gems-kernel/source/THIRDPARTY/xnu/bsd/kern/kpi_mbuf.c
2024-06-03 11:29:39 -05:00

2020 lines
41 KiB
C

/*
* Copyright (c) 2004-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#define __KPI__
#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/mcache.h>
#include <sys/socket.h>
#include <kern/debug.h>
#include <libkern/OSAtomic.h>
#include <string.h>
#include <net/dlil.h>
#include <netinet/in.h>
#include <netinet/ip_var.h>
#include <os/log.h>
#include "net/net_str_id.h"
/* mbuf flags visible to KPI clients; do not add private flags here */
static const mbuf_flags_t mbuf_flags_mask = (MBUF_EXT | MBUF_PKTHDR | MBUF_EOR |
MBUF_LOOP | MBUF_BCAST | MBUF_MCAST | MBUF_FRAG | MBUF_FIRSTFRAG |
MBUF_LASTFRAG | MBUF_PROMISC | MBUF_HASFCS);
/* Unalterable mbuf flags */
static const mbuf_flags_t mbuf_cflags_mask = (MBUF_EXT);
#define MAX_MBUF_TX_COMPL_FUNC 32
mbuf_tx_compl_func
mbuf_tx_compl_table[MAX_MBUF_TX_COMPL_FUNC];
extern lck_rw_t mbuf_tx_compl_tbl_lock;
u_int32_t mbuf_tx_compl_index = 0;
#if (DEVELOPMENT || DEBUG)
int mbuf_tx_compl_debug = 0;
uint64_t mbuf_tx_compl_requested __attribute__((aligned(8))) = 0;
uint64_t mbuf_tx_compl_callbacks __attribute__((aligned(8))) = 0;
uint64_t mbuf_tx_compl_aborted __attribute__((aligned(8))) = 0;
SYSCTL_DECL(_kern_ipc);
SYSCTL_NODE(_kern_ipc, OID_AUTO, mbtxcf,
CTLFLAG_RW | CTLFLAG_LOCKED, 0, "");
SYSCTL_INT(_kern_ipc_mbtxcf, OID_AUTO, debug,
CTLFLAG_RW | CTLFLAG_LOCKED, &mbuf_tx_compl_debug, 0, "");
SYSCTL_INT(_kern_ipc_mbtxcf, OID_AUTO, index,
CTLFLAG_RD | CTLFLAG_LOCKED, &mbuf_tx_compl_index, 0, "");
SYSCTL_QUAD(_kern_ipc_mbtxcf, OID_AUTO, requested,
CTLFLAG_RD | CTLFLAG_LOCKED, &mbuf_tx_compl_requested, "");
SYSCTL_QUAD(_kern_ipc_mbtxcf, OID_AUTO, callbacks,
CTLFLAG_RD | CTLFLAG_LOCKED, &mbuf_tx_compl_callbacks, "");
SYSCTL_QUAD(_kern_ipc_mbtxcf, OID_AUTO, aborted,
CTLFLAG_RD | CTLFLAG_LOCKED, &mbuf_tx_compl_aborted, "");
#endif /* (DEBUG || DEVELOPMENT) */
void *
mbuf_data(mbuf_t mbuf)
{
return m_mtod_current(mbuf);
}
void *
mbuf_datastart(mbuf_t mbuf)
{
if (mbuf->m_flags & M_EXT) {
return mbuf->m_ext.ext_buf;
}
if (mbuf->m_flags & M_PKTHDR) {
return mbuf->m_pktdat;
}
return mbuf->m_dat;
}
errno_t
mbuf_setdata(mbuf_t mbuf, void *data, size_t len)
{
size_t start = (size_t)((char *)mbuf_datastart(mbuf));
size_t maxlen = mbuf_maxlen(mbuf);
if ((size_t)data < start || ((size_t)data) + len > start + maxlen) {
return EINVAL;
}
mbuf->m_data = (uintptr_t)data;
mbuf->m_len = (int32_t)len;
return 0;
}
errno_t
mbuf_align_32(mbuf_t mbuf, size_t len)
{
if ((mbuf->m_flags & M_EXT) != 0 && m_mclhasreference(mbuf)) {
return ENOTSUP;
}
mbuf->m_data = (uintptr_t)mbuf_datastart(mbuf);
mbuf->m_data +=
((mbuf_trailingspace(mbuf) - len) & ~(sizeof(u_int32_t) - 1));
return 0;
}
/*
* This function is used to provide mcl_to_paddr via symbol indirection,
* please avoid any change in behavior or remove the indirection in
* config/Unsupported*
*/
addr64_t
mbuf_data_to_physical(void *ptr)
{
return (addr64_t)mcl_to_paddr(ptr);
}
errno_t
mbuf_get(mbuf_how_t how, mbuf_type_t type, mbuf_t *mbuf)
{
/* Must set *mbuf to NULL in failure case */
*mbuf = m_get(how, type);
return *mbuf == NULL ? ENOMEM : 0;
}
errno_t
mbuf_gethdr(mbuf_how_t how, mbuf_type_t type, mbuf_t *mbuf)
{
/* Must set *mbuf to NULL in failure case */
*mbuf = m_gethdr(how, type);
return *mbuf == NULL ? ENOMEM : 0;
}
errno_t
mbuf_attachcluster(mbuf_how_t how, mbuf_type_t type, mbuf_t *mbuf,
caddr_t extbuf, void (*extfree)(caddr_t, u_int, caddr_t),
size_t extsize, caddr_t extarg)
{
if (mbuf == NULL || extbuf == NULL || extfree == NULL || extsize == 0) {
return EINVAL;
}
if ((*mbuf = m_clattach(*mbuf, type, extbuf,
extfree, extsize, extarg, how, 0)) == NULL) {
return ENOMEM;
}
return 0;
}
errno_t
mbuf_ring_cluster_alloc(mbuf_how_t how, mbuf_type_t type, mbuf_t *mbuf,
void (*extfree)(caddr_t, u_int, caddr_t), size_t *size)
{
caddr_t extbuf = NULL;
errno_t err;
if (mbuf == NULL || extfree == NULL || size == NULL || *size == 0) {
return EINVAL;
}
if ((err = mbuf_alloccluster(how, size, &extbuf)) != 0) {
return err;
}
if ((*mbuf = m_clattach(*mbuf, type, extbuf,
extfree, *size, NULL, how, 1)) == NULL) {
mbuf_freecluster(extbuf, *size);
return ENOMEM;
}
return 0;
}
int
mbuf_ring_cluster_is_active(mbuf_t mbuf)
{
return m_ext_paired_is_active(mbuf);
}
errno_t
mbuf_ring_cluster_activate(mbuf_t mbuf)
{
if (mbuf_ring_cluster_is_active(mbuf)) {
return EBUSY;
}
m_ext_paired_activate(mbuf);
return 0;
}
errno_t
mbuf_cluster_set_prop(mbuf_t mbuf, u_int32_t oldprop, u_int32_t newprop)
{
if (mbuf == NULL || !(mbuf->m_flags & M_EXT)) {
return EINVAL;
}
return m_ext_set_prop(mbuf, oldprop, newprop) ? 0 : EBUSY;
}
errno_t
mbuf_cluster_get_prop(mbuf_t mbuf, u_int32_t *prop)
{
