3016 lines
77 KiB
C
3016 lines
77 KiB
C
/*
|
|
* Copyright (c) 1998-2020 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
|
|
*/
|
|
/*
|
|
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
|
|
* support for mandatory and extensible security protections. This notice
|
|
* is included in support of clause 2.2 (b) of the Apple Public License,
|
|
* Version 2.0.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc_internal.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mcache.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/unpcb.h>
|
|
#include <sys/ev.h>
|
|
#include <kern/locks.h>
|
|
#include <net/route.h>
|
|
#include <net/content_filter.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <sys/kdebug.h>
|
|
#include <libkern/OSAtomic.h>
|
|
|
|
#if CONFIG_MACF
|
|
#include <security/mac_framework.h>
|
|
#endif
|
|
|
|
#include <mach/vm_param.h>
|
|
|
|
#if MPTCP
|
|
#include <netinet/mptcp_var.h>
|
|
#endif
|
|
|
|
#include <net/sockaddr_utils.h>
|
|
|
|
extern uint32_t net_wake_pkt_debug;
|
|
|
|
#define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
|
|
#define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
|
|
|
|
SYSCTL_DECL(_kern_ipc);
|
|
|
|
__private_extern__ u_int32_t net_io_policy_throttle_best_effort = 0;
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, throttle_best_effort,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttle_best_effort, 0, "");
|
|
|
|
static inline void sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *);
|
|
static struct socket *sonewconn_internal(struct socket *, int);
|
|
static int sbappendcontrol_internal(struct sockbuf *, struct mbuf *,
|
|
struct mbuf *);
|
|
static void soevent_ifdenied(struct socket *);
|
|
|
|
static int sbappendrecord_common(struct sockbuf *sb, struct mbuf *m0, boolean_t nodrop);
|
|
static int sbappend_common(struct sockbuf *sb, struct mbuf *m, boolean_t nodrop);
|
|
|
|
/*
|
|
* Primitive routines for operating on sockets and socket buffers
|
|
*/
|
|
static int soqlimitcompat = 1;
|
|
static int soqlencomp = 0;
|
|
|
|
/*
|
|
* Based on the number of mbuf clusters configured, high_sb_max and sb_max can
|
|
* get scaled up or down to suit that memory configuration. high_sb_max is a
|
|
* higher limit on sb_max that is checked when sb_max gets set through sysctl.
|
|
*/
|
|
uint32_t sb_max = SB_MAX;
|
|
uint32_t high_sb_max = SB_MAX;
|
|
|
|
static uint32_t sb_efficiency = 8; /* parameter for sbreserve() */
|
|
|
|
uint32_t net_io_policy_log = 0; /* log socket policy changes */
|
|
#if CONFIG_PROC_UUID_POLICY
|
|
uint32_t net_io_policy_uuid = 1; /* enable UUID socket policy */
|
|
#endif /* CONFIG_PROC_UUID_POLICY */
|
|
|
|
/*
|
|
* Procedures to manipulate state flags of socket
|
|
* and do appropriate wakeups. Normal sequence from the
|
|
* active (originating) side is that soisconnecting() is
|
|
* called during processing of connect() call,
|
|
* resulting in an eventual call to soisconnected() if/when the
|
|
* connection is established. When the connection is torn down
|
|
* soisdisconnecting() is called during processing of disconnect() call,
|
|
* and soisdisconnected() is called when the connection to the peer
|
|
* is totally severed. The semantics of these routines are such that
|
|
* connectionless protocols can call soisconnected() and soisdisconnected()
|
|
* only, bypassing the in-progress calls when setting up a ``connection''
|
|
* takes no time.
|
|
*
|
|
* From the passive side, a socket is created with
|
|
* two queues of sockets: so_incomp for connections in progress
|
|
* and so_comp for connections already made and awaiting user acceptance.
|
|
* As a protocol is preparing incoming connections, it creates a socket
|
|
* structure queued on so_incomp by calling sonewconn(). When the connection
|
|
* is established, soisconnected() is called, and transfers the
|
|
* socket structure to so_comp, making it available to accept().
|
|
*
|
|
* If a socket is closed with sockets on either
|
|
* so_incomp or so_comp, these sockets are dropped.
|
|
*
|
|
* If higher level protocols are implemented in
|
|
* the kernel, the wakeups done here will sometimes
|
|
* cause software-interrupt process scheduling.
|
|
*/
|
|
void
|
|
soisconnecting(struct socket *so)
|
|
{
|
|
so->so_state &= ~(SS_ISCONNECTED | SS_ISDISCONNECTING);
|
|
so->so_state |= SS_ISCONNECTING;
|
|
|
|
sflt_notify(so, sock_evt_connecting, NULL);
|
|
}
|
|
|
|
void
|
|
soisconnected(struct socket *so)
|
|
{
|
|
/*
|
|
* If socket is subject to filter and is pending initial verdict,
|
|
* delay marking socket as connected and do not present the connected
|
|
* socket to user just yet.
