962 lines
23 KiB
C
962 lines
23 KiB
C
/*
|
|
* Copyright (c) 2000-2008 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_time.c 8.4 (Berkeley) 5/26/95
|
|
*/
|
|
/*
|
|
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
|
|
* support for mandatory and extensible security protections. This notice
|
|
* is included in support of clause 2.2 (b) of the Apple Public License,
|
|
* Version 2.0.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc_internal.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/time.h>
|
|
#include <sys/priv.h>
|
|
|
|
#include <sys/mount_internal.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/protosw.h> /* for net_uptime2timeval() */
|
|
|
|
#include <kern/clock.h>
|
|
#include <kern/task.h>
|
|
#include <kern/thread_call.h>
|
|
#if CONFIG_MACF
|
|
#include <security/mac_framework.h>
|
|
#endif
|
|
#include <IOKit/IOBSD.h>
|
|
#include <sys/time.h>
|
|
#include <kern/remote_time.h>
|
|
|
|
#define HZ 100 /* XXX */
|
|
|
|
/* simple lock used to access timezone, tz structure */
|
|
static LCK_GRP_DECLARE(tz_slock_grp, "tzlock");
|
|
static LCK_SPIN_DECLARE(tz_slock, &tz_slock_grp);
|
|
|
|
static void setthetime(
|
|
struct timeval *tv);
|
|
|
|
static boolean_t timeval_fixusec(struct timeval *t1);
|
|
|
|
/*
|
|
* Time of day and interval timer support.
|
|
*
|
|
* These routines provide the kernel entry points to get and set
|
|
* the time-of-day and per-process interval timers. Subroutines
|
|
* here provide support for adding and subtracting timeval structures
|
|
* and decrementing interval timers, optionally reloading the interval
|
|
* timers when they expire.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
gettimeofday(
|
|
struct proc *p,
|
|
struct gettimeofday_args *uap,
|
|
__unused int32_t *retval)
|
|
{
|
|
int error = 0;
|
|
struct timezone ltz; /* local copy */
|
|
clock_sec_t secs;
|
|
clock_usec_t usecs;
|
|
uint64_t mach_time;
|
|
|
|
if (uap->tp || uap->mach_absolute_time) {
|
|
clock_gettimeofday_and_absolute_time(&secs, &usecs, &mach_time);
|
|
}
|
|
|
|
if (uap->tp) {
|
|
/* Casting secs through a uint32_t to match arm64 commpage */
|
|
if (IS_64BIT_PROCESS(p)) {
|
|
struct user64_timeval user_atv = {};
|
|
user_atv.tv_sec = (uint32_t)secs;
|
|
user_atv.tv_usec = usecs;
|
|
error = copyout(&user_atv, uap->tp, sizeof(user_atv));
|
|
} else {
|
|
struct user32_timeval user_atv = {};
|
|
user_atv.tv_sec = (uint32_t)secs;
|
|
user_atv.tv_usec = usecs;
|
|
error = copyout(&user_atv, uap->tp, sizeof(user_atv));
|
|
}
|
|
if (error) {
|
|
return error;
|
|
}
|
|
}
|
|
|
|
if (uap->tzp) {
|
|
lck_spin_lock(&tz_slock);
|
|
ltz = tz;
|
|
lck_spin_unlock(&tz_slock);
|
|
|
|
error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp), sizeof(tz));
|
|
}
|
|
|
|
if (error == 0 && uap->mach_absolute_time) {
|
|
error = copyout(&mach_time, uap->mach_absolute_time, sizeof(mach_time));
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* XXX Y2038 bug because of setthetime() argument
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
settimeofday(__unused struct proc *p, struct settimeofday_args *uap, __unused int32_t *retval)
|
|
{
|
|
struct timeval atv;
|
|
struct timezone atz;
|
|
int error;
|
|
|
|
bzero(&atv, sizeof(atv));
|
|
|
|
/* Check that this task is entitled to set the time or it is root */
|
|