if (mbuf == NULL || prop == NULL || !(mbuf->m_flags & M_EXT)) {
return EINVAL;
}
*prop = m_ext_get_prop(mbuf);
return 0;
}
errno_t
mbuf_alloccluster(mbuf_how_t how, size_t *size, caddr_t *addr)
{
if (size == NULL || *size == 0 || addr == NULL) {
return EINVAL;
}
*addr = NULL;
/* Jumbo cluster pool not available? */
if (*size > MBIGCLBYTES && njcl == 0) {
return ENOTSUP;
}
if (*size <= MCLBYTES && (*addr = m_mclalloc(how)) != NULL) {
*size = MCLBYTES;
} else if (*size > MCLBYTES && *size <= MBIGCLBYTES &&
(*addr = m_bigalloc(how)) != NULL) {
*size = MBIGCLBYTES;
} else if (*size > MBIGCLBYTES && *size <= M16KCLBYTES &&
(*addr = m_16kalloc(how)) != NULL) {
*size = M16KCLBYTES;
} else {
*size = 0;
}
if (*addr == NULL) {
return ENOMEM;
}
return 0;
}
void
mbuf_freecluster(caddr_t addr, size_t size)
{
if (size != MCLBYTES && size != MBIGCLBYTES && size != M16KCLBYTES) {
panic("%s: invalid size (%ld) for cluster %p", __func__,
size, (void *)addr);
}
if (size == MCLBYTES) {
m_mclfree(addr);
} else if (size == MBIGCLBYTES) {
m_bigfree(addr, MBIGCLBYTES, NULL);
} else if (njcl > 0) {
m_16kfree(addr, M16KCLBYTES, NULL);
} else {
panic("%s: freeing jumbo cluster to an empty pool", __func__);
}
}
errno_t
mbuf_getcluster(mbuf_how_t how, mbuf_type_t type, size_t size, mbuf_t *mbuf)
{
/* Must set *mbuf to NULL in failure case */
errno_t error = 0;
int created = 0;
if (mbuf == NULL) {
return EINVAL;
}
if (*mbuf == NULL) {
*mbuf = m_get(how, type);
if (*mbuf == NULL) {
return ENOMEM;
}
created = 1;
}
/*
* At the time this code was written, m_{mclget,mbigget,m16kget}
* would always return the same value that was passed in to it.
*/
if (size == MCLBYTES) {
*mbuf = m_mclget(*mbuf, how);
} else if (size == MBIGCLBYTES) {
*mbuf = m_mbigget(*mbuf, how);
} else if (size == M16KCLBYTES) {
if (njcl > 0) {
*mbuf = m_m16kget(*mbuf, how);
} else {
/* Jumbo cluster pool not available? */
error = ENOTSUP;
goto out;
}
} else {
error = EINVAL;
goto out;
}
if (*mbuf == NULL || ((*mbuf)->m_flags & M_EXT) == 0) {
error = ENOMEM;
}
out:
if (created && error != 0) {
mbuf_free(*mbuf);
*mbuf = NULL;
}
return error;
}
errno_t
mbuf_mclget(mbuf_how_t how, mbuf_type_t type, mbuf_t *mbuf)
{
/* Must set *mbuf to NULL in failure case */
errno_t error = 0;
int created = 0;
if (mbuf == NULL) {
return EINVAL;
}
if (*mbuf == NULL) {
error = mbuf_get(how, type, mbuf);
if (error) {
return error;
}
created = 1;
}
/*
* At the time this code was written, m_mclget would always
* return the same value that was passed in to it.
*/
*mbuf = m_mclget(*mbuf, how);
if (created && ((*mbuf)->m_flags & M_EXT) == 0) {
mbuf_free(*mbuf);
*mbuf = NULL;
}
if (*mbuf == NULL || ((*mbuf)->m_flags & M_EXT) == 0) {
error = ENOMEM;
}
return error;
}
errno_t
mbuf_getpacket(mbuf_how_t how, mbuf_t *mbuf)
{
/* Must set *mbuf to NULL in failure case */
errno_t error = 0;
*mbuf = m_getpacket_how(how);
if (*mbuf == NULL) {
if (how == MBUF_WAITOK) {
error = ENOMEM;
} else {
error = EWOULDBLOCK;
}
}
return error;
}
/*
* This function is used to provide m_free via symbol indirection, please avoid
* any change in behavior or remove the indirection in config/Unsupported*
*/
mbuf_t
mbuf_free(mbuf_t mbuf)
{
return m_free(mbuf);
}
/*
* This function is used to provide m_freem via symbol indirection, please avoid
* any change in behavior or remove the indirection in config/Unsupported*
*/
void
mbuf_freem(mbuf_t mbuf)
{
m_freem(mbuf);
}
int
mbuf_freem_list(mbuf_t mbuf)
{
return m_freem_list(mbuf);
}
size_t
mbuf_leadingspace(const mbuf_t mbuf)
{
return M_LEADINGSPACE(mbuf);
}
/*
* This function is used to provide m_trailingspace via symbol indirection,
* please avoid any change in behavior or remove the indirection in
* config/Unsupported*
*/
size_t
mbuf_trailingspace(const mbuf_t mbuf)
{
return M_TRAILINGSPACE(mbuf);
}
/* Manipulation */
errno_t
mbuf_copym(const mbuf_t src, size_t offset, size_t len,
mbuf_how_t how, mbuf_t *new_mbuf)
{
/* Must set *mbuf to NULL in failure case */
*new_mbuf = m_copym(src, (int)offset, (int)len, how);
return *new_mbuf == NULL ? ENOMEM : 0;
}
errno_t
mbuf_dup(const mbuf_t src, mbuf_how_t how, mbuf_t *new_mbuf)
{
/* Must set *new_mbuf to NULL in failure case */
*new_mbuf = m_dup(src, how);
return *new_mbuf == NULL ? ENOMEM : 0;
}
errno_t
mbuf_prepend(mbuf_t *orig, size_t len, mbuf_how_t how)
{
/* Must set *orig to NULL in failure case */
*orig = m_prepend_2(*orig, (int)len, how, 0);
return *orig == NULL ? ENOMEM : 0;
}
errno_t
mbuf_split(mbuf_t src, size_t offset,
mbuf_how_t how, mbuf_t *new_mbuf)
{
/* Must set *new_mbuf to NULL in failure case */
*new_mbuf = m_split(src, (int)offset, how);
return *new_mbuf == NULL ? ENOMEM : 0;
}
errno_t
mbuf_pullup(mbuf_t *mbuf, size_t len)
{
/* Must set *mbuf to NULL in failure case */