|
|
*/
|
|
if (cfil_sock_connected_pending_verdict(so)) {
|
|
return;
|
|
}
|
|
|
|
so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING);
|
|
so->so_state |= SS_ISCONNECTED;
|
|
|
|
soreserve_preconnect(so, 0);
|
|
|
|
sflt_notify(so, sock_evt_connected, NULL);
|
|
|
|
if (so->so_head != NULL && (so->so_state & SS_INCOMP)) {
|
|
struct socket *head = so->so_head;
|
|
int locked = 0;
|
|
|
|
/*
|
|
* Enforce lock order when the protocol has per socket locks
|
|
*/
|
|
if (head->so_proto->pr_getlock != NULL) {
|
|
socket_lock(head, 1);
|
|
so_acquire_accept_list(head, so);
|
|
locked = 1;
|
|
}
|
|
if (so->so_head == head && (so->so_state & SS_INCOMP)) {
|
|
so->so_state &= ~SS_INCOMP;
|
|
so->so_state |= SS_COMP;
|
|
TAILQ_REMOVE(&head->so_incomp, so, so_list);
|
|
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
|
|
head->so_incqlen--;
|
|
|
|
/*
|
|
* We have to release the accept list in
|
|
* case a socket callback calls sock_accept()
|
|
*/
|
|
if (locked != 0) {
|
|
so_release_accept_list(head);
|
|
socket_unlock(so, 0);
|
|
}
|
|
sorwakeup(head);
|
|
wakeup_one((caddr_t)&head->so_timeo);
|
|
|
|
if (locked != 0) {
|
|
socket_unlock(head, 1);
|
|
socket_lock(so, 0);
|
|
}
|
|
} else if (locked != 0) {
|
|
so_release_accept_list(head);
|
|
socket_unlock(head, 1);
|
|
}
|
|
} else {
|
|
wakeup((caddr_t)&so->so_timeo);
|
|
sorwakeup(so);
|
|
sowwakeup(so);
|
|
soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CONNECTED |
|
|
SO_FILT_HINT_CONNINFO_UPDATED);
|
|
}
|
|
}
|
|
|
|
boolean_t
|
|
socanwrite(struct socket *so)
|
|
{
|
|
return (so->so_state & SS_ISCONNECTED) ||
|
|
!(so->so_proto->pr_flags & PR_CONNREQUIRED) ||
|
|
(so->so_flags1 & SOF1_PRECONNECT_DATA);
|
|
}
|
|
|
|
void
|
|
soisdisconnecting(struct socket *so)
|
|
{
|
|
so->so_state &= ~SS_ISCONNECTING;
|
|
so->so_state |= (SS_ISDISCONNECTING | SS_CANTRCVMORE | SS_CANTSENDMORE);
|
|
soevent(so, SO_FILT_HINT_LOCKED);
|
|
sflt_notify(so, sock_evt_disconnecting, NULL);
|
|
wakeup((caddr_t)&so->so_timeo);
|
|
sowwakeup(so);
|
|
sorwakeup(so);
|
|
}
|
|
|
|
void
|
|
soisdisconnected(struct socket *so)
|
|
{
|
|
so->so_state &= ~(SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING);
|
|
so->so_state |= (SS_CANTRCVMORE | SS_CANTSENDMORE | SS_ISDISCONNECTED);
|
|
soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED |
|
|
SO_FILT_HINT_CONNINFO_UPDATED);
|
|
sflt_notify(so, sock_evt_disconnected, NULL);
|
|
wakeup((caddr_t)&so->so_timeo);
|
|
sowwakeup(so);
|
|
sorwakeup(so);
|
|
|
|
#if CONTENT_FILTER
|
|
/* Notify content filters as soon as we cannot send/receive data */
|
|
cfil_sock_notify_shutdown(so, SHUT_RDWR);
|
|
#endif /* CONTENT_FILTER */
|
|
}
|
|
|
|
/*
|
|
* This function will issue a wakeup like soisdisconnected but it will not
|
|
* notify the socket filters. This will avoid unlocking the socket
|
|
* in the midst of closing it.
