopybuf_count = TRACE_KDCOPYBUF_COUNT,
|
|
.kdebug_kdcopybuf_size = TRACE_KDCOPYBUF_SIZE,
|
|
.kdc_flags = 0,
|
|
.kdc_emit = KDEMIT_DISABLE,
|
|
.kdc_oldest_time = 0
|
|
};
|
|
|
|
struct kd_buffer kd_buffer_trace = {
|
|
.kdb_event_count = 0,
|
|
.kdb_storage_count = 0,
|
|
.kdb_storage_threshold = 0,
|
|
.kdb_region_count = 0,
|
|
.kdb_info = NULL,
|
|
.kd_bufs = NULL,
|
|
.kdcopybuf = NULL
|
|
};
|
|
|
|
unsigned int kdlog_beg = 0;
|
|
unsigned int kdlog_end = 0;
|
|
unsigned int kdlog_value1 = 0;
|
|
unsigned int kdlog_value2 = 0;
|
|
unsigned int kdlog_value3 = 0;
|
|
unsigned int kdlog_value4 = 0;
|
|
|
|
kd_threadmap *kd_mapptr = 0;
|
|
vm_size_t kd_mapsize = 0;
|
|
vm_size_t kd_mapcount = 0;
|
|
|
|
off_t RAW_file_offset = 0;
|
|
int RAW_file_written = 0;
|
|
|
|
/*
|
|
* A globally increasing counter for identifying strings in trace. Starts at
|
|
* 1 because 0 is a reserved return value.
|
|
*/
|
|
__attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE)))
|
|
static uint64_t g_curr_str_id = 1;
|
|
|
|
#define STR_ID_SIG_OFFSET (48)
|
|
#define STR_ID_MASK ((1ULL << STR_ID_SIG_OFFSET) - 1)
|
|
#define STR_ID_SIG_MASK (~STR_ID_MASK)
|
|
|
|
/*
|
|
* A bit pattern for identifying string IDs generated by
|
|
* kdebug_trace_string(2).
|
|
*/
|
|
static uint64_t g_str_id_signature = (0x70acULL << STR_ID_SIG_OFFSET);
|
|
|
|
#define RAW_VERSION3 0x00001000
|
|
|
|
#define V3_RAW_EVENTS 0x00001e00
|
|
|
|
static void
|
|
_coproc_lock(void)
|
|
{
|
|
lck_spin_lock_grp(&kd_coproc_spinlock, &kdebug_lck_grp);
|
|
}
|
|
|
|
static void
|
|
_coproc_unlock(void)
|
|
{
|
|
lck_spin_unlock(&kd_coproc_spinlock);
|
|
}
|
|
|
|
static void
|
|
_coproc_list_check(void)
|
|
{
|
|
#if MACH_ASSERT
|
|
_coproc_lock();
|
|
struct kd_coproc *coproc = kd_control_trace.kdc_coprocs;
|
|
if (coproc) {
|
|
/* Is list sorted by cpu_id? */
|
|
struct kd_coproc* temp = coproc;
|
|
do {
|
|
assert(!temp->next || temp->next->cpu_id == temp->cpu_id - 1);
|
|
assert(temp->next || (temp->cpu_id == kdbg_cpu_count()));
|
|
} while ((temp = temp->next));
|
|
|
|
/* Does each entry have a function and a name? */
|
|
temp = coproc;
|
|
do {
|
|
assert(temp->callback.func);
|
|
assert(strlen(temp->callback.iop_name) < sizeof(temp->callback.iop_name));
|
|
} while ((temp = temp->next));
|
|
}
|
|
_coproc_unlock();
|
|
#endif // MACH_ASSERT
|
|
}
|
|
|
|
static void
|
|
_coproc_list_callback(kd_callback_type type, void *arg)
|
|
{
|
|
if (kd_control_trace.kdc_flags & KDBG_DISABLE_COPROCS) {
|
|
return;
|
|
}
|
|
|
|
_coproc_lock();
|
|
// Coprocessor list is only ever prepended to.
|
|
struct kd_coproc *head = kd_control_trace.kdc_coprocs;
|
|
_coproc_unlock();
|
|
while (head) {
|
|
head->callback.func(head->callback.context, type, arg);
|
|
head = head->next;
|
|
}
|
|
}
|
|
|
|
// Leave some extra space for coprocessors to register while tracing is active.
|
|
#define EXTRA_COPROC_COUNT (16)
|
|
// There are more coprocessors registering during boot tracing.
|
|
#define EXTRA_COPROC_COUNT_BOOT (32)
|
|
|
|
static kdebug_emit_filter_t
|
|
_trace_emit_filter(void)
|
|
{
|
|
if (!kdebug_enable) {
|
|
return KDEMIT_DISABLE;
|
|
} else if (kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK) {
|
|
return KDEMIT_TYPEFILTER;
|
|
} else if (kd_control_trace.kdc_flags & KDBG_RANGECHECK) {
|
|
return KDEMIT_RANGE;
|
|
} else if (kd_control_trace.kdc_flags & KDBG_VALCHECK) {
|
|
return KDEMIT_EXACT;
|
|
} else {
|
|
return KDEMIT_ALL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
kdbg_set_tracing_enabled(bool enabled, uint32_t trace_type)
|
|
{
|
|
// Drain any events from coprocessors before making the state change. On
|
|
// enabling, this removes any stale events from before tracing. On
|
|
// disabling, this saves any events up to the point tracing is disabled.
|
|
_coproc_list_callback(KD_CALLBACK_SYNC_FLUSH, NULL);
|
|
|
|
if (!enabled) {
|
|
// Give coprocessors a chance to log any events before tracing is
|
|
// disabled, outside the lock.
|
|
_coproc_list_callback(KD_CALLBACK_KDEBUG_DISABLED, NULL);
|
|
}
|
|
|
|
int intrs_en = kdebug_storage_lock(&kd_control_trace);
|
|
if (enabled) {
|
|
// The oldest valid time is now; reject past events from coprocessors.
|
|
kd_control_trace.kdc_oldest_time = kdebug_timestamp();
|
|
kdebug_enable |= trace_type;
|
|
kd_control_trace.kdc_emit = _trace_emit_filter();
|
|
kd_control_trace.enabled = 1;
|
|
commpage_update_kdebug_state();
|
|
} else {
|
|
kdebug_enable = 0;
|
|
kd_control_trace.kdc_emit = KDEMIT_DISABLE;
|
|
kd_control_trace.enabled = 0;
|
|
commpage_update_kdebug_state();
|
|
}
|
|
kdebug_storage_unlock(&kd_control_trace, intrs_en);
|
|
|
|
if (enabled) {
|
|
_coproc_list_callback(KD_CALLBACK_KDEBUG_ENABLED, NULL);
|
|
}
|
|
}
|
|
|
|
static int
|
|
create_buffers_trace(unsigned int extra_cpus)
|
|
{
|
|
int events_per_storage_unit = kd_control_trace.kdebug_events_per_storage_unit;
|
|
int min_storage_units_per_cpu = kd_control_trace.kdebug_min_storage_units_per_cpu;
|
|
|
|
// For the duration of this allocation, trace code will only reference
|
|
// kdc_coprocs.
|
|
kd_control_trace.kdc_coprocs = kd_coprocs;
|
|
_coproc_list_check();
|
|
|
|
// If the list is valid, it is sorted from newest to oldest. Each entry is
|
|
// prepended, so the CPU IDs are sorted in descending order.
|
|
kd_control_trace.kdebug_cpus = kd_control_trace.kdc_coprocs ?
|
|
kd_control_trace.kdc_coprocs->cpu_id + 1 : kdbg_cpu_count();
|
|
kd_control_trace.alloc_cpus = kd_control_trace.kdebug_cpus + extra_cpus;
|
|
|
|
size_t min_event_count = kd_control_trace.alloc_cpus *
|
|
events_per_storage_unit * min_storage_units_per_cpu;
|
|
if (kd_buffer_trace.kdb_event_count < min_event_count) {
|
|
kd_buffer_trace.kdb_storage_count = kd_control_trace.alloc_cpus * min_storage_units_per_cpu;
|
|
} else {
|
|
kd_buffer_trace.kdb_storage_count = kd_buffer_trace.kdb_event_count / events_per_storage_unit;
|
|
}
|
|
|
|
kd_buffer_trace.kdb_event_count = kd_buffer_trace.kdb_storage_count * events_per_storage_unit;
|
|
|
|
kd_buffer_trace.kd_bufs = NULL;
|
|
|
|
int error = create_buffers(&kd_control_trace, &kd_buffer_trace,
|
|
VM_KERN_MEMORY_DIAG);
|
|
if (!error) {
|
|
struct kd_bufinfo *info = kd_buffer_trace.kdb_info;
|
|
struct kd_coproc *cur_iop = kd_control_trace.kdc_coprocs;
|
|
while (cur_iop != NULL) {
|
|
info[cur_iop->cpu_id].continuous_timestamps = ISSET(cur_iop->flags,
|
|
KDCP_CONTINUOUS_TIME);
|
|
cur_iop = cur_iop->next;
|
|
}
|
|
kd_buffer_trace.kdb_storage_threshold = kd_buffer_trace.kdb_storage_count / 2;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
delete_buffers_trace(void)
|
|
{
|
|
delete_buffers(&kd_control_trace, &kd_buffer_trace);
|
|
}
|
|
|
|
static int
|
|
_register_coproc_internal(const char *name, kdebug_coproc_flags_t flags,
|
|
kd_callback_fn callback, void *context)
|
|
{
|
|
struct kd_coproc *coproc = NULL;
|
|
|
|
coproc = zalloc_permanent_type(struct kd_coproc);
|
|
coproc->callback.func = callback;
|
|
coproc->callback.context = context;
|
|
coproc->flags = flags;
|
|
strlcpy(coproc->full_name, name, sizeof(coproc->full_name));
|
|
|
|
_coproc_lock();
|
|
coproc->next = kd_coprocs;
|
|
coproc->cpu_id = kd_coprocs == NULL ? kdbg_cpu_count() : kd_coprocs->cpu_id + 1;
|
|
kd_coprocs = coproc;
|
|
if (coproc->cpu_id < kd_control_trace.alloc_cpus) {
|
|
kd_control_trace.kdc_coprocs = kd_coprocs;
|
|
kd_control_trace.kdebug_cpus += 1;
|
|
if (kdebug_enable) {
|
|
mpsc_daemon_enqueue(&_coproc_notify_queue, &coproc->chain,
|
|
MPSC_QUEUE_NONE);
|
|
}
|
|
}
|
|
_coproc_unlock();
|
|
|
|
return coproc->cpu_id;
|
|
}
|
|
|
|
int
|
|
kernel_debug_register_callback(kd_callback_t callback)
|
|
{
|
|
// Be paranoid about using the provided name, but it's too late to reject
|
|
// it.
|
|
bool is_valid_name = false;
|
|
for (uint32_t length = 0; length < sizeof(callback.iop_name); ++length) {
|
|
if (callback.iop_name[length] > 0x20 && callback.iop_name[length] < 0x7F) {
|
|
continue;
|
|
}
|
|
if (callback.iop_name[length] == 0) {
|
|
if (length) {
|
|
is_valid_name = true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
kd_callback_t sane_cb = callback;
|
|
if (!is_valid_name) {
|
|
strlcpy(sane_cb.iop_name, "IOP-???", sizeof(sane_cb.iop_name));
|
|
}
|
|
|
|
return _register_coproc_internal(sane_cb.iop_name, 0, sane_cb.func,
|
|
sane_cb.context);
|
|
}
|
|
|
|
int
|
|
kdebug_register_coproc(const char *name, kdebug_coproc_flags_t flags,
|
|
kd_callback_fn callback, void *context)
|
|
{
|
|
size_t name_len = strlen(name);
|
|
if (!name || name_len == 0) {
|
|
panic("kdebug: invalid name for coprocessor: %p", name);
|
|
}
|
|
for (size_t i = 0; i < name_len; i++) {
|
|
if (name[i] <= 0x20 || name[i] >= 0x7F) {
|
|
panic("kdebug: invalid name for coprocessor: %s", name);
|
|
}
|
|
}
|
|
if (!callback) {
|
|
panic("kdebug: no callback for coprocessor `%s'", name);
|
|
}
|
|
return _register_coproc_internal(name, flags, callback, context);
|
|
}
|
|
|
|
static inline bool
|
|
_should_emit_debugid(kdebug_emit_filter_t emit, uint32_t debugid)
|
|
{
|
|
switch (emit) {
|
|
case KDEMIT_DISABLE:
|
|
return false;
|
|
case KDEMIT_TYPEFILTER:
|
|
return typefilter_is_debugid_allowed(kdbg_typefilter, debugid);
|
|
case KDEMIT_RANGE:
|
|
return debugid >= kdlog_beg && debugid <= kdlog_end;
|
|
case KDEMIT_EXACT:;
|
|
uint32_t eventid = debugid & KDBG_EVENTID_MASK;
|
|
return eventid == kdlog_value1 || eventid == kdlog_value2 ||
|
|
eventid == kdlog_value3 || eventid == kdlog_value4;
|
|
case KDEMIT_ALL:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static void
|
|
_try_wakeup_above_threshold(uint32_t debugid)
|
|
{
|
|
bool over_threshold = kd_control_trace.kdc_storage_used >=
|
|
kd_buffer_trace.kdb_storage_threshold;
|
|
if (kd_waiter && over_threshold) {
|
|
// Wakeup any waiters if called from a safe context.