*mbuf = m_pullup(*mbuf, (int)len);
return *mbuf == NULL ? ENOMEM : 0;
}
errno_t
mbuf_pulldown(mbuf_t src, size_t *offset, size_t len, mbuf_t *location)
{
/* Must set *location to NULL in failure case */
int new_offset;
*location = m_pulldown(src, (int)*offset, (int)len, &new_offset);
*offset = new_offset;
return *location == NULL ? ENOMEM : 0;
}
/*
* This function is used to provide m_adj via symbol indirection, please avoid
* any change in behavior or remove the indirection in config/Unsupported*
*/
void
mbuf_adj(mbuf_t mbuf, int len)
{
m_adj(mbuf, len);
}
errno_t
mbuf_adjustlen(mbuf_t m, int amount)
{
/* Verify m_len will be valid after adding amount */
if (amount > 0) {
size_t used = (size_t)mbuf_data(m) - (size_t)mbuf_datastart(m) +
m->m_len;
if ((size_t)(amount + used) > mbuf_maxlen(m)) {
return EINVAL;
}
} else if (-amount > m->m_len) {
return EINVAL;
}
m->m_len += amount;
return 0;
}
mbuf_t
mbuf_concatenate(mbuf_t dst, mbuf_t src)
{
if (dst == NULL) {
return NULL;
}
m_cat(dst, src);
/* return dst as is in the current implementation */
return dst;
}
errno_t
mbuf_copydata(const mbuf_t m0, size_t off, size_t len, void *out_data)
{
/* Copied m_copydata, added error handling (don't just panic) */
size_t count;
mbuf_t m = m0;
if (off >= INT_MAX || len >= INT_MAX) {
return EINVAL;
}
while (off > 0) {
if (m == 0) {
return EINVAL;
}
if (off < (size_t)m->m_len) {
break;
}
off -= m->m_len;
m = m->m_next;
}
while (len > 0) {
if (m == 0) {
return EINVAL;
}
count = m->m_len - off > len ? len : m->m_len - off;
bcopy(mtod(m, caddr_t) + off, out_data, count);
len -= count;
out_data = ((char *)out_data) + count;
off = 0;
m = m->m_next;
}
return 0;
}
int
mbuf_mclhasreference(mbuf_t mbuf)
{
if ((mbuf->m_flags & M_EXT)) {
return m_mclhasreference(mbuf);
} else {
return 0;
}
}
/* mbuf header */
mbuf_t
mbuf_next(const mbuf_t mbuf)
{
return mbuf->m_next;
}
errno_t
mbuf_setnext(mbuf_t mbuf, mbuf_t next)
{
if (next && ((next)->m_nextpkt != NULL ||
(next)->m_type == MT_FREE)) {
return EINVAL;
}
mbuf->m_next = next;
return 0;
}
mbuf_t
mbuf_nextpkt(const mbuf_t mbuf)
{
return mbuf->m_nextpkt;
}
void
mbuf_setnextpkt(mbuf_t mbuf, mbuf_t nextpkt)
{
mbuf->m_nextpkt = nextpkt;
}
size_t
mbuf_len(const mbuf_t mbuf)
{
return mbuf->m_len;
}
void
mbuf_setlen(mbuf_t mbuf, size_t len)
{
mbuf->m_len = (int32_t)len;
}
size_t
mbuf_maxlen(const mbuf_t mbuf)
{
if (mbuf->m_flags & M_EXT) {
return mbuf->m_ext.ext_size;
}
return &mbuf->m_dat[MLEN] - ((char *)mbuf_datastart(mbuf));
}
mbuf_type_t
mbuf_type(const mbuf_t mbuf)
{
return mbuf->m_type;
}
errno_t
mbuf_settype(mbuf_t mbuf, mbuf_type_t new_type)
{
if (new_type == MBUF_TYPE_FREE) {
return EINVAL;
}
m_mchtype(mbuf, new_type);
return 0;
}
mbuf_flags_t
mbuf_flags(const mbuf_t mbuf)
{
return mbuf->m_flags & mbuf_flags_mask;
}
errno_t
mbuf_setflags(mbuf_t mbuf, mbuf_flags_t flags)
{
errno_t ret = 0;
mbuf_flags_t oflags = mbuf->m_flags;
/*
* 1. Return error if public but un-alterable flags are changed
* in flags argument.
* 2. Return error if bits other than public flags are set in passed
* flags argument.
* Please note that private flag bits must be passed as reset by
* kexts, as they must use mbuf_flags KPI to get current set of
* mbuf flags and mbuf_flags KPI does not expose private flags.
*/
if ((flags ^ oflags) & mbuf_cflags_mask) {
ret = EINVAL;
} else if (flags & ~mbuf_flags_mask) {
ret = EINVAL;
} else {
mbuf->m_flags = (uint16_t)flags | (mbuf->m_flags & ~mbuf_flags_mask);
/*
* If M_PKTHDR bit has changed, we have work to do;
* m_reinit() will take care of setting/clearing the
* bit, as well as the rest of bookkeeping.
*/
if ((oflags ^ mbuf->m_flags) & M_PKTHDR) {
mbuf->m_flags ^= M_PKTHDR; /* restore */
ret = m_reinit(mbuf,
(mbuf->m_flags & M_PKTHDR) ? 0 : 1);
}
}
return ret;
}
errno_t
mbuf_setflags_mask(mbuf_t mbuf, mbuf_flags_t flags, mbuf_flags_t mask)
{
errno_t ret = 0;
if (mask & (~mbuf_flags_mask | mbuf_cflags_mask)) {
ret = EINVAL;
} else {
mbuf_flags_t oflags = mbuf->m_flags;
mbuf->m_flags = (uint16_t)((flags & mask) | (mbuf->m_flags & ~mask));
/*
* If M_PKTHDR bit has changed, we have work to do;
* m_reinit() will take care of setting/clearing the
* bit, as well as the rest of bookkeeping.
*/
if ((oflags ^ mbuf->m_flags) & M_PKTHDR) {
mbuf->m_flags ^= M_PKTHDR; /* restore */
ret = m_reinit(mbuf,
(mbuf->m_flags & M_PKTHDR) ? 0 : 1);
}
}
return ret;
}
errno_t
mbuf_copy_pkthdr(mbuf_t dest, const mbuf_t src)
{
if (((src)->m_flags & M_PKTHDR) == 0) {
return EINVAL;
}
m_copy_pkthdr(dest, src);
return 0;
}
size_t
mbuf_pkthdr_len(const mbuf_t mbuf)
{
if (((mbuf)->m_flags & M_PKTHDR) == 0) {
return 0;
}
/*
* While we Assert for development or debug builds,
* also make sure we never return negative length
* for release build.