|
|
*/
|
|
void
|
|
sodisconnectwakeup(struct socket *so)
|
|
{
|
|
so->so_state &= ~(SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING);
|
|
so->so_state |= (SS_CANTRCVMORE | SS_CANTSENDMORE | SS_ISDISCONNECTED);
|
|
soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED |
|
|
SO_FILT_HINT_CONNINFO_UPDATED);
|
|
wakeup((caddr_t)&so->so_timeo);
|
|
sowwakeup(so);
|
|
sorwakeup(so);
|
|
|
|
#if CONTENT_FILTER
|
|
/* Notify content filters as soon as we cannot send/receive data */
|
|
cfil_sock_notify_shutdown(so, SHUT_RDWR);
|
|
#endif /* CONTENT_FILTER */
|
|
}
|
|
|
|
/*
|
|
* When an attempt at a new connection is noted on a socket
|
|
* which accepts connections, sonewconn is called. If the
|
|
* connection is possible (subject to space constraints, etc.)
|
|
* then we allocate a new structure, propoerly linked into the
|
|
* data structure of the original socket, and return this.
|
|
* Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
|
|
*/
|
|
static struct socket *
|
|
sonewconn_internal(struct socket *head, int connstatus)
|
|
{
|
|
int so_qlen, error = 0;
|
|
struct socket *so;
|
|
lck_mtx_t *mutex_held;
|
|
|
|
if (head->so_proto->pr_getlock != NULL) {
|
|
mutex_held = (*head->so_proto->pr_getlock)(head, 0);
|
|
} else {
|
|
mutex_held = head->so_proto->pr_domain->dom_mtx;
|
|
}
|
|
LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
|
|
|
|
if (!soqlencomp) {
|
|
/*
|
|
* This is the default case; so_qlen represents the
|
|
* sum of both incomplete and completed queues.
|
|
*/
|
|
so_qlen = head->so_qlen;
|
|
} else {
|
|
/*
|
|
* When kern.ipc.soqlencomp is set to 1, so_qlen
|
|
* represents only the completed queue. Since we
|
|
* cannot let the incomplete queue goes unbounded
|
|
* (in case of SYN flood), we cap the incomplete
|
|
* queue length to at most somaxconn, and use that
|
|
* as so_qlen so that we fail immediately below.
|
|
*/
|
|
so_qlen = head->so_qlen - head->so_incqlen;
|
|
if (head->so_incqlen > somaxconn) {
|
|
so_qlen = somaxconn;
|
|
}
|
|
}
|
|
|
|
if (so_qlen >=
|
|
(soqlimitcompat ? head->so_qlimit : (3 * head->so_qlimit / 2))) {
|
|
return (struct socket *)0;
|
|
}
|
|
so = soalloc(1, SOCK_DOM(head), head->so_type);
|
|
if (so == NULL) {
|
|
return (struct socket *)0;
|
|
}
|
|
/* check if head was closed during the soalloc */
|
|
if (head->so_proto == NULL) {
|
|
sodealloc(so);
|
|
return (struct socket *)0;
|
|
}
|
|
|
|
so->so_type = head->so_type;
|
|
so->so_family = head->so_family;
|
|
so->so_protocol = head->so_protocol;
|
|
so->so_options = head->so_options & ~SO_ACCEPTCONN;
|
|
so->so_linger = head->so_linger;
|
|
so->so_state = head->so_state | SS_NOFDREF;
|
|
so->so_proto = head->so_proto;
|
|
so->so_timeo = head->so_timeo;
|
|
so->so_pgid = head->so_pgid;
|
|
kauth_cred_ref(head->so_cred);
|
|
so->so_cred = head->so_cred;
|
|
so->so_persona_id = head->so_persona_id;
|
|
so->last_pid = head->last_pid;
|
|
so->last_upid = head->last_upid;
|
|
memcpy(so->last_uuid, head->last_uuid, sizeof(so->last_uuid));
|
|
if (head->so_flags & SOF_DELEGATED) {
|
|
so->e_pid = head->e_pid;
|
|
so->e_upid = head->e_upid;
|
|
memcpy(so->e_uuid, head->e_uuid, sizeof(so->e_uuid));
|
|
}
|
|
/* inherit socket options stored in so_flags */
|
|
so->so_flags = head->so_flags &
|
|
(SOF_NOSIGPIPE | SOF_NOADDRAVAIL | SOF_REUSESHAREUID |
|
|
SOF_NOTIFYCONFLICT | SOF_BINDRANDOMPORT | SOF_NPX_SETOPTSHUT |
|
|
SOF_NODEFUNCT | SOF_PRIVILEGED_TRAFFIC_CLASS | SOF_NOTSENT_LOWAT |
|
|
SOF_DELEGATED);
|
|
so->so_flags1 |= SOF1_INBOUND;
|
|
so->so_usecount = 1;
|
|
so->next_lock_lr = 0;
|
|
so->next_unlock_lr = 0;
|
|
|
|
so->so_rcv.sb_flags |= SB_RECV; /* XXX */
|
|
so->so_rcv.sb_so = so->so_snd.sb_so = so;
|
|
|
|
/* inherit traffic management properties of listener */
|
|
so->so_flags1 |=
|
|
head->so_flags1 & (SOF1_TRAFFIC_MGT_SO_BACKGROUND | SOF1_TC_NET_SERV_TYPE |
|
|
SOF1_QOSMARKING_ALLOWED | SOF1_QOSMARKING_POLICY_OVERRIDE);
|
|
so->so_background_thread = head->so_background_thread;
|
|
so->so_traffic_class = head->so_traffic_class;
|
|
so->so_netsvctype = head->so_netsvctype;
|
|
|
|
if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
|
|
sodealloc(so);
|
|
return (struct socket *)0;
|
|
}
|
|
so->so_rcv.sb_flags |= (head->so_rcv.sb_flags & SB_USRSIZE);
|
|
so->so_snd.sb_flags |= (head->so_snd.sb_flags & SB_USRSIZE);
|
|
|
|
/*
|
|
* Must be done with head unlocked to avoid deadlock
|
|
* for protocol with per socket mutexes.