|
|
|
|
const uint32_t INTERRUPT_EVENT = 0x01050000;
|
|
const uint32_t VMFAULT_EVENT = 0x01300008;
|
|
const uint32_t BSD_SYSCALL_CSC = 0x040c0000;
|
|
const uint32_t MACH_SYSCALL_CSC = 0x010c0000;
|
|
|
|
uint32_t eventid = debugid & KDBG_EVENTID_MASK;
|
|
uint32_t csc = debugid & KDBG_CSC_MASK;
|
|
|
|
if (eventid == INTERRUPT_EVENT || eventid == VMFAULT_EVENT ||
|
|
csc == BSD_SYSCALL_CSC || csc == MACH_SYSCALL_CSC) {
|
|
kdbg_wakeup();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit events from coprocessors.
|
|
void
|
|
kernel_debug_enter(
|
|
uint32_t coreid,
|
|
uint32_t debugid,
|
|
uint64_t timestamp,
|
|
uintptr_t arg1,
|
|
uintptr_t arg2,
|
|
uintptr_t arg3,
|
|
uintptr_t arg4,
|
|
uintptr_t threadid
|
|
)
|
|
{
|
|
if (kd_control_trace.kdc_flags & KDBG_DISABLE_COPROCS) {
|
|
return;
|
|
}
|
|
kdebug_emit_filter_t emit = kd_control_trace.kdc_emit;
|
|
if (!emit || !kdebug_enable) {
|
|
return;
|
|
}
|
|
if (!_should_emit_debugid(emit, debugid)) {
|
|
return;
|
|
}
|
|
|
|
struct kd_record kd_rec = {
|
|
.cpu = (int32_t)coreid,
|
|
.timestamp = (int64_t)timestamp,
|
|
.debugid = debugid,
|
|
.arg1 = arg1,
|
|
.arg2 = arg2,
|
|
.arg3 = arg3,
|
|
.arg4 = arg4,
|
|
.arg5 = threadid,
|
|
};
|
|
kernel_debug_write(&kd_control_trace, &kd_buffer_trace, kd_rec);
|
|
}
|
|
|
|
__pure2
|
|
static inline proc_t
|
|
kdebug_current_proc_unsafe(void)
|
|
{
|
|
return get_thread_ro_unchecked(current_thread())->tro_proc;
|
|
}
|
|
|
|
// Return true iff the debug ID should be traced by the current process.
|
|
static inline bool
|
|
kdebug_debugid_procfilt_allowed(uint32_t debugid)
|
|
{
|
|
uint32_t procfilt_flags = kd_control_trace.kdc_flags &
|
|
(KDBG_PIDCHECK | KDBG_PIDEXCLUDE);
|
|
if (!procfilt_flags) {
|
|
return true;
|
|
}
|
|
|
|
// DBG_TRACE and MACH_SCHED tracepoints ignore the process filter.
|
|
if ((debugid & KDBG_CSC_MASK) == MACHDBG_CODE(DBG_MACH_SCHED, 0) ||
|
|
(KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE)) {
|
|
return true;
|
|
}
|
|
|
|
struct proc *curproc = kdebug_current_proc_unsafe();
|
|
// If the process is missing (early in boot), allow it.
|
|
if (!curproc) {
|
|
return true;
|
|
}
|
|
|
|
switch (procfilt_flags) {
|
|
case KDBG_PIDCHECK:
|
|
return curproc->p_kdebug;
|
|
case KDBG_PIDEXCLUDE:
|
|
return !curproc->p_kdebug;
|
|
default:
|
|
panic("kdebug: invalid procfilt flags %x", kd_control_trace.kdc_flags);
|
|
}
|
|
}
|
|
|
|
static void
|
|
kdebug_emit_internal(kdebug_emit_filter_t emit,
|
|
uint32_t debugid,
|
|
uintptr_t arg1,
|
|
uintptr_t arg2,
|
|
uintptr_t arg3,
|
|
uintptr_t arg4,
|
|
uintptr_t arg5,
|
|
uint64_t flags)
|
|
{
|
|
bool only_filter = flags & KDBG_FLAG_FILTERED;
|
|
bool observe_procfilt = !(flags & KDBG_FLAG_NOPROCFILT);
|
|
|
|
if (!_should_emit_debugid(emit, debugid)) {
|
|
return;
|
|
}
|
|
if (emit == KDEMIT_ALL && only_filter) {
|
|
return;
|
|
}
|
|
if (!ml_at_interrupt_context() && observe_procfilt &&
|
|
!kdebug_debugid_procfilt_allowed(debugid)) {
|
|
return;
|
|
}
|
|
|
|
struct kd_record kd_rec = {
|
|
.cpu = -1,
|
|
.timestamp = -1,
|
|
.debugid = debugid,
|
|
.arg1 = arg1,
|
|
.arg2 = arg2,
|
|
.arg3 = arg3,
|
|
.arg4 = arg4,
|
|
.arg5 = arg5,
|
|
};
|
|
kernel_debug_write(&kd_control_trace, &kd_buffer_trace, kd_rec);
|
|
|
|
#if KPERF
|
|
kperf_kdebug_callback(kd_rec.debugid, __builtin_frame_address(0));
|
|
#endif // KPERF
|
|
}
|
|
|
|
static void
|
|
kernel_debug_internal(
|
|
uint32_t debugid,
|
|
uintptr_t arg1,
|
|
uintptr_t arg2,
|
|
uintptr_t arg3,
|
|
uintptr_t arg4,
|
|
uintptr_t arg5,
|
|
uint64_t flags)
|
|
{
|
|
kdebug_emit_filter_t emit = kd_control_trace.kdc_emit;
|
|
if (!emit || !kdebug_enable) {
|
|
return;
|
|
}
|
|
kdebug_emit_internal(emit, debugid, arg1, arg2, arg3, arg4, arg5, flags);
|
|
_try_wakeup_above_threshold(debugid);
|
|
}
|
|
|
|
__attribute__((noinline))
|
|
void
|
|
kernel_debug(uint32_t debugid, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
|
|
uintptr_t arg4, __unused uintptr_t arg5)
|
|
{
|
|
kernel_debug_internal(debugid, arg1, arg2, arg3, arg4,
|
|
(uintptr_t)thread_tid(current_thread()), 0);
|
|
}
|
|
|
|
__attribute__((noinline))
|
|
void
|
|
kernel_debug1(uint32_t debugid, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
|
|
uintptr_t arg4, uintptr_t arg5)
|
|
{
|
|
kernel_debug_internal(debugid, arg1, arg2, arg3, arg4, arg5, 0);
|
|
}
|
|
|
|
__attribute__((noinline))
|
|
void
|
|
kernel_debug_flags(
|
|
uint32_t debugid,
|
|
uintptr_t arg1,
|
|
uintptr_t arg2,
|
|
uintptr_t arg3,
|
|
uintptr_t arg4,
|
|
uint64_t flags)
|
|
{
|
|
kernel_debug_internal(debugid, arg1, arg2, arg3, arg4,
|
|
(uintptr_t)thread_tid(current_thread()), flags);
|
|
}
|
|
|
|
__attribute__((noinline))
|
|
void
|
|
kernel_debug_filtered(
|
|
uint32_t debugid,
|
|
uintptr_t arg1,
|
|
uintptr_t arg2,
|
|
uintptr_t arg3,
|
|
uintptr_t arg4)
|
|
{
|
|
kernel_debug_flags(debugid, arg1, arg2, arg3, arg4, KDBG_FLAG_FILTERED);
|
|
}
|
|
|
|
void
|
|
kernel_debug_string_early(const char *message)
|
|
{
|
|
uintptr_t a[4] = { 0 };
|
|
strncpy((char *)a, message, sizeof(a));
|
|
KERNEL_DEBUG_EARLY(TRACE_INFO_STRING, a[0], a[1], a[2], a[3]);
|
|
}
|
|
|
|
#define SIMPLE_STR_LEN (64)
|
|
static_assert(SIMPLE_STR_LEN % sizeof(uintptr_t) == 0);
|
|
|
|
void
|
|
kernel_debug_string_simple(uint32_t eventid, const char *str)
|
|
{
|
|
if (!kdebug_enable) {
|
|
return;
|
|
}
|
|
|
|
/* array of uintptr_ts simplifies emitting the string as arguments */
|
|
uintptr_t str_buf[(SIMPLE_STR_LEN / sizeof(uintptr_t)) + 1] = { 0 };
|
|
size_t len = strlcpy((char *)str_buf, str, SIMPLE_STR_LEN + 1);
|
|
len = MIN(len, SIMPLE_STR_LEN);
|
|
|
|
uintptr_t thread_id = (uintptr_t)thread_tid(current_thread());
|
|
uint32_t debugid = eventid | DBG_FUNC_START;
|
|
|
|
/* string can fit in a single tracepoint */
|
|
if (len <= (4 * sizeof(uintptr_t))) {
|
|
debugid |= DBG_FUNC_END;
|
|
}
|
|
|
|
kernel_debug_internal(debugid, str_buf[0], str_buf[1], str_buf[2],
|
|
str_buf[3], thread_id, 0);
|
|
|
|
debugid &= KDBG_EVENTID_MASK;
|
|
int i = 4;
|
|
size_t written = 4 * sizeof(uintptr_t);
|
|
|
|
for (; written < len; i += 4, written += 4 * sizeof(uintptr_t)) {
|
|
/* if this is the last tracepoint to be emitted */
|
|
if ((written + (4 * sizeof(uintptr_t))) >= len) {
|
|
debugid |= DBG_FUNC_END;
|
|
}
|
|
kernel_debug_internal(debugid, str_buf[i],
|
|
str_buf[i + 1],
|
|
str_buf[i + 2],
|
|
str_buf[i + 3], thread_id, 0);
|
|
}
|
|
}
|
|
|
|
extern int master_cpu; /* MACH_KERNEL_PRIVATE */
|
|
/*
|
|
* Used prior to start_kern_tracing() being called.
|
|
* Log temporarily into a static buffer.
|
|
*/
|
|
void
|
|
kernel_debug_early(
|
|
uint32_t debugid,
|
|
uintptr_t arg1,
|
|
uintptr_t arg2,
|
|
uintptr_t arg3,
|
|
uintptr_t arg4)
|
|
{
|
|
#if defined(__x86_64__)
|
|
extern int early_boot;
|
|
/*
|
|
* Note that "early" isn't early enough in some cases where
|
|
* we're invoked before gsbase is set on x86, hence the
|
|
* check of "early_boot".
|
|
*/
|
|
if (early_boot) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* If early tracing is over, use the normal path. */
|
|
if (kd_early_done) {
|
|
KDBG_RELEASE(debugid, arg1, arg2, arg3, arg4);
|
|
return;
|
|
}
|
|
|
|
/* Do nothing if the buffer is full or we're not on the boot cpu. */
|
|
kd_early_overflow = kd_early_index >= KD_EARLY_EVENT_COUNT;
|
|
if (kd_early_overflow || cpu_number() != master_cpu) {
|
|
return;
|
|
}
|
|
|
|
kd_early_buffer[kd_early_index].debugid = debugid;
|
|
kd_early_buffer[kd_early_index].timestamp = mach_absolute_time();
|
|
kd_early_buffer[kd_early_index].arg1 = arg1;
|
|
kd_early_buffer[kd_early_index].arg2 = arg2;
|
|
kd_early_buffer[kd_early_index].arg3 = arg3;
|
|
kd_early_buffer[kd_early_index].arg4 = arg4;
|
|
kd_early_buffer[kd_early_index].arg5 = 0;
|
|
kd_early_index++;
|
|
}
|
|
|
|
/*
|
|
* Transfer the contents of the temporary buffer into the trace buffers.
|
|
* Precede that by logging the rebase time (offset) - the TSC-based time (in ns)
|
|
* when mach_absolute_time is set to 0.
|
|
*/
|
|
static void
|
|
kernel_debug_early_end(void)
|
|
{
|
|
if (cpu_number() != master_cpu) {
|
|
panic("kernel_debug_early_end() not call on boot processor");
|
|
}
|
|
|
|
/* reset the current oldest time to allow early events */
|
|
kd_control_trace.kdc_oldest_time = 0;
|
|
|
|
#if defined(__x86_64__)
|
|
/* Fake sentinel marking the start of kernel time relative to TSC */
|
|
kernel_debug_enter(0, TRACE_TIMESTAMPS, 0,
|
|
(uint32_t)(tsc_rebase_abs_time >> 32), (uint32_t)tsc_rebase_abs_time,
|
|
tsc_at_boot, 0, 0);
|
|
#endif /* defined(__x86_64__) */
|
|
for (unsigned int i = 0; i < kd_early_index; i++) {
|
|
kernel_debug_enter(0,
|
|
kd_early_buffer[i].debugid,
|
|
kd_early_buffer[i].timestamp,
|
|
kd_early_buffer[i].arg1,
|
|
kd_early_buffer[i].arg2,
|
|
kd_early_buffer[i].arg3,
|
|
kd_early_buffer[i].arg4,
|
|
0);
|
|
}
|
|
|
|
/* Cut events-lost event on overflow */
|
|
if (kd_early_overflow) {
|
|
KDBG_RELEASE(TRACE_LOST_EVENTS, 1);
|
|
}
|
|
|
|
kd_early_done = true;
|
|
|
|
/* This trace marks the start of kernel tracing */
|
|
kernel_debug_string_early("early trace done");
|
|
}
|
|
|
|
void
|
|
kernel_debug_disable(void)
|
|
{
|
|
if (kdebug_enable) {
|
|
kdbg_set_tracing_enabled(false, 0);
|
|
kdbg_wakeup();
|
|
}
|
|
}
|
|
|
|
// Returns true if debugid should only be traced from the kernel.