*/
ASSERT(mbuf->m_pkthdr.len >= 0);
if (mbuf->m_pkthdr.len < 0) {
return 0;
}
return mbuf->m_pkthdr.len;
}
__private_extern__ size_t
mbuf_pkthdr_maxlen(mbuf_t m)
{
size_t maxlen = 0;
mbuf_t n = m;
while (n) {
maxlen += mbuf_maxlen(n);
n = mbuf_next(n);
}
return maxlen;
}
void
mbuf_pkthdr_setlen(mbuf_t mbuf, size_t len)
{
if (len > INT32_MAX) {
len = INT32_MAX;
}
mbuf->m_pkthdr.len = (int)len;
}
void
mbuf_pkthdr_adjustlen(mbuf_t mbuf, int amount)
{
mbuf->m_pkthdr.len += amount;
}
ifnet_t
mbuf_pkthdr_rcvif(const mbuf_t mbuf)
{
/*
* If we reference count ifnets, we should take a reference here
* before returning
*/
return mbuf->m_pkthdr.rcvif;
}
errno_t
mbuf_pkthdr_setrcvif(mbuf_t mbuf, ifnet_t ifnet)
{
/* May want to walk ifnet list to determine if interface is valid */
mbuf->m_pkthdr.rcvif = (struct ifnet *)ifnet;
return 0;
}
void*
mbuf_pkthdr_header(const mbuf_t mbuf)
{
return mbuf->m_pkthdr.pkt_hdr;
}
void
mbuf_pkthdr_setheader(mbuf_t mbuf, void *header)
{
mbuf->m_pkthdr.pkt_hdr = (void*)header;
}
void
mbuf_inbound_modified(mbuf_t mbuf)
{
/* Invalidate hardware generated checksum flags */
mbuf->m_pkthdr.csum_flags = 0;
}
void
mbuf_outbound_finalize(struct mbuf *m, u_int32_t pf, size_t o)
{
/* Generate the packet in software, client needs it */
switch (pf) {
case PF_INET:
(void) in_finalize_cksum(m, (uint32_t)o, m->m_pkthdr.csum_flags);
break;
case PF_INET6:
/*
* Checksum offload should not have been enabled when
* extension headers exist; indicate that the callee
* should skip such case by setting optlen to -1.
*/
(void) in6_finalize_cksum(m, (uint32_t)o, -1, -1, m->m_pkthdr.csum_flags);
break;
default:
break;
}
}
errno_t
mbuf_set_vlan_tag(
mbuf_t mbuf,
u_int16_t vlan)
{
mbuf->m_pkthdr.csum_flags |= CSUM_VLAN_TAG_VALID;
mbuf->m_pkthdr.vlan_tag = vlan;
return 0;
}
errno_t
mbuf_get_vlan_tag(
mbuf_t mbuf,
u_int16_t *vlan)
{
if ((mbuf->m_pkthdr.csum_flags & CSUM_VLAN_TAG_VALID) == 0) {
return ENXIO; // No vlan tag set
}
*vlan = mbuf->m_pkthdr.vlan_tag;
return 0;
}
errno_t
mbuf_clear_vlan_tag(
mbuf_t mbuf)
{
mbuf->m_pkthdr.csum_flags &= ~CSUM_VLAN_TAG_VALID;
mbuf->m_pkthdr.vlan_tag = 0;
return 0;
}
static const mbuf_csum_request_flags_t mbuf_valid_csum_request_flags =
MBUF_CSUM_REQ_IP | MBUF_CSUM_REQ_TCP | MBUF_CSUM_REQ_UDP |
MBUF_CSUM_PARTIAL | MBUF_CSUM_REQ_TCPIPV6 | MBUF_CSUM_REQ_UDPIPV6;
errno_t
mbuf_set_csum_requested(
mbuf_t mbuf,
mbuf_csum_request_flags_t request,
u_int32_t value)
{
request &= mbuf_valid_csum_request_flags;
mbuf->m_pkthdr.csum_flags =
(mbuf->m_pkthdr.csum_flags & 0xffff0000) | request;
mbuf->m_pkthdr.csum_data = value;
return 0;
}
static const mbuf_tso_request_flags_t mbuf_valid_tso_request_flags =
MBUF_TSO_IPV4 | MBUF_TSO_IPV6;
errno_t
mbuf_get_tso_requested(
mbuf_t mbuf,
mbuf_tso_request_flags_t *request,
u_int32_t *value)
{
if (mbuf == NULL || (mbuf->m_flags & M_PKTHDR) == 0 ||
request == NULL || value == NULL) {
return EINVAL;
}
*request = mbuf->m_pkthdr.csum_flags;
*request &= mbuf_valid_tso_request_flags;
if (*request && value != NULL) {
*value = mbuf->m_pkthdr.tso_segsz;
}
return 0;
}
errno_t
mbuf_get_csum_requested(
mbuf_t mbuf,
mbuf_csum_request_flags_t *request,
u_int32_t *value)
{
*request = mbuf->m_pkthdr.csum_flags;
*request &= mbuf_valid_csum_request_flags;
if (value != NULL) {
*value = mbuf->m_pkthdr.csum_data;
}
return 0;
}
errno_t
mbuf_clear_csum_requested(
mbuf_t mbuf)
{
mbuf->m_pkthdr.csum_flags &= 0xffff0000;
mbuf->m_pkthdr.csum_data = 0;
return 0;
}
static const mbuf_csum_performed_flags_t mbuf_valid_csum_performed_flags =
MBUF_CSUM_DID_IP | MBUF_CSUM_IP_GOOD | MBUF_CSUM_DID_DATA |
MBUF_CSUM_PSEUDO_HDR | MBUF_CSUM_PARTIAL;
errno_t
mbuf_set_csum_performed(
mbuf_t mbuf,
mbuf_csum_performed_flags_t performed,
u_int32_t value)
{
performed &= mbuf_valid_csum_performed_flags;
mbuf->m_pkthdr.csum_flags =
(mbuf->m_pkthdr.csum_flags & 0xffff0000) | performed;
mbuf->m_pkthdr.csum_data = value;
return 0;
}
errno_t
mbuf_get_csum_performed(
mbuf_t mbuf,
mbuf_csum_performed_flags_t *performed,
u_int32_t *value)
{
*performed =
mbuf->m_pkthdr.csum_flags & mbuf_valid_csum_performed_flags;
*value = mbuf->m_pkthdr.csum_data;
return 0;
}
errno_t
mbuf_clear_csum_performed(
mbuf_t mbuf)
{
mbuf->m_pkthdr.csum_flags &= 0xffff0000;
mbuf->m_pkthdr.csum_data = 0;
return 0;
}
errno_t
mbuf_inet_cksum(mbuf_t mbuf, int protocol, u_int32_t offset, u_int32_t length,
u_int16_t *csum)
{
if (mbuf == NULL || length == 0 || csum == NULL ||
(u_int32_t)mbuf->m_pkthdr.len < (offset + length)) {
return EINVAL;
}
*csum = inet_cksum(mbuf, protocol, offset, length);
return 0;
}
errno_t
mbuf_inet6_cksum(mbuf_t mbuf, int protocol, u_int32_t offset, u_int32_t length,
u_int16_t *csum)
{
if (mbuf == NULL || length == 0 || csum == NULL ||
(u_int32_t)mbuf->m_pkthdr.len < (offset + length)) {
return EINVAL;
}
*csum = inet6_cksum(mbuf, protocol, offset, length);