|
|
*/
|
|
if (head->so_proto->pr_unlock) {
|
|
socket_unlock(head, 0);
|
|
}
|
|
if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) ||
|
|
error) {
|
|
sodealloc(so);
|
|
if (head->so_proto->pr_unlock) {
|
|
socket_lock(head, 0);
|
|
}
|
|
return (struct socket *)0;
|
|
}
|
|
if (head->so_proto->pr_unlock) {
|
|
socket_lock(head, 0);
|
|
/*
|
|
* Radar 7385998 Recheck that the head is still accepting
|
|
* to avoid race condition when head is getting closed.
|
|
*/
|
|
if ((head->so_options & SO_ACCEPTCONN) == 0) {
|
|
so->so_state &= ~SS_NOFDREF;
|
|
soclose(so);
|
|
return (struct socket *)0;
|
|
}
|
|
}
|
|
|
|
if (so->so_proto->pr_copy_last_owner != NULL) {
|
|
(*so->so_proto->pr_copy_last_owner)(so, head);
|
|
}
|
|
os_atomic_inc(&so->so_proto->pr_domain->dom_refs, relaxed);
|
|
|
|
/* Insert in head appropriate lists */
|
|
so_acquire_accept_list(head, NULL);
|
|
|
|
so->so_head = head;
|
|
|
|
/*
|
|
* Since this socket is going to be inserted into the incomp
|
|
* queue, it can be picked up by another thread in
|
|
* tcp_dropdropablreq to get dropped before it is setup..
|
|
* To prevent this race, set in-progress flag which can be
|
|
* cleared later
|
|
*/
|
|
so->so_flags |= SOF_INCOMP_INPROGRESS;
|
|
|
|
if (connstatus) {
|
|
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
|
|
so->so_state |= SS_COMP;
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
|
|
so->so_state |= SS_INCOMP;
|
|
head->so_incqlen++;
|
|
}
|
|
head->so_qlen++;
|
|
|
|
so_release_accept_list(head);
|
|
|
|
/* Attach socket filters for this protocol */
|
|
sflt_initsock(so);
|
|
|
|
if (connstatus) {
|
|
so->so_state |= (short)connstatus;
|
|
sorwakeup(head);
|
|
wakeup((caddr_t)&head->so_timeo);
|
|
}
|
|
return so;
|
|
}
|
|
|
|
|
|
struct socket *
|
|
sonewconn(struct socket *head, int connstatus, const struct sockaddr *from)
|
|
{
|
|
int error = sflt_connectin(head, from);
|
|
if (error) {
|
|
return NULL;
|
|
}
|
|
|
|
return sonewconn_internal(head, connstatus);
|
|
}
|
|
|
|
/*
|
|
* Socantsendmore indicates that no more data will be sent on the
|
|
* socket; it would normally be applied to a socket when the user
|
|
* informs the system that no more data is to be sent, by the protocol
|
|
* code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
|
|
* will be received, and will normally be applied to the socket by a
|
|
* protocol when it detects that the peer will send no more data.
|
|
* Data queued for reading in the socket may yet be read.
|
|
*/
|
|
|
|
void
|
|
socantsendmore(struct socket *so)
|
|
{
|
|
so->so_state |= SS_CANTSENDMORE;
|
|
soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTSENDMORE);
|
|
sflt_notify(so, sock_evt_cantsendmore, NULL);
|
|
sowwakeup(so);
|
|
}
|
|
|
|
void
|
|
socantrcvmore(struct socket *so)
|
|
{
|
|
so->so_state |= SS_CANTRCVMORE;
|
|
soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTRCVMORE);
|
|
sflt_notify(so, sock_evt_cantrecvmore, NULL);
|
|
sorwakeup(so);
|
|
}
|
|
|
|
/*
|
|
* Wait for data to arrive at/drain from a socket buffer.
