gems-kernel/source/THIRDPARTY/xnu/bsd/kern/kern_aio.c
2024-06-03 11:29:39 -05:00

2258 lines
64 KiB
C

/*
* Copyright (c) 2003-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* todo:
* 1) ramesh is looking into how to replace taking a reference on
* the user's map (vm_map_reference()) since it is believed that
* would not hold the process for us.
* 2) david is looking into a way for us to set the priority of the
* worker threads to match that of the user's thread when the
* async IO was queued.
*/
/*
* This file contains support for the POSIX 1003.1B AIO/LIO facility.
*/
#include <sys/systm.h>
#include <sys/fcntl.h>
#include <sys/file_internal.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/vnode_internal.h>
#include <sys/kauth.h>
#include <sys/mount_internal.h>
#include <sys/param.h>
#include <sys/proc_internal.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>
#include <sys/user.h>
#include <sys/aio_kern.h>
#include <sys/sysproto.h>
#include <machine/limits.h>
#include <mach/mach_types.h>
#include <kern/kern_types.h>
#include <kern/waitq.h>
#include <kern/zalloc.h>
#include <kern/task.h>
#include <kern/sched_prim.h>
#include <vm/vm_map.h>
#include <os/refcnt.h>
#include <sys/kdebug.h>
#define AIO_work_queued 1
#define AIO_worker_wake 2
#define AIO_completion_sig 3
#define AIO_completion_cleanup_wait 4
#define AIO_completion_cleanup_wake 5
#define AIO_completion_suspend_wake 6
#define AIO_fsync_delay 7
#define AIO_cancel 10
#define AIO_cancel_async_workq 11
#define AIO_cancel_sync_workq 12
#define AIO_cancel_activeq 13
#define AIO_cancel_doneq 14
#define AIO_fsync 20
#define AIO_read 30
#define AIO_write 40
#define AIO_listio 50
#define AIO_error 60
#define AIO_error_val 61
#define AIO_error_activeq 62
#define AIO_error_workq 63
#define AIO_return 70
#define AIO_return_val 71
#define AIO_return_activeq 72
#define AIO_return_workq 73
#define AIO_exec 80
#define AIO_exit 90
#define AIO_exit_sleep 91
#define AIO_close 100
#define AIO_close_sleep 101
#define AIO_suspend 110
#define AIO_suspend_sleep 111
#define AIO_worker_thread 120
__options_decl(aio_entry_flags_t, uint32_t, {
AIO_READ = 0x00000001, /* a read */
AIO_WRITE = 0x00000002, /* a write */
AIO_FSYNC = 0x00000004, /* aio_fsync with op = O_SYNC */
AIO_DSYNC = 0x00000008, /* aio_fsync with op = O_DSYNC (not supported yet) */
AIO_LIO = 0x00000010, /* lio_listio generated IO */
AIO_LIO_WAIT = 0x00000020, /* lio_listio is waiting on the leader */
/*
* These flags mean that this entry is blocking either:
* - close (AIO_CLOSE_WAIT)
* - exit or exec (AIO_EXIT_WAIT)
*
* These flags are mutually exclusive, and the AIO_EXIT_WAIT variant
* will also neuter notifications in do_aio_completion_and_unlock().
*/
AIO_CLOSE_WAIT = 0x00004000,
AIO_EXIT_WAIT = 0x00008000,
});
/*! @struct aio_workq_entry
*
* @discussion
* This represents a piece of aio/lio work.
*
* The ownership rules go as follows:
*
* - the "proc" owns one refcount on the entry (from creation), while it is
* enqueued on the aio_activeq and then the aio_doneq.
*
* either aio_return() (user read the status) or _aio_exit() (the process
* died) will dequeue the entry and consume this ref.
*
* - the async workqueue owns one refcount once the work is submitted,
* which is consumed in do_aio_completion_and_unlock().
*
* This ref protects the entry for the the end of
* do_aio_completion_and_unlock() (when signal delivery happens).
*
* - lio_listio() for batches picks one of the entries to be the "leader"
* of the batch. Each work item will have a refcount on its leader
* so that the accounting of the batch completion can be done on the leader
* (to be able to decrement lio_pending).
*
* This ref is consumed in do_aio_completion_and_unlock() as well.
*
* - lastly, in lio_listio() when the LIO_WAIT behavior is requested,
* an extra ref is taken in this syscall as it needs to keep accessing
* the leader "lio_pending" field until it hits 0.
*/
struct aio_workq_entry {
/* queue lock */
TAILQ_ENTRY(aio_workq_entry) aio_workq_link;
/* Proc lock */
TAILQ_ENTRY(aio_workq_entry) aio_proc_link; /* p_aio_activeq or p_aio_doneq */
user_ssize_t returnval; /* return value from read / write request */
errno_t errorval; /* error value from read / write request */
os_refcnt_t aio_refcount;
aio_entry_flags_t flags;
int lio_pending; /* pending I/Os in lio group, only on leader */
struct aio_workq_entry *lio_leader; /* pointer to the lio leader, can be self */
/* Initialized and never changed, safe to access */
struct proc *procp; /* user proc that queued this request */
user_addr_t uaiocbp; /* pointer passed in from user land */
struct user_aiocb aiocb; /* copy of aiocb from user land */
struct vfs_context context; /* context which enqueued the request */
/* Initialized, and possibly freed by aio_work_thread() or at free if cancelled */
vm_map_t aio_map; /* user land map we have a reference to */
};
/*
* aio requests queue up on the aio_async_workq or lio_sync_workq (for
* lio_listio LIO_WAIT). Requests then move to the per process aio_activeq
* (proc.aio_activeq) when one of our worker threads start the IO.
* And finally, requests move to the per process aio_doneq (proc.aio_doneq)
* when the IO request completes. The request remains on aio_doneq until
* user process calls aio_return or the process exits, either way that is our
* trigger to release aio resources.
*/
typedef struct aio_workq {
TAILQ_HEAD(, aio_workq_entry) aioq_entries;
lck_spin_t aioq_lock;
struct waitq aioq_waitq;
} *aio_workq_t;
#define AIO_NUM_WORK_QUEUES 1
struct aio_anchor_cb {
os_atomic(int) aio_total_count; /* total extant entries */
/* Hash table of queues here */
int aio_num_workqs;
struct aio_workq aio_async_workqs[AIO_NUM_WORK_QUEUES];
};
typedef struct aio_anchor_cb aio_anchor_cb;
/*
* Notes on aio sleep / wake channels.
* We currently pick a couple fields within the proc structure that will allow
* us sleep channels that currently do not collide with any other kernel routines.
* At this time, for binary compatibility reasons, we cannot create new proc fields.
*/
#define AIO_SUSPEND_SLEEP_CHAN p_aio_activeq
#define AIO_CLEANUP_SLEEP_CHAN p_aio_total_count
#define ASSERT_AIO_FROM_PROC(aiop, theproc) \
if ((aiop)->procp != (theproc)) { \
panic("AIO on a proc list that does not belong to that proc."); \
}
/*
* LOCAL PROTOTYPES
*/
static void aio_proc_lock(proc_t procp);
static void aio_proc_lock_spin(proc_t procp);
static void aio_proc_unlock(proc_t procp);
static lck_mtx_t *aio_proc_mutex(proc_t procp);
static bool aio_has_active_requests_for_process(proc_t procp);
static bool aio_proc_has_active_requests_for_file(proc_t procp, int fd);
static boolean_t is_already_queued(proc_t procp, user_addr_t aiocbp);
static aio_workq_t aio_entry_workq(aio_workq_entry *entryp);
static void aio_workq_remove_entry_locked(aio_workq_t queue, aio_workq_entry *entryp);
static void aio_workq_add_entry_locked(aio_workq_t queue, aio_workq_entry *entryp);
static void aio_entry_ref(aio_workq_entry *entryp);
static void aio_entry_unref(aio_workq_entry *entryp);
static bool aio_entry_try_workq_remove(aio_workq_entry *entryp);
static boolean_t aio_delay_fsync_request(aio_workq_entry *entryp);
static void aio_free_request(aio_workq_entry *entryp);
static void aio_workq_init(aio_workq_t wq);
static void aio_workq_lock_spin(aio_workq_t wq);
static void aio_workq_unlock(aio_workq_t wq);
static lck_spin_t *aio_workq_lock(aio_workq_t wq);
static void aio_work_thread(void *arg, wait_result_t wr);
static aio_workq_entry *aio_get_some_work(void);
static int aio_queue_async_request(proc_t procp, user_addr_t aiocbp, aio_entry_flags_t);
static int aio_validate(proc_t, aio_workq_entry *entryp);
static int do_aio_cancel_locked(proc_t p, int fd, user_addr_t aiocbp, aio_entry_flags_t);
static void do_aio_completion_and_unlock(proc_t p, aio_workq_entry *entryp);
static int do_aio_fsync(aio_workq_entry *entryp);
static int do_aio_read(aio_workq_entry *entryp);
static int do_aio_write(aio_workq_entry *entryp);
static void do_munge_aiocb_user32_to_user(struct user32_aiocb *my_aiocbp, struct user_aiocb *the_user_aiocbp);
static void do_munge_aiocb_user64_to_user(struct user64_aiocb *my_aiocbp, struct user_aiocb *the_user_aiocbp);
static aio_workq_entry *aio_create_queue_entry(proc_t procp, user_addr_t aiocbp, aio_entry_flags_t);
static int aio_copy_in_list(proc_t, user_addr_t, user_addr_t *, int);
#define ASSERT_AIO_PROC_LOCK_OWNED(p) LCK_MTX_ASSERT(aio_proc_mutex(p), LCK_MTX_ASSERT_OWNED)
#define ASSERT_AIO_WORKQ_LOCK_OWNED(q) LCK_SPIN_ASSERT(aio_workq_lock(q), LCK_ASSERT_OWNED)
/*
* EXTERNAL PROTOTYPES
*/
/* in ...bsd/kern/sys_generic.c */
extern int dofileread(vfs_context_t ctx, struct fileproc *fp,
user_addr_t bufp, user_size_t nbyte,
off_t offset, int flags, user_ssize_t *retval);
extern int dofilewrite(vfs_context_t ctx, struct fileproc *fp,
user_addr_t bufp, user_size_t nbyte, off_t offset,
int flags, user_ssize_t *retval);
/*
* aio external global variables.