|
|
static int
|
|
_kernel_only_event(uint32_t debugid)
|
|
{
|
|
return KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE;
|
|
}
|
|
|
|
/*
|
|
* Support syscall SYS_kdebug_typefilter.
|
|
*/
|
|
int
|
|
kdebug_typefilter(__unused struct proc* p, struct kdebug_typefilter_args* uap,
|
|
__unused int *retval)
|
|
{
|
|
if (uap->addr == USER_ADDR_NULL || uap->size == USER_ADDR_NULL) {
|
|
return EINVAL;
|
|
}
|
|
|
|
mach_vm_offset_t user_addr = 0;
|
|
vm_map_t user_map = current_map();
|
|
const bool copy = false;
|
|
kern_return_t kr = mach_vm_map_kernel(user_map, &user_addr,
|
|
TYPEFILTER_ALLOC_SIZE, 0, VM_MAP_KERNEL_FLAGS_ANYWHERE(),
|
|
kdbg_typefilter_memory_entry, 0, copy,
|
|
VM_PROT_READ, VM_PROT_READ, VM_INHERIT_SHARE);
|
|
if (kr != KERN_SUCCESS) {
|
|
return mach_to_bsd_errno(kr);
|
|
}
|
|
|
|
vm_size_t user_ptr_size = vm_map_is_64bit(user_map) ? 8 : 4;
|
|
int error = copyout((void *)&user_addr, uap->addr, user_ptr_size);
|
|
if (error != 0) {
|
|
mach_vm_deallocate(user_map, user_addr, TYPEFILTER_ALLOC_SIZE);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
// Support SYS_kdebug_trace.
|
|
int
|
|
kdebug_trace(struct proc *p, struct kdebug_trace_args *uap, int32_t *retval)
|
|
{
|
|
struct kdebug_trace64_args uap64 = {
|
|
.code = uap->code,
|
|
.arg1 = uap->arg1,
|
|
.arg2 = uap->arg2,
|
|
.arg3 = uap->arg3,
|
|
.arg4 = uap->arg4,
|
|
};
|
|
return kdebug_trace64(p, &uap64, retval);
|
|
}
|
|
|
|
// Support kdebug_trace(2). 64-bit arguments on K32 will get truncated
|
|
// to fit in the 32-bit record format.
|
|
//
|
|
// It is intentional that error conditions are not checked until kdebug is
|
|
// enabled. This is to match the userspace wrapper behavior, which is optimizing
|
|
// for non-error case performance.
|
|
int
|
|
kdebug_trace64(__unused struct proc *p, struct kdebug_trace64_args *uap,
|
|
__unused int32_t *retval)
|
|
{
|
|
if (__probable(kdebug_enable == 0)) {
|
|
return 0;
|
|
}
|
|
if (_kernel_only_event(uap->code)) {
|
|
return EPERM;
|
|
}
|
|
kernel_debug_internal(uap->code, (uintptr_t)uap->arg1,
|
|
(uintptr_t)uap->arg2, (uintptr_t)uap->arg3, (uintptr_t)uap->arg4,
|
|
(uintptr_t)thread_tid(current_thread()), 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Adding enough padding to contain a full tracepoint for the last
|
|
* portion of the string greatly simplifies the logic of splitting the
|
|
* string between tracepoints. Full tracepoints can be generated using
|
|
* the buffer itself, without having to manually add zeros to pad the
|
|
* arguments.
|
|
*/
|
|
|
|
/* 2 string args in first tracepoint and 9 string data tracepoints */
|
|
#define STR_BUF_ARGS (2 + (32 * 4))
|
|
/* times the size of each arg on K64 */
|
|
#define MAX_STR_LEN (STR_BUF_ARGS * sizeof(uint64_t))
|
|
/* on K32, ending straddles a tracepoint, so reserve blanks */
|
|
#define STR_BUF_SIZE (MAX_STR_LEN + (2 * sizeof(uint32_t)))
|
|
|
|
/*
|
|
* This function does no error checking and assumes that it is called with
|
|
* the correct arguments, including that the buffer pointed to by str is at
|
|
* least STR_BUF_SIZE bytes. However, str must be aligned to word-size and
|
|
* be NUL-terminated. In cases where a string can fit evenly into a final
|
|
* tracepoint without its NUL-terminator, this function will not end those
|
|
* strings with a NUL in trace. It's up to clients to look at the function
|
|
* qualifier for DBG_FUNC_END in this case, to end the string.
|
|
*/
|
|
static uint64_t
|
|
kernel_debug_string_internal(uint32_t debugid, uint64_t str_id, void *vstr,
|
|
size_t str_len)
|
|
{
|
|
/* str must be word-aligned */
|
|
uintptr_t *str = vstr;
|
|
size_t written = 0;
|
|
uintptr_t thread_id;
|
|
int i;
|
|
uint32_t trace_debugid = TRACEDBG_CODE(DBG_TRACE_STRING,
|
|
TRACE_STRING_GLOBAL);
|
|
|
|
thread_id = (uintptr_t)thread_tid(current_thread());
|
|
|
|
/* if the ID is being invalidated, just emit that */
|
|
if (str_id != 0 && str_len == 0) {
|
|
kernel_debug_internal(trace_debugid | DBG_FUNC_START | DBG_FUNC_END,
|
|
(uintptr_t)debugid, (uintptr_t)str_id, 0, 0, thread_id, 0);
|
|
return str_id;
|
|
}
|
|
|
|
/* generate an ID, if necessary */
|
|
if (str_id == 0) {
|
|
str_id = OSIncrementAtomic64((SInt64 *)&g_curr_str_id);
|
|
str_id = (str_id & STR_ID_MASK) | g_str_id_signature;
|
|
}
|
|
|
|
trace_debugid |= DBG_FUNC_START;
|
|
/* string can fit in a single tracepoint */
|
|
if (str_len <= (2 * sizeof(uintptr_t))) {
|
|
trace_debugid |= DBG_FUNC_END;
|
|
}
|
|
|
|
kernel_debug_internal(trace_debugid, (uintptr_t)debugid, (uintptr_t)str_id,
|
|
str[0], str[1], thread_id, 0);
|
|
|
|
trace_debugid &= KDBG_EVENTID_MASK;
|
|
i = 2;
|
|
written += 2 * sizeof(uintptr_t);
|
|
|
|
for (; written < str_len; i += 4, written += 4 * sizeof(uintptr_t)) {
|
|
if ((written + (4 * sizeof(uintptr_t))) >= str_len) {
|
|
trace_debugid |= DBG_FUNC_END;
|
|
}
|
|
kernel_debug_internal(trace_debugid, str[i],
|
|
str[i + 1],
|
|
str[i + 2],
|
|
str[i + 3], thread_id, 0);
|
|
}
|
|
|
|
return str_id;
|
|
}
|
|
|
|
/*
|
|
* Returns true if the current process can emit events, and false otherwise.
|
|
* Trace system and scheduling events circumvent this check, as do events
|
|
* emitted in interrupt context.
|
|
*/
|
|
static bool
|
|
kdebug_current_proc_enabled(uint32_t debugid)
|
|
{
|
|
/* can't determine current process in interrupt context */
|
|
if (ml_at_interrupt_context()) {
|
|
return true;
|
|
}
|
|
|
|
/* always emit trace system and scheduling events */
|
|
if ((KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE ||
|
|
(debugid & KDBG_CSC_MASK) == MACHDBG_CODE(DBG_MACH_SCHED, 0))) {
|
|
return true;
|
|
}
|
|
|
|
if (kd_control_trace.kdc_flags & KDBG_PIDCHECK) {
|
|
proc_t cur_proc = kdebug_current_proc_unsafe();
|
|
|
|
/* only the process with the kdebug bit set is allowed */
|
|
if (cur_proc && !(cur_proc->p_kdebug)) {
|
|
return false;
|
|
}
|
|
} else if (kd_control_trace.kdc_flags & KDBG_PIDEXCLUDE) {
|
|
proc_t cur_proc = kdebug_current_proc_unsafe();
|
|
|
|
/* every process except the one with the kdebug bit set is allowed */
|
|
if (cur_proc && cur_proc->p_kdebug) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
kdebug_debugid_enabled(uint32_t debugid)
|
|
{
|
|
return _should_emit_debugid(kd_control_trace.kdc_emit, debugid);
|
|
}
|
|
|
|
bool
|
|
kdebug_debugid_explicitly_enabled(uint32_t debugid)
|
|
{
|
|
if (kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK) {
|
|
return typefilter_is_debugid_allowed(kdbg_typefilter, debugid);
|
|
} else if (KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE) {
|
|
return true;
|
|
} else if (kd_control_trace.kdc_flags & KDBG_RANGECHECK) {
|
|
if (debugid < kdlog_beg || debugid > kdlog_end) {
|
|
return false;
|
|
}
|
|
} else if (kd_control_trace.kdc_flags & KDBG_VALCHECK) {
|
|
if ((debugid & KDBG_EVENTID_MASK) != kdlog_value1 &&
|
|
(debugid & KDBG_EVENTID_MASK) != kdlog_value2 &&
|
|
(debugid & KDBG_EVENTID_MASK) != kdlog_value3 &&
|
|
(debugid & KDBG_EVENTID_MASK) != kdlog_value4) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Returns 0 if a string can be traced with these arguments. Returns errno
|
|
* value if error occurred.
|
|
*/
|
|
static errno_t
|
|
kdebug_check_trace_string(uint32_t debugid, uint64_t str_id)
|
|
{
|
|
if (debugid & (DBG_FUNC_START | DBG_FUNC_END)) {
|
|
return EINVAL;
|
|
}
|
|
if (_kernel_only_event(debugid)) {
|
|
return EPERM;
|
|
}
|
|
if (str_id != 0 && (str_id & STR_ID_SIG_MASK) != g_str_id_signature) {
|
|
return EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Implementation of KPI kernel_debug_string.
|
|
*/
|
|
int
|
|
kernel_debug_string(uint32_t debugid, uint64_t *str_id, const char *str)
|
|
{
|
|
/* arguments to tracepoints must be word-aligned */
|
|
__attribute__((aligned(sizeof(uintptr_t)))) char str_buf[STR_BUF_SIZE];
|
|
static_assert(sizeof(str_buf) > MAX_STR_LEN);
|
|
vm_size_t len_copied;
|
|
int err;
|
|
|
|
assert(str_id);
|
|
|
|
if (__probable(kdebug_enable == 0)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!kdebug_current_proc_enabled(debugid)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!kdebug_debugid_enabled(debugid)) {
|
|
return 0;
|
|
}
|
|
|
|
if ((err = kdebug_check_trace_string(debugid, *str_id)) != 0) {
|
|
return err;
|
|
}
|
|
|
|
if (str == NULL) {
|
|
if (str_id == 0) {
|
|
return EINVAL;
|
|
}
|
|
|
|
*str_id = kernel_debug_string_internal(debugid, *str_id, NULL, 0);
|
|
return 0;
|
|
}
|
|
|
|
memset(str_buf, 0, sizeof(str_buf));
|
|
len_copied = strlcpy(str_buf, str, MAX_STR_LEN + 1);
|
|
*str_id = kernel_debug_string_internal(debugid, *str_id, str_buf,
|
|
len_copied);
|
|
return 0;
|
|
}
|
|
|
|
// Support kdebug_trace_string(2).
|
|
int
|
|
kdebug_trace_string(__unused struct proc *p,
|
|
struct kdebug_trace_string_args *uap,
|
|
uint64_t *retval)
|
|
{
|
|
__attribute__((aligned(sizeof(uintptr_t)))) char str_buf[STR_BUF_SIZE];
|
|
static_assert(sizeof(str_buf) > MAX_STR_LEN);
|
|
size_t len_copied;
|
|
int err;
|
|
|
|
if (__probable(kdebug_enable == 0)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!kdebug_current_proc_enabled(uap->debugid)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!kdebug_debugid_enabled(uap->debugid)) {
|
|
return 0;
|
|
}
|
|
|
|
if ((err = kdebug_check_trace_string(uap->debugid, uap->str_id)) != 0) {
|
|
return err;
|
|
}
|
|
|
|
if (uap->str == USER_ADDR_NULL) {
|
|
if (uap->str_id == 0) {
|
|
return EINVAL;
|
|
}
|
|
|
|
*retval = kernel_debug_string_internal(uap->debugid, uap->str_id,
|
|
NULL, 0);
|
|
return 0;
|
|
}
|
|
|
|
memset(str_buf, 0, sizeof(str_buf));
|
|
err = copyinstr(uap->str, str_buf, MAX_STR_LEN + 1, &len_copied);
|
|
|
|
/* it's alright to truncate the string, so allow ENAMETOOLONG */
|
|
if (err == ENAMETOOLONG) {
|
|
str_buf[MAX_STR_LEN] = '\0';
|
|
} else if (err) {
|
|
return err;
|
|
}
|
|
|
|
if (len_copied <= 1) {
|
|
return EINVAL;
|
|
}
|
|
|
|
/* convert back to a length */
|
|
len_copied--;
|
|
|
|
*retval = kernel_debug_string_internal(uap->debugid, uap->str_id, str_buf,
|
|
len_copied);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
kdbg_reinit(unsigned int extra_cpus)
|
|
{
|
|
kernel_debug_disable();
|
|
// Wait for any event writers to see the disable status.