|
|
*/
|
|
int
|
|
sbwait(struct sockbuf *sb)
|
|
{
|
|
boolean_t nointr = (sb->sb_flags & SB_NOINTR);
|
|
void *lr_saved = __builtin_return_address(0);
|
|
struct socket *so = sb->sb_so;
|
|
lck_mtx_t *mutex_held;
|
|
struct timespec ts;
|
|
int error = 0;
|
|
|
|
if (so == NULL) {
|
|
panic("%s: null so, sb=%p sb_flags=0x%x lr=%p",
|
|
__func__, sb, sb->sb_flags, lr_saved);
|
|
/* NOTREACHED */
|
|
} else if (so->so_usecount < 1) {
|
|
panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
|
|
"lrh= %s\n", __func__, sb, sb->sb_flags, so,
|
|
so->so_usecount, lr_saved, solockhistory_nr(so));
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) {
|
|
error = EBADF;
|
|
if (so->so_flags & SOF_DEFUNCT) {
|
|
SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llu [%d,%d] "
|
|
"(%d)\n", __func__, proc_selfpid(),
|
|
proc_best_name(current_proc()),
|
|
so->so_gencnt,
|
|
SOCK_DOM(so), SOCK_TYPE(so), error);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
if (so->so_proto->pr_getlock != NULL) {
|
|
mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK);
|
|
} else {
|
|
mutex_held = so->so_proto->pr_domain->dom_mtx;
|
|
}
|
|
|
|
LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
|
|
|
|
ts.tv_sec = sb->sb_timeo.tv_sec;
|
|
ts.tv_nsec = sb->sb_timeo.tv_usec * 1000;
|
|
|
|
sb->sb_waiters++;
|
|
VERIFY(sb->sb_waiters != 0);
|
|
|
|
error = msleep((caddr_t)&sb->sb_cc, mutex_held,
|
|
nointr ? PSOCK : PSOCK | PCATCH,
|
|
nointr ? "sbwait_nointr" : "sbwait", &ts);
|
|
|
|
VERIFY(sb->sb_waiters != 0);
|
|
sb->sb_waiters--;
|
|
|
|
if (so->so_usecount < 1) {
|
|
panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
|
|
"lrh= %s\n", __func__, sb, sb->sb_flags, so,
|
|
so->so_usecount, lr_saved, solockhistory_nr(so));
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) {
|
|
error = EBADF;
|
|
if (so->so_flags & SOF_DEFUNCT) {
|
|
SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llu [%d,%d] "
|
|
"(%d)\n", __func__, proc_selfpid(),
|
|
proc_best_name(current_proc()),
|
|
so->so_gencnt,
|
|
SOCK_DOM(so), SOCK_TYPE(so), error);
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
void
|
|
sbwakeup(struct sockbuf *sb)
|
|
{
|
|
if (sb->sb_waiters > 0) {
|
|
wakeup((caddr_t)&sb->sb_cc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wakeup processes waiting on a socket buffer.
|
|
* Do asynchronous notification via SIGIO
|
|
* if the socket has the SS_ASYNC flag set.
|
|
*/
|
|
void
|
|
sowakeup(struct socket *so, struct sockbuf *sb, struct socket *so2)
|
|
{
|
|
if (so->so_flags & SOF_DEFUNCT) {
|
|
SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llu [%d,%d] si 0x%x, "
|
|
"fl 0x%x [%s]\n", __func__, proc_selfpid(),
|
|
proc_best_name(current_proc()),
|
|
so->so_gencnt, SOCK_DOM(so),
|
|
SOCK_TYPE(so), (uint32_t)sb->sb_sel.si_flags, sb->sb_flags,
|
|
(sb->sb_flags & SB_RECV) ? "rcv" : "snd");
|
|
}
|
|
|
|
sb->sb_flags &= ~SB_SEL;
|
|
selwakeup(&sb->sb_sel);
|
|
sbwakeup(sb);
|
|
if (so->so_state & SS_ASYNC) {
|
|
if (so->so_pgid < 0) {
|
|
gsignal(-so->so_pgid, SIGIO);
|
|
} else if (so->so_pgid > 0) {
|
|
proc_signal(so->so_pgid, SIGIO);
|
|
}
|
|
}
|
|
if (sb->sb_flags & SB_KNOTE) {
|
|
KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED);
|
|
}
|
|
if (sb->sb_flags & SB_UPCALL) {
|
|
void (*sb_upcall)(struct socket *, void *, int);
|
|
caddr_t sb_upcallarg;
|
|