return 0;
}
/*
* Mbuf tag KPIs
*/
#define MTAG_FIRST_ID FIRST_KPI_STR_ID
errno_t
mbuf_tag_id_find(
const char *string,
mbuf_tag_id_t *out_id)
{
return net_str_id_find_internal(string, out_id, NSI_MBUF_TAG, 1);
}
errno_t
mbuf_tag_allocate(
mbuf_t mbuf,
mbuf_tag_id_t id,
mbuf_tag_type_t type,
size_t length,
mbuf_how_t how,
void** data_p)
{
struct m_tag *tag;
u_int32_t mtag_id_first, mtag_id_last;
if (data_p != NULL) {
*data_p = NULL;
}
/* Sanity check parameters */
(void) net_str_id_first_last(&mtag_id_first, &mtag_id_last,
NSI_MBUF_TAG);
if (mbuf == NULL || (mbuf->m_flags & M_PKTHDR) == 0 ||
id < mtag_id_first || id > mtag_id_last || length < 1 ||
(length & 0xffff0000) != 0 || data_p == NULL) {
return EINVAL;
}
/* Make sure this mtag hasn't already been allocated */
tag = m_tag_locate(mbuf, id, type);
if (tag != NULL) {
return EEXIST;
}
/* Allocate an mtag */
tag = m_tag_create(id, type, (int)length, how, mbuf);
if (tag == NULL) {
return how == M_WAITOK ? ENOMEM : EWOULDBLOCK;
}
/* Attach the mtag and set *data_p */
m_tag_prepend(mbuf, tag);
*data_p = tag->m_tag_data;
return 0;
}
errno_t
mbuf_tag_find(
mbuf_t mbuf,
mbuf_tag_id_t id,
mbuf_tag_type_t type,
size_t *length,
void **data_p)
{
struct m_tag *tag;
u_int32_t mtag_id_first, mtag_id_last;
if (length != NULL) {
*length = 0;
}
if (data_p != NULL) {
*data_p = NULL;
}
/* Sanity check parameters */
(void) net_str_id_first_last(&mtag_id_first, &mtag_id_last,
NSI_MBUF_TAG);
if (mbuf == NULL || (mbuf->m_flags & M_PKTHDR) == 0 ||
id < mtag_id_first || id > mtag_id_last || length == NULL ||
data_p == NULL) {
return EINVAL;
}
/* Locate an mtag */
tag = m_tag_locate(mbuf, id, type);
if (tag == NULL) {
return ENOENT;
}
/* Copy out the pointer to the data and the lenght value */
*length = tag->m_tag_len;
*data_p = tag->m_tag_data;
return 0;
}
void
mbuf_tag_free(
mbuf_t mbuf,
mbuf_tag_id_t id,
mbuf_tag_type_t type)
{
struct m_tag *tag;
u_int32_t mtag_id_first, mtag_id_last;
/* Sanity check parameters */
(void) net_str_id_first_last(&mtag_id_first, &mtag_id_last,
NSI_MBUF_TAG);
if (mbuf == NULL || (mbuf->m_flags & M_PKTHDR) == 0 ||
id < mtag_id_first || id > mtag_id_last) {
return;
}
tag = m_tag_locate(mbuf, id, type);
if (tag == NULL) {
return;
}
m_tag_delete(mbuf, tag);
}
/*
* Maximum length of driver auxiliary data; keep this small to
* fit in a single mbuf to avoid wasting memory, rounded down to
* the nearest 64-bit boundary. This takes into account mbuf
* tag-related (m_taghdr + m_tag) as well m_drvaux_tag structs.
*/
#define MBUF_DRVAUX_MAXLEN \
P2ROUNDDOWN(MLEN - \
M_TAG_ALIGN(sizeof (struct m_drvaux_tag)), sizeof (uint64_t))
errno_t
mbuf_add_drvaux(mbuf_t mbuf, mbuf_how_t how, u_int32_t family,
u_int32_t subfamily, size_t length, void **data_p)
{
struct m_drvaux_tag *p;
struct m_tag *tag;
if (mbuf == NULL || !(mbuf->m_flags & M_PKTHDR) ||
length == 0 || length > MBUF_DRVAUX_MAXLEN) {
return EINVAL;
}
if (data_p != NULL) {
*data_p = NULL;
}
/* Check if one is already associated */
if ((tag = m_tag_locate(mbuf, KERNEL_MODULE_TAG_ID,
KERNEL_TAG_TYPE_DRVAUX)) != NULL) {
return EEXIST;
}
/* Tag is (m_drvaux_tag + module specific data) */
if ((tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DRVAUX,
(int)(sizeof(*p) + length), how, mbuf)) == NULL) {
return (how == MBUF_WAITOK) ? ENOMEM : EWOULDBLOCK;
}
p = (struct m_drvaux_tag *)(tag->m_tag_data);
p->da_family = family;
p->da_subfamily = subfamily;
p->da_length = (int)length;
/* Associate the tag */
m_tag_prepend(mbuf, tag);
if (data_p != NULL) {
*data_p = (p + 1);
}
return 0;
}
errno_t
mbuf_find_drvaux(mbuf_t mbuf, u_int32_t *family_p, u_int32_t *subfamily_p,
u_int32_t *length_p, void **data_p)
{
struct m_drvaux_tag *p;
struct m_tag *tag;
if (mbuf == NULL || !(mbuf->m_flags & M_PKTHDR) || data_p == NULL) {
return EINVAL;
}
*data_p = NULL;
if ((tag = m_tag_locate(mbuf, KERNEL_MODULE_TAG_ID,
KERNEL_TAG_TYPE_DRVAUX)) == NULL) {
return ENOENT;
}
/* Must be at least size of m_drvaux_tag */
VERIFY(tag->m_tag_len >= sizeof(*p));
p = (struct m_drvaux_tag *)(tag->m_tag_data);
VERIFY(p->da_length > 0 && p->da_length <= MBUF_DRVAUX_MAXLEN);
if (family_p != NULL) {
*family_p = p->da_family;
}
if (subfamily_p != NULL) {
*subfamily_p = p->da_subfamily;
}
if (length_p != NULL) {
*length_p = p->da_length;
}
*data_p = (p + 1);
return 0;
}
void
mbuf_del_drvaux(mbuf_t mbuf)
{
struct m_tag *tag;
if (mbuf == NULL || !(mbuf->m_flags & M_PKTHDR)) {
return;
}
if ((tag = m_tag_locate(mbuf, KERNEL_MODULE_TAG_ID,
KERNEL_TAG_TYPE_DRVAUX)) != NULL) {
m_tag_delete(mbuf, tag);
}
}
/* mbuf stats */
void
mbuf_stats(struct mbuf_stat *stats)
{
stats->mbufs = mbstat.m_mbufs;
stats->clusters = mbstat.m_clusters;
stats->clfree = mbstat.m_clfree;
stats->drops = mbstat.m_drops;
stats->wait = mbstat.m_wait;
stats->drain = mbstat.m_drain;