|
|
IOSleep(100);
|
|
delete_buffers_trace();
|
|
|
|
_clear_thread_map();
|
|
kd_control_trace.kdc_live_flags &= ~KDBG_WRAPPED;
|
|
|
|
RAW_file_offset = 0;
|
|
RAW_file_written = 0;
|
|
|
|
return create_buffers_trace(extra_cpus);
|
|
}
|
|
|
|
void
|
|
kdbg_trace_data(struct proc *proc, long *arg_pid, long *arg_uniqueid)
|
|
{
|
|
if (proc) {
|
|
*arg_pid = proc_getpid(proc);
|
|
*arg_uniqueid = (long)proc_uniqueid(proc);
|
|
if ((uint64_t)*arg_uniqueid != proc_uniqueid(proc)) {
|
|
*arg_uniqueid = 0;
|
|
}
|
|
} else {
|
|
*arg_pid = 0;
|
|
*arg_uniqueid = 0;
|
|
}
|
|
}
|
|
|
|
void kdebug_proc_name_args(struct proc *proc, long args[static 4]);
|
|
void
|
|
kdebug_proc_name_args(struct proc *proc, long args[static 4])
|
|
{
|
|
if (proc) {
|
|
strncpy((char *)args, proc_best_name(proc), 4 * sizeof(args[0]));
|
|
}
|
|
}
|
|
|
|
static void
|
|
_copy_ap_name(unsigned int cpuid, void *dst, size_t size)
|
|
{
|
|
const char *name = "AP";
|
|
#if defined(__arm64__)
|
|
const ml_topology_info_t *topology = ml_get_topology_info();
|
|
switch (topology->cpus[cpuid].cluster_type) {
|
|
case CLUSTER_TYPE_E:
|
|
name = "AP-E";
|
|
break;
|
|
case CLUSTER_TYPE_P:
|
|
name = "AP-P";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#else /* defined(__arm64__) */
|
|
#pragma unused(cpuid)
|
|
#endif /* !defined(__arm64__) */
|
|
strlcpy(dst, name, size);
|
|
}
|
|
|
|
// Write the specified `map_version` of CPU map to the `dst` buffer, using at
|
|
// most `size` bytes. Returns 0 on success and sets `size` to the number of
|
|
// bytes written, and either ENOMEM or EINVAL on failure.
|
|
//
|
|
// If the value pointed to by `dst` is NULL, memory is allocated, and `size` is
|
|
// adjusted to the allocated buffer's size.
|
|
//
|
|
// NB: `coprocs` is used to determine whether the stashed CPU map captured at
|
|
// the start of tracing should be used.
|
|
static errno_t
|
|
_copy_cpu_map(int map_version, void **dst, size_t *size)
|
|
{
|
|
_coproc_lock();
|
|
struct kd_coproc *coprocs = kd_control_trace.kdc_coprocs;
|
|
unsigned int cpu_count = kd_control_trace.kdebug_cpus;
|
|
_coproc_unlock();
|
|
|
|
assert(cpu_count != 0);
|
|
assert(coprocs == NULL || coprocs[0].cpu_id + 1 == cpu_count);
|
|
|
|
bool ext = map_version != RAW_VERSION1;
|
|
size_t stride = ext ? sizeof(kd_cpumap_ext) : sizeof(kd_cpumap);
|
|
|
|
size_t size_needed = sizeof(kd_cpumap_header) + cpu_count * stride;
|
|
size_t size_avail = *size;
|
|
*size = size_needed;
|
|
|
|
if (*dst == NULL) {
|
|
kern_return_t alloc_ret = kmem_alloc(kernel_map, (vm_offset_t *)dst,
|
|
(vm_size_t)size_needed, KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_DIAG);
|
|
if (alloc_ret != KERN_SUCCESS) {
|
|
return ENOMEM;
|
|
}
|
|
} else if (size_avail < size_needed) {
|
|
return EINVAL;
|
|
}
|
|
|
|
kd_cpumap_header *header = *dst;
|
|
header->version_no = map_version;
|
|
header->cpu_count = cpu_count;
|
|
|
|
void *cpus = &header[1];
|
|
size_t name_size = ext ? sizeof(((kd_cpumap_ext *)NULL)->name) :
|
|
sizeof(((kd_cpumap *)NULL)->name);
|
|
|
|
int i = cpu_count - 1;
|
|
for (struct kd_coproc *cur_coproc = coprocs; cur_coproc != NULL;
|
|
cur_coproc = cur_coproc->next, i--) {
|
|
kd_cpumap_ext *cpu = (kd_cpumap_ext *)((uintptr_t)cpus + stride * i);
|
|
cpu->cpu_id = cur_coproc->cpu_id;
|
|
cpu->flags = KDBG_CPUMAP_IS_IOP;
|
|
strlcpy((void *)&cpu->name, cur_coproc->full_name, name_size);
|
|
}
|
|
for (; i >= 0; i--) {
|
|
kd_cpumap *cpu = (kd_cpumap *)((uintptr_t)cpus + stride * i);
|
|
cpu->cpu_id = i;
|
|
cpu->flags = 0;
|
|
_copy_ap_name(i, &cpu->name, name_size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
_threadmap_init(void)
|
|
{
|
|
ktrace_assert_lock_held();
|
|
|
|
if (kd_control_trace.kdc_flags & KDBG_MAPINIT) {
|
|
return;
|
|
}
|
|
|
|
kd_mapptr = _thread_map_create_live(0, &kd_mapsize, &kd_mapcount);
|
|
|
|
if (kd_mapptr) {
|
|
kd_control_trace.kdc_flags |= KDBG_MAPINIT;
|
|
}
|
|
}
|
|
|
|
struct kd_resolver {
|
|
kd_threadmap *krs_map;
|
|
vm_size_t krs_count;
|
|
vm_size_t krs_maxcount;
|
|
};
|
|
|
|
static int
|
|
_resolve_iterator(proc_t proc, void *opaque)
|
|
{
|
|
if (proc == kernproc) {
|
|
/* Handled specially as it lacks uthreads. */
|
|
return PROC_RETURNED;
|
|
}
|
|
struct kd_resolver *resolver = opaque;
|
|
struct uthread *uth = NULL;
|
|
const char *proc_name = proc_best_name(proc);
|
|
pid_t pid = proc_getpid(proc);
|
|
|
|
proc_lock(proc);
|
|
TAILQ_FOREACH(uth, &proc->p_uthlist, uu_list) {
|
|
if (resolver->krs_count >= resolver->krs_maxcount) {
|
|
break;
|
|
}
|
|
kd_threadmap *map = &resolver->krs_map[resolver->krs_count];
|
|
map->thread = (uintptr_t)uthread_tid(uth);
|
|
(void)strlcpy(map->command, proc_name, sizeof(map->command));
|
|
map->valid = pid;
|
|
resolver->krs_count++;
|
|
}
|
|
proc_unlock(proc);
|
|
|
|
bool done = resolver->krs_count >= resolver->krs_maxcount;
|
|
return done ? PROC_RETURNED_DONE : PROC_RETURNED;
|
|
}
|
|
|
|
static void
|
|
_resolve_kernel_task(thread_t thread, void *opaque)
|
|
{
|
|
struct kd_resolver *resolver = opaque;
|
|
if (resolver->krs_count >= resolver->krs_maxcount) {
|
|
return;
|
|
}
|
|
kd_threadmap *map = &resolver->krs_map[resolver->krs_count];
|
|
map->thread = (uintptr_t)thread_tid(thread);
|
|
(void)strlcpy(map->command, "kernel_task", sizeof(map->command));
|
|
map->valid = 1;
|
|
resolver->krs_count++;
|
|
}
|
|
|
|
static vm_size_t
|
|
_resolve_threads(kd_threadmap *map, vm_size_t nthreads)
|
|
{
|
|
struct kd_resolver resolver = {
|
|
.krs_map = map, .krs_count = 0, .krs_maxcount = nthreads,
|
|
};
|
|
|
|
// Handle kernel_task specially, as it lacks uthreads.
|
|
extern void task_act_iterate_wth_args(task_t, void (*)(thread_t, void *),
|
|
void *);
|
|
task_act_iterate_wth_args(kernel_task, _resolve_kernel_task, &resolver);
|
|
proc_iterate(PROC_ALLPROCLIST | PROC_NOWAITTRANS, _resolve_iterator,
|
|
&resolver, NULL, NULL);
|
|
return resolver.krs_count;
|
|
}
|
|
|
|
static kd_threadmap *
|
|
_thread_map_create_live(size_t maxthreads, vm_size_t *mapsize,
|
|
vm_size_t *mapcount)
|
|
{
|
|
kd_threadmap *thread_map = NULL;
|
|
|
|
assert(mapsize != NULL);
|
|
assert(mapcount != NULL);
|
|
|
|
extern int threads_count;
|
|
vm_size_t nthreads = threads_count;
|
|
|
|
// Allow 25% more threads to be started while iterating processes.
|
|
if (os_add_overflow(nthreads, nthreads / 4, &nthreads)) {
|
|
return NULL;
|
|
}
|
|
|
|
*mapcount = nthreads;
|
|
if (os_mul_overflow(nthreads, sizeof(kd_threadmap), mapsize)) {
|
|
return NULL;
|
|
}
|
|
|
|
// Wait until the out-parameters have been filled with the needed size to
|
|
// do the bounds checking on the provided maximum.
|
|
if (maxthreads != 0 && maxthreads < nthreads) {
|
|
return NULL;
|
|
}
|
|
|
|
// This allocation can be too large for `Z_NOFAIL`.
|
|
thread_map = kalloc_data_tag(*mapsize, Z_WAITOK | Z_ZERO,
|
|
VM_KERN_MEMORY_DIAG);
|
|
if (thread_map != NULL) {
|
|
*mapcount = _resolve_threads(thread_map, nthreads);
|
|
}
|
|
return thread_map;
|
|
}
|
|
|
|
static void
|
|
kdbg_clear(void)
|
|
{
|
|
kernel_debug_disable();
|
|
kdbg_disable_typefilter();
|
|
|
|
// Wait for any event writers to see the disable status.
|
|
IOSleep(100);
|
|
|
|
// Reset kdebug status for each process.
|
|
if (kd_control_trace.kdc_flags & (KDBG_PIDCHECK | KDBG_PIDEXCLUDE)) {
|
|
proc_list_lock();
|
|
proc_t p;
|
|
ALLPROC_FOREACH(p) {
|
|
p->p_kdebug = 0;
|
|
}
|
|
proc_list_unlock();
|
|
}
|
|
|
|
kd_control_trace.kdc_flags &= (unsigned int)~KDBG_CKTYPES;
|
|
kd_control_trace.kdc_flags &= ~(KDBG_RANGECHECK | KDBG_VALCHECK);
|
|
kd_control_trace.kdc_flags &= ~(KDBG_PIDCHECK | KDBG_PIDEXCLUDE);
|
|
kd_control_trace.kdc_flags &= ~KDBG_CONTINUOUS_TIME;
|
|
kd_control_trace.kdc_flags &= ~KDBG_DISABLE_COPROCS;
|
|
kd_control_trace.kdc_flags &= ~KDBG_MATCH_DISABLE;
|
|
kd_control_trace.kdc_live_flags &= ~(KDBG_NOWRAP | KDBG_WRAPPED);
|
|
|
|
kd_control_trace.kdc_oldest_time = 0;
|
|
|
|
delete_buffers_trace();
|
|
kd_buffer_trace.kdb_event_count = 0;
|
|
|
|
_clear_thread_map();
|
|
|
|
RAW_file_offset = 0;
|
|
RAW_file_written = 0;
|
|
}
|
|
|
|
void
|
|
kdebug_reset(void)
|
|
{
|
|
ktrace_assert_lock_held();
|
|
|
|
kdbg_clear();
|
|
typefilter_reject_all(kdbg_typefilter);
|
|
typefilter_allow_class(kdbg_typefilter, DBG_TRACE);
|
|
}
|
|
|
|
void
|
|
kdebug_free_early_buf(void)
|
|
{
|
|
#if defined(__x86_64__)
|
|
ml_static_mfree((vm_offset_t)&kd_early_buffer, sizeof(kd_early_buffer));
|
|
#endif /* defined(__x86_64__) */
|
|
// ARM handles this as part of the BOOTDATA segment.