int lock = !(sb->sb_flags & SB_UPCALL_LOCK);
|
|
|
|
sb_upcall = sb->sb_upcall;
|
|
sb_upcallarg = sb->sb_upcallarg;
|
|
/* Let close know that we're about to do an upcall */
|
|
so->so_upcallusecount++;
|
|
|
|
if (lock) {
|
|
if (so2) {
|
|
struct unpcb *unp = sotounpcb(so2);
|
|
unp->unp_flags |= UNP_DONTDISCONNECT;
|
|
unp->rw_thrcount++;
|
|
|
|
socket_unlock(so2, 0);
|
|
}
|
|
socket_unlock(so, 0);
|
|
}
|
|
(*sb_upcall)(so, sb_upcallarg, M_DONTWAIT);
|
|
if (lock) {
|
|
if (so2 && so > so2) {
|
|
struct unpcb *unp;
|
|
socket_lock(so2, 0);
|
|
|
|
unp = sotounpcb(so2);
|
|
unp->rw_thrcount--;
|
|
if (unp->rw_thrcount == 0) {
|
|
unp->unp_flags &= ~UNP_DONTDISCONNECT;
|
|
wakeup(unp);
|
|
}
|
|
}
|
|
|
|
socket_lock(so, 0);
|
|
|
|
if (so2 && so < so2) {
|
|
struct unpcb *unp;
|
|
socket_lock(so2, 0);
|
|
|
|
unp = sotounpcb(so2);
|
|
unp->rw_thrcount--;
|
|
if (unp->rw_thrcount == 0) {
|
|
unp->unp_flags &= ~UNP_DONTDISCONNECT;
|
|
wakeup(unp);
|
|
}
|
|
}
|
|
}
|
|
|
|
so->so_upcallusecount--;
|
|
/* Tell close that it's safe to proceed */
|
|
if ((so->so_flags & SOF_CLOSEWAIT) &&
|
|
so->so_upcallusecount == 0) {
|
|
wakeup((caddr_t)&so->so_upcallusecount);
|
|
}
|
|
}
|
|
#if CONTENT_FILTER
|
|
/*
|
|
* Trap disconnection events for content filters
|
|
*/
|
|
if ((so->so_flags & SOF_CONTENT_FILTER) != 0) {
|
|
if ((sb->sb_flags & SB_RECV)) {
|
|
if (so->so_state & (SS_CANTRCVMORE)) {
|
|
cfil_sock_notify_shutdown(so, SHUT_RD);
|
|
}
|
|
} else {
|
|
if (so->so_state & (SS_CANTSENDMORE)) {
|
|
cfil_sock_notify_shutdown(so, SHUT_WR);
|
|
}
|
|
}
|
|
}
|
|
#endif /* CONTENT_FILTER */
|
|
}
|
|
|
|
/*
|
|
* Socket buffer (struct sockbuf) utility routines.
|
|
*
|
|
* Each socket contains two socket buffers: one for sending data and
|
|
* one for receiving data. Each buffer contains a queue of mbufs,
|
|
* information about the number of mbufs and amount of data in the
|
|
* queue, and other fields allowing select() statements and notification
|
|
* on data availability to be implemented.
|
|
*
|
|
* Data stored in a socket buffer is maintained as a list of records.
|
|
* Each record is a list of mbufs chained together with the m_next
|
|
* field. Records are chained together with the m_nextpkt field. The upper
|
|
* level routine soreceive() expects the following conventions to be
|
|
* observed when placing information in the receive buffer:
|
|
*
|
|
* 1. If the protocol requires each message be preceded by the sender's
|
|
* name, then a record containing that name must be present before
|
|
* any associated data (mbuf's must be of type MT_SONAME).
|
|
* 2. If the protocol supports the exchange of ``access rights'' (really
|
|
* just additional data associated with the message), and there are
|
|
* ``rights'' to be received, then a record containing this data
|
|
* should be present (mbuf's must be of type MT_RIGHTS).
|
|
* 3. If a name or rights record exists, then it must be followed by
|
|
* a data record, perhaps of zero length.
|
|
*
|
|
* Before using a new socket structure it is first necessary to reserve
|
|
* buffer space to the socket, by calling sbreserve(). This should commit
|
|
* some of the available buffer space in the system buffer pool for the
|
|
* socket (currently, it does nothing but enforce limits). The space
|
|
* should be released by calling sbrelease() when the socket is destroyed.
