gems-kernel/source/THIRDPARTY/xnu/bsd/kern/kern_symfile.c
2024-06-03 11:29:39 -05:00

746 lines
20 KiB
C

/*
* Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1998 Apple Computer, Inc. All rights reserved.
*
* File: bsd/kern/kern_symfile.c
*
* HISTORY
*/
#include <mach/vm_param.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/signalvar.h>
#include <sys/resourcevar.h>
#include <sys/namei.h>
#include <sys/vnode_internal.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/timeb.h>
#include <sys/times.h>
#include <sys/acct.h>
#include <sys/file_internal.h>
#include <sys/uio.h>
#include <sys/kernel.h>
#include <sys/stat.h>
#include <sys/disk.h>
#include <sys/conf.h>
#include <sys/content_protection.h>
#include <sys/fsctl.h>
#include <mach-o/loader.h>
#include <mach-o/nlist.h>
#include <kern/kalloc.h>
#include <vm/vm_kern.h>
#include <pexpert/pexpert.h>
#include <IOKit/IOPolledInterface.h>
#define HIBERNATE_MIN_PHYSICAL_LBA_512 (34)
#define HIBERNATE_MIN_PHYSICAL_LBA_4096 (6)
#define HIBERNATE_MIN_FILE_SIZE (1024*1024)
/* This function is called from kern_sysctl in the current process context;
* it is exported with the System6.0.exports, but this appears to be a legacy
* export, as there are no internal consumers.
*/
int
get_kernel_symfile(__unused proc_t p, __unused char const **symfile);
int
get_kernel_symfile(__unused proc_t p, __unused char const **symfile)
{
return KERN_FAILURE;
}
struct kern_direct_file_io_ref_t {
vfs_context_t ctx;
struct vnode * vp;
char * name;
size_t namesize;
dev_t device;
uint32_t blksize;
off_t filelength;
char cf;
char pinned;
char frozen;
char wbcranged;
};
static int
file_ioctl(void * p1, void * p2, u_long theIoctl, caddr_t result)
{
dev_t device = *(dev_t*) p1;
return (*bdevsw[major(device)].d_ioctl)
(device, theIoctl, result, S_IFBLK, p2);
}
static int
device_ioctl(void * p1, __unused void * p2, u_long theIoctl, caddr_t result)
{
return VNOP_IOCTL(p1, theIoctl, result, 0, p2);
}
static int
kern_ioctl_file_extents(struct kern_direct_file_io_ref_t * ref, u_long theIoctl, off_t offset, off_t end)
{
int error = 0;
int (*do_ioctl)(void * p1, void * p2, u_long theIoctl, caddr_t result);
void * p1;
void * p2;
uint64_t fileblk = 0;
size_t filechunk = 0;
dk_extent_t extent;
dk_unmap_t unmap;
_dk_cs_pin_t pin;
bzero(&extent, sizeof(dk_extent_t));
bzero(&unmap, sizeof(dk_unmap_t));
bzero(&pin, sizeof(pin));
if (ref->vp->v_type == VREG) {
p1 = &ref->device;
p2 = kernproc;
do_ioctl = &file_ioctl;
} else {
/* Partition. */
p1 = ref->vp;
p2 = ref->ctx;
do_ioctl = &device_ioctl;
}
if (_DKIOCCSPINEXTENT == theIoctl) {
/* Tell CS the image size, so it knows whether to place the subsequent pins SSD/HDD */
pin.cp_extent.length = end;
pin.cp_flags = _DKIOCCSHIBERNATEIMGSIZE;
(void) do_ioctl(p1, p2, _DKIOCCSPINEXTENT, (caddr_t)&pin);
} else if (_DKIOCCSUNPINEXTENT == theIoctl) {
/* Tell CS hibernation is done, so it can stop blocking overlapping writes */