*/
extern int aio_max_requests; /* AIO_MAX - configurable */
extern int aio_max_requests_per_process; /* AIO_PROCESS_MAX - configurable */
extern int aio_worker_threads; /* AIO_THREAD_COUNT - configurable */
/*
* aio static variables.
*/
static aio_anchor_cb aio_anchor = {
.aio_num_workqs = AIO_NUM_WORK_QUEUES,
};
os_refgrp_decl(static, aio_refgrp, "aio", NULL);
static LCK_GRP_DECLARE(aio_proc_lock_grp, "aio_proc");
static LCK_GRP_DECLARE(aio_queue_lock_grp, "aio_queue");
static LCK_MTX_DECLARE(aio_proc_mtx, &aio_proc_lock_grp);
static KALLOC_TYPE_DEFINE(aio_workq_zonep, aio_workq_entry, KT_DEFAULT);
/* Hash */
static aio_workq_t
aio_entry_workq(__unused aio_workq_entry *entryp)
{
return &aio_anchor.aio_async_workqs[0];
}
static void
aio_workq_init(aio_workq_t wq)
{
TAILQ_INIT(&wq->aioq_entries);
lck_spin_init(&wq->aioq_lock, &aio_queue_lock_grp, LCK_ATTR_NULL);
waitq_init(&wq->aioq_waitq, WQT_QUEUE, SYNC_POLICY_FIFO);
}
/*
* Can be passed a queue which is locked spin.
*/
static void
aio_workq_remove_entry_locked(aio_workq_t queue, aio_workq_entry *entryp)
{
ASSERT_AIO_WORKQ_LOCK_OWNED(queue);
if (entryp->aio_workq_link.tqe_prev == NULL) {
panic("Trying to remove an entry from a work queue, but it is not on a queue");
}
TAILQ_REMOVE(&queue->aioq_entries, entryp, aio_workq_link);
entryp->aio_workq_link.tqe_prev = NULL; /* Not on a workq */
}
static void
aio_workq_add_entry_locked(aio_workq_t queue, aio_workq_entry *entryp)
{
ASSERT_AIO_WORKQ_LOCK_OWNED(queue);
TAILQ_INSERT_TAIL(&queue->aioq_entries, entryp, aio_workq_link);
}
static void
aio_proc_lock(proc_t procp)
{
lck_mtx_lock(aio_proc_mutex(procp));
}
static void
aio_proc_lock_spin(proc_t procp)
{
lck_mtx_lock_spin(aio_proc_mutex(procp));
}
static bool
aio_has_any_work(void)
{
return os_atomic_load(&aio_anchor.aio_total_count, relaxed) != 0;
}
static bool
aio_try_proc_insert_active_locked(proc_t procp, aio_workq_entry *entryp)
{
int old, new;
ASSERT_AIO_PROC_LOCK_OWNED(procp);
if (procp->p_aio_total_count >= aio_max_requests_per_process) {
return false;
}
if (is_already_queued(procp, entryp->uaiocbp)) {
return false;
}
os_atomic_rmw_loop(&aio_anchor.aio_total_count, old, new, relaxed, {
if (old >= aio_max_requests) {
os_atomic_rmw_loop_give_up(return false);
}
new = old + 1;
});
TAILQ_INSERT_TAIL(&procp->p_aio_activeq, entryp, aio_proc_link);
procp->p_aio_total_count++;
return true;
}
static void
aio_proc_move_done_locked(proc_t procp, aio_workq_entry *entryp)
{
TAILQ_REMOVE(&procp->p_aio_activeq, entryp, aio_proc_link);
TAILQ_INSERT_TAIL(&procp->p_aio_doneq, entryp, aio_proc_link);
}
static void
aio_proc_remove_done_locked(proc_t procp, aio_workq_entry *entryp)
{
TAILQ_REMOVE(&procp->p_aio_doneq, entryp, aio_proc_link);
entryp->aio_proc_link.tqe_prev = NULL;
if (os_atomic_dec_orig(&aio_anchor.aio_total_count, relaxed) <= 0) {
panic("Negative total AIO count!");
}
if (procp->p_aio_total_count-- <= 0) {
panic("proc %p: p_aio_total_count accounting mismatch", procp);
}
}
static void
aio_proc_unlock(proc_t procp)
{
lck_mtx_unlock(aio_proc_mutex(procp));
}
static lck_mtx_t*
aio_proc_mutex(proc_t procp)
{
return &procp->p_mlock;
}
static void
aio_entry_ref(aio_workq_entry *entryp)
{
os_ref_retain(&entryp->aio_refcount);
}
static void
aio_entry_unref(aio_workq_entry *entryp)
{
if (os_ref_release(&entryp->aio_refcount) == 0) {
aio_free_request(entryp);
}
}
static bool
aio_entry_try_workq_remove(aio_workq_entry *entryp)
{
/* Can only be cancelled if it's still on a work queue */
if (entryp->aio_workq_link.tqe_prev != NULL) {
aio_workq_t queue;
/* Will have to check again under the lock */
queue = aio_entry_workq(entryp);
aio_workq_lock_spin(queue);
if (entryp->aio_workq_link.tqe_prev != NULL) {
aio_workq_remove_entry_locked(queue, entryp);
aio_workq_unlock(queue);
return true;
} else {
aio_workq_unlock(queue);
}
}
return false;
}
static void
aio_workq_lock_spin(aio_workq_t wq)
{
lck_spin_lock(aio_workq_lock(wq));
}
static void
aio_workq_unlock(aio_workq_t wq)
{
lck_spin_unlock(aio_workq_lock(wq));
}
static lck_spin_t*
aio_workq_lock(aio_workq_t wq)
{
return &wq->aioq_lock;
}
/*
* aio_cancel - attempt to cancel one or more async IO requests currently
* outstanding against file descriptor uap->fd. If uap->aiocbp is not
* NULL then only one specific IO is cancelled (if possible). If uap->aiocbp
* is NULL then all outstanding async IO request for the given file
* descriptor are cancelled (if possible).