|
|
*/
|
|
|
|
/*
|
|
* Returns: 0 Success
|
|
* ENOBUFS
|
|
*/
|
|
int
|
|
soreserve(struct socket *so, uint32_t sndcc, uint32_t rcvcc)
|
|
{
|
|
if (sbreserve(&so->so_snd, sndcc) == 0) {
|
|
goto bad;
|
|
} else {
|
|
so->so_snd.sb_idealsize = sndcc;
|
|
}
|
|
|
|
if (sbreserve(&so->so_rcv, rcvcc) == 0) {
|
|
goto bad2;
|
|
} else {
|
|
so->so_rcv.sb_idealsize = rcvcc;
|
|
}
|
|
|
|
if (so->so_rcv.sb_lowat == 0) {
|
|
so->so_rcv.sb_lowat = 1;
|
|
}
|
|
if (so->so_snd.sb_lowat == 0) {
|
|
so->so_snd.sb_lowat = MCLBYTES;
|
|
}
|
|
if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) {
|
|
so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
|
|
}
|
|
return 0;
|
|
bad2:
|
|
so->so_snd.sb_flags &= ~SB_SEL;
|
|
selthreadclear(&so->so_snd.sb_sel);
|
|
sbrelease(&so->so_snd);
|
|
bad:
|
|
return ENOBUFS;
|
|
}
|
|
|
|
void
|
|
soreserve_preconnect(struct socket *so, unsigned int pre_cc)
|
|
{
|
|
/* As of now, same bytes for both preconnect read and write */
|
|
so->so_snd.sb_preconn_hiwat = pre_cc;
|
|
so->so_rcv.sb_preconn_hiwat = pre_cc;
|
|
}
|
|
|
|
/*
|
|
* Allot mbufs to a sockbuf.
|
|
* Attempt to scale mbmax so that mbcnt doesn't become limiting
|
|
* if buffering efficiency is near the normal case.
|
|
*/
|
|
int
|
|
sbreserve(struct sockbuf *sb, uint32_t cc)
|
|
{
|
|
if (cc > sb_max) {
|
|
/* We would not end up changing sb_cc, so return 0 */
|
|
if (sb->sb_hiwat == sb_max) {
|
|
return 0;
|
|
}
|
|
cc = sb_max;
|
|
}
|
|
if (cc > sb->sb_hiwat && (sb->sb_flags & SB_LIMITED)) {
|
|
return 0;
|
|
}
|
|
sb->sb_hiwat = cc;
|
|
sb->sb_mbmax = cc * sb_efficiency;
|
|
if (sb->sb_lowat > sb->sb_hiwat) {
|
|
sb->sb_lowat = sb->sb_hiwat;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Free mbufs held by a socket, and reserved mbuf space.
|
|
*/
|
|
/* WARNING needs to do selthreadclear() before calling this */
|
|
void
|
|
sbrelease(struct sockbuf *sb)
|
|
{
|
|
sbflush(sb);
|
|
sb->sb_hiwat = 0;
|
|
sb->sb_mbmax = 0;
|
|
}
|
|
|
|
/*
|
|
* Routines to add and remove
|
|
* data from an mbuf queue.
|
|
*
|
|
* The routines sbappend() or sbappendrecord() are normally called to
|
|
* append new mbufs to a socket buffer, after checking that adequate
|
|
* space is available, comparing the function sbspace() with the amount
|
|
* of data to be added. sbappendrecord() differs from sbappend() in
|
|
* that data supplied is treated as the beginning of a new record.
|
|
* To place a sender's address, optional access rights, and data in a
|
|
* socket receive buffer, sbappendaddr() should be used. To place
|
|
* access rights and data in a socket receive buffer, sbappendrights()
|
|
* should be used. In either case, the new data begins a new record.
|
|
* Note that unlike sbappend() and sbappendrecord(), these routines check
|
|
* for the caller that there will be enough space to store the data.
|
|
* Each fails if there is not enough space, or if it cannot find mbufs
|
|
* to store additional information in.
|
|
*
|
|
* Reliable protocols may use the socket send buffer to hold data
|
|
* awaiting acknowledgement. Data is normally copied from a socket
|
|
* send buffer in a protocol with m_copy for output to a peer,
|
|
* and then removing the data from the socket buffer with sbdrop()
|
|
* or sbdroprecord() when the data is acknowledged by the peer.
|
|
*/
|
|
|
|
/*
|
|
* Append mbuf chain m to the last record in the
|
|
* socket buffer sb. The additional space associated
|
|
* the mbuf chain is recorded in sb. Empty mbufs are
|
|
* discarded and mbufs are compacted where possible.