pin.cp_flags = _DKIOCCSPINDISCARDDENYLIST;
(void) do_ioctl(p1, p2, _DKIOCCSUNPINEXTENT, (caddr_t)&pin);
}
for (; offset < end; offset += filechunk) {
if (ref->vp->v_type == VREG) {
daddr64_t blkno;
filechunk = 1 * 1024 * 1024 * 1024;
if (filechunk > (size_t)(end - offset)) {
filechunk = (size_t)(end - offset);
}
error = VNOP_BLOCKMAP(ref->vp, offset, filechunk, &blkno,
&filechunk, NULL, VNODE_WRITE | VNODE_BLOCKMAP_NO_TRACK, NULL);
if (error) {
break;
}
if (-1LL == blkno) {
continue;
}
fileblk = blkno * ref->blksize;
} else if ((ref->vp->v_type == VBLK) || (ref->vp->v_type == VCHR)) {
fileblk = offset;
filechunk = (unsigned long)((ref->filelength > ULONG_MAX) ? ULONG_MAX: ref->filelength);
}
if (DKIOCUNMAP == theIoctl) {
extent.offset = fileblk;
extent.length = filechunk;
unmap.extents = &extent;
unmap.extentsCount = 1;
error = do_ioctl(p1, p2, theIoctl, (caddr_t)&unmap);
// printf("DKIOCUNMAP(%d) 0x%qx, 0x%qx\n", error, extent.offset, extent.length);
} else if (_DKIOCCSPINEXTENT == theIoctl) {
pin.cp_extent.offset = fileblk;
pin.cp_extent.length = filechunk;
pin.cp_flags = _DKIOCCSPINFORHIBERNATION;
error = do_ioctl(p1, p2, theIoctl, (caddr_t)&pin);
if (error && (ENOTTY != error)) {
printf("_DKIOCCSPINEXTENT(%d) 0x%qx, 0x%qx\n", error, pin.cp_extent.offset, pin.cp_extent.length);
}
} else if (_DKIOCCSUNPINEXTENT == theIoctl) {
pin.cp_extent.offset = fileblk;
pin.cp_extent.length = filechunk;
pin.cp_flags = _DKIOCCSPINFORHIBERNATION;
error = do_ioctl(p1, p2, theIoctl, (caddr_t)&pin);
if (error && (ENOTTY != error)) {
printf("_DKIOCCSUNPINEXTENT(%d) 0x%qx, 0x%qx\n", error, pin.cp_extent.offset, pin.cp_extent.length);
}
} else {
error = EINVAL;
}
if (error) {
break;
}
}
return error;
}
extern uint32_t freespace_mb(vnode_t vp);
struct kern_direct_file_io_ref_t *
kern_open_file_for_direct_io(const char * name,
uint32_t iflags,
kern_get_file_extents_callback_t callback,
void * callback_ref,
off_t set_file_size,
off_t fs_free_size,
off_t write_file_offset,
void * write_file_addr,
size_t write_file_len,
dev_t * partition_device_result,
dev_t * image_device_result,
uint64_t * partitionbase_result,
uint64_t * maxiocount_result,
uint32_t * oflags)
{
struct kern_direct_file_io_ref_t * ref;
proc_t p;
struct vnode_attr va;
dk_apfs_wbc_range_t wbc_range;
int error;
off_t f_offset;
uint64_t fileblk = 0;
size_t filechunk = 0;
uint64_t physoffset, minoffset;
dev_t device;
dev_t target = 0;
int isssd = 0;
uint32_t flags = 0;
uint32_t blksize;
off_t maxiocount, count, segcount, wbctotal;
boolean_t locked = FALSE;
int fmode;
mode_t cmode;
struct nameidata nd;
u_int32_t ndflags;
off_t mpFree;
wbc_range.count = 0;
int (*do_ioctl)(void * p1, void * p2, u_long theIoctl, caddr_t result);
do_ioctl = NULL;
void * p1 = NULL;
void * p2 = NULL;
error = EFAULT;
ref = kalloc_type(struct kern_direct_file_io_ref_t,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
p = kernproc;
ref->ctx = vfs_context_kernel();