*/
int
aio_cancel(proc_t p, struct aio_cancel_args *uap, int *retval)
{
struct user_aiocb my_aiocb;
int result;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_cancel) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, 0, 0, 0);
/* quick check to see if there are any async IO requests queued up */
if (!aio_has_any_work()) {
result = 0;
*retval = AIO_ALLDONE;
goto ExitRoutine;
}
*retval = -1;
if (uap->aiocbp != USER_ADDR_NULL) {
if (proc_is64bit(p)) {
struct user64_aiocb aiocb64;
result = copyin(uap->aiocbp, &aiocb64, sizeof(aiocb64));
if (result == 0) {
do_munge_aiocb_user64_to_user(&aiocb64, &my_aiocb);
}
} else {
struct user32_aiocb aiocb32;
result = copyin(uap->aiocbp, &aiocb32, sizeof(aiocb32));
if (result == 0) {
do_munge_aiocb_user32_to_user(&aiocb32, &my_aiocb);
}
}
if (result != 0) {
result = EAGAIN;
goto ExitRoutine;
}
/* NOTE - POSIX standard says a mismatch between the file */
/* descriptor passed in and the file descriptor embedded in */
/* the aiocb causes unspecified results. We return EBADF in */
/* that situation. */
if (uap->fd != my_aiocb.aio_fildes) {
result = EBADF;
goto ExitRoutine;
}
}
aio_proc_lock(p);
result = do_aio_cancel_locked(p, uap->fd, uap->aiocbp, 0);
ASSERT_AIO_PROC_LOCK_OWNED(p);
aio_proc_unlock(p);
if (result != -1) {
*retval = result;
result = 0;
goto ExitRoutine;
}
result = EBADF;
ExitRoutine:
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_cancel) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, result, 0, 0);
return result;
}
/*
* _aio_close - internal function used to clean up async IO requests for
* a file descriptor that is closing.
* THIS MAY BLOCK.
*/
__private_extern__ void
_aio_close(proc_t p, int fd)
{
int error;
/* quick check to see if there are any async IO requests queued up */
if (!aio_has_any_work()) {
return;
}
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_close) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), fd, 0, 0, 0);
/* cancel all async IO requests on our todo queues for this file descriptor */
aio_proc_lock(p);
error = do_aio_cancel_locked(p, fd, USER_ADDR_NULL, AIO_CLOSE_WAIT);
ASSERT_AIO_PROC_LOCK_OWNED(p);
if (error == AIO_NOTCANCELED) {
/*
* AIO_NOTCANCELED is returned when we find an aio request for this process
* and file descriptor on the active async IO queue. Active requests cannot
* be cancelled so we must wait for them to complete. We will get a special
* wake up call on our channel used to sleep for ALL active requests to
* complete. This sleep channel (proc.AIO_CLEANUP_SLEEP_CHAN) is only used
* when we must wait for all active aio requests.
*/
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_close_sleep) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), fd, 0, 0, 0);
while (aio_proc_has_active_requests_for_file(p, fd)) {
msleep(&p->AIO_CLEANUP_SLEEP_CHAN, aio_proc_mutex(p), PRIBIO, "aio_close", 0);
}
}
aio_proc_unlock(p);
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_close) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), fd, 0, 0, 0);
}
/*
* aio_error - return the error status associated with the async IO
* request referred to by uap->aiocbp. The error status is the errno
* value that would be set by the corresponding IO request (read, wrtie,
* fdatasync, or sync).
*/
int
aio_error(proc_t p, struct aio_error_args *uap, int *retval)
{
aio_workq_entry *entryp;
int error;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_error) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, 0, 0, 0);
/* see if there are any aios to check */
if (!aio_has_any_work()) {
return EINVAL;
}
aio_proc_lock(p);
/* look for a match on our queue of async IO requests that have completed */
TAILQ_FOREACH(entryp, &p->p_aio_doneq, aio_proc_link) {
if (entryp->uaiocbp == uap->aiocbp) {
ASSERT_AIO_FROM_PROC(entryp, p);
*retval = entryp->errorval;
error = 0;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_error_val) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, *retval, 0, 0);
goto ExitRoutine;
}
}
/* look for a match on our queue of active async IO requests */
TAILQ_FOREACH(entryp, &p->p_aio_activeq, aio_proc_link) {
if (entryp->uaiocbp == uap->aiocbp) {
ASSERT_AIO_FROM_PROC(entryp, p);
*retval = EINPROGRESS;
error = 0;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_error_activeq) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, *retval, 0, 0);
goto ExitRoutine;
}
}
error = EINVAL;
ExitRoutine:
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_error) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, error, 0, 0);
aio_proc_unlock(p);
return error;
}
/*
* aio_fsync - asynchronously force all IO operations associated
* with the file indicated by the file descriptor (uap->aiocbp->aio_fildes) and
* queued at the time of the call to the synchronized completion state.
* NOTE - we do not support op O_DSYNC at this point since we do not support the
* fdatasync() call.
*/
int
aio_fsync(proc_t p, struct aio_fsync_args *uap, int *retval)
{
aio_entry_flags_t fsync_kind;
int error;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_fsync) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, uap->op, 0, 0);
*retval = 0;
/* 0 := O_SYNC for binary backward compatibility with Panther */
if (uap->op == O_SYNC || uap->op == 0) {
fsync_kind = AIO_FSYNC;
} else if (uap->op == O_DSYNC) {
fsync_kind = AIO_DSYNC;
} else {
*retval = -1;
error = EINVAL;
goto ExitRoutine;
}
error = aio_queue_async_request(p, uap->aiocbp, fsync_kind);
if (error != 0) {
*retval = -1;
}
ExitRoutine:
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_fsync) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, error, 0, 0);
return error;
}
/* aio_read - asynchronously read uap->aiocbp->aio_nbytes bytes from the
* file descriptor (uap->aiocbp->aio_fildes) into the buffer
* (uap->aiocbp->aio_buf).
*/
int
aio_read(proc_t p, struct aio_read_args *uap, int *retval)
{
int error;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_read) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, 0, 0, 0);
*retval = 0;
error = aio_queue_async_request(p, uap->aiocbp, AIO_READ);
if (error != 0) {
*retval = -1;
}
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_read) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, error, 0, 0);
return error;
}
/*
* aio_return - return the return status associated with the async IO
* request referred to by uap->aiocbp. The return status is the value
* that would be returned by corresponding IO request (read, write,
* fdatasync, or sync). This is where we release kernel resources
* held for async IO call associated with the given aiocb pointer.
*/
int
aio_return(proc_t p, struct aio_return_args *uap, user_ssize_t *retval)
{
aio_workq_entry *entryp;
int error = EINVAL;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_return) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, 0, 0, 0);
/* See if there are any entries to check */
if (!aio_has_any_work()) {
goto ExitRoutine;
}
aio_proc_lock(p);
*retval = 0;
/* look for a match on our queue of async IO requests that have completed */
TAILQ_FOREACH(entryp, &p->p_aio_doneq, aio_proc_link) {
ASSERT_AIO_FROM_PROC(entryp, p);
if (entryp->uaiocbp == uap->aiocbp) {
/* Done and valid for aio_return(), pull it off the list */
aio_proc_remove_done_locked(p, entryp);
*retval = entryp->returnval;
error = 0;
aio_proc_unlock(p);
aio_entry_unref(entryp);
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_return_val) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, *retval, 0, 0);
goto ExitRoutine;
}
}
/* look for a match on our queue of active async IO requests */
TAILQ_FOREACH(entryp, &p->p_aio_activeq, aio_proc_link) {
ASSERT_AIO_FROM_PROC(entryp, p);
if (entryp->uaiocbp == uap->aiocbp) {
error = EINPROGRESS;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_return_activeq) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, *retval, 0, 0);
break;
}
}
aio_proc_unlock(p);
ExitRoutine:
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_return) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, error, 0, 0);
return error;
}
/*
* _aio_exec - internal function used to clean up async IO requests for
* a process that is going away due to exec(). We cancel any async IOs
* we can and wait for those already active. We also disable signaling
* for cancelled or active aio requests that complete.
* This routine MAY block!
*/
__private_extern__ void
_aio_exec(proc_t p)
{
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_exec) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), 0, 0, 0, 0);
_aio_exit(p);
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_exec) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), 0, 0, 0, 0);
}
/*
* _aio_exit - internal function used to clean up async IO requests for
* a process that is terminating (via exit() or exec()). We cancel any async IOs
* we can and wait for those already active. We also disable signaling
* for cancelled or active aio requests that complete. This routine MAY block!
*/
__private_extern__ void
_aio_exit(proc_t p)
{
TAILQ_HEAD(, aio_workq_entry) tofree = TAILQ_HEAD_INITIALIZER(tofree);
aio_workq_entry *entryp, *tmp;
int error;
/* quick check to see if there are any async IO requests queued up */
if (!aio_has_any_work()) {
return;
}
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_exit) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), 0, 0, 0, 0);
aio_proc_lock(p);
/*
* cancel async IO requests on the todo work queue and wait for those
* already active to complete.
*/
error = do_aio_cancel_locked(p, -1, USER_ADDR_NULL, AIO_EXIT_WAIT);
ASSERT_AIO_PROC_LOCK_OWNED(p);
if (error == AIO_NOTCANCELED) {
/*
* AIO_NOTCANCELED is returned when we find an aio request for this process
* on the active async IO queue. Active requests cannot be cancelled so we
* must wait for them to complete. We will get a special wake up call on
* our channel used to sleep for ALL active requests to complete. This sleep
* channel (proc.AIO_CLEANUP_SLEEP_CHAN) is only used when we must wait for all
* active aio requests.