__builtin_memcpy(stats->mtypes, mbstat.m_mtypes, sizeof(stats->mtypes));
stats->mcfail = mbstat.m_mcfail;
stats->mpfail = mbstat.m_mpfail;
stats->msize = mbstat.m_msize;
stats->mclbytes = mbstat.m_mclbytes;
stats->minclsize = mbstat.m_minclsize;
stats->mlen = mbstat.m_mlen;
stats->mhlen = mbstat.m_mhlen;
stats->bigclusters = mbstat.m_bigclusters;
stats->bigclfree = mbstat.m_bigclfree;
stats->bigmclbytes = mbstat.m_bigmclbytes;
}
errno_t
mbuf_allocpacket(mbuf_how_t how, size_t packetlen, unsigned int *maxchunks,
mbuf_t *mbuf)
{
errno_t error = 0;
struct mbuf *m;
unsigned int numpkts = 1;
unsigned int numchunks = maxchunks != NULL ? *maxchunks : 0;
if (packetlen == 0) {
error = EINVAL;
os_log(OS_LOG_DEFAULT, "mbuf_allocpacket %d", __LINE__);
goto out;
}
m = m_allocpacket_internal(&numpkts, packetlen,
maxchunks != NULL ? &numchunks : NULL, how, 1, 0);
if (m == NULL) {
if (maxchunks != NULL && *maxchunks && numchunks > *maxchunks) {
error = ENOBUFS;
os_log(OS_LOG_DEFAULT, "mbuf_allocpacket %d", __LINE__);
} else {
error = ENOMEM;
os_log(OS_LOG_DEFAULT, "mbuf_allocpacket %d", __LINE__);
}
} else {
if (maxchunks != NULL) {
*maxchunks = numchunks;
}
error = 0;
*mbuf = m;
}
out:
return error;
}
errno_t
mbuf_allocpacket_list(unsigned int numpkts, mbuf_how_t how, size_t packetlen,
unsigned int *maxchunks, mbuf_t *mbuf)
{
errno_t error = 0;
struct mbuf *m;
unsigned int numchunks = maxchunks ? *maxchunks : 0;
if (numpkts == 0) {
error = EINVAL;
goto out;
}
if (packetlen == 0) {
error = EINVAL;
goto out;
}
m = m_allocpacket_internal(&numpkts, packetlen,
maxchunks != NULL ? &numchunks : NULL, how, 1, 0);
if (m == NULL) {
if (maxchunks != NULL && *maxchunks && numchunks > *maxchunks) {
error = ENOBUFS;
} else {
error = ENOMEM;
}
} else {
if (maxchunks != NULL) {
*maxchunks = numchunks;
}
error = 0;
*mbuf = m;
}
out:
return error;
}
__private_extern__ size_t
mbuf_pkt_list_len(mbuf_t m)
{
size_t len = 0;
mbuf_t n = m;
while (n) {
len += mbuf_pkthdr_len(n);
n = mbuf_nextpkt(n);
}
return len;
}
__private_extern__ size_t
mbuf_pkt_list_maxlen(mbuf_t m)
{
size_t maxlen = 0;
mbuf_t n = m;
while (n) {
maxlen += mbuf_pkthdr_maxlen(n);
n = mbuf_nextpkt(n);
}
return maxlen;
}
/*
* mbuf_copyback differs from m_copyback in a few ways:
* 1) mbuf_copyback will allocate clusters for new mbufs we append
* 2) mbuf_copyback will grow the last mbuf in the chain if possible
* 3) mbuf_copyback reports whether or not the operation succeeded
* 4) mbuf_copyback allows the caller to specify M_WAITOK or M_NOWAIT
*/
errno_t
mbuf_copyback(
mbuf_t m,
size_t off,
size_t len,
const void *data,
mbuf_how_t how)
{
size_t mlen;
mbuf_t m_start = m;
mbuf_t n;
int totlen = 0;
errno_t result = 0;
const char *cp = data;
if (m == NULL || len == 0 || data == NULL) {
return EINVAL;
}
while (off > (mlen = m->m_len)) {
off -= mlen;
totlen += mlen;
if (m->m_next == 0) {
n = m_getclr(how, m->m_type);
if (n == 0) {
result = ENOBUFS;
goto out;
}
n->m_len = (int32_t)MIN(MLEN, len + off);
m->m_next = n;
}
m = m->m_next;
}
while (len > 0) {
mlen = MIN(m->m_len - off, len);
if (mlen < len && m->m_next == NULL &&
mbuf_trailingspace(m) > 0) {
size_t grow = MIN(mbuf_trailingspace(m), len - mlen);
mlen += grow;
m->m_len += grow;
}
bcopy(cp, off + (char *)mbuf_data(m), (unsigned)mlen);
cp += mlen;
len -= mlen;
mlen += off;
off = 0;
totlen += mlen;
if (len == 0) {
break;
}
if (m->m_next == 0) {
n = m_get(how, m->m_type);
if (n == NULL) {
result = ENOBUFS;
goto out;
}
if (len > MINCLSIZE) {
/*
* cluster allocation failure is okay,
* we can grow chain
*/
mbuf_mclget(how, m->m_type, &n);
}
n->m_len = (int32_t)MIN(mbuf_maxlen(n), len);
m->m_next = n;
}
m = m->m_next;
}
out:
if ((m_start->m_flags & M_PKTHDR) && (m_start->m_pkthdr.len < totlen)) {
m_start->m_pkthdr.len = totlen;
}
return result;
}
u_int32_t
mbuf_get_mlen(void)
{
return _MLEN;
}
u_int32_t
mbuf_get_mhlen(void)
{
return _MHLEN;
}
u_int32_t
mbuf_get_minclsize(void)
{
return MHLEN + MLEN;
}
u_int32_t
mbuf_get_msize(void)
{
return _MSIZE;
}
u_int32_t
mbuf_get_traffic_class_max_count(void)
{
return MBUF_TC_MAX;
}
errno_t
mbuf_get_traffic_class_index(mbuf_traffic_class_t tc, u_int32_t *index)
{
if (index == NULL || (u_int32_t)tc >= MBUF_TC_MAX) {
return EINVAL;
}
*index = MBUF_SCIDX(m_service_class_from_val(MBUF_TC2SCVAL(tc)));
return 0;
}
mbuf_traffic_class_t
mbuf_get_traffic_class(mbuf_t m)
{
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
return MBUF_TC_BE;
}
return m_get_traffic_class(m);
}
errno_t
mbuf_set_traffic_class(mbuf_t m, mbuf_traffic_class_t tc)
{
if (m == NULL || !(m->m_flags & M_PKTHDR) ||
((u_int32_t)tc >= MBUF_TC_MAX)) {
return EINVAL;
}
return m_set_traffic_class(m, tc);
}
int
mbuf_is_traffic_class_privileged(mbuf_t m)
{
if (m == NULL || !(m->m_flags & M_PKTHDR) ||
!MBUF_VALID_SC(m->m_pkthdr.pkt_svc)) {
return 0;
}