ref->namesize = strlen(name) + 1;
ref->name = kalloc_data(ref->namesize, Z_WAITOK | Z_NOFAIL);
strlcpy(ref->name, name, ref->namesize);
fmode = (kIOPolledFileCreate & iflags) ? (O_CREAT | FWRITE) : FWRITE;
cmode = S_IRUSR | S_IWUSR;
ndflags = NOFOLLOW;
NDINIT(&nd, LOOKUP, OP_OPEN, ndflags, UIO_SYSSPACE, CAST_USER_ADDR_T(ref->name), ref->ctx);
VATTR_INIT(&va);
VATTR_SET(&va, va_mode, cmode);
VATTR_SET(&va, va_dataprotect_flags, VA_DP_RAWENCRYPTED);
VATTR_SET(&va, va_dataprotect_class, PROTECTION_CLASS_D);
if ((error = vn_open_auth(&nd, &fmode, &va, NULLVP))) {
kprintf("vn_open_auth(fmode: %d, cmode: %d) failed with error: %d\n", fmode, cmode, error);
goto out;
}
ref->vp = nd.ni_vp;
if (ref->vp->v_type == VREG) {
vnode_lock_spin(ref->vp);
SET(ref->vp->v_flag, VSWAP);
vnode_unlock(ref->vp);
}
if (write_file_addr && write_file_len) {
if ((error = kern_write_file(ref, write_file_offset, write_file_addr, write_file_len, IO_SKIP_ENCRYPTION))) {
kprintf("kern_write_file() failed with error: %d\n", error);
goto out;
}
}
VATTR_INIT(&va);
VATTR_WANTED(&va, va_rdev);
VATTR_WANTED(&va, va_fsid);
VATTR_WANTED(&va, va_devid);
VATTR_WANTED(&va, va_data_size);
VATTR_WANTED(&va, va_data_alloc);
VATTR_WANTED(&va, va_nlink);
error = EFAULT;
if (vnode_getattr(ref->vp, &va, ref->ctx)) {
goto out;
}
wbctotal = 0;
mpFree = freespace_mb(ref->vp);
mpFree <<= 20;
kprintf("kern_direct_file(%s): vp size %qd, alloc %qd, mp free %qd, keep free %qd\n",
ref->name, va.va_data_size, va.va_data_alloc, mpFree, fs_free_size);
if (ref->vp->v_type == VREG) {
/* Don't dump files with links. */
if (va.va_nlink != 1) {
goto out;
}
/* Don't dump on fs without backing device. */
if (!VATTR_IS_SUPPORTED(&va, va_devid)) {
kprintf("kern_direct_file(%s): Not backed by block device.\n", ref->name);
error = ENODEV;
goto out;
}
device = va.va_devid;
ref->filelength = va.va_data_size;
p1 = &device;
p2 = p;
do_ioctl = &file_ioctl;
if (kIOPolledFileHibernate & iflags) {
error = do_ioctl(p1, p2, DKIOCAPFSGETWBCRANGE, (caddr_t) &wbc_range);
ref->wbcranged = (error == 0);
}
if (ref->wbcranged) {
uint32_t idx;
assert(wbc_range.count <= (sizeof(wbc_range.extents) / sizeof(wbc_range.extents[0])));
for (idx = 0; idx < wbc_range.count; idx++) {
wbctotal += wbc_range.extents[idx].length;
}
kprintf("kern_direct_file(%s): wbc %qd\n", ref->name, wbctotal);
if (wbctotal) {
target = wbc_range.dev;
}
}
if (set_file_size) {
if (wbctotal) {
if (wbctotal >= set_file_size) {
set_file_size = HIBERNATE_MIN_FILE_SIZE;
} else {
set_file_size -= wbctotal;
if (set_file_size < HIBERNATE_MIN_FILE_SIZE) {
set_file_size = HIBERNATE_MIN_FILE_SIZE;
}
}
}
if (fs_free_size) {
mpFree += va.va_data_alloc;
if ((mpFree < set_file_size) || ((mpFree - set_file_size) < fs_free_size)) {
error = ENOSPC;
goto out;
}
}
error = vnode_setsize(ref->vp, set_file_size, IO_NOZEROFILL | IO_NOAUTH, ref->ctx);
if (error) {
goto out;
}
ref->filelength = set_file_size;
}