|
|
}
|
|
|
|
int
|
|
kdbg_setpid(kd_regtype *kdr)
|
|
{
|
|
pid_t pid;
|
|
int flag, ret = 0;
|
|
struct proc *p;
|
|
|
|
pid = (pid_t)kdr->value1;
|
|
flag = (int)kdr->value2;
|
|
|
|
if (pid >= 0) {
|
|
if ((p = proc_find(pid)) == NULL) {
|
|
ret = ESRCH;
|
|
} else {
|
|
if (flag == 1) {
|
|
/*
|
|
* turn on pid check for this and all pids
|
|
*/
|
|
kd_control_trace.kdc_flags |= KDBG_PIDCHECK;
|
|
kd_control_trace.kdc_flags &= ~KDBG_PIDEXCLUDE;
|
|
|
|
p->p_kdebug = 1;
|
|
} else {
|
|
/*
|
|
* turn off pid check for this pid value
|
|
* Don't turn off all pid checking though
|
|
*
|
|
* kd_control_trace.kdc_flags &= ~KDBG_PIDCHECK;
|
|
*/
|
|
p->p_kdebug = 0;
|
|
}
|
|
proc_rele(p);
|
|
}
|
|
} else {
|
|
ret = EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This is for pid exclusion in the trace buffer */
|
|
int
|
|
kdbg_setpidex(kd_regtype *kdr)
|
|
{
|
|
pid_t pid;
|
|
int flag, ret = 0;
|
|
struct proc *p;
|
|
|
|
pid = (pid_t)kdr->value1;
|
|
flag = (int)kdr->value2;
|
|
|
|
if (pid >= 0) {
|
|
if ((p = proc_find(pid)) == NULL) {
|
|
ret = ESRCH;
|
|
} else {
|
|
if (flag == 1) {
|
|
/*
|
|
* turn on pid exclusion
|
|
*/
|
|
kd_control_trace.kdc_flags |= KDBG_PIDEXCLUDE;
|
|
kd_control_trace.kdc_flags &= ~KDBG_PIDCHECK;
|
|
|
|
p->p_kdebug = 1;
|
|
} else {
|
|
/*
|
|
* turn off pid exclusion for this pid value
|
|
* Don't turn off all pid exclusion though
|
|
*
|
|
* kd_control_trace.kdc_flags &= ~KDBG_PIDEXCLUDE;
|
|
*/
|
|
p->p_kdebug = 0;
|
|
}
|
|
proc_rele(p);
|
|
}
|
|
} else {
|
|
ret = EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The following functions all operate on the typefilter singleton.
|
|
*/
|
|
|
|
static int
|
|
kdbg_copyin_typefilter(user_addr_t addr, size_t size)
|
|
{
|
|
int ret = ENOMEM;
|
|
typefilter_t tf;
|
|
|
|
ktrace_assert_lock_held();
|
|
|
|
if (size != KDBG_TYPEFILTER_BITMAP_SIZE) {
|
|
return EINVAL;
|
|
}
|
|
|
|
if ((tf = typefilter_create())) {
|
|
if ((ret = copyin(addr, tf, KDBG_TYPEFILTER_BITMAP_SIZE)) == 0) {
|
|
/* The kernel typefilter must always allow DBG_TRACE */
|
|
typefilter_allow_class(tf, DBG_TRACE);
|
|
|
|
typefilter_copy(kdbg_typefilter, tf);
|
|
|
|
kdbg_enable_typefilter();
|
|
_coproc_list_callback(KD_CALLBACK_TYPEFILTER_CHANGED, kdbg_typefilter);
|
|
}
|
|
|
|
if (tf) {
|
|
typefilter_deallocate(tf);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Enable the flags in the control page for the typefilter. Assumes that
|
|
* kdbg_typefilter has already been allocated, so events being written
|
|
* don't see a bad typefilter.
|
|
*/
|
|
static void
|
|
kdbg_enable_typefilter(void)
|
|
{
|
|
kd_control_trace.kdc_flags &= ~(KDBG_RANGECHECK | KDBG_VALCHECK);
|
|
kd_control_trace.kdc_flags |= KDBG_TYPEFILTER_CHECK;
|
|
if (kdebug_enable) {
|
|
kd_control_trace.kdc_emit = _trace_emit_filter();
|
|
}
|
|
commpage_update_kdebug_state();
|
|
}
|
|
|
|
// Disable the flags in the control page for the typefilter. The typefilter
|
|
// may be safely deallocated shortly after this function returns.
|
|
static void
|
|
kdbg_disable_typefilter(void)
|
|
{
|
|
bool notify_coprocs = kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK;
|
|
kd_control_trace.kdc_flags &= ~KDBG_TYPEFILTER_CHECK;
|
|
|
|
commpage_update_kdebug_state();
|
|
|
|
if (notify_coprocs) {
|
|
// Notify coprocessors that the typefilter will now allow everything.
|
|
// Otherwise, they won't know a typefilter is no longer in effect.
|
|
typefilter_allow_all(kdbg_typefilter);
|
|
_coproc_list_callback(KD_CALLBACK_TYPEFILTER_CHANGED, kdbg_typefilter);
|
|
}
|
|
}
|
|
|
|
uint32_t
|
|
kdebug_commpage_state(void)
|
|
{
|
|
uint32_t state = 0;
|
|
if (kdebug_enable) {
|
|
state |= KDEBUG_COMMPAGE_ENABLE_TRACE;
|
|
if (kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK) {
|
|
state |= KDEBUG_COMMPAGE_ENABLE_TYPEFILTER;
|
|
}
|
|
if (kd_control_trace.kdc_flags & KDBG_CONTINUOUS_TIME) {
|
|
state |= KDEBUG_COMMPAGE_CONTINUOUS;
|
|
}
|
|
}
|
|
return state;
|
|
}
|
|
|
|
static int
|
|
kdbg_setreg(kd_regtype * kdr)
|
|
{
|
|
switch (kdr->type) {
|
|
case KDBG_CLASSTYPE:
|
|
kdlog_beg = KDBG_EVENTID(kdr->value1 & 0xff, 0, 0);
|
|
kdlog_end = KDBG_EVENTID(kdr->value2 & 0xff, 0, 0);
|
|
kd_control_trace.kdc_flags &= ~KDBG_VALCHECK;
|
|
kd_control_trace.kdc_flags |= KDBG_RANGECHECK;
|
|
break;
|
|
case KDBG_SUBCLSTYPE:;
|
|
unsigned int cls = kdr->value1 & 0xff;
|
|
unsigned int subcls = kdr->value2 & 0xff;
|
|
unsigned int subcls_end = subcls + 1;
|
|
kdlog_beg = KDBG_EVENTID(cls, subcls, 0);
|
|
kdlog_end = KDBG_EVENTID(cls, subcls_end, 0);
|
|
kd_control_trace.kdc_flags &= ~KDBG_VALCHECK;
|
|
kd_control_trace.kdc_flags |= KDBG_RANGECHECK;
|
|
break;
|
|
case KDBG_RANGETYPE:
|
|
kdlog_beg = kdr->value1;
|
|
kdlog_end = kdr->value2;
|
|
kd_control_trace.kdc_flags &= ~KDBG_VALCHECK;
|
|
kd_control_trace.kdc_flags |= KDBG_RANGECHECK;
|
|
break;
|
|
case KDBG_VALCHECK:
|
|
kdlog_value1 = kdr->value1;
|
|
kdlog_value2 = kdr->value2;
|
|
kdlog_value3 = kdr->value3;
|
|
kdlog_value4 = kdr->value4;
|
|
kd_control_trace.kdc_flags &= ~KDBG_RANGECHECK;
|
|
kd_control_trace.kdc_flags |= KDBG_VALCHECK;
|
|
break;
|
|
case KDBG_TYPENONE:
|
|
kd_control_trace.kdc_flags &= ~(KDBG_RANGECHECK | KDBG_VALCHECK);
|
|
kdlog_beg = 0;
|
|
kdlog_end = 0;
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
if (kdebug_enable) {
|
|
kd_control_trace.kdc_emit = _trace_emit_filter();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_copyin_event_disable_mask(user_addr_t uaddr, size_t usize)
|
|
{
|
|
if (usize < 2 * sizeof(kd_event_matcher)) {
|
|
return ERANGE;
|
|
}
|
|
int ret = copyin(uaddr, &kd_control_trace.disable_event_match,
|
|
sizeof(kd_event_matcher));
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
ret = copyin(uaddr + sizeof(kd_event_matcher),
|
|
&kd_control_trace.disable_event_mask, sizeof(kd_event_matcher));
|
|
if (ret != 0) {
|
|
memset(&kd_control_trace.disable_event_match, 0,
|
|
sizeof(kd_event_matcher));
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_copyout_event_disable_mask(user_addr_t uaddr, size_t usize)
|
|
{
|
|
if (usize < 2 * sizeof(kd_event_matcher)) {
|
|
return ERANGE;
|
|
}
|
|
int ret = copyout(&kd_control_trace.disable_event_match, uaddr,
|
|
sizeof(kd_event_matcher));
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
ret = copyout(&kd_control_trace.disable_event_mask,
|
|
uaddr + sizeof(kd_event_matcher), sizeof(kd_event_matcher));
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kdbg_write_to_vnode(caddr_t buffer, size_t size, vnode_t vp, vfs_context_t ctx, off_t file_offset)
|
|
{
|
|
assert(size < INT_MAX);
|
|
return vn_rdwr(UIO_WRITE, vp, buffer, (int)size, file_offset, UIO_SYSSPACE,
|
|
IO_NODELOCKED | IO_UNIT, vfs_context_ucred(ctx), (int *) 0,
|
|
vfs_context_proc(ctx));
|
|
}
|
|
|
|
static errno_t
|
|
_copyout_cpu_map(int map_version, user_addr_t udst, size_t *usize)
|
|
{
|
|
if ((kd_control_trace.kdc_flags & KDBG_BUFINIT) == 0) {
|
|
return EINVAL;
|
|
}
|
|
|
|
void *cpu_map = NULL;
|
|
size_t size = 0;
|
|
int error = _copy_cpu_map(map_version, &cpu_map, &size);
|
|
if (0 == error) {
|
|
if (udst) {
|
|
size_t copy_size = MIN(*usize, size);
|
|
error = copyout(cpu_map, udst, copy_size);
|
|
}
|
|
*usize = size;
|
|
kmem_free(kernel_map, (vm_offset_t)cpu_map, size);
|
|
}
|
|
if (EINVAL == error && 0 == udst) {
|
|
*usize = size;
|
|
// User space only needs the size if it passes NULL;
|
|
error = 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
int
|
|
kdbg_readcurthrmap(user_addr_t buffer, size_t *bufsize)
|
|
{
|
|
kd_threadmap *mapptr;
|
|
vm_size_t mapsize;
|
|
vm_size_t mapcount;
|
|
int ret = 0;
|
|
size_t count = *bufsize / sizeof(kd_threadmap);
|
|
|
|
*bufsize = 0;
|
|
|
|
if ((mapptr = _thread_map_create_live(count, &mapsize, &mapcount))) {
|
|
if (copyout(mapptr, buffer, mapcount * sizeof(kd_threadmap))) {
|
|
ret = EFAULT;
|
|
} else {
|
|
*bufsize = (mapcount * sizeof(kd_threadmap));
|
|
}
|
|
|
|
kfree_data(mapptr, mapsize);
|
|
} else {
|
|
ret = EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
_write_legacy_header(bool write_thread_map, vnode_t vp, vfs_context_t ctx)
|
|
{
|
|
int ret = 0;
|
|
RAW_header header;
|
|
clock_sec_t secs;
|
|
clock_usec_t usecs;
|
|
void *pad_buf;
|
|
uint32_t pad_size;
|
|
uint32_t extra_thread_count = 0;
|
|
uint32_t cpumap_size;
|
|
size_t map_size = 0;
|
|
uint32_t map_count = 0;
|
|
|
|
if (write_thread_map) {
|
|
assert(kd_control_trace.kdc_flags & KDBG_MAPINIT);
|
|
if (kd_mapcount > UINT32_MAX) {
|
|
return ERANGE;
|
|
}
|
|
map_count = (uint32_t)kd_mapcount;
|
|
if (os_mul_overflow(map_count, sizeof(kd_threadmap), &map_size)) {
|
|
return ERANGE;
|
|
}
|
|
if (map_size >= INT_MAX) {
|
|
return ERANGE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Without the buffers initialized, we cannot construct a CPU map or a
|
|
* thread map, and cannot write a header.
|
|
*/
|
|
if (!(kd_control_trace.kdc_flags & KDBG_BUFINIT)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* To write a RAW_VERSION1+ file, we must embed a cpumap in the
|
|
* "padding" used to page align the events following the threadmap. If
|
|
* the threadmap happens to not require enough padding, we artificially
|
|
* increase its footprint until it needs enough padding.
|
|
*/
|
|
|
|
assert(vp);
|
|
assert(ctx);
|
|
|
|
pad_size = 16384 - ((sizeof(RAW_header) + map_size) & PAGE_MASK);
|
|
cpumap_size = sizeof(kd_cpumap_header) + kd_control_trace.kdebug_cpus * sizeof(kd_cpumap);
|
|
|
|
if (cpumap_size > pad_size) {
|
|
/* If the cpu map doesn't fit in the current available pad_size,
|
|
* we increase the pad_size by 16K. We do this so that the event
|
|
* data is always available on a page aligned boundary for both
|
|
* 4k and 16k systems. We enforce this alignment for the event
|
|
* data so that we can take advantage of optimized file/disk writes.
|
|
*/
|
|
pad_size += 16384;
|
|
}
|
|
|
|
/* The way we are silently embedding a cpumap in the "padding" is by artificially
|
|
* increasing the number of thread entries. However, we'll also need to ensure that
|
|
* the cpumap is embedded in the last 4K page before when the event data is expected.