*/
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_exit_sleep) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), 0, 0, 0, 0);
while (aio_has_active_requests_for_process(p)) {
msleep(&p->AIO_CLEANUP_SLEEP_CHAN, aio_proc_mutex(p), PRIBIO, "aio_exit", 0);
}
}
assert(!aio_has_active_requests_for_process(p));
/* release all aio resources used by this process */
TAILQ_FOREACH_SAFE(entryp, &p->p_aio_doneq, aio_proc_link, tmp) {
ASSERT_AIO_FROM_PROC(entryp, p);
aio_proc_remove_done_locked(p, entryp);
TAILQ_INSERT_TAIL(&tofree, entryp, aio_proc_link);
}
aio_proc_unlock(p);
/* free all the entries outside of the aio_proc_lock() */
TAILQ_FOREACH_SAFE(entryp, &tofree, aio_proc_link, tmp) {
entryp->aio_proc_link.tqe_prev = NULL;
aio_entry_unref(entryp);
}
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_exit) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), 0, 0, 0, 0);
}
static bool
should_cancel(aio_workq_entry *entryp, int fd, user_addr_t aiocbp,
aio_entry_flags_t reason)
{
if (reason & AIO_EXIT_WAIT) {
/* caller is _aio_exit() */
return true;
}
if (fd != entryp->aiocb.aio_fildes) {
/* not the file we're looking for */
return false;
}
/*
* aio_cancel() or _aio_close() cancel
* everything for a given fd when aiocbp is NULL
*/
return aiocbp == USER_ADDR_NULL || entryp->uaiocbp == aiocbp;
}
/*
* do_aio_cancel_locked - cancel async IO requests (if possible). We get called by
* aio_cancel, close, and at exit.
* There are three modes of operation: 1) cancel all async IOs for a process -
* fd is 0 and aiocbp is NULL 2) cancel all async IOs for file descriptor - fd
* is > 0 and aiocbp is NULL 3) cancel one async IO associated with the given
* aiocbp.
* Returns -1 if no matches were found, AIO_CANCELED when we cancelled all
* target async IO requests, AIO_NOTCANCELED if we could not cancel all
* target async IO requests, and AIO_ALLDONE if all target async IO requests
* were already complete.
* WARNING - do not deference aiocbp in this routine, it may point to user
* land data that has not been copied in (when called from aio_cancel())
*
* Called with proc locked, and returns the same way.
*/
static int
do_aio_cancel_locked(proc_t p, int fd, user_addr_t aiocbp,
aio_entry_flags_t reason)
{
bool multiple_matches = (aiocbp == USER_ADDR_NULL);
aio_workq_entry *entryp, *tmp;
int result;
ASSERT_AIO_PROC_LOCK_OWNED(p);
/* look for a match on our queue of async todo work. */
again:
result = -1;
TAILQ_FOREACH_SAFE(entryp, &p->p_aio_activeq, aio_proc_link, tmp) {
ASSERT_AIO_FROM_PROC(entryp, p);
if (!should_cancel(entryp, fd, aiocbp, reason)) {
continue;
}
if (reason) {
/* mark the entry as blocking close or exit/exec */
entryp->flags |= reason;
if ((entryp->flags & AIO_EXIT_WAIT) && (entryp->flags & AIO_CLOSE_WAIT)) {
panic("Close and exit flags set at the same time");
}
}
/* Can only be cancelled if it's still on a work queue */
if (aio_entry_try_workq_remove(entryp)) {
entryp->errorval = ECANCELED;
entryp->returnval = -1;
/* Now it's officially cancelled. Do the completion */
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_cancel_async_workq) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
fd, 0, 0);
do_aio_completion_and_unlock(p, entryp);
aio_proc_lock(p);
if (multiple_matches) {
/*
* Restart from the head of the proc active queue since it
* may have been changed while we were away doing completion
* processing.
*
* Note that if we found an uncancellable AIO before, we will
* either find it again or discover that it's been completed,
* so resetting the result will not cause us to return success
* despite outstanding AIOs.
*/
goto again;
}
return AIO_CANCELED;
}
/*
* It's been taken off the active queue already, i.e. is in flight.
* All we can do is ask for notification.
*/
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_cancel_activeq) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
fd, 0, 0);
result = AIO_NOTCANCELED;
if (!multiple_matches) {
return result;
}
}
/*
* if we didn't find any matches on the todo or active queues then look for a
* match on our queue of async IO requests that have completed and if found
* return AIO_ALLDONE result.
*
* Proc AIO lock is still held.
*/
if (result == -1) {
TAILQ_FOREACH(entryp, &p->p_aio_doneq, aio_proc_link) {
ASSERT_AIO_FROM_PROC(entryp, p);
if (should_cancel(entryp, fd, aiocbp, reason)) {
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_cancel_doneq) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
fd, 0, 0);
result = AIO_ALLDONE;
if (!multiple_matches) {
return result;
}
}
}
}
return result;
}
/*
* aio_suspend - suspend the calling thread until at least one of the async
* IO operations referenced by uap->aiocblist has completed, until a signal
* interrupts the function, or uap->timeoutp time interval (optional) has
* passed.
* Returns 0 if one or more async IOs have completed else -1 and errno is
* set appropriately - EAGAIN if timeout elapses or EINTR if an interrupt
* woke us up.
*/
int
aio_suspend(proc_t p, struct aio_suspend_args *uap, int *retval)
{
__pthread_testcancel(1);
return aio_suspend_nocancel(p, (struct aio_suspend_nocancel_args *)uap, retval);
}
int
aio_suspend_nocancel(proc_t p, struct aio_suspend_nocancel_args *uap, int *retval)
{
int error;
int i;
uint64_t abstime;
struct user_timespec ts;
aio_workq_entry *entryp;
user_addr_t *aiocbpp;
size_t aiocbpp_size;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_suspend) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), uap->nent, 0, 0, 0);
*retval = -1;
abstime = 0;
aiocbpp = NULL;
if (!aio_has_any_work()) {
error = EINVAL;
goto ExitThisRoutine;
}
if (uap->nent < 1 || uap->nent > aio_max_requests_per_process ||
os_mul_overflow(sizeof(user_addr_t), uap->nent, &aiocbpp_size)) {
error = EINVAL;
goto ExitThisRoutine;
}
if (uap->timeoutp != USER_ADDR_NULL) {
if (proc_is64bit(p)) {
struct user64_timespec temp;
error = copyin(uap->timeoutp, &temp, sizeof(temp));
if (error == 0) {
ts.tv_sec = (user_time_t)temp.tv_sec;
ts.tv_nsec = (user_long_t)temp.tv_nsec;
}
} else {
struct user32_timespec temp;
error = copyin(uap->timeoutp, &temp, sizeof(temp));
if (error == 0) {
ts.tv_sec = temp.tv_sec;
ts.tv_nsec = temp.tv_nsec;
}
}
if (error != 0) {
error = EAGAIN;
goto ExitThisRoutine;
}
if (ts.tv_sec < 0 || ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) {
error = EINVAL;
goto ExitThisRoutine;
}
nanoseconds_to_absolutetime((uint64_t)ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec,
&abstime);
clock_absolutetime_interval_to_deadline(abstime, &abstime);
}
aiocbpp = (user_addr_t *)kalloc_data(aiocbpp_size, Z_WAITOK);
if (aiocbpp == NULL || aio_copy_in_list(p, uap->aiocblist, aiocbpp, uap->nent)) {
error = EAGAIN;
goto ExitThisRoutine;
}
/* check list of aio requests to see if any have completed */
check_for_our_aiocbp:
aio_proc_lock_spin(p);
for (i = 0; i < uap->nent; i++) {
user_addr_t aiocbp;
/* NULL elements are legal so check for 'em */
aiocbp = *(aiocbpp + i);
if (aiocbp == USER_ADDR_NULL) {
continue;
}
/* return immediately if any aio request in the list is done */
TAILQ_FOREACH(entryp, &p->p_aio_doneq, aio_proc_link) {
ASSERT_AIO_FROM_PROC(entryp, p);
if (entryp->uaiocbp == aiocbp) {
aio_proc_unlock(p);
*retval = 0;
error = 0;
goto ExitThisRoutine;
}
}
}
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_suspend_sleep) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), uap->nent, 0, 0, 0);
/*
* wait for an async IO to complete or a signal fires or timeout expires.