if (!IOCurrentTaskHasEntitlement(SETTIME_ENTITLEMENT)) {
|
|
#if CONFIG_MACF
|
|
error = mac_system_check_settime(kauth_cred_get());
|
|
if (error) {
|
|
return error;
|
|
}
|
|
#endif
|
|
#if defined(XNU_TARGET_OS_OSX)
|
|
if ((error = suser(kauth_cred_get(), &p->p_acflag))) {
|
|
return error;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Verify all parameters before changing time */
|
|
if (uap->tv) {
|
|
if (IS_64BIT_PROCESS(p)) {
|
|
struct user64_timeval user_atv;
|
|
error = copyin(uap->tv, &user_atv, sizeof(user_atv));
|
|
atv.tv_sec = (__darwin_time_t)user_atv.tv_sec;
|
|
atv.tv_usec = user_atv.tv_usec;
|
|
} else {
|
|
struct user32_timeval user_atv;
|
|
error = copyin(uap->tv, &user_atv, sizeof(user_atv));
|
|
atv.tv_sec = user_atv.tv_sec;
|
|
atv.tv_usec = user_atv.tv_usec;
|
|
}
|
|
if (error) {
|
|
return error;
|
|
}
|
|
}
|
|
if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz)))) {
|
|
return error;
|
|
}
|
|
if (uap->tv) {
|
|
/* only positive values of sec/usec are accepted */
|
|
if (atv.tv_sec < 0 || atv.tv_usec < 0) {
|
|
return EPERM;
|
|
}
|
|
if (!timeval_fixusec(&atv)) {
|
|
return EPERM;
|
|
}
|
|
setthetime(&atv);
|
|
}
|
|
if (uap->tzp) {
|
|
lck_spin_lock(&tz_slock);
|
|
tz = atz;
|
|
lck_spin_unlock(&tz_slock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
setthetime(
|
|
struct timeval *tv)
|
|
{
|
|
clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec);
|
|
}
|
|
|
|
/*
|
|
* Verify the calendar value. If negative,
|
|
* reset to zero (the epoch).
|
|
*/
|
|
void
|
|
inittodr(
|
|
__unused time_t base)
|
|
{
|
|
struct timeval tv;
|
|
|
|
/*
|
|
* Assertion:
|
|
* The calendar has already been
|
|
* set up from the platform clock.
|
|
*
|
|
* The value returned by microtime()
|
|
* is gotten from the calendar.
|
|
*/
|
|
microtime(&tv);
|
|
|
|
if (tv.tv_sec < 0 || tv.tv_usec < 0) {
|
|
printf("WARNING: preposterous time in Real Time Clock");
|
|
tv.tv_sec = 0; /* the UNIX epoch */
|
|
tv.tv_usec = 0;
|
|
setthetime(&tv);
|
|
printf(" -- CHECK AND RESET THE DATE!\n");
|
|
}
|
|
}
|
|
|
|
time_t
|
|
boottime_sec(void)
|
|
{
|
|
clock_sec_t secs;
|
|
clock_nsec_t nanosecs;
|
|
|
|
clock_get_boottime_nanotime(&secs, &nanosecs);
|
|
return secs;
|
|
}
|
|
|
|
void
|
|
boottime_timeval(struct timeval *tv)
|
|
{
|
|
clock_sec_t secs;
|
|
clock_usec_t microsecs;
|
|
|
|
clock_get_boottime_microtime(&secs, µsecs);
|
|
|
|
tv->tv_sec = secs;
|
|
tv->tv_usec = microsecs;
|
|
}
|
|
|
|
/*
|
|
* Get value of an interval timer. The process virtual and
|
|
* profiling virtual time timers are kept internally in the
|
|
* way they are specified externally: in time until they expire.
|
|
*
|
|
* The real time interval timer expiration time (p_rtime)
|
|
* is kept as an absolute time rather than as a delta, so that
|
|
* it is easy to keep periodic real-time signals from drifting.
|
|
*
|
|
* The real time timer is processed by a callout routine.
|
|
* Since a callout may be delayed in real time due to
|
|
* other processing in the system, it is possible for the real
|
|
* time callout routine (realitexpire, given below), to be delayed
|
|
* in real time past when it is supposed to occur. It does not
|
|
* suffice, therefore, to reload the real time .it_value from the
|
|
* real time .it_interval. Rather, we compute the next time in
|
|
* absolute time when the timer should go off.