|
|
* This way the tools can read the data starting the next page boundary on both
|
|
* 4K and 16K systems preserving compatibility with older versions of the tools
|
|
*/
|
|
if (pad_size > 4096) {
|
|
pad_size -= 4096;
|
|
extra_thread_count = (pad_size / sizeof(kd_threadmap)) + 1;
|
|
}
|
|
|
|
memset(&header, 0, sizeof(header));
|
|
header.version_no = RAW_VERSION1;
|
|
header.thread_count = map_count + extra_thread_count;
|
|
|
|
clock_get_calendar_microtime(&secs, &usecs);
|
|
header.TOD_secs = secs;
|
|
header.TOD_usecs = usecs;
|
|
|
|
ret = vn_rdwr(UIO_WRITE, vp, (caddr_t)&header, (int)sizeof(RAW_header), RAW_file_offset,
|
|
UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, vfs_context_ucred(ctx), (int *) 0, vfs_context_proc(ctx));
|
|
if (ret) {
|
|
goto write_error;
|
|
}
|
|
RAW_file_offset += sizeof(RAW_header);
|
|
RAW_file_written += sizeof(RAW_header);
|
|
|
|
if (write_thread_map) {
|
|
assert(map_size < INT_MAX);
|
|
ret = vn_rdwr(UIO_WRITE, vp, (caddr_t)kd_mapptr, (int)map_size, RAW_file_offset,
|
|
UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, vfs_context_ucred(ctx), (int *) 0, vfs_context_proc(ctx));
|
|
if (ret) {
|
|
goto write_error;
|
|
}
|
|
|
|
RAW_file_offset += map_size;
|
|
RAW_file_written += map_size;
|
|
}
|
|
|
|
if (extra_thread_count) {
|
|
pad_size = extra_thread_count * sizeof(kd_threadmap);
|
|
pad_buf = (char *)kalloc_data(pad_size, Z_WAITOK | Z_ZERO);
|
|
if (!pad_buf) {
|
|
ret = ENOMEM;
|
|
goto write_error;
|
|
}
|
|
|
|
assert(pad_size < INT_MAX);
|
|
ret = vn_rdwr(UIO_WRITE, vp, (caddr_t)pad_buf, (int)pad_size, RAW_file_offset,
|
|
UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, vfs_context_ucred(ctx), (int *) 0, vfs_context_proc(ctx));
|
|
kfree_data(pad_buf, pad_size);
|
|
if (ret) {
|
|
goto write_error;
|
|
}
|
|
|
|
RAW_file_offset += pad_size;
|
|
RAW_file_written += pad_size;
|
|
}
|
|
|
|
pad_size = PAGE_SIZE - (RAW_file_offset & PAGE_MASK);
|
|
if (pad_size) {
|
|
pad_buf = (char *)kalloc_data(pad_size, Z_WAITOK | Z_ZERO);
|
|
if (!pad_buf) {
|
|
ret = ENOMEM;
|
|
goto write_error;
|
|
}
|
|
|
|
/*
|
|
* Embed the CPU map in the padding bytes -- old code will skip it,
|
|
* while newer code knows it's there.
|
|
*/
|
|
size_t temp = pad_size;
|
|
errno_t error = _copy_cpu_map(RAW_VERSION1, &pad_buf, &temp);
|
|
if (0 != error) {
|
|
memset(pad_buf, 0, pad_size);
|
|
}
|
|
|
|
assert(pad_size < INT_MAX);
|
|
ret = vn_rdwr(UIO_WRITE, vp, (caddr_t)pad_buf, (int)pad_size, RAW_file_offset,
|
|
UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, vfs_context_ucred(ctx), (int *) 0, vfs_context_proc(ctx));
|
|
kfree_data(pad_buf, pad_size);
|
|
if (ret) {
|
|
goto write_error;
|
|
}
|
|
|
|
RAW_file_offset += pad_size;
|
|
RAW_file_written += pad_size;
|
|
}
|
|
|
|
write_error:
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
_clear_thread_map(void)
|
|
{
|
|
ktrace_assert_lock_held();
|
|
|
|
if (kd_control_trace.kdc_flags & KDBG_MAPINIT) {
|
|
assert(kd_mapptr != NULL);
|
|
kfree_data(kd_mapptr, kd_mapsize);
|
|
kd_mapptr = NULL;
|
|
kd_mapsize = 0;
|
|
kd_mapcount = 0;
|
|
kd_control_trace.kdc_flags &= ~KDBG_MAPINIT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write out a version 1 header and the thread map, if it is initialized, to a
|
|
* vnode. Used by KDWRITEMAP and kdbg_dump_trace_to_file.
|
|
*
|
|
* Returns write errors from vn_rdwr if a write fails. Returns ENODATA if the
|
|
* thread map has not been initialized, but the header will still be written.
|
|
* Returns ENOMEM if padding could not be allocated. Returns 0 otherwise.
|
|
*/
|
|
static int
|
|
kdbg_write_thread_map(vnode_t vp, vfs_context_t ctx)
|
|
{
|
|
int ret = 0;
|
|
bool map_initialized;
|
|
|
|
ktrace_assert_lock_held();
|
|
assert(ctx != NULL);
|
|
|
|
map_initialized = (kd_control_trace.kdc_flags & KDBG_MAPINIT);
|
|
|
|
ret = _write_legacy_header(map_initialized, vp, ctx);
|
|
if (ret == 0) {
|
|
if (map_initialized) {
|
|
_clear_thread_map();
|
|
} else {
|
|
ret = ENODATA;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Copy out the thread map to a user space buffer. Used by KDTHRMAP.
|
|
*
|
|
* Returns copyout errors if the copyout fails. Returns ENODATA if the thread
|
|
* map has not been initialized. Returns EINVAL if the buffer provided is not
|
|
* large enough for the entire thread map. Returns 0 otherwise.
|
|
*/
|
|
static int
|
|
kdbg_copyout_thread_map(user_addr_t buffer, size_t *buffer_size)
|
|
{
|
|
bool map_initialized;
|
|
size_t map_size;
|
|
int ret = 0;
|
|
|
|
ktrace_assert_lock_held();
|
|
assert(buffer_size != NULL);
|
|
|
|
map_initialized = (kd_control_trace.kdc_flags & KDBG_MAPINIT);
|
|
if (!map_initialized) {
|
|
return ENODATA;
|
|
}
|
|
|
|
map_size = kd_mapcount * sizeof(kd_threadmap);
|
|
if (*buffer_size < map_size) {
|
|
return EINVAL;
|
|
}
|
|
|
|
ret = copyout(kd_mapptr, buffer, map_size);
|
|
if (ret == 0) {
|
|
_clear_thread_map();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
kdbg_set_nkdbufs_trace(unsigned int req_nkdbufs_trace)
|
|
{
|
|
/*
|
|
* Only allow allocations of up to half the kernel's data range or "sane
|
|
* size", whichever is smaller.
|
|
*/
|
|
const uint64_t max_nkdbufs_trace_64 =
|
|
MIN(kmem_range_id_size(KMEM_RANGE_ID_DATA), sane_size) / 2 /
|
|
sizeof(kd_buf);
|
|
/*
|
|
* Can't allocate more than 2^38 (2^32 * 64) bytes of events without
|
|
* switching to a 64-bit event count; should be fine.
|
|
*/
|
|
const unsigned int max_nkdbufs_trace =
|
|
(unsigned int)MIN(max_nkdbufs_trace_64, UINT_MAX);
|
|
|
|
kd_buffer_trace.kdb_event_count = MIN(req_nkdbufs_trace, max_nkdbufs_trace);
|
|
}
|
|
|
|
/*
|
|
* Block until there are `kd_buffer_trace.kdb_storage_threshold` storage units filled with
|
|
* events or `timeout_ms` milliseconds have passed. If `locked_wait` is true,
|
|
* `ktrace_lock` is held while waiting. This is necessary while waiting to
|
|
* write events out of the buffers.
|
|
*
|
|
* Returns true if the threshold was reached and false otherwise.
|
|
*
|
|
* Called with `ktrace_lock` locked and interrupts enabled.
|
|
*/
|
|
static bool
|
|
kdbg_wait(uint64_t timeout_ms)
|
|
{
|
|
int wait_result = THREAD_AWAKENED;
|
|
uint64_t deadline_mach = 0;
|
|
|
|
ktrace_assert_lock_held();
|
|
|
|
if (timeout_ms != 0) {
|
|
uint64_t ns = timeout_ms * NSEC_PER_MSEC;
|
|
nanoseconds_to_absolutetime(ns, &deadline_mach);
|
|
clock_absolutetime_interval_to_deadline(deadline_mach, &deadline_mach);
|
|
}
|
|
|
|
bool s = ml_set_interrupts_enabled(false);
|
|
if (!s) {
|
|
panic("kdbg_wait() called with interrupts disabled");
|
|
}
|
|
lck_spin_lock_grp(&kd_wait_lock, &kdebug_lck_grp);
|
|
|
|
/* drop the mutex to allow others to access trace */
|
|
ktrace_unlock();
|
|
|
|
while (wait_result == THREAD_AWAKENED &&
|
|
kd_control_trace.kdc_storage_used < kd_buffer_trace.kdb_storage_threshold) {
|
|
kd_waiter = true;
|
|
|
|
if (deadline_mach) {
|
|
wait_result = lck_spin_sleep_deadline(&kd_wait_lock, 0, &kd_waiter,
|
|
THREAD_ABORTSAFE, deadline_mach);
|
|
} else {
|
|
wait_result = lck_spin_sleep(&kd_wait_lock, 0, &kd_waiter,
|
|
THREAD_ABORTSAFE);
|
|
}
|
|
}
|
|
|
|
bool threshold_exceeded = (kd_control_trace.kdc_storage_used >= kd_buffer_trace.kdb_storage_threshold);
|
|
|
|
lck_spin_unlock(&kd_wait_lock);
|
|
ml_set_interrupts_enabled(s);
|
|
|
|
ktrace_lock();
|
|
|
|
return threshold_exceeded;
|
|
}
|
|
|
|
/*
|
|
* Wakeup a thread waiting using `kdbg_wait` if there are at least
|
|
* `kd_buffer_trace.kdb_storage_threshold` storage units in use.
|
|
*/
|
|
static void
|
|
kdbg_wakeup(void)
|
|
{
|
|
bool need_kds_wakeup = false;
|
|
|
|
/*
|
|
* Try to take the lock here to synchronize with the waiter entering
|
|
* the blocked state. Use the try mode to prevent deadlocks caused by
|
|
* re-entering this routine due to various trace points triggered in the
|
|
* lck_spin_sleep_xxxx routines used to actually enter one of our 2 wait
|
|
* conditions. No problem if we fail, there will be lots of additional
|
|
* events coming in that will eventually succeed in grabbing this lock.
|
|
*/
|
|
bool s = ml_set_interrupts_enabled(false);
|
|
|
|
if (lck_spin_try_lock(&kd_wait_lock)) {
|
|
if (kd_waiter &&
|
|
(kd_control_trace.kdc_storage_used >= kd_buffer_trace.kdb_storage_threshold)) {
|
|
kd_waiter = 0;
|
|
need_kds_wakeup = true;
|
|
}
|
|
lck_spin_unlock(&kd_wait_lock);
|
|
}
|
|
|
|
ml_set_interrupts_enabled(s);
|
|
|
|
if (need_kds_wakeup == true) {
|
|
wakeup(&kd_waiter);
|
|
}
|
|
}
|
|
|
|
static int
|
|
_read_merged_trace_events(user_addr_t buffer, size_t *number, vnode_t vp,
|
|
vfs_context_t ctx, bool chunk)
|
|
{
|
|
ktrace_assert_lock_held();
|
|
size_t count = *number / sizeof(kd_buf);
|
|
if (count == 0 || !(kd_control_trace.kdc_flags & KDBG_BUFINIT) ||
|
|
kd_buffer_trace.kdcopybuf == 0) {
|
|
*number = 0;
|
|
return EINVAL;
|
|
}
|
|
|
|
// Before merging, make sure coprocessors have provided up-to-date events.