* we return EAGAIN (35) for timeout expiration and EINTR (4) when a signal
* interrupts us. If an async IO completes before a signal fires or our
* timeout expires, we get a wakeup call from aio_work_thread().
*/
error = msleep1(&p->AIO_SUSPEND_SLEEP_CHAN, aio_proc_mutex(p),
PCATCH | PWAIT | PDROP, "aio_suspend", abstime);
if (error == 0) {
/*
* got our wakeup call from aio_work_thread().
* Since we can get a wakeup on this channel from another thread in the
* same process we head back up to make sure this is for the correct aiocbp.
* If it is the correct aiocbp we will return from where we do the check
* (see entryp->uaiocbp == aiocbp after check_for_our_aiocbp label)
* else we will fall out and just sleep again.
*/
goto check_for_our_aiocbp;
} else if (error == EWOULDBLOCK) {
/* our timeout expired */
error = EAGAIN;
} else {
/* we were interrupted */
error = EINTR;
}
ExitThisRoutine:
if (aiocbpp != NULL) {
kfree_data(aiocbpp, aiocbpp_size);
}
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_suspend) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), uap->nent, error, 0, 0);
return error;
}
/* aio_write - asynchronously write uap->aiocbp->aio_nbytes bytes to the
* file descriptor (uap->aiocbp->aio_fildes) from the buffer
* (uap->aiocbp->aio_buf).
*/
int
aio_write(proc_t p, struct aio_write_args *uap, int *retval __unused)
{
int error;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_write) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, 0, 0, 0);
error = aio_queue_async_request(p, uap->aiocbp, AIO_WRITE);
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_write) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), uap->aiocbp, error, 0, 0);
return error;
}
static int
aio_copy_in_list(proc_t procp, user_addr_t aiocblist, user_addr_t *aiocbpp,
int nent)
{
int result;
/* copyin our aiocb pointers from list */
result = copyin(aiocblist, aiocbpp,
proc_is64bit(procp) ? (nent * sizeof(user64_addr_t))
: (nent * sizeof(user32_addr_t)));
if (result) {
return result;
}
/*
* We depend on a list of user_addr_t's so we need to
* munge and expand when these pointers came from a
* 32-bit process
*/
if (!proc_is64bit(procp)) {
/* copy from last to first to deal with overlap */
user32_addr_t *my_ptrp = ((user32_addr_t *)aiocbpp) + (nent - 1);
user_addr_t *my_addrp = aiocbpp + (nent - 1);
for (int i = 0; i < nent; i++, my_ptrp--, my_addrp--) {
*my_addrp = (user_addr_t) (*my_ptrp);
}
}
return 0;
}
static int
aio_copy_in_sigev(proc_t procp, user_addr_t sigp, struct user_sigevent *sigev)
{
int result = 0;
if (sigp == USER_ADDR_NULL) {
goto out;
}
/*
* We need to munge aio_sigevent since it contains pointers.
* Since we do not know if sigev_value is an int or a ptr we do
* NOT cast the ptr to a user_addr_t. This means if we send
* this info back to user space we need to remember sigev_value
* was not expanded for the 32-bit case.
*
* Notes: This does NOT affect us since we don't support
* sigev_value yet in the aio context.
*/
if (proc_is64bit(procp)) {
#if __LP64__
struct user64_sigevent sigevent64;
result = copyin(sigp, &sigevent64, sizeof(sigevent64));
if (result == 0) {
sigev->sigev_notify = sigevent64.sigev_notify;
sigev->sigev_signo = sigevent64.sigev_signo;
sigev->sigev_value.size_equivalent.sival_int = sigevent64.sigev_value.size_equivalent.sival_int;
sigev->sigev_notify_function = sigevent64.sigev_notify_function;
sigev->sigev_notify_attributes = sigevent64.sigev_notify_attributes;
}
#else
panic("64bit process on 32bit kernel is not supported");
#endif
} else {
struct user32_sigevent sigevent32;
result = copyin(sigp, &sigevent32, sizeof(sigevent32));
if (result == 0) {
sigev->sigev_notify = sigevent32.sigev_notify;
sigev->sigev_signo = sigevent32.sigev_signo;
sigev->sigev_value.size_equivalent.sival_int = sigevent32.sigev_value.sival_int;
sigev->sigev_notify_function = CAST_USER_ADDR_T(sigevent32.sigev_notify_function);
sigev->sigev_notify_attributes = CAST_USER_ADDR_T(sigevent32.sigev_notify_attributes);
}
}
if (result != 0) {
result = EAGAIN;
}
out:
return result;
}
/*
* validate user_sigevent. at this point we only support
* sigev_notify equal to SIGEV_SIGNAL or SIGEV_NONE. this means
* sigev_value, sigev_notify_function, and sigev_notify_attributes
* are ignored, since SIGEV_THREAD is unsupported. This is consistent
* with no [RTS] (RalTime Signal) option group support.
*/
static int
aio_sigev_validate(const struct user_sigevent *sigev)
{
switch (sigev->sigev_notify) {
case SIGEV_SIGNAL:
{
int signum;
/* make sure we have a valid signal number */
signum = sigev->sigev_signo;
if (signum <= 0 || signum >= NSIG ||
signum == SIGKILL || signum == SIGSTOP) {
return EINVAL;
}
}
break;
case SIGEV_NONE:
break;
case SIGEV_THREAD:
/* Unsupported [RTS] */
default:
return EINVAL;
}
return 0;
}
/*
* aio_try_enqueue_work_locked
*
* Queue up the entry on the aio asynchronous work queue in priority order
* based on the relative priority of the request. We calculate the relative
* priority using the nice value of the caller and the value
*
* Parameters: procp Process queueing the I/O
* entryp The work queue entry being queued
* leader The work leader if any
*
* Returns: Wether the enqueue was successful
*
* Notes: This function is used for both lio_listio and aio
*
* XXX: At some point, we may have to consider thread priority
* rather than process priority, but we don't maintain the
* adjusted priority for threads the POSIX way.
*
* Called with proc locked.
*/
static bool
aio_try_enqueue_work_locked(proc_t procp, aio_workq_entry *entryp,
aio_workq_entry *leader)
{
aio_workq_t queue = aio_entry_workq(entryp);
ASSERT_AIO_PROC_LOCK_OWNED(procp);
/* Onto proc queue */
if (!aio_try_proc_insert_active_locked(procp, entryp)) {
return false;
}
if (leader) {
aio_entry_ref(leader); /* consumed in do_aio_completion_and_unlock */
leader->lio_pending++;
entryp->lio_leader = leader;
}
/* And work queue */
aio_entry_ref(entryp); /* consumed in do_aio_completion_and_unlock */
aio_workq_lock_spin(queue);
aio_workq_add_entry_locked(queue, entryp);
waitq_wakeup64_one(&queue->aioq_waitq, CAST_EVENT64_T(queue),
THREAD_AWAKENED, WAITQ_WAKEUP_DEFAULT);
aio_workq_unlock(queue);
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_AIO, AIO_work_queued) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(procp), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
entryp->flags, entryp->aiocb.aio_fildes, 0);
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_AIO, AIO_work_queued) | DBG_FUNC_END,
entryp->aiocb.aio_offset, 0, entryp->aiocb.aio_nbytes, 0, 0);
return true;
}
/*
* lio_listio - initiate a list of IO requests. We process the list of
* aiocbs either synchronously (mode == LIO_WAIT) or asynchronously
* (mode == LIO_NOWAIT).
*
* The caller gets error and return status for each aiocb in the list
* via aio_error and aio_return. We must keep completed requests until
* released by the aio_return call.
*/
int
lio_listio(proc_t p, struct lio_listio_args *uap, int *retval __unused)
{
aio_workq_entry *entries[AIO_LISTIO_MAX] = { };
user_addr_t aiocbpp[AIO_LISTIO_MAX];
struct user_sigevent aiosigev = { };
int result = 0;
int lio_count = 0;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_listio) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), uap->nent, uap->mode, 0, 0);
if (!(uap->mode == LIO_NOWAIT || uap->mode == LIO_WAIT)) {
result = EINVAL;
goto ExitRoutine;
}
if (uap->nent < 1 || uap->nent > AIO_LISTIO_MAX) {
result = EINVAL;
goto ExitRoutine;
}
/*
* Use sigevent passed in to lio_listio for each of our calls, but
* only do completion notification after the last request completes.