|
|
*
|
|
* Returns: 0 Success
|
|
* EINVAL Invalid argument
|
|
* copyout:EFAULT Bad address
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
getitimer(struct proc *p, struct getitimer_args *uap, __unused int32_t *retval)
|
|
{
|
|
struct itimerval aitv;
|
|
|
|
if (uap->which > ITIMER_PROF) {
|
|
return EINVAL;
|
|
}
|
|
|
|
bzero(&aitv, sizeof(aitv));
|
|
|
|
proc_spinlock(p);
|
|
switch (uap->which) {
|
|
case ITIMER_REAL:
|
|
/*
|
|
* If time for real time timer has passed return 0,
|
|
* else return difference between current time and
|
|
* time for the timer to go off.
|
|
*/
|
|
aitv = p->p_realtimer;
|
|
if (timerisset(&p->p_rtime)) {
|
|
struct timeval now;
|
|
|
|
microuptime(&now);
|
|
if (timercmp(&p->p_rtime, &now, <)) {
|
|
timerclear(&aitv.it_value);
|
|
} else {
|
|
aitv.it_value = p->p_rtime;
|
|
timevalsub(&aitv.it_value, &now);
|
|
}
|
|
} else {
|
|
timerclear(&aitv.it_value);
|
|
}
|
|
break;
|
|
|
|
case ITIMER_VIRTUAL:
|
|
aitv = p->p_vtimer_user;
|
|
break;
|
|
|
|
case ITIMER_PROF:
|
|
aitv = p->p_vtimer_prof;
|
|
break;
|
|
}
|
|
|
|
proc_spinunlock(p);
|
|
|
|
if (IS_64BIT_PROCESS(p)) {
|
|
struct user64_itimerval user_itv;
|
|
bzero(&user_itv, sizeof(user_itv));
|
|
user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
|
|
user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
|
|
user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
|
|
user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
|
|
return copyout((caddr_t)&user_itv, uap->itv, sizeof(user_itv));
|
|
} else {
|
|
struct user32_itimerval user_itv;
|
|
bzero(&user_itv, sizeof(user_itv));
|
|
user_itv.it_interval.tv_sec = (user32_time_t)aitv.it_interval.tv_sec;
|
|
user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
|
|
user_itv.it_value.tv_sec = (user32_time_t)aitv.it_value.tv_sec;
|
|
user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
|
|
return copyout((caddr_t)&user_itv, uap->itv, sizeof(user_itv));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns: 0 Success
|
|
* EINVAL Invalid argument
|
|
* copyin:EFAULT Bad address
|
|
* getitimer:EINVAL Invalid argument
|
|
* getitimer:EFAULT Bad address
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
setitimer(struct proc *p, struct setitimer_args *uap, int32_t *retval)
|
|
{
|
|
struct itimerval aitv;
|
|
user_addr_t itvp;
|
|
int error;
|
|
|
|
bzero(&aitv, sizeof(aitv));
|
|
|
|
if (uap->which > ITIMER_PROF) {
|
|
return EINVAL;
|
|
}
|
|
if ((itvp = uap->itv)) {
|
|
if (IS_64BIT_PROCESS(p)) {
|
|
struct user64_itimerval user_itv;
|
|
if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof(user_itv)))) {
|
|
return error;
|
|
}
|
|
aitv.it_interval.tv_sec = (__darwin_time_t)user_itv.it_interval.tv_sec;
|
|
aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
|
|
aitv.it_value.tv_sec = (__darwin_time_t)user_itv.it_value.tv_sec;
|
|
aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
|
|
} else {
|
|
struct user32_itimerval user_itv;
|
|
if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof(user_itv)))) {
|
|
return error;
|
|
}
|
|
aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
|
|
aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
|
|
aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
|
|
aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
|
|
}
|
|
}
|
|
if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval))) {
|
|
return error;
|
|
}
|
|
if (itvp == 0) {
|
|
return 0;
|
|
}
|
|
if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
switch (uap->which) {
|
|
case ITIMER_REAL:
|
|
proc_spinlock(p);
|
|
if (timerisset(&aitv.it_value)) {
|
|
microuptime(&p->p_rtime);
|
|
timevaladd(&p->p_rtime, &aitv.it_value);
|
|
p->p_realtimer = aitv;
|
|
if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL,
|
|
tvtoabstime(&p->p_rtime), 0, THREAD_CALL_DELAY_USER_NORMAL)) {
|
|
p->p_ractive++;
|
|
}
|
|
} else {
|
|
timerclear(&p->p_rtime);
|
|
p->p_realtimer = aitv;
|
|
if (thread_call_cancel(p->p_rcall)) {
|
|
p->p_ractive--;
|
|
}
|
|
}
|
|
proc_spinunlock(p);
|
|
|
|
break;
|
|
|
|
|
|
case ITIMER_VIRTUAL:
|
|
if (timerisset(&aitv.it_value)) {
|
|
task_vtimer_set(proc_task(p), TASK_VTIMER_USER);
|
|
} else {
|
|
task_vtimer_clear(proc_task(p), TASK_VTIMER_USER);
|
|
}
|
|
|
|
proc_spinlock(p);
|
|
p->p_vtimer_user = aitv;
|
|
proc_spinunlock(p);
|
|
break;
|
|
|
|
case ITIMER_PROF:
|
|
if (timerisset(&aitv.it_value)) {
|
|
task_vtimer_set(proc_task(p), TASK_VTIMER_PROF);
|
|
} else {
|
|
task_vtimer_clear(proc_task(p), TASK_VTIMER_PROF);
|
|
}
|
|
|
|
proc_spinlock(p);
|
|
p->p_vtimer_prof = aitv;
|
|
proc_spinunlock(p);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
proc_inherit_itimers(struct proc *old_proc, struct proc *new_proc)
|
|
{
|
|
struct itimerval real_itv, vuser_itv, vprof_itv;
|
|
|
|
/* Snapshot the old timer values */
|
|
proc_spinlock(old_proc);
|
|
real_itv = old_proc->p_realtimer;
|
|
vuser_itv = old_proc->p_vtimer_user;
|
|
vprof_itv = old_proc->p_vtimer_prof;
|
|
proc_spinunlock(old_proc);
|
|
|
|
if (timerisset(&vuser_itv.it_value)) {
|
|
task_vtimer_set(proc_task(new_proc), TASK_VTIMER_USER);
|
|
} else {
|
|
task_vtimer_clear(proc_task(new_proc), TASK_VTIMER_USER);
|
|
}
|
|
|
|
if (timerisset(&vprof_itv.it_value)) {
|
|
task_vtimer_set(proc_task(new_proc), TASK_VTIMER_PROF);
|
|
} else {
|
|
task_vtimer_clear(proc_task(new_proc), TASK_VTIMER_PROF);
|
|
}
|
|
|
|
/* Update the timer values on new proc */
|
|
proc_spinlock(new_proc);
|
|
|
|
if (timerisset(&real_itv.it_value)) {
|
|
microuptime(&new_proc->p_rtime);
|
|
timevaladd(&new_proc->p_rtime, &real_itv.it_value);
|
|
new_proc->p_realtimer = real_itv;
|
|
if (!thread_call_enter_delayed_with_leeway(new_proc->p_rcall, NULL,
|
|
tvtoabstime(&new_proc->p_rtime), 0, THREAD_CALL_DELAY_USER_NORMAL)) {
|
|
new_proc->p_ractive++;
|
|
}
|
|
} else {
|
|
timerclear(&new_proc->p_rtime);
|
|
new_proc->p_realtimer = real_itv;
|
|
}
|
|
|
|
new_proc->p_vtimer_user = vuser_itv;
|
|
new_proc->p_vtimer_prof = vprof_itv;
|
|
|
|
proc_spinunlock(new_proc);
|
|
}
|
|
|
|
/*
|
|
* Real interval timer expired:
|
|
* send process whose timer expired an alarm signal.
|
|
* If time is not set up to reload, then just return.
|
|
* Else compute next time timer should go off which is > current time.
|
|
* This is where delay in processing this timeout causes multiple
|
|
* SIGALRM calls to be compressed into one.