|
|
_coproc_list_callback(KD_CALLBACK_SYNC_FLUSH, NULL);
|
|
return kernel_debug_read(&kd_control_trace, &kd_buffer_trace, buffer,
|
|
number, vp, ctx, chunk);
|
|
}
|
|
|
|
struct event_chunk_header {
|
|
uint32_t tag;
|
|
uint32_t sub_tag;
|
|
uint64_t length;
|
|
uint64_t future_events_timestamp;
|
|
};
|
|
|
|
static int
|
|
_write_event_chunk_header(user_addr_t udst, vnode_t vp, vfs_context_t ctx,
|
|
uint64_t length)
|
|
{
|
|
struct event_chunk_header header = {
|
|
.tag = V3_RAW_EVENTS,
|
|
.sub_tag = 1,
|
|
.length = length,
|
|
};
|
|
|
|
if (vp) {
|
|
assert(udst == USER_ADDR_NULL);
|
|
assert(ctx != NULL);
|
|
int error = kdbg_write_to_vnode((caddr_t)&header, sizeof(header), vp,
|
|
ctx, RAW_file_offset);
|
|
if (0 == error) {
|
|
RAW_file_offset += sizeof(header);
|
|
}
|
|
return error;
|
|
} else {
|
|
assert(udst != USER_ADDR_NULL);
|
|
return copyout(&header, udst, sizeof(header));
|
|
}
|
|
}
|
|
|
|
int
|
|
kernel_debug_trace_write_to_file(user_addr_t *buffer, size_t *number,
|
|
size_t *count, size_t tempbuf_number, vnode_t vp, vfs_context_t ctx,
|
|
bool chunk)
|
|
{
|
|
int error = 0;
|
|
|
|
if (chunk) {
|
|
error = _write_event_chunk_header(*buffer, vp, ctx,
|
|
tempbuf_number * sizeof(kd_buf));
|
|
if (error) {
|
|
return error;
|
|
}
|
|
if (buffer) {
|
|
*buffer += sizeof(struct event_chunk_header);
|
|
}
|
|
|
|
assert(*count >= sizeof(struct event_chunk_header));
|
|
*count -= sizeof(struct event_chunk_header);
|
|
*number += sizeof(struct event_chunk_header);
|
|
}
|
|
if (vp) {
|
|
size_t write_size = tempbuf_number * sizeof(kd_buf);
|
|
error = kdbg_write_to_vnode((caddr_t)kd_buffer_trace.kdcopybuf,
|
|
write_size, vp, ctx, RAW_file_offset);
|
|
if (!error) {
|
|
RAW_file_offset += write_size;
|
|
}
|
|
|
|
if (RAW_file_written >= RAW_FLUSH_SIZE) {
|
|
error = VNOP_FSYNC(vp, MNT_NOWAIT, ctx);
|
|
|
|
RAW_file_written = 0;
|
|
}
|
|
} else {
|
|
error = copyout(kd_buffer_trace.kdcopybuf, *buffer, tempbuf_number * sizeof(kd_buf));
|
|
*buffer += (tempbuf_number * sizeof(kd_buf));
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
#pragma mark - User space interface
|
|
|
|
static int
|
|
_kd_sysctl_internal(int op, int value, user_addr_t where, size_t *sizep)
|
|
{
|
|
size_t size = *sizep;
|
|
kd_regtype kd_Reg;
|
|
proc_t p;
|
|
|
|
bool read_only = (op == KERN_KDGETBUF || op == KERN_KDREADCURTHRMAP);
|
|
int perm_error = read_only ? ktrace_read_check() :
|
|
ktrace_configure(KTRACE_KDEBUG);
|
|
if (perm_error != 0) {
|
|
return perm_error;
|
|
}
|
|
|
|
switch (op) {
|
|
case KERN_KDGETBUF:;
|
|
pid_t owning_pid = ktrace_get_owning_pid();
|
|
kbufinfo_t info = {
|
|
.nkdbufs = kd_buffer_trace.kdb_event_count,
|
|
.nkdthreads = (int)MIN(kd_mapcount, INT_MAX),
|
|
.nolog = kd_control_trace.kdc_emit == KDEMIT_DISABLE,
|
|
.flags = kd_control_trace.kdc_flags | kd_control_trace.kdc_live_flags,
|
|
.bufid = owning_pid ?: -1,
|
|
};
|
|
#if defined(__LP64__)
|
|
info.flags |= KDBG_LP64;
|
|
#endif // defined(__LP64__)
|
|
|
|
size = MIN(size, sizeof(info));
|
|
return copyout(&info, where, size);
|
|
case KERN_KDREADCURTHRMAP:
|
|
return kdbg_readcurthrmap(where, sizep);
|
|
case KERN_KDEFLAGS:
|
|
value &= KDBG_USERFLAGS;
|
|
kd_control_trace.kdc_flags |= value;
|
|
return 0;
|
|
case KERN_KDDFLAGS:
|
|
value &= KDBG_USERFLAGS;
|
|
kd_control_trace.kdc_flags &= ~value;
|
|
return 0;
|
|
case KERN_KDENABLE:
|
|
if (value) {
|
|
if (!(kd_control_trace.kdc_flags & KDBG_BUFINIT) ||
|
|
!(value == KDEBUG_ENABLE_TRACE || value == KDEBUG_ENABLE_PPT)) {
|
|
return EINVAL;
|
|
}
|
|
_threadmap_init();
|
|
|
|
kdbg_set_tracing_enabled(true, value);
|
|
} else {
|
|
if (!kdebug_enable) {
|
|
return 0;
|
|
}
|
|
|
|
kernel_debug_disable();
|
|
}
|
|
return 0;
|
|
case KERN_KDSETBUF:
|
|
kdbg_set_nkdbufs_trace(value);
|
|
return 0;
|
|
case KERN_KDSETUP:
|
|
return kdbg_reinit(EXTRA_COPROC_COUNT);
|
|
case KERN_KDREMOVE:
|
|
ktrace_reset(KTRACE_KDEBUG);
|
|
return 0;
|
|
case KERN_KDSETREG:
|
|
if (size < sizeof(kd_regtype)) {
|
|
return EINVAL;
|
|
}
|
|
if (copyin(where, &kd_Reg, sizeof(kd_regtype))) {
|
|
return EINVAL;
|
|
}
|
|
return kdbg_setreg(&kd_Reg);
|
|
case KERN_KDGETREG:
|
|
return EINVAL;
|
|
case KERN_KDREADTR:
|
|
return _read_merged_trace_events(where, sizep, NULL, NULL, false);
|
|
case KERN_KDWRITETR:
|
|
case KERN_KDWRITETR_V3:
|
|
case KERN_KDWRITEMAP: {
|
|
struct vfs_context context;
|
|
struct fileproc *fp;
|
|
size_t number;
|
|
vnode_t vp;
|
|
int fd;
|
|
int ret = 0;
|
|
|
|
if (op == KERN_KDWRITETR || op == KERN_KDWRITETR_V3) {
|
|
(void)kdbg_wait(size);
|
|
// Re-check whether this process can configure ktrace, since waiting
|
|
// will drop the ktrace lock.
|
|
int no_longer_owner_error = ktrace_configure(KTRACE_KDEBUG);
|
|
if (no_longer_owner_error != 0) {
|
|
return no_longer_owner_error;
|
|
}
|
|
}
|
|
|
|
p = current_proc();
|
|
fd = value;
|
|
|
|
if (fp_get_ftype(p, fd, DTYPE_VNODE, EBADF, &fp)) {
|
|
return EBADF;
|
|
}
|
|
|
|
vp = fp_get_data(fp);
|
|
context.vc_thread = current_thread();
|
|
context.vc_ucred = fp->fp_glob->fg_cred;
|
|
|
|
if ((ret = vnode_getwithref(vp)) == 0) {
|
|
RAW_file_offset = fp->fp_glob->fg_offset;
|
|
if (op == KERN_KDWRITETR || op == KERN_KDWRITETR_V3) {
|
|
number = kd_buffer_trace.kdb_event_count * sizeof(kd_buf);
|
|
|
|
KDBG_RELEASE(TRACE_WRITING_EVENTS | DBG_FUNC_START);
|
|
ret = _read_merged_trace_events(0, &number, vp, &context,
|
|
op == KERN_KDWRITETR_V3);
|
|
KDBG_RELEASE(TRACE_WRITING_EVENTS | DBG_FUNC_END, number);
|
|
|
|
*sizep = number;
|
|
} else {
|
|
number = kd_mapcount * sizeof(kd_threadmap);
|
|
ret = kdbg_write_thread_map(vp, &context);
|
|
}
|
|
fp->fp_glob->fg_offset = RAW_file_offset;
|
|
vnode_put(vp);
|
|
}
|
|
fp_drop(p, fd, fp, 0);
|
|
|
|
return ret;
|
|
}
|
|
case KERN_KDBUFWAIT:
|
|
*sizep = kdbg_wait(size);
|
|
return 0;
|
|
case KERN_KDPIDTR:
|
|
if (size < sizeof(kd_regtype)) {
|
|
return EINVAL;
|
|
}
|
|
if (copyin(where, &kd_Reg, sizeof(kd_regtype))) {
|
|
return EINVAL;
|
|
}
|
|
return kdbg_setpid(&kd_Reg);
|
|
case KERN_KDPIDEX:
|
|
if (size < sizeof(kd_regtype)) {
|
|
return EINVAL;
|
|
}
|
|
if (copyin(where, &kd_Reg, sizeof(kd_regtype))) {
|
|
return EINVAL;
|
|
}
|
|
return kdbg_setpidex(&kd_Reg);
|
|
case KERN_KDCPUMAP:
|
|
return _copyout_cpu_map(RAW_VERSION1, where, sizep);
|
|
case KERN_KDCPUMAP_EXT:
|
|
return _copyout_cpu_map(1, where, sizep);
|
|
case KERN_KDTHRMAP:
|
|
return kdbg_copyout_thread_map(where, sizep);
|
|
case KERN_KDSET_TYPEFILTER:
|
|
return kdbg_copyin_typefilter(where, size);
|
|
case KERN_KDSET_EDM:
|
|
return _copyin_event_disable_mask(where, size);
|
|
case KERN_KDGET_EDM:
|
|
return _copyout_event_disable_mask(where, size);
|
|
#if DEVELOPMENT || DEBUG
|
|
case KERN_KDTEST:
|
|
return kdbg_test(size);
|
|
#endif // DEVELOPMENT || DEBUG
|
|
|
|
default:
|
|
return ENOTSUP;
|
|
}
|
|
}
|
|
|
|
static int
|
|
kdebug_sysctl SYSCTL_HANDLER_ARGS
|
|
{
|
|
int *names = arg1;
|
|
int name_count = arg2;
|
|
user_addr_t udst = req->oldptr;
|
|
size_t *usize = &req->oldlen;
|
|
int value = 0;
|
|
|
|
if (name_count == 0) {
|
|
return ENOTSUP;
|
|
}
|
|
|
|
int op = names[0];
|
|
|
|
// Some operations have an argument stuffed into the next OID argument.
|
|
switch (op) {
|
|
case KERN_KDWRITETR:
|
|
case KERN_KDWRITETR_V3:
|
|
case KERN_KDWRITEMAP:
|
|
case KERN_KDEFLAGS:
|
|
case KERN_KDDFLAGS:
|
|
case KERN_KDENABLE:
|
|
case KERN_KDSETBUF:
|
|
if (name_count < 2) {
|
|
return EINVAL;
|
|
}
|
|
value = names[1];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ktrace_lock();
|
|
int ret = _kd_sysctl_internal(op, value, udst, usize);
|
|
ktrace_unlock();
|
|
if (0 == ret) {
|
|
req->oldidx += req->oldlen;
|
|
}
|
|
return ret;
|
|
}
|
|
SYSCTL_PROC(_kern, KERN_KDEBUG, kdebug,
|
|
CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, kdebug_sysctl, NULL, "");
|
|
|
|
#pragma mark - Tests
|
|
|
|
#if DEVELOPMENT || DEBUG
|
|
|
|
static int test_coproc = 0;
|
|
static int sync_flush_coproc = 0;
|
|
|
|
#define KDEBUG_TEST_CODE(code) BSDDBG_CODE(DBG_BSD_KDEBUG_TEST, (code))
|
|
|
|
/*
|
|
* A test IOP for the SYNC_FLUSH callback.