return (m->m_pkthdr.pkt_flags & PKTF_PRIO_PRIVILEGED) ? 1 : 0;
}
u_int32_t
mbuf_get_service_class_max_count(void)
{
return MBUF_SC_MAX_CLASSES;
}
errno_t
mbuf_get_service_class_index(mbuf_svc_class_t sc, u_int32_t *index)
{
if (index == NULL || !MBUF_VALID_SC(sc)) {
return EINVAL;
}
*index = MBUF_SCIDX(sc);
return 0;
}
mbuf_svc_class_t
mbuf_get_service_class(mbuf_t m)
{
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
return MBUF_SC_BE;
}
return m_get_service_class(m);
}
errno_t
mbuf_set_service_class(mbuf_t m, mbuf_svc_class_t sc)
{
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
return m_set_service_class(m, sc);
}
errno_t
mbuf_pkthdr_aux_flags(mbuf_t m, mbuf_pkthdr_aux_flags_t *flagsp)
{
u_int32_t flags;
if (m == NULL || !(m->m_flags & M_PKTHDR) || flagsp == NULL) {
return EINVAL;
}
*flagsp = 0;
flags = m->m_pkthdr.pkt_flags;
if ((flags & (PKTF_INET_RESOLVE | PKTF_RESOLVE_RTR)) ==
(PKTF_INET_RESOLVE | PKTF_RESOLVE_RTR)) {
*flagsp |= MBUF_PKTAUXF_INET_RESOLVE_RTR;
}
if ((flags & (PKTF_INET6_RESOLVE | PKTF_RESOLVE_RTR)) ==
(PKTF_INET6_RESOLVE | PKTF_RESOLVE_RTR)) {
*flagsp |= MBUF_PKTAUXF_INET6_RESOLVE_RTR;
}
/* These 2 flags are mutually exclusive */
VERIFY((*flagsp &
(MBUF_PKTAUXF_INET_RESOLVE_RTR | MBUF_PKTAUXF_INET6_RESOLVE_RTR)) !=
(MBUF_PKTAUXF_INET_RESOLVE_RTR | MBUF_PKTAUXF_INET6_RESOLVE_RTR));
return 0;
}
errno_t
mbuf_get_driver_scratch(mbuf_t m, u_int8_t **area, size_t *area_len)
{
if (m == NULL || area == NULL || area_len == NULL ||
!(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
*area_len = m_scratch_get(m, area);
return 0;
}
errno_t
mbuf_get_unsent_data_bytes(const mbuf_t m, u_int32_t *unsent_data)
{
if (m == NULL || unsent_data == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
if (!(m->m_pkthdr.pkt_flags & PKTF_VALID_UNSENT_DATA)) {
return EINVAL;
}
*unsent_data = m->m_pkthdr.bufstatus_if +
m->m_pkthdr.bufstatus_sndbuf;
return 0;
}
errno_t
mbuf_get_buffer_status(const mbuf_t m, mbuf_buffer_status_t *buf_status)
{
if (m == NULL || buf_status == NULL || !(m->m_flags & M_PKTHDR) ||
!(m->m_pkthdr.pkt_flags & PKTF_VALID_UNSENT_DATA)) {
return EINVAL;
}
buf_status->buf_interface = m->m_pkthdr.bufstatus_if;
buf_status->buf_sndbuf = m->m_pkthdr.bufstatus_sndbuf;
return 0;
}
errno_t
mbuf_pkt_new_flow(const mbuf_t m, u_int32_t *retval)
{
if (m == NULL || retval == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
if (m->m_pkthdr.pkt_flags & PKTF_NEW_FLOW) {
*retval = 1;
} else {
*retval = 0;
}
return 0;
}
errno_t
mbuf_last_pkt(const mbuf_t m, u_int32_t *retval)
{
if (m == NULL || retval == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
if (m->m_pkthdr.pkt_flags & PKTF_LAST_PKT) {
*retval = 1;
} else {
*retval = 0;
}
return 0;
}
errno_t
mbuf_get_timestamp(mbuf_t m, u_int64_t *ts, boolean_t *valid)
{
if (m == NULL || !(m->m_flags & M_PKTHDR) || ts == NULL) {
return EINVAL;
}
if ((m->m_pkthdr.pkt_flags & PKTF_TS_VALID) == 0) {
if (valid != NULL) {
*valid = FALSE;
}
*ts = 0;
} else {
if (valid != NULL) {
*valid = TRUE;
}
*ts = m->m_pkthdr.pkt_timestamp;
}
return 0;
}
errno_t
mbuf_set_timestamp(mbuf_t m, u_int64_t ts, boolean_t valid)
{
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
if (valid == FALSE) {
m->m_pkthdr.pkt_flags &= ~PKTF_TS_VALID;
m->m_pkthdr.pkt_timestamp = 0;
} else {
m->m_pkthdr.pkt_flags |= PKTF_TS_VALID;
m->m_pkthdr.pkt_timestamp = ts;
}
return 0;
}
errno_t
mbuf_get_status(mbuf_t m, kern_return_t *status)
{
if (m == NULL || !(m->m_flags & M_PKTHDR) || status == NULL) {
return EINVAL;
}
if ((m->m_pkthdr.pkt_flags & PKTF_DRIVER_MTAG) == 0) {
*status = 0;
} else {
*status = m->m_pkthdr.drv_tx_status;
}
return 0;
}
static void
driver_mtag_init(mbuf_t m)
{
if ((m->m_pkthdr.pkt_flags & PKTF_DRIVER_MTAG) == 0) {
m->m_pkthdr.pkt_flags |= PKTF_DRIVER_MTAG;
bzero(&m->m_pkthdr.driver_mtag,
sizeof(m->m_pkthdr.driver_mtag));
}
}
errno_t
mbuf_set_status(mbuf_t m, kern_return_t status)
{
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
driver_mtag_init(m);
m->m_pkthdr.drv_tx_status = status;
return 0;
}
errno_t
mbuf_get_flowid(mbuf_t m, u_int16_t *flowid)
{
if (m == NULL || !(m->m_flags & M_PKTHDR) || flowid == NULL) {
return EINVAL;
}
if ((m->m_pkthdr.pkt_flags & PKTF_DRIVER_MTAG) == 0) {
*flowid = 0;
} else {
*flowid = m->m_pkthdr.drv_flowid;
}
return 0;
}
errno_t
mbuf_set_flowid(mbuf_t m, u_int16_t flowid)
{
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
driver_mtag_init(m);
m->m_pkthdr.drv_flowid = flowid;
return 0;
}
errno_t
mbuf_get_tx_compl_data(mbuf_t m, uintptr_t *arg, uintptr_t *data)
{
if (m == NULL || !(m->m_flags & M_PKTHDR) || arg == NULL ||
data == NULL) {
return EINVAL;
}
if ((m->m_pkthdr.pkt_flags & PKTF_DRIVER_MTAG) == 0) {
*arg = 0;
*data = 0;
} else {
*arg = m->m_pkthdr.drv_tx_compl_arg;
*data = m->m_pkthdr.drv_tx_compl_data;
}
return 0;
}
errno_t