|
|
*/
|
|
void
|
|
realitexpire(
|
|
struct proc *p,
|
|
__unused void *p2)
|
|
{
|
|
struct proc *r;
|
|
struct timeval t;
|
|
|
|
r = proc_find(proc_getpid(p));
|
|
|
|
proc_spinlock(p);
|
|
|
|
assert(p->p_ractive > 0);
|
|
|
|
if (--p->p_ractive > 0 || r != p) {
|
|
/*
|
|
* bail, because either proc is exiting
|
|
* or there's another active thread call
|
|
*/
|
|
proc_spinunlock(p);
|
|
|
|
if (r != NULL) {
|
|
proc_rele(r);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!timerisset(&p->p_realtimer.it_interval)) {
|
|
/*
|
|
* p_realtimer was cleared while this call was pending,
|
|
* send one last SIGALRM, but don't re-arm
|
|
*/
|
|
timerclear(&p->p_rtime);
|
|
proc_spinunlock(p);
|
|
|
|
psignal(p, SIGALRM);
|
|
proc_rele(p);
|
|
return;
|
|
}
|
|
|
|
proc_spinunlock(p);
|
|
|
|
/*
|
|
* Send the signal before re-arming the next thread call,
|
|
* so in case psignal blocks, we won't create yet another thread call.
|
|
*/
|
|
|
|
psignal(p, SIGALRM);
|
|
|
|
proc_spinlock(p);
|
|
|
|
/* Should we still re-arm the next thread call? */
|
|
if (!timerisset(&p->p_realtimer.it_interval)) {
|
|
timerclear(&p->p_rtime);
|
|
proc_spinunlock(p);
|
|
|
|
proc_rele(p);
|
|
return;
|
|
}
|
|
|
|
microuptime(&t);
|
|
timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
|
|
|
|
if (timercmp(&p->p_rtime, &t, <=)) {
|
|
if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) {
|
|
for (;;) {
|
|
timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
|
|
if (timercmp(&p->p_rtime, &t, >)) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
p->p_rtime = p->p_realtimer.it_interval;
|
|
timevaladd(&p->p_rtime, &t);
|
|
}
|
|
}
|
|
|
|
assert(p->p_rcall != NULL);
|
|
|
|
if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL, tvtoabstime(&p->p_rtime), 0,
|
|
THREAD_CALL_DELAY_USER_NORMAL)) {
|
|
p->p_ractive++;
|
|
}
|
|
|
|
proc_spinunlock(p);
|
|
|
|
proc_rele(p);
|
|
}
|
|
|
|
/*
|
|
* Called once in proc_exit to clean up after an armed or pending realitexpire
|
|
*
|
|
* This will only be called after the proc refcount is drained,
|
|
* so realitexpire cannot be currently holding a proc ref.
|
|
* i.e. it will/has gotten PROC_NULL from proc_find.
|
|
*/
|
|
void
|
|
proc_free_realitimer(proc_t p)
|
|
{
|
|
proc_spinlock(p);
|
|
|
|
assert(p->p_rcall != NULL);
|
|
assert(proc_list_exited(p));
|
|
|
|
timerclear(&p->p_realtimer.it_interval);
|
|
|
|
if (thread_call_cancel(p->p_rcall)) {
|
|
assert(p->p_ractive > 0);
|
|
p->p_ractive--;
|
|
}
|
|
|
|
while (p->p_ractive > 0) {
|
|
proc_spinunlock(p);
|
|
|
|
delay(1);
|
|
|
|
proc_spinlock(p);
|
|
}
|
|
|
|
thread_call_t call = p->p_rcall;
|
|
p->p_rcall = NULL;
|
|
|
|
proc_spinunlock(p);
|
|
|
|
thread_call_free(call);
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed value to load into the .it_value or
|
|
* .it_interval part of an interval timer is acceptable.
|
|
*/
|
|
int
|
|
itimerfix(
|
|
struct timeval *tv)
|
|
{
|
|
if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
|
|
tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
|
|
return EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
timespec_is_valid(const struct timespec *ts)
|
|
{
|
|
/* The INT32_MAX limit ensures the timespec is safe for clock_*() functions
|
|
* which accept 32-bit ints. */
|
|
if (ts->tv_sec < 0 || ts->tv_sec > INT32_MAX ||
|
|
ts->tv_nsec < 0 || (unsigned long long)ts->tv_nsec > NSEC_PER_SEC) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Decrement an interval timer by a specified number
|
|
* of microseconds, which must be less than a second,
|
|
* i.e. < 1000000. If the timer expires, then reload
|
|
* it. In this case, carry over (usec - old value) to
|
|
* reduce the value reloaded into the timer so that
|
|
* the timer does not drift. This routine assumes
|
|
* that it is called in a context where the timers
|
|
* on which it is operating cannot change in value.