|
|
*/
|
|
|
|
static void
|
|
sync_flush_callback(void * __unused context, kd_callback_type reason,
|
|
void * __unused arg)
|
|
{
|
|
assert(sync_flush_coproc > 0);
|
|
|
|
if (reason == KD_CALLBACK_SYNC_FLUSH) {
|
|
kernel_debug_enter(sync_flush_coproc, KDEBUG_TEST_CODE(0xff),
|
|
kdebug_timestamp(), 0, 0, 0, 0, 0);
|
|
}
|
|
}
|
|
|
|
static struct kd_callback sync_flush_kdcb = {
|
|
.func = sync_flush_callback,
|
|
.iop_name = "test_sf",
|
|
};
|
|
|
|
#define TEST_COPROC_CTX 0xabadcafe
|
|
|
|
static void
|
|
test_coproc_cb(void *context, kd_callback_type __unused reason,
|
|
void * __unused arg)
|
|
{
|
|
assert((uintptr_t)context == TEST_COPROC_CTX);
|
|
}
|
|
|
|
static int
|
|
kdbg_test(size_t flavor)
|
|
{
|
|
int code = 0;
|
|
int dummy_iop = 0;
|
|
|
|
switch (flavor) {
|
|
case KDTEST_KERNEL_MACROS:
|
|
/* try each macro */
|
|
KDBG(KDEBUG_TEST_CODE(code)); code++;
|
|
KDBG(KDEBUG_TEST_CODE(code), 1); code++;
|
|
KDBG(KDEBUG_TEST_CODE(code), 1, 2); code++;
|
|
KDBG(KDEBUG_TEST_CODE(code), 1, 2, 3); code++;
|
|
KDBG(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++;
|
|
|
|
KDBG_RELEASE(KDEBUG_TEST_CODE(code)); code++;
|
|
KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1); code++;
|
|
KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1, 2); code++;
|
|
KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1, 2, 3); code++;
|
|
KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++;
|
|
|
|
KDBG_FILTERED(KDEBUG_TEST_CODE(code)); code++;
|
|
KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1); code++;
|
|
KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1, 2); code++;
|
|
KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1, 2, 3); code++;
|
|
KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++;
|
|
|
|
KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code)); code++;
|
|
KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1); code++;
|
|
KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1, 2); code++;
|
|
KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1, 2, 3); code++;
|
|
KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++;
|
|
|
|
KDBG_DEBUG(KDEBUG_TEST_CODE(code)); code++;
|
|
KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1); code++;
|
|
KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1, 2); code++;
|
|
KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1, 2, 3); code++;
|
|
KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++;
|
|
break;
|
|
|
|
case KDTEST_OLD_TIMESTAMP:
|
|
if (kd_control_trace.kdc_coprocs) {
|
|
/* avoid the assertion in kernel_debug_enter for a valid IOP */
|
|
dummy_iop = kd_control_trace.kdc_coprocs[0].cpu_id;
|
|
}
|
|
|
|
/* ensure old timestamps are not emitted from kernel_debug_enter */
|
|
kernel_debug_enter(dummy_iop, KDEBUG_TEST_CODE(code),
|
|
100 /* very old timestamp */, 0, 0, 0, 0, 0);
|
|
code++;
|
|
kernel_debug_enter(dummy_iop, KDEBUG_TEST_CODE(code),
|
|
kdebug_timestamp(), 0, 0, 0, 0, 0);
|
|
code++;
|
|
break;
|
|
|
|
case KDTEST_FUTURE_TIMESTAMP:
|
|
if (kd_control_trace.kdc_coprocs) {
|
|
dummy_iop = kd_control_trace.kdc_coprocs[0].cpu_id;
|
|
}
|
|
kernel_debug_enter(dummy_iop, KDEBUG_TEST_CODE(code),
|
|
kdebug_timestamp() * 2 /* !!! */, 0, 0, 0, 0, 0);
|
|
break;
|
|
|
|
case KDTEST_SETUP_IOP:
|
|
if (!sync_flush_coproc) {
|
|
ktrace_unlock();
|
|
int new_sync_flush_coproc = kernel_debug_register_callback(
|
|
sync_flush_kdcb);
|
|
assert(new_sync_flush_coproc > 0);
|
|
ktrace_lock();
|
|
if (!sync_flush_coproc) {
|
|
sync_flush_coproc = new_sync_flush_coproc;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case KDTEST_SETUP_COPROCESSOR:
|
|
if (!test_coproc) {
|
|
ktrace_unlock();
|
|
int new_test_coproc = kdebug_register_coproc("test_coproc",
|
|
KDCP_CONTINUOUS_TIME, test_coproc_cb, (void *)TEST_COPROC_CTX);
|
|
assert(new_test_coproc > 0);
|
|
ktrace_lock();
|
|
if (!test_coproc) {
|
|
test_coproc = new_test_coproc;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case KDTEST_ABSOLUTE_TIMESTAMP:;
|
|
uint64_t atime = mach_absolute_time();
|
|
kernel_debug_enter(sync_flush_coproc, KDEBUG_TEST_CODE(0),
|
|
atime, (uintptr_t)atime, (uintptr_t)(atime >> 32), 0, 0, 0);
|
|
break;
|
|
|
|
case KDTEST_CONTINUOUS_TIMESTAMP:;
|
|
uint64_t ctime = mach_continuous_time();
|
|
kernel_debug_enter(test_coproc, KDEBUG_TEST_CODE(1),
|
|
ctime, (uintptr_t)ctime, (uintptr_t)(ctime >> 32), 0, 0, 0);
|
|
break;
|
|
|
|
case KDTEST_PAST_EVENT:;
|
|
uint64_t old_time = 1;
|
|
kernel_debug_enter(test_coproc, KDEBUG_TEST_CODE(1), old_time, 0, 0, 0,
|
|
0, 0);
|
|
kernel_debug_enter(test_coproc, KDEBUG_TEST_CODE(1), kdebug_timestamp(),
|
|
0, 0, 0, 0, 0);
|
|
break;
|
|
|
|
default:
|
|
return ENOTSUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#undef KDEBUG_TEST_CODE
|
|
|
|
#endif /* DEVELOPMENT || DEBUG */
|
|
|
|
static void
|
|
_deferred_coproc_notify(mpsc_queue_chain_t e, mpsc_daemon_queue_t queue __unused)
|
|
{
|
|
struct kd_coproc *coproc = mpsc_queue_element(e, struct kd_coproc, chain);
|
|
if (kd_control_trace.kdc_emit == KDEMIT_TYPEFILTER) {
|
|
coproc->callback.func(coproc->callback.context,
|
|
KD_CALLBACK_TYPEFILTER_CHANGED, kdbg_typefilter);
|
|
}
|
|
if (kdebug_enable) {
|
|
coproc->callback.func(coproc->callback.context,
|
|
KD_CALLBACK_KDEBUG_ENABLED, kdbg_typefilter);
|
|
}
|
|
}
|
|
|
|
void
|
|
kdebug_init(unsigned int n_events, char *filter_desc, enum kdebug_opts opts)
|
|
{
|
|
assert(filter_desc != NULL);
|
|
|
|
kdbg_typefilter = typefilter_create();
|
|
assert(kdbg_typefilter != NULL);
|
|
kdbg_typefilter_memory_entry = typefilter_create_memory_entry(kdbg_typefilter);
|
|
assert(kdbg_typefilter_memory_entry != MACH_PORT_NULL);
|
|
|
|
(void)mpsc_daemon_queue_init_with_thread_call(&_coproc_notify_queue,
|
|
_deferred_coproc_notify, THREAD_CALL_PRIORITY_KERNEL,
|
|
MPSC_DAEMON_INIT_NONE);
|
|
|
|
kdebug_trace_start(n_events, filter_desc, opts);
|
|
}
|
|
|
|
static void
|
|
kdbg_set_typefilter_string(const char *filter_desc)
|
|
{
|
|
char *end = NULL;
|
|
|
|
ktrace_assert_lock_held();
|
|
|
|
assert(filter_desc != NULL);
|
|
|
|
typefilter_reject_all(kdbg_typefilter);
|
|
typefilter_allow_class(kdbg_typefilter, DBG_TRACE);
|
|
|
|
/* if the filter description starts with a number, assume it's a csc */
|
|
if (filter_desc[0] >= '0' && filter_desc[0] <= '9') {
|
|
unsigned long csc = strtoul(filter_desc, NULL, 0);
|
|
if (filter_desc != end && csc <= KDBG_CSC_MAX) {
|
|
typefilter_allow_csc(kdbg_typefilter, (uint16_t)csc);
|
|
}
|
|
return;
|
|
}
|
|
|
|
while (filter_desc[0] != '\0') {
|
|
unsigned long allow_value;
|
|
|
|
char filter_type = filter_desc[0];
|
|
if (filter_type != 'C' && filter_type != 'S') {
|
|
printf("kdebug: unexpected filter type `%c'\n", filter_type);
|
|
return;
|
|
}
|
|
filter_desc++;
|
|
|
|
allow_value = strtoul(filter_desc, &end, 0);
|
|
if (filter_desc == end) {
|
|
printf("kdebug: cannot parse `%s' as integer\n", filter_desc);
|
|
return;
|
|
}
|
|
|
|
switch (filter_type) {
|
|
case 'C':
|
|
if (allow_value > KDBG_CLASS_MAX) {
|
|
printf("kdebug: class 0x%lx is invalid\n", allow_value);
|
|
return;
|
|
}
|
|
printf("kdebug: C 0x%lx\n", allow_value);
|
|
typefilter_allow_class(kdbg_typefilter, (uint8_t)allow_value);
|
|
break;
|
|
case 'S':
|
|
if (allow_value > KDBG_CSC_MAX) {
|
|
printf("kdebug: class-subclass 0x%lx is invalid\n", allow_value);
|
|
return;
|
|
}
|
|
printf("kdebug: S 0x%lx\n", allow_value);
|
|
typefilter_allow_csc(kdbg_typefilter, (uint16_t)allow_value);
|
|
break;
|
|
default:
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
/* advance to next filter entry */
|
|
filter_desc = end;
|
|
if (filter_desc[0] == ',') {
|
|
filter_desc++;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
kdebug_wake(void)
|
|
{
|
|
if (!wake_nkdbufs) {
|
|
return 0;
|
|
}
|
|
uint64_t start = mach_absolute_time();
|
|
kdebug_trace_start(wake_nkdbufs, NULL, trace_wrap ? KDOPT_WRAPPING : 0);
|
|
return mach_absolute_time() - start;
|
|
}
|
|
|
|
/*
|
|
* This function is meant to be called from the bootstrap thread or kdebug_wake.
|
|
*/
|
|
void
|
|
kdebug_trace_start(unsigned int n_events, const char *filter_desc,
|
|
enum kdebug_opts opts)
|
|
{
|
|
if (!n_events) {
|
|
kd_early_done = true;
|
|
return;
|
|
}
|
|
|
|
ktrace_start_single_threaded();
|
|
|
|
ktrace_kernel_configure(KTRACE_KDEBUG);
|
|
|
|
kdbg_set_nkdbufs_trace(n_events);
|
|
|
|
kernel_debug_string_early("start_kern_tracing");
|
|
|
|
int error = kdbg_reinit(EXTRA_COPROC_COUNT_BOOT);
|
|
if (error != 0) {
|
|
printf("kdebug: allocation failed, kernel tracing not started: %d\n",
|
|
error);
|
|
kd_early_done = true;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Wrapping is disabled because boot and wake tracing is interested in
|
|
* the earliest events, at the expense of later ones.
|
|
*/
|
|
if ((opts & KDOPT_WRAPPING) == 0) {
|
|
kd_control_trace.kdc_live_flags |= KDBG_NOWRAP;
|
|
}
|
|
|
|
if (filter_desc && filter_desc[0] != '\0') {
|
|
kdbg_set_typefilter_string(filter_desc);
|
|
kdbg_enable_typefilter();
|
|
}
|
|
|
|
/*
|
|
* Hold off interrupts between getting a thread map and enabling trace
|
|
* and until the early traces are recorded.
|
|
*/
|
|
bool s = ml_set_interrupts_enabled(false);
|
|
|
|
if (!(opts & KDOPT_ATBOOT)) {
|
|
_threadmap_init();
|
|
}
|
|
|
|
kdbg_set_tracing_enabled(true, KDEBUG_ENABLE_TRACE);
|
|
|
|
if ((opts & KDOPT_ATBOOT)) {
|
|
/*
|
|
* Transfer all very early events from the static buffer into the real
|
|
* buffers.
|
|
*/
|
|
kernel_debug_early_end();
|
|
}
|
|
|
|
ml_set_interrupts_enabled(s);
|
|
|
|
printf("kernel tracing started with %u events, filter = %s\n", n_events,
|
|
filter_desc ?: "none");
|
|
|
|
out:
|
|
ktrace_end_single_threaded();
|
|
}
|
|
|
|
void
|
|
kdbg_dump_trace_to_file(const char *filename, bool reenable)
|
|
{
|
|
vfs_context_t ctx;
|
|
vnode_t vp;
|
|
size_t write_size;
|
|
int ret;
|
|
int reenable_trace = 0;
|
|
|
|
ktrace_lock();
|
|
|
|
if (!(kdebug_enable & KDEBUG_ENABLE_TRACE)) {
|
|
goto out;
|
|
}
|
|
|
|
if (ktrace_get_owning_pid() != 0) {
|
|
/*
|
|
* Another process owns ktrace and is still active, disable tracing to
|
|
* prevent wrapping.
|
|
*/
|
|
kdebug_enable = 0;
|
|
kd_control_trace.enabled = 0;
|
|
commpage_update_kdebug_state();
|
|
goto out;
|
|
}
|
|
|
|
KDBG_RELEASE(TRACE_WRITING_EVENTS | DBG_FUNC_START);
|
|
|
|
reenable_trace = reenable ? kdebug_enable : 0;
|
|
kdebug_enable = 0;
|
|
kd_control_trace.enabled = 0;
|
|
commpage_update_kdebug_state();
|
|
|
|
ctx = vfs_context_kernel();
|
|
|
|
if (vnode_open(filename, (O_CREAT | FWRITE | O_NOFOLLOW), 0600, 0, &vp, ctx)) {
|
|
goto out;
|
|
}
|
|
|
|
kdbg_write_thread_map(vp, ctx);
|
|
|
|
write_size = kd_buffer_trace.kdb_event_count * sizeof(kd_buf);
|
|
ret = _read_merged_trace_events(0, &write_size, vp, ctx, false);
|
|
if (ret) {
|
|
goto out_close;
|
|
}
|
|
|
|
/*
|
|
* Wait to synchronize the file to capture the I/O in the
|
|
* TRACE_WRITING_EVENTS interval.
|
|
*/
|
|
ret = VNOP_FSYNC(vp, MNT_WAIT, ctx);
|
|
if (ret == KERN_SUCCESS) {
|
|
ret = VNOP_IOCTL(vp, F_FULLFSYNC, (caddr_t)NULL, 0, ctx);
|
|
}
|
|
|
|
/*
|
|
* Balance the starting TRACE_WRITING_EVENTS tracepoint manually.
|
|
*/
|
|
kd_buf end_event = {
|
|
.debugid = TRACE_WRITING_EVENTS | DBG_FUNC_END,
|
|
.arg1 = write_size,
|
|
.arg2 = ret,
|
|
.arg5 = (kd_buf_argtype)thread_tid(current_thread()),
|
|
};
|
|
kdbg_set_timestamp_and_cpu(&end_event, kdebug_timestamp(),
|
|
cpu_number());
|
|
|
|
/* this is best effort -- ignore any errors */
|
|
(void)kdbg_write_to_vnode((caddr_t)&end_event, sizeof(kd_buf), vp, ctx,
|
|
RAW_file_offset);
|
|
|
|
out_close:
|
|
vnode_close(vp, FWRITE, ctx);
|
|
sync(current_proc(), (void *)NULL, (int *)NULL);
|
|
|
|
out:
|
|
if (reenable_trace != 0) {
|
|
kdebug_enable = reenable_trace;
|
|
kd_control_trace.enabled = 1;
|
|
commpage_update_kdebug_state();
|
|
}
|
|
|
|
ktrace_unlock();
|
|
}
|
|
|
|
SYSCTL_NODE(_kern, OID_AUTO, kdbg, CTLFLAG_RD | CTLFLAG_LOCKED, 0,
|
|
"kdbg");
|
|
|
|
SYSCTL_INT(_kern_kdbg, OID_AUTO, debug,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&kdbg_debug, 0, "Set kdebug debug mode");
|
|
|
|
SYSCTL_QUAD(_kern_kdbg, OID_AUTO, oldest_time,
|
|
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
|
|
&kd_control_trace.kdc_oldest_time,
|
|
"Find the oldest timestamp still in trace");
|