} else if ((ref->vp->v_type == VBLK) || (ref->vp->v_type == VCHR)) {
/* Partition. */
device = va.va_rdev;
p1 = ref->vp;
p2 = ref->ctx;
do_ioctl = &device_ioctl;
} else {
/* Don't dump to non-regular files. */
error = EFAULT;
goto out;
}
ref->device = device;
// probe for CF
dk_corestorage_info_t cs_info;
memset(&cs_info, 0, sizeof(dk_corestorage_info_t));
error = do_ioctl(p1, p2, DKIOCCORESTORAGE, (caddr_t)&cs_info);
ref->cf = (error == 0) && (cs_info.flags & DK_CORESTORAGE_ENABLE_HOTFILES);
// get block size
error = do_ioctl(p1, p2, DKIOCGETBLOCKSIZE, (caddr_t) &ref->blksize);
if (error) {
goto out;
}
if (ref->blksize == 4096) {
minoffset = HIBERNATE_MIN_PHYSICAL_LBA_4096 * ref->blksize;
} else {
minoffset = HIBERNATE_MIN_PHYSICAL_LBA_512 * ref->blksize;
}
if (ref->vp->v_type != VREG) {
error = do_ioctl(p1, p2, DKIOCGETBLOCKCOUNT, (caddr_t) &fileblk);
if (error) {
goto out;
}
ref->filelength = fileblk * ref->blksize;
}
// pin logical extents, CS version
error = kern_ioctl_file_extents(ref, _DKIOCCSPINEXTENT, 0, ref->filelength);
if (error && (ENOTTY != error)) {
goto out;
}
ref->pinned = (error == 0);
// pin logical extents, apfs version
error = VNOP_IOCTL(ref->vp, FSCTL_FREEZE_EXTENTS, NULL, 0, ref->ctx);
if (error && (ENOTTY != error)) {
goto out;
}
ref->frozen = (error == 0);
// generate the block list
error = do_ioctl(p1, p2, DKIOCLOCKPHYSICALEXTENTS, NULL);
if (error) {
goto out;
}
locked = TRUE;
f_offset = 0;
for (; f_offset < ref->filelength; f_offset += filechunk) {
if (ref->vp->v_type == VREG) {
filechunk = 1 * 1024 * 1024 * 1024;
daddr64_t blkno;
error = VNOP_BLOCKMAP(ref->vp, f_offset, filechunk, &blkno,
&filechunk, NULL, VNODE_WRITE | VNODE_BLOCKMAP_NO_TRACK, NULL);
if (error) {
goto out;
}
if (-1LL == blkno) {
continue;
}
fileblk = blkno * ref->blksize;
} else if ((ref->vp->v_type == VBLK) || (ref->vp->v_type == VCHR)) {
fileblk = f_offset;
filechunk = f_offset ? 0 : (unsigned long)ref->filelength;
}
physoffset = 0;
while (physoffset < filechunk) {
dk_physical_extent_t getphysreq;
bzero(&getphysreq, sizeof(getphysreq));
getphysreq.offset = fileblk + physoffset;
getphysreq.length = (filechunk - physoffset);
error = do_ioctl(p1, p2, DKIOCGETPHYSICALEXTENT, (caddr_t) &getphysreq);
if (error) {
goto out;
}
if (!target) {
target = getphysreq.dev;
} else if (target != getphysreq.dev) {
error = ENOTSUP;
goto out;
}
assert(getphysreq.offset >= minoffset);
#if HIBFRAGMENT
uint64_t rev;
for (rev = 4096; rev <= getphysreq.length; rev += 4096) {
callback(callback_ref, getphysreq.offset + getphysreq.length - rev, 4096);
}
#else
callback(callback_ref, getphysreq.offset, getphysreq.length);
#endif
physoffset += getphysreq.length;
}
}
if (ref->wbcranged) {
uint32_t idx;
for (idx = 0; idx < wbc_range.count; idx++) {
assert(wbc_range.extents[idx].offset >= minoffset);
callback(callback_ref, wbc_range.extents[idx].offset, wbc_range.extents[idx].length);
}
}
callback(callback_ref, 0ULL, 0ULL);
if (ref->vp->v_type == VREG) {