|
|
*/
|
|
int
|
|
itimerdecr(proc_t p,
|
|
struct itimerval *itp, int usec)
|
|
{
|
|
proc_spinlock(p);
|
|
|
|
if (itp->it_value.tv_usec < usec) {
|
|
if (itp->it_value.tv_sec == 0) {
|
|
/* expired, and already in next interval */
|
|
usec -= itp->it_value.tv_usec;
|
|
goto expire;
|
|
}
|
|
itp->it_value.tv_usec += 1000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
itp->it_value.tv_usec -= usec;
|
|
usec = 0;
|
|
if (timerisset(&itp->it_value)) {
|
|
proc_spinunlock(p);
|
|
return 1;
|
|
}
|
|
/* expired, exactly at end of interval */
|
|
expire:
|
|
if (timerisset(&itp->it_interval)) {
|
|
itp->it_value = itp->it_interval;
|
|
if (itp->it_value.tv_sec > 0) {
|
|
itp->it_value.tv_usec -= usec;
|
|
if (itp->it_value.tv_usec < 0) {
|
|
itp->it_value.tv_usec += 1000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
}
|
|
} else {
|
|
itp->it_value.tv_usec = 0; /* sec is already 0 */
|
|
}
|
|
proc_spinunlock(p);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add and subtract routines for timevals.
|
|
* N.B.: subtract routine doesn't deal with
|
|
* results which are before the beginning,
|
|
* it just gets very confused in this case.
|
|
* Caveat emptor.
|
|
*/
|
|
void
|
|
timevaladd(
|
|
struct timeval *t1,
|
|
struct timeval *t2)
|
|
{
|
|
t1->tv_sec += t2->tv_sec;
|
|
t1->tv_usec += t2->tv_usec;
|
|
timevalfix(t1);
|
|
}
|
|
void
|
|
timevalsub(
|
|
struct timeval *t1,
|
|
struct timeval *t2)
|
|
{
|
|
t1->tv_sec -= t2->tv_sec;
|
|
t1->tv_usec -= t2->tv_usec;
|
|
timevalfix(t1);
|
|
}
|
|
void
|
|
timevalfix(
|
|
struct timeval *t1)
|
|
{
|
|
if (t1->tv_usec < 0) {
|
|
t1->tv_sec--;
|
|
t1->tv_usec += 1000000;
|
|
}
|
|
if (t1->tv_usec >= 1000000) {
|
|
t1->tv_sec++;
|
|
t1->tv_usec -= 1000000;
|
|
}
|
|
}
|
|
|
|
static boolean_t
|
|
timeval_fixusec(
|
|
struct timeval *t1)
|
|
{
|
|
assert(t1->tv_usec >= 0);
|
|
assert(t1->tv_sec >= 0);
|
|
|
|
if (t1->tv_usec >= 1000000) {
|
|
if (os_add_overflow(t1->tv_sec, t1->tv_usec / 1000000, &t1->tv_sec)) {
|
|
return FALSE;
|
|
}
|
|
t1->tv_usec = t1->tv_usec % 1000000;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Return the best possible estimate of the time in the timeval
|
|
* to which tvp points.
|
|
*/
|
|
void
|
|
microtime(
|
|
struct timeval *tvp)
|
|
{
|
|
clock_sec_t tv_sec;
|
|
clock_usec_t tv_usec;
|
|
|
|
clock_get_calendar_microtime(&tv_sec, &tv_usec);
|
|
|
|
tvp->tv_sec = tv_sec;
|
|
tvp->tv_usec = tv_usec;
|
|
}
|
|
|
|
void
|
|
microtime_with_abstime(
|
|
struct timeval *tvp, uint64_t *abstime)
|
|
{
|
|
clock_sec_t tv_sec;
|
|
clock_usec_t tv_usec;
|
|
|
|
clock_get_calendar_absolute_and_microtime(&tv_sec, &tv_usec, abstime);
|
|
|
|
tvp->tv_sec = tv_sec;
|
|
tvp->tv_usec = tv_usec;
|
|
}
|
|
|
|
void
|
|
microuptime(
|
|
struct timeval *tvp)
|
|
{
|
|
clock_sec_t tv_sec;
|
|
clock_usec_t tv_usec;
|
|
|
|
clock_get_system_microtime(&tv_sec, &tv_usec);
|
|
|
|
tvp->tv_sec = tv_sec;
|
|
tvp->tv_usec = tv_usec;
|
|
}
|
|
|
|
/*
|
|
* Ditto for timespec.