*/
if (uap->sigp != USER_ADDR_NULL) {
result = aio_copy_in_sigev(p, uap->sigp, &aiosigev);
if (result) {
goto ExitRoutine;
}
result = aio_sigev_validate(&aiosigev);
if (result) {
goto ExitRoutine;
}
}
if (aio_copy_in_list(p, uap->aiocblist, aiocbpp, uap->nent)) {
result = EAGAIN;
goto ExitRoutine;
}
/*
* allocate/parse all entries
*/
for (int i = 0; i < uap->nent; i++) {
aio_workq_entry *entryp;
/* NULL elements are legal so check for 'em */
if (aiocbpp[i] == USER_ADDR_NULL) {
continue;
}
entryp = aio_create_queue_entry(p, aiocbpp[i], AIO_LIO);
if (entryp == NULL) {
result = EAGAIN;
goto ExitRoutine;
}
/*
* This refcount is cleaned up on exit if the entry
* isn't submitted
*/
entries[lio_count++] = entryp;
if (uap->mode == LIO_NOWAIT) {
/* Set signal hander, if any */
entryp->aiocb.aio_sigevent = aiosigev;
}
}
if (lio_count == 0) {
/* There's nothing to submit */
goto ExitRoutine;
}
/*
* Past this point we're commited and will not bail out
*
* - keep a reference on the leader for LIO_WAIT
* - perform the submissions and optionally wait
*/
aio_workq_entry *leader = entries[0];
if (uap->mode == LIO_WAIT) {
aio_entry_ref(leader); /* consumed below */
}
aio_proc_lock_spin(p);
for (int i = 0; i < lio_count; i++) {
if (aio_try_enqueue_work_locked(p, entries[i], leader)) {
entries[i] = NULL; /* the entry was submitted */
} else {
result = EAGAIN;
}
}
if (uap->mode == LIO_WAIT && result == 0) {
leader->flags |= AIO_LIO_WAIT;
while (leader->lio_pending) {
/* If we were interrupted, fail out (even if all finished) */
if (msleep(leader, aio_proc_mutex(p),
PCATCH | PRIBIO | PSPIN, "lio_listio", 0) != 0) {
result = EINTR;
break;
}
}
leader->flags &= ~AIO_LIO_WAIT;
}
aio_proc_unlock(p);
if (uap->mode == LIO_WAIT) {
aio_entry_unref(leader);
}
ExitRoutine:
/* Consume unsubmitted entries */
for (int i = 0; i < lio_count; i++) {
if (entries[i]) {
aio_entry_unref(entries[i]);
}
}
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_listio) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), result, 0, 0, 0);
return result;
}
/*
* aio worker thread. this is where all the real work gets done.
* we get a wake up call on sleep channel &aio_anchor.aio_async_workq
* after new work is queued up.
*/
__attribute__((noreturn))
static void
aio_work_thread(void *arg __unused, wait_result_t wr __unused)
{
aio_workq_entry *entryp;
int error;
vm_map_t currentmap;
vm_map_t oldmap = VM_MAP_NULL;
task_t oldaiotask = TASK_NULL;
struct uthread *uthreadp = NULL;
proc_t p = NULL;
for (;;) {
/*
* returns with the entry ref'ed.
* sleeps until work is available.
*/
entryp = aio_get_some_work();
p = entryp->procp;
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_worker_thread) | DBG_FUNC_START,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
entryp->flags, 0, 0);
/*
* Assume the target's address space identity for the duration
* of the IO. Note: don't need to have the entryp locked,
* because the proc and map don't change until it's freed.
*/
currentmap = get_task_map(proc_task(current_proc()));
if (currentmap != entryp->aio_map) {
uthreadp = (struct uthread *) current_uthread();
oldaiotask = uthreadp->uu_aio_task;
/*
* workq entries at this stage cause _aio_exec() and _aio_exit() to
* block until we hit `do_aio_completion_and_unlock()` below,
* which means that it is safe to dereference p->task without
* holding a lock or taking references.
*/
uthreadp->uu_aio_task = proc_task(p);
oldmap = vm_map_switch(entryp->aio_map);
}
if ((entryp->flags & AIO_READ) != 0) {
error = do_aio_read(entryp);
} else if ((entryp->flags & AIO_WRITE) != 0) {
uthreadp = (struct uthread *)current_uthread();
uthread_t context_uthreadp = get_bsdthread_info(vfs_context_thread(&entryp->context));
if ((context_uthreadp && (context_uthreadp->uu_flag & UT_FS_BLKSIZE_NOCACHE_WRITES)) ||
os_atomic_load(&p->p_vfs_iopolicy, relaxed) & P_VFS_IOPOLICY_NOCACHE_WRITE_FS_BLKSIZE) {
uthreadp->uu_flag |= UT_FS_BLKSIZE_NOCACHE_WRITES;
}
error = do_aio_write(entryp);
uthreadp->uu_flag &= ~UT_FS_BLKSIZE_NOCACHE_WRITES;
} else if ((entryp->flags & (AIO_FSYNC | AIO_DSYNC)) != 0) {
error = do_aio_fsync(entryp);
} else {
error = EINVAL;
}
/* Restore old map */
if (currentmap != entryp->aio_map) {
vm_map_switch(oldmap);
uthreadp->uu_aio_task = oldaiotask;
}
/* liberate unused map */
vm_map_deallocate(entryp->aio_map);
entryp->aio_map = VM_MAP_NULL;
KERNEL_DEBUG(SDDBG_CODE(DBG_BSD_AIO, AIO_worker_thread) | DBG_FUNC_END,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
entryp->errorval, entryp->returnval, 0);
/* we're done with the IO request so pop it off the active queue and */
/* push it on the done queue */
aio_proc_lock(p);
entryp->errorval = error;
do_aio_completion_and_unlock(p, entryp);
}
}
/*
* aio_get_some_work - get the next async IO request that is ready to be executed.
* aio_fsync complicates matters a bit since we cannot do the fsync until all async
* IO requests at the time the aio_fsync call came in have completed.
* NOTE - AIO_LOCK must be held by caller
*/
static aio_workq_entry *
aio_get_some_work(void)
{
aio_workq_entry *entryp = NULL;
aio_workq_t queue = NULL;
/* Just one queue for the moment. In the future there will be many. */
queue = &aio_anchor.aio_async_workqs[0];
aio_workq_lock_spin(queue);
/*
* Hold the queue lock.
*
* pop some work off the work queue and add to our active queue
* Always start with the queue lock held.
*/
while ((entryp = TAILQ_FIRST(&queue->aioq_entries))) {
/*
* Pull of of work queue. Once it's off, it can't be cancelled,
* so we can take our ref once we drop the queue lock.
*/
aio_workq_remove_entry_locked(queue, entryp);
aio_workq_unlock(queue);
/*
* Check if it's an fsync that must be delayed. No need to lock the entry;
* that flag would have been set at initialization.
*/
if ((entryp->flags & AIO_FSYNC) != 0) {
/*
* Check for unfinished operations on the same file
* in this proc's queue.
*/
aio_proc_lock_spin(entryp->procp);
if (aio_delay_fsync_request(entryp)) {
/* It needs to be delayed. Put it back on the end of the work queue */
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_fsync_delay) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
0, 0, 0);
aio_proc_unlock(entryp->procp);
aio_workq_lock_spin(queue);
aio_workq_add_entry_locked(queue, entryp);
continue;
}
aio_proc_unlock(entryp->procp);
}
return entryp;
}
/* We will wake up when someone enqueues something */
waitq_assert_wait64(&queue->aioq_waitq, CAST_EVENT64_T(queue), THREAD_UNINT, 0);
aio_workq_unlock(queue);
thread_block(aio_work_thread);
__builtin_unreachable();
}
/*
* aio_delay_fsync_request - look to see if this aio_fsync request should be delayed.
* A big, simple hammer: only send it off if it's the most recently filed IO which has
* not been completed.