p1 = &target;
} else {
p1 = &target;
p2 = p;
do_ioctl = &file_ioctl;
}
// get partition base
if (partitionbase_result) {
error = do_ioctl(p1, p2, DKIOCGETBASE, (caddr_t) partitionbase_result);
if (error) {
goto out;
}
}
// get block size & constraints
error = do_ioctl(p1, p2, DKIOCGETBLOCKSIZE, (caddr_t) &blksize);
if (error) {
goto out;
}
maxiocount = 1 * 1024 * 1024 * 1024;
error = do_ioctl(p1, p2, DKIOCGETMAXBLOCKCOUNTREAD, (caddr_t) &count);
if (error) {
count = 0;
}
count *= blksize;
if (count && (count < maxiocount)) {
maxiocount = count;
}
error = do_ioctl(p1, p2, DKIOCGETMAXBLOCKCOUNTWRITE, (caddr_t) &count);
if (error) {
count = 0;
}
count *= blksize;
if (count && (count < maxiocount)) {
maxiocount = count;
}
error = do_ioctl(p1, p2, DKIOCGETMAXBYTECOUNTREAD, (caddr_t) &count);
if (error) {
count = 0;
}
if (count && (count < maxiocount)) {
maxiocount = count;
}
error = do_ioctl(p1, p2, DKIOCGETMAXBYTECOUNTWRITE, (caddr_t) &count);
if (error) {
count = 0;
}
if (count && (count < maxiocount)) {
maxiocount = count;
}
error = do_ioctl(p1, p2, DKIOCGETMAXSEGMENTBYTECOUNTREAD, (caddr_t) &count);
if (!error) {
error = do_ioctl(p1, p2, DKIOCGETMAXSEGMENTCOUNTREAD, (caddr_t) &segcount);
}
if (error) {
count = segcount = 0;
}
count *= segcount;
if (count && (count < maxiocount)) {
maxiocount = count;
}
error = do_ioctl(p1, p2, DKIOCGETMAXSEGMENTBYTECOUNTWRITE, (caddr_t) &count);
if (!error) {
error = do_ioctl(p1, p2, DKIOCGETMAXSEGMENTCOUNTWRITE, (caddr_t) &segcount);
}
if (error) {
count = segcount = 0;
}
count *= segcount;
if (count && (count < maxiocount)) {
maxiocount = count;
}
kprintf("max io 0x%qx bytes\n", maxiocount);
if (maxiocount_result) {
*maxiocount_result = maxiocount;
}
error = do_ioctl(p1, p2, DKIOCISSOLIDSTATE, (caddr_t)&isssd);
if (!error && isssd) {
flags |= kIOPolledFileSSD;
}
if (partition_device_result) {
*partition_device_result = device;
}
if (image_device_result) {
*image_device_result = target;
}
if (oflags) {
*oflags = flags;
}
if ((ref->vp->v_type == VBLK) || (ref->vp->v_type == VCHR)) {
vnode_close(ref->vp, FWRITE, ref->ctx);
ref->vp = NULLVP;
ref->ctx = NULL;
}
out:
printf("kern_open_file_for_direct_io(%p, %d)\n", ref, error);
if (error && locked) {
p1 = &device;
if (do_ioctl) {
(void) do_ioctl(p1, p2, DKIOCUNLOCKPHYSICALEXTENTS, NULL);
}
}
if (error && ref) {
if (ref->vp) {
(void) kern_ioctl_file_extents(ref, _DKIOCCSUNPINEXTENT, 0, (ref->pinned && ref->cf) ? ref->filelength : 0);
if (ref->frozen) {
(void) VNOP_IOCTL(ref->vp, FSCTL_THAW_EXTENTS, NULL, 0, ref->ctx);
}
if (ref->wbcranged) {
if (do_ioctl) {
(void) do_ioctl(p1, p2, DKIOCAPFSRELEASEWBCRANGE, (caddr_t) NULL);
}
}
vnode_close(ref->vp, FWRITE, ref->ctx);
ref->vp = NULLVP;
}
ref->ctx = NULL;
if (ref->name) {
kfree_data(ref->name, ref->namesize);
ref->name = NULL;
}
kfree_type(struct kern_direct_file_io_ref_t, ref);
ref = NULL;
}
return ref;
}
int