mbuf_set_tx_compl_data(mbuf_t m, uintptr_t arg, uintptr_t data)
{
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
driver_mtag_init(m);
m->m_pkthdr.drv_tx_compl_arg = arg;
m->m_pkthdr.drv_tx_compl_data = data;
return 0;
}
static u_int32_t
get_tx_compl_callback_index_locked(mbuf_tx_compl_func callback)
{
u_int32_t i;
for (i = 0; i < MAX_MBUF_TX_COMPL_FUNC; i++) {
if (mbuf_tx_compl_table[i] == callback) {
return i;
}
}
return UINT32_MAX;
}
static u_int32_t
get_tx_compl_callback_index(mbuf_tx_compl_func callback)
{
u_int32_t i;
lck_rw_lock_shared(&mbuf_tx_compl_tbl_lock);
i = get_tx_compl_callback_index_locked(callback);
lck_rw_unlock_shared(&mbuf_tx_compl_tbl_lock);
return i;
}
mbuf_tx_compl_func
m_get_tx_compl_callback(u_int32_t idx)
{
mbuf_tx_compl_func cb;
if (idx >= MAX_MBUF_TX_COMPL_FUNC) {
ASSERT(0);
return NULL;
}
lck_rw_lock_shared(&mbuf_tx_compl_tbl_lock);
cb = mbuf_tx_compl_table[idx];
lck_rw_unlock_shared(&mbuf_tx_compl_tbl_lock);
return cb;
}
errno_t
mbuf_register_tx_compl_callback(mbuf_tx_compl_func callback)
{
int i;
errno_t error;
if (callback == NULL) {
return EINVAL;
}
lck_rw_lock_exclusive(&mbuf_tx_compl_tbl_lock);
i = get_tx_compl_callback_index_locked(callback);
if (i != -1) {
error = EEXIST;
goto unlock;
}
/* assume the worst */
error = ENOSPC;
for (i = 0; i < MAX_MBUF_TX_COMPL_FUNC; i++) {
if (mbuf_tx_compl_table[i] == NULL) {
mbuf_tx_compl_table[i] = callback;
error = 0;
goto unlock;
}
}
unlock:
lck_rw_unlock_exclusive(&mbuf_tx_compl_tbl_lock);
return error;
}
errno_t
mbuf_unregister_tx_compl_callback(mbuf_tx_compl_func callback)
{
int i;
errno_t error;
if (callback == NULL) {
return EINVAL;
}
lck_rw_lock_exclusive(&mbuf_tx_compl_tbl_lock);
/* assume the worst */
error = ENOENT;
for (i = 0; i < MAX_MBUF_TX_COMPL_FUNC; i++) {
if (mbuf_tx_compl_table[i] == callback) {
mbuf_tx_compl_table[i] = NULL;
error = 0;
goto unlock;
}
}
unlock:
lck_rw_unlock_exclusive(&mbuf_tx_compl_tbl_lock);
return error;
}
errno_t
mbuf_get_timestamp_requested(mbuf_t m, boolean_t *requested)
{
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
if ((m->m_pkthdr.pkt_flags & PKTF_TX_COMPL_TS_REQ) == 0) {
*requested = FALSE;
} else {
*requested = TRUE;
}
return 0;
}
errno_t
mbuf_set_timestamp_requested(mbuf_t m, uintptr_t *pktid,
mbuf_tx_compl_func callback)
{
size_t i;
if (m == NULL || !(m->m_flags & M_PKTHDR) || callback == NULL ||
pktid == NULL) {
return EINVAL;
}
i = get_tx_compl_callback_index(callback);
if (i == UINT32_MAX) {
return ENOENT;
}
m_add_crumb(m, PKT_CRUMB_TS_COMP_REQ);
#if (DEBUG || DEVELOPMENT)
VERIFY(i < sizeof(m->m_pkthdr.pkt_compl_callbacks));
#endif /* (DEBUG || DEVELOPMENT) */
if ((m->m_pkthdr.pkt_flags & PKTF_TX_COMPL_TS_REQ) == 0) {
m->m_pkthdr.pkt_compl_callbacks = 0;
m->m_pkthdr.pkt_flags |= PKTF_TX_COMPL_TS_REQ;
m->m_pkthdr.pkt_compl_context =
os_atomic_inc_orig(&mbuf_tx_compl_index, relaxed);
#if (DEBUG || DEVELOPMENT)
os_atomic_inc(&mbuf_tx_compl_requested, relaxed);
#endif /* (DEBUG || DEVELOPMENT) */
}
m->m_pkthdr.pkt_compl_callbacks |= (1 << i);
*pktid = m->m_pkthdr.pkt_compl_context;
return 0;
}
void
m_do_tx_compl_callback(struct mbuf *m, struct ifnet *ifp)
{
int i;
if (m == NULL) {
return;
}
if ((m->m_pkthdr.pkt_flags & PKTF_TX_COMPL_TS_REQ) == 0) {
return;
}
m_add_crumb(m, PKT_CRUMB_TS_COMP_CB);
#if (DEBUG || DEVELOPMENT)
if (mbuf_tx_compl_debug != 0 && ifp != NULL &&
(ifp->if_xflags & IFXF_TIMESTAMP_ENABLED) != 0 &&
(m->m_pkthdr.pkt_flags & PKTF_TS_VALID) == 0) {
struct timespec now;
nanouptime(&now);
net_timernsec(&now, &m->m_pkthdr.pkt_timestamp);
}
#endif /* (DEBUG || DEVELOPMENT) */
for (i = 0; i < MAX_MBUF_TX_COMPL_FUNC; i++) {
mbuf_tx_compl_func callback;
if ((m->m_pkthdr.pkt_compl_callbacks & (1 << i)) == 0) {
continue;
}
lck_rw_lock_shared(&mbuf_tx_compl_tbl_lock);
callback = mbuf_tx_compl_table[i];
lck_rw_unlock_shared(&mbuf_tx_compl_tbl_lock);
if (callback != NULL) {
callback(m->m_pkthdr.pkt_compl_context,
ifp,
(m->m_pkthdr.pkt_flags & PKTF_TS_VALID) ?
m->m_pkthdr.pkt_timestamp: 0,
m->m_pkthdr.drv_tx_compl_arg,
m->m_pkthdr.drv_tx_compl_data,
m->m_pkthdr.drv_tx_status);
}
}
#if (DEBUG || DEVELOPMENT)
if (m->m_pkthdr.pkt_compl_callbacks != 0) {
os_atomic_inc(&mbuf_tx_compl_callbacks, relaxed);
if (ifp == NULL) {
os_atomic_inc(&mbuf_tx_compl_aborted, relaxed);
}
}
#endif /* (DEBUG || DEVELOPMENT) */
m->m_pkthdr.pkt_compl_callbacks = 0;
}
errno_t
mbuf_get_keepalive_flag(mbuf_t m, boolean_t *is_keepalive)
{
if (m == NULL || is_keepalive == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
*is_keepalive = (m->m_pkthdr.pkt_flags & PKTF_KEEPALIVE);
return 0;
}
errno_t
mbuf_set_keepalive_flag(mbuf_t m, boolean_t is_keepalive)
{
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
return EINVAL;
}
if (is_keepalive) {
m->m_pkthdr.pkt_flags |= PKTF_KEEPALIVE;
} else {
m->m_pkthdr.pkt_flags &= ~PKTF_KEEPALIVE;
}
return 0;
}