*/
static boolean_t
aio_delay_fsync_request(aio_workq_entry *entryp)
{
if (proc_in_teardown(entryp->procp)) {
/*
* we can't delay FSYNCS when in teardown as it will confuse _aio_exit,
* if it was dequeued, then we must now commit to it
*/
return FALSE;
}
if (entryp == TAILQ_FIRST(&entryp->procp->p_aio_activeq)) {
return FALSE;
}
return TRUE;
}
static aio_workq_entry *
aio_create_queue_entry(proc_t procp, user_addr_t aiocbp, aio_entry_flags_t flags)
{
aio_workq_entry *entryp;
entryp = zalloc_flags(aio_workq_zonep, Z_WAITOK | Z_ZERO);
entryp->procp = procp;
entryp->uaiocbp = aiocbp;
entryp->flags = flags;
/* consumed in aio_return or _aio_exit */
os_ref_init(&entryp->aio_refcount, &aio_refgrp);
if (proc_is64bit(procp)) {
struct user64_aiocb aiocb64;
if (copyin(aiocbp, &aiocb64, sizeof(aiocb64)) != 0) {
goto error_exit;
}
do_munge_aiocb_user64_to_user(&aiocb64, &entryp->aiocb);
} else {
struct user32_aiocb aiocb32;
if (copyin(aiocbp, &aiocb32, sizeof(aiocb32)) != 0) {
goto error_exit;
}
do_munge_aiocb_user32_to_user(&aiocb32, &entryp->aiocb);
}
/* do some more validation on the aiocb and embedded file descriptor */
if (aio_validate(procp, entryp) != 0) {
goto error_exit;
}
/* get a reference to the user land map in order to keep it around */
entryp->aio_map = get_task_map(proc_task(procp));
vm_map_reference(entryp->aio_map);
/* get a reference on the current_thread, which is passed in vfs_context. */
entryp->context = *vfs_context_current();
thread_reference(entryp->context.vc_thread);
kauth_cred_ref(entryp->context.vc_ucred);
return entryp;
error_exit:
zfree(aio_workq_zonep, entryp);
return NULL;
}
/*
* aio_queue_async_request - queue up an async IO request on our work queue then
* wake up one of our worker threads to do the actual work. We get a reference
* to our caller's user land map in order to keep it around while we are
* processing the request.
*/
static int
aio_queue_async_request(proc_t procp, user_addr_t aiocbp,
aio_entry_flags_t flags)
{
aio_workq_entry *entryp;
int result;
entryp = aio_create_queue_entry(procp, aiocbp, flags);
if (entryp == NULL) {
result = EAGAIN;
goto error_noalloc;
}
aio_proc_lock_spin(procp);
if (!aio_try_enqueue_work_locked(procp, entryp, NULL)) {
result = EAGAIN;
goto error_exit;
}
aio_proc_unlock(procp);
return 0;
error_exit:
/*
* This entry has not been queued up so no worries about
* unlocked state and aio_map
*/
aio_proc_unlock(procp);
aio_free_request(entryp);
error_noalloc:
return result;
}
/*
* aio_free_request - remove our reference on the user land map and
* free the work queue entry resources. The entry is off all lists
* and has zero refcount, so no one can have a pointer to it.
*/
static void
aio_free_request(aio_workq_entry *entryp)
{
if (entryp->aio_proc_link.tqe_prev || entryp->aio_workq_link.tqe_prev) {
panic("aio_workq_entry %p being freed while still enqueued", entryp);
}
/* remove our reference to the user land map. */
if (VM_MAP_NULL != entryp->aio_map) {
vm_map_deallocate(entryp->aio_map);
}
/* remove our reference to thread which enqueued the request */
if (entryp->context.vc_thread) {
thread_deallocate(entryp->context.vc_thread);
}
kauth_cred_unref(&entryp->context.vc_ucred);
zfree(aio_workq_zonep, entryp);
}
/*
* aio_validate
*
* validate the aiocb passed in by one of the aio syscalls.
*/
static int
aio_validate(proc_t p, aio_workq_entry *entryp)
{
struct fileproc *fp;
int flag;
int result;
result = 0;
if ((entryp->flags & AIO_LIO) != 0) {
if (entryp->aiocb.aio_lio_opcode == LIO_READ) {
entryp->flags |= AIO_READ;
} else if (entryp->aiocb.aio_lio_opcode == LIO_WRITE) {
entryp->flags |= AIO_WRITE;
} else if (entryp->aiocb.aio_lio_opcode == LIO_NOP) {
return 0;
} else {
return EINVAL;
}
}
flag = FREAD;
if ((entryp->flags & (AIO_WRITE | AIO_FSYNC | AIO_DSYNC)) != 0) {
flag = FWRITE;
}
if ((entryp->flags & (AIO_READ | AIO_WRITE)) != 0) {
if (entryp->aiocb.aio_nbytes > INT_MAX ||
entryp->aiocb.aio_buf == USER_ADDR_NULL ||
entryp->aiocb.aio_offset < 0) {
return EINVAL;
}
}
result = aio_sigev_validate(&entryp->aiocb.aio_sigevent);
if (result) {
return result;
}
/* validate the file descriptor and that the file was opened
* for the appropriate read / write access.
*/
proc_fdlock(p);
fp = fp_get_noref_locked(p, entryp->aiocb.aio_fildes);
if (fp == NULL) {
result = EBADF;
} else if ((fp->fp_glob->fg_flag & flag) == 0) {
/* we don't have read or write access */
result = EBADF;
} else if (FILEGLOB_DTYPE(fp->fp_glob) != DTYPE_VNODE) {
/* this is not a file */
result = ESPIPE;
} else {
fp->fp_flags |= FP_AIOISSUED;
}
proc_fdunlock(p);
return result;
}
/*
* do_aio_completion_and_unlock. Handle async IO completion.
*/
static void
do_aio_completion_and_unlock(proc_t p, aio_workq_entry *entryp)
{
aio_workq_entry *leader = entryp->lio_leader;
int lio_pending = 0;
bool do_signal = false;
ASSERT_AIO_PROC_LOCK_OWNED(p);
aio_proc_move_done_locked(p, entryp);
if (leader) {
lio_pending = --leader->lio_pending;
if (lio_pending < 0) {
panic("lio_pending accounting mistake");
}
if (lio_pending == 0 && (leader->flags & AIO_LIO_WAIT)) {
wakeup(leader);
}
entryp->lio_leader = NULL; /* no dangling pointers please */
}
/*
* need to handle case where a process is trying to exit, exec, or
* close and is currently waiting for active aio requests to complete.
* If AIO_CLEANUP_WAIT is set then we need to look to see if there are any
* other requests in the active queue for this process. If there are
* none then wakeup using the AIO_CLEANUP_SLEEP_CHAN tsleep channel.
* If there are some still active then do nothing - we only want to
* wakeup when all active aio requests for the process are complete.
*/
if (__improbable(entryp->flags & AIO_EXIT_WAIT)) {
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_cleanup_wait) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
0, 0, 0);
if (!aio_has_active_requests_for_process(p)) {
/*
* no active aio requests for this process, continue exiting. In this
* case, there should be no one else waiting ont he proc in AIO...
*/
wakeup_one((caddr_t)&p->AIO_CLEANUP_SLEEP_CHAN);
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_cleanup_wake) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
0, 0, 0);
}
} else if (entryp->aiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
/*
* If this was the last request in the group, or not part of
* a group, and that a signal is desired, send one.
*/
do_signal = (lio_pending == 0);
}
if (__improbable(entryp->flags & AIO_CLOSE_WAIT)) {
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_cleanup_wait) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
0, 0, 0);
if (!aio_proc_has_active_requests_for_file(p, entryp->aiocb.aio_fildes)) {
/* Can't wakeup_one(); multiple closes might be in progress. */
wakeup(&p->AIO_CLEANUP_SLEEP_CHAN);
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_cleanup_wake) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
0, 0, 0);
}
}
aio_proc_unlock(p);
if (do_signal) {
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_sig) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp),
entryp->aiocb.aio_sigevent.sigev_signo, 0, 0);
psignal(p, entryp->aiocb.aio_sigevent.sigev_signo);
}
/*
* A thread in aio_suspend() wants to known about completed IOs. If it checked
* the done list before we moved our AIO there, then it already asserted its wait,
* and we can wake it up without holding the lock. If it checked the list after
* we did our move, then it already has seen the AIO that we moved. Herego, we
* can do our wakeup without holding the lock.