kern_write_file(struct kern_direct_file_io_ref_t * ref, off_t offset, void * addr, size_t len, int ioflag)
{
assert(len <= INT32_MAX);
return vn_rdwr(UIO_WRITE, ref->vp,
addr, (int)len, offset,
UIO_SYSSPACE, ioflag | IO_SYNC | IO_NODELOCKED | IO_UNIT,
vfs_context_ucred(ref->ctx), (int *) 0,
vfs_context_proc(ref->ctx));
}
int
kern_read_file(struct kern_direct_file_io_ref_t * ref, off_t offset, void * addr, size_t len, int ioflag)
{
assert(len <= INT32_MAX);
return vn_rdwr(UIO_READ, ref->vp,
addr, (int)len, offset,
UIO_SYSSPACE, ioflag | IO_SYNC | IO_NODELOCKED | IO_UNIT,
vfs_context_ucred(ref->ctx), (int *) 0,
vfs_context_proc(ref->ctx));
}
struct mount *
kern_file_mount(struct kern_direct_file_io_ref_t * ref)
{
return ref->vp->v_mount;
}
void
kern_close_file_for_direct_io(struct kern_direct_file_io_ref_t * ref,
off_t write_offset, void * addr, size_t write_length,
off_t discard_offset, off_t discard_end, bool unlink)
{
int error;
printf("kern_close_file_for_direct_io(%p)\n", ref);
if (!ref) {
return;
}
if (ref->vp) {
int (*do_ioctl)(void * p1, void * p2, u_long theIoctl, caddr_t result);
void * p1;
void * p2;
discard_offset = ((discard_offset + ref->blksize - 1) & ~(((off_t) ref->blksize) - 1));
discard_end = ((discard_end) & ~(((off_t) ref->blksize) - 1));
if (ref->vp->v_type == VREG) {
p1 = &ref->device;
p2 = kernproc;
do_ioctl = &file_ioctl;
} else {
/* Partition. */
p1 = ref->vp;
p2 = ref->ctx;
do_ioctl = &device_ioctl;
}
(void) do_ioctl(p1, p2, DKIOCUNLOCKPHYSICALEXTENTS, NULL);
//XXX If unmapping extents then don't also need to unpin; except ...
//XXX if file unaligned (HFS 4k / Fusion 128k) then pin is superset and
//XXX unmap is subset, so save extra walk over file extents (and the risk
//XXX that CF drain starts) vs leaving partial units pinned to SSD
//XXX (until whatever was sharing also unmaps). Err on cleaning up fully.
boolean_t will_unmap = (!ref->pinned || ref->cf) && (discard_end > discard_offset);
boolean_t will_unpin = (ref->pinned && ref->cf /* && !will_unmap */);
(void) kern_ioctl_file_extents(ref, _DKIOCCSUNPINEXTENT, 0, (will_unpin) ? ref->filelength : 0);
if (will_unmap) {
(void) kern_ioctl_file_extents(ref, DKIOCUNMAP, discard_offset, (ref->cf) ? ref->filelength : discard_end);
}
if (ref->frozen) {
(void) VNOP_IOCTL(ref->vp, FSCTL_THAW_EXTENTS, NULL, 0, ref->ctx);
}
if (ref->wbcranged) {
(void) do_ioctl(p1, p2, DKIOCAPFSRELEASEWBCRANGE, (caddr_t) NULL);
}
if (addr && write_length) {
(void) kern_write_file(ref, write_offset, addr, write_length, IO_SKIP_ENCRYPTION);
}
error = vnode_close(ref->vp, FWRITE, ref->ctx);
ref->vp = NULLVP;
kprintf("vnode_close(%d)\n", error);
if (unlink) {
int unlink1(vfs_context_t, vnode_t, user_addr_t, enum uio_seg, int);
error = unlink1(ref->ctx, NULLVP, CAST_USER_ADDR_T(ref->name), UIO_SYSSPACE, 0);
kprintf("%s: unlink1(%d)\n", __func__, error);
}
}
ref->ctx = NULL;
kfree_data(ref->name, ref->namesize);
ref->name = NULL;
kfree_type(struct kern_direct_file_io_ref_t, ref);
}