|
|
*/
|
|
void
|
|
nanotime(
|
|
struct timespec *tsp)
|
|
{
|
|
clock_sec_t tv_sec;
|
|
clock_nsec_t tv_nsec;
|
|
|
|
clock_get_calendar_nanotime(&tv_sec, &tv_nsec);
|
|
|
|
tsp->tv_sec = tv_sec;
|
|
tsp->tv_nsec = tv_nsec;
|
|
}
|
|
|
|
void
|
|
nanouptime(
|
|
struct timespec *tsp)
|
|
{
|
|
clock_sec_t tv_sec;
|
|
clock_nsec_t tv_nsec;
|
|
|
|
clock_get_system_nanotime(&tv_sec, &tv_nsec);
|
|
|
|
tsp->tv_sec = tv_sec;
|
|
tsp->tv_nsec = tv_nsec;
|
|
}
|
|
|
|
uint64_t
|
|
tvtoabstime(
|
|
struct timeval *tvp)
|
|
{
|
|
uint64_t result, usresult;
|
|
|
|
clock_interval_to_absolutetime_interval(
|
|
(uint32_t)tvp->tv_sec, NSEC_PER_SEC, &result);
|
|
clock_interval_to_absolutetime_interval(
|
|
tvp->tv_usec, NSEC_PER_USEC, &usresult);
|
|
|
|
return result + usresult;
|
|
}
|
|
|
|
uint64_t
|
|
tstoabstime(struct timespec *ts)
|
|
{
|
|
uint64_t abstime_s, abstime_ns;
|
|
clock_interval_to_absolutetime_interval((uint32_t)ts->tv_sec, NSEC_PER_SEC, &abstime_s);
|
|
clock_interval_to_absolutetime_interval((uint32_t)ts->tv_nsec, 1, &abstime_ns);
|
|
return abstime_s + abstime_ns;
|
|
}
|
|
|
|
#if NETWORKING
|
|
/*
|
|
* ratecheck(): simple time-based rate-limit checking.
|
|
*/
|
|
int
|
|
ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
|
|
{
|
|
struct timeval tv, delta;
|
|
int rv = 0;
|
|
|
|
net_uptime2timeval(&tv);
|
|
delta = tv;
|
|
timevalsub(&delta, lasttime);
|
|
|
|
/*
|
|
* check for 0,0 is so that the message will be seen at least once,
|
|
* even if interval is huge.
|
|
*/
|
|
if (timevalcmp(&delta, mininterval, >=) ||
|
|
(lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
|
|
*lasttime = tv;
|
|
rv = 1;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* ppsratecheck(): packets (or events) per second limitation.
|
|
*/
|
|
int
|
|
ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
|
|
{
|
|
struct timeval tv, delta;
|
|
int rv;
|
|
|
|
net_uptime2timeval(&tv);
|
|
|
|
timersub(&tv, lasttime, &delta);
|
|
|
|
/*
|
|
* Check for 0,0 so that the message will be seen at least once.
|
|
* If more than one second has passed since the last update of
|
|
* lasttime, reset the counter.
|
|
*
|
|
* we do increment *curpps even in *curpps < maxpps case, as some may
|
|
* try to use *curpps for stat purposes as well.
|
|
*/
|
|
if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
|
|
delta.tv_sec >= 1) {
|
|
*lasttime = tv;
|
|
*curpps = 0;
|
|
rv = 1;
|
|
} else if (maxpps < 0) {
|
|
rv = 1;
|
|
} else if (*curpps < maxpps) {
|
|
rv = 1;
|
|
} else {
|
|
rv = 0;
|
|
}
|
|
|
|
/* be careful about wrap-around */
|
|
if (*curpps < INT_MAX) {
|
|
*curpps = *curpps + 1;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
#endif /* NETWORKING */
|
|
|
|
int
|
|
__mach_bridge_remote_time(__unused struct proc *p, struct __mach_bridge_remote_time_args *mbrt_args, uint64_t *retval)
|
|
{
|
|
*retval = mach_bridge_remote_time(mbrt_args->local_timestamp);
|
|
return 0;
|
|
}
|