*/
wakeup(&p->AIO_SUSPEND_SLEEP_CHAN);
KERNEL_DEBUG(BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_suspend_wake) | DBG_FUNC_NONE,
VM_KERNEL_ADDRPERM(p), VM_KERNEL_ADDRPERM(entryp->uaiocbp), 0, 0, 0);
aio_entry_unref(entryp); /* see aio_try_enqueue_work_locked */
if (leader) {
aio_entry_unref(leader); /* see lio_listio */
}
}
/*
* do_aio_read
*/
static int
do_aio_read(aio_workq_entry *entryp)
{
struct proc *p = entryp->procp;
struct fileproc *fp;
int error;
if ((error = fp_lookup(p, entryp->aiocb.aio_fildes, &fp, 0))) {
return error;
}
if (fp->fp_glob->fg_flag & FREAD) {
error = dofileread(&entryp->context, fp,
entryp->aiocb.aio_buf,
entryp->aiocb.aio_nbytes,
entryp->aiocb.aio_offset, FOF_OFFSET,
&entryp->returnval);
} else {
error = EBADF;
}
fp_drop(p, entryp->aiocb.aio_fildes, fp, 0);
return error;
}
/*
* do_aio_write
*/
static int
do_aio_write(aio_workq_entry *entryp)
{
struct proc *p = entryp->procp;
struct fileproc *fp;
int error;
if ((error = fp_lookup(p, entryp->aiocb.aio_fildes, &fp, 0))) {
return error;
}
if (fp->fp_glob->fg_flag & FWRITE) {
int flags = 0;
if ((fp->fp_glob->fg_flag & O_APPEND) == 0) {
flags |= FOF_OFFSET;
}
/* NB: tell dofilewrite the offset, and to use the proc cred */
error = dofilewrite(&entryp->context,
fp,
entryp->aiocb.aio_buf,
entryp->aiocb.aio_nbytes,
entryp->aiocb.aio_offset,
flags,
&entryp->returnval);
} else {
error = EBADF;
}
fp_drop(p, entryp->aiocb.aio_fildes, fp, 0);
return error;
}
/*
* aio_has_active_requests_for_process - return whether the process has active
* requests pending.
*/
static bool
aio_has_active_requests_for_process(proc_t procp)
{
return !TAILQ_EMPTY(&procp->p_aio_activeq);
}
/*
* Called with the proc locked.
*/
static bool
aio_proc_has_active_requests_for_file(proc_t procp, int fd)
{
aio_workq_entry *entryp;
TAILQ_FOREACH(entryp, &procp->p_aio_activeq, aio_proc_link) {
if (entryp->aiocb.aio_fildes == fd) {
return true;
}
}
return false;
}
/*
* do_aio_fsync
*/
static int
do_aio_fsync(aio_workq_entry *entryp)
{
struct proc *p = entryp->procp;
struct vnode *vp;
struct fileproc *fp;
int sync_flag;
int error;
/*
* We are never called unless either AIO_FSYNC or AIO_DSYNC are set.
*
* If AIO_DSYNC is set, we can tell the lower layers that it is OK
* to mark for update the metadata not strictly necessary for data
* retrieval, rather than forcing it to disk.
*
* If AIO_FSYNC is set, we have to also wait for metadata not really
* necessary to data retrival are committed to stable storage (e.g.
* atime, mtime, ctime, etc.).
*
* Metadata necessary for data retrieval ust be committed to stable
* storage in either case (file length, etc.).
*/
if (entryp->flags & AIO_FSYNC) {
sync_flag = MNT_WAIT;
} else {
sync_flag = MNT_DWAIT;
}
error = fp_get_ftype(p, entryp->aiocb.aio_fildes, DTYPE_VNODE, ENOTSUP, &fp);
if (error != 0) {
entryp->returnval = -1;
return error;
}
vp = fp_get_data(fp);
if ((error = vnode_getwithref(vp)) == 0) {
error = VNOP_FSYNC(vp, sync_flag, &entryp->context);
(void)vnode_put(vp);
} else {
entryp->returnval = -1;
}
fp_drop(p, entryp->aiocb.aio_fildes, fp, 0);
return error;
}
/*
* is_already_queued - runs through our queues to see if the given
* aiocbp / process is there. Returns TRUE if there is a match
* on any of our aio queues.
*
* Called with proc aio lock held (can be held spin)
*/
static boolean_t
is_already_queued(proc_t procp, user_addr_t aiocbp)
{
aio_workq_entry *entryp;
boolean_t result;
result = FALSE;
/* look for matches on our queue of async IO requests that have completed */
TAILQ_FOREACH(entryp, &procp->p_aio_doneq, aio_proc_link) {
if (aiocbp == entryp->uaiocbp) {
result = TRUE;
goto ExitThisRoutine;
}
}
/* look for matches on our queue of active async IO requests */
TAILQ_FOREACH(entryp, &procp->p_aio_activeq, aio_proc_link) {
if (aiocbp == entryp->uaiocbp) {
result = TRUE;
goto ExitThisRoutine;
}
}
ExitThisRoutine:
return result;
}
/*
* aio initialization
*/
__private_extern__ void
aio_init(void)
{
for (int i = 0; i < AIO_NUM_WORK_QUEUES; i++) {
aio_workq_init(&aio_anchor.aio_async_workqs[i]);
}
_aio_create_worker_threads(aio_worker_threads);
}
/*
* aio worker threads created here.
*/
__private_extern__ void
_aio_create_worker_threads(int num)
{
int i;
/* create some worker threads to handle the async IO requests */
for (i = 0; i < num; i++) {
thread_t myThread;
if (KERN_SUCCESS != kernel_thread_start(aio_work_thread, NULL, &myThread)) {
printf("%s - failed to create a work thread \n", __FUNCTION__);
} else {
thread_deallocate(myThread);
}
}
}
/*
* Return the current activation utask
*/
task_t
get_aiotask(void)
{
return current_uthread()->uu_aio_task;
}
/*
* In the case of an aiocb from a
* 32-bit process we need to expand some longs and pointers to the correct
* sizes in order to let downstream code always work on the same type of
* aiocb (in our case that is a user_aiocb)
*/
static void
do_munge_aiocb_user32_to_user(struct user32_aiocb *my_aiocbp, struct user_aiocb *the_user_aiocbp)
{
the_user_aiocbp->aio_fildes = my_aiocbp->aio_fildes;
the_user_aiocbp->aio_offset = my_aiocbp->aio_offset;
the_user_aiocbp->aio_buf = CAST_USER_ADDR_T(my_aiocbp->aio_buf);
the_user_aiocbp->aio_nbytes = my_aiocbp->aio_nbytes;
the_user_aiocbp->aio_reqprio = my_aiocbp->aio_reqprio;
the_user_aiocbp->aio_lio_opcode = my_aiocbp->aio_lio_opcode;
/* special case here. since we do not know if sigev_value is an */
/* int or a ptr we do NOT cast the ptr to a user_addr_t. This */
/* means if we send this info back to user space we need to remember */
/* sigev_value was not expanded for the 32-bit case. */
/* NOTE - this does NOT affect us since we don't support sigev_value */
/* yet in the aio context. */
//LP64
the_user_aiocbp->aio_sigevent.sigev_notify = my_aiocbp->aio_sigevent.sigev_notify;
the_user_aiocbp->aio_sigevent.sigev_signo = my_aiocbp->aio_sigevent.sigev_signo;
the_user_aiocbp->aio_sigevent.sigev_value.size_equivalent.sival_int =
my_aiocbp->aio_sigevent.sigev_value.sival_int;
the_user_aiocbp->aio_sigevent.sigev_notify_function =
CAST_USER_ADDR_T(my_aiocbp->aio_sigevent.sigev_notify_function);
the_user_aiocbp->aio_sigevent.sigev_notify_attributes =
CAST_USER_ADDR_T(my_aiocbp->aio_sigevent.sigev_notify_attributes);
}
/* Similar for 64-bit user process, so that we don't need to satisfy
* the alignment constraints of the original user64_aiocb
*/
#if !__LP64__
__dead2
#endif
static void
do_munge_aiocb_user64_to_user(struct user64_aiocb *my_aiocbp, struct user_aiocb *the_user_aiocbp)
{
#if __LP64__
the_user_aiocbp->aio_fildes = my_aiocbp->aio_fildes;
the_user_aiocbp->aio_offset = my_aiocbp->aio_offset;
the_user_aiocbp->aio_buf = my_aiocbp->aio_buf;
the_user_aiocbp->aio_nbytes = my_aiocbp->aio_nbytes;
the_user_aiocbp->aio_reqprio = my_aiocbp->aio_reqprio;
the_user_aiocbp->aio_lio_opcode = my_aiocbp->aio_lio_opcode;
the_user_aiocbp->aio_sigevent.sigev_notify = my_aiocbp->aio_sigevent.sigev_notify;
the_user_aiocbp->aio_sigevent.sigev_signo = my_aiocbp->aio_sigevent.sigev_signo;
the_user_aiocbp->aio_sigevent.sigev_value.size_equivalent.sival_int =
my_aiocbp->aio_sigevent.sigev_value.size_equivalent.sival_int;
the_user_aiocbp->aio_sigevent.sigev_notify_function =
my_aiocbp->aio_sigevent.sigev_notify_function;
the_user_aiocbp->aio_sigevent.sigev_notify_attributes =
my_aiocbp->aio_sigevent.sigev_notify_attributes;
#else
#pragma unused(my_aiocbp, the_user_aiocbp)
panic("64bit process on 32bit kernel is not supported");
#endif
}