|
|
*/
|
|
static int
|
|
sbappend_common(struct sockbuf *sb, struct mbuf *m, boolean_t nodrop)
|
|
{
|
|
struct socket *so = sb->sb_so;
|
|
struct soflow_hash_entry *dgram_flow_entry = NULL;
|
|
|
|
if (m == NULL || (sb->sb_flags & SB_DROP)) {
|
|
if (m != NULL && !nodrop) {
|
|
m_freem(m);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SBLASTRECORDCHK(sb, "sbappend 1");
|
|
|
|
if (sb->sb_lastrecord != NULL && (sb->sb_mbtail->m_flags & M_EOR)) {
|
|
return sbappendrecord_common(sb, m, nodrop);
|
|
}
|
|
|
|
if (SOCK_DOM(sb->sb_so) == PF_INET || SOCK_DOM(sb->sb_so) == PF_INET6) {
|
|
ASSERT(nodrop == FALSE);
|
|
|
|
if (NEED_DGRAM_FLOW_TRACKING(so)) {
|
|
dgram_flow_entry = soflow_get_flow(so, NULL, NULL, NULL, m != NULL ? m_length(m) : 0, false, (m != NULL && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0);
|
|
}
|
|
|
|
if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) {
|
|
int error = sflt_data_in(so, NULL, &m, NULL, 0);
|
|
SBLASTRECORDCHK(sb, "sbappend 2");
|
|
|
|
#if CONTENT_FILTER
|
|
if (error == 0) {
|
|
error = cfil_sock_data_in(so, NULL, m, NULL, 0, dgram_flow_entry);
|
|
}
|
|
#endif /* CONTENT_FILTER */
|
|
|
|
if (error != 0) {
|
|
if (error != EJUSTRETURN) {
|
|
m_freem(m);
|
|
}
|
|
if (dgram_flow_entry != NULL) {
|
|
soflow_free_flow(dgram_flow_entry);
|
|
}
|
|
return 0;
|
|
}
|
|
} else if (m) {
|
|
m->m_flags &= ~M_SKIPCFIL;
|
|
}
|
|
|
|
if (dgram_flow_entry != NULL) {
|
|
soflow_free_flow(dgram_flow_entry);
|
|
}
|
|
}
|
|
|
|
/* If this is the first record, it's also the last record */
|
|
if (sb->sb_lastrecord == NULL) {
|
|
sb->sb_lastrecord = m;
|
|
}
|
|
|
|
sbcompress(sb, m, sb->sb_mbtail);
|
|
SBLASTRECORDCHK(sb, "sbappend 3");
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
sbappend(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
return sbappend_common(sb, m, FALSE);
|
|
}
|
|
|
|
int
|
|
sbappend_nodrop(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
return sbappend_common(sb, m, TRUE);
|
|
}
|
|
|
|
/*
|
|
* Similar to sbappend, except that this is optimized for stream sockets.
|
|
*/
|
|
int
|
|
sbappendstream(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
struct soflow_hash_entry *dgram_flow_entry = NULL;
|
|
struct socket *so = sb->sb_so;
|
|
|
|
if (m == NULL || (sb->sb_flags & SB_DROP)) {
|
|
if (m != NULL) {
|
|
m_freem(m);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) {
|
|
panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p",
|
|
m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
SBLASTMBUFCHK(sb, __func__);
|
|
|
|
if (SOCK_DOM(sb->sb_so) == PF_INET || SOCK_DOM(sb->sb_so) == PF_INET6) {
|
|
if (NEED_DGRAM_FLOW_TRACKING(so)) {
|
|
dgram_flow_entry = soflow_get_flow(so, NULL, NULL, NULL, m != NULL ? m_length(m) : 0, false, (m != NULL && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0);
|
|
}
|
|
|
|
if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) {
|
|
int error = sflt_data_in(so, NULL, &m, NULL, 0);
|
|
SBLASTRECORDCHK(sb, "sbappendstream 1");
|
|
|
|
#if CONTENT_FILTER
|
|
if (error == 0) {
|
|
error = cfil_sock_data_in(so, NULL, m, NULL, 0, dgram_flow_entry);
|
|
}
|
|
#endif /* CONTENT_FILTER */
|
|
|
|
if (error != 0) {
|
|
if (error != EJUSTRETURN) {
|
|
m_freem(m);
|
|
}
|
|
if (dgram_flow_entry != NULL) {
|
|
soflow_free_flow(dgram_flow_entry);
|
|
}
|
|
return 0;
|
|
}
|
|
} else if (m) {
|
|
m->m_flags &= ~M_SKIPCFIL;
|
|
}
|
|
|
|
if (dgram_flow_entry != NULL) {
|
|
soflow_free_flow(dgram_flow_entry);
|
|
}
|
|
}
|
|
|
|
sbcompress(sb, m, sb->sb_mbtail);
|
|
sb->sb_lastrecord = sb->sb_mb;
|
|
SBLASTRECORDCHK(sb, "sbappendstream 2");
|
|
return 1;
|
|
}
|
|
|
|
#ifdef SOCKBUF_DEBUG
|
|
void
|
|
sbcheck(struct sockbuf *sb)
|
|
{
|
|
struct mbuf *m;
|
|
struct mbuf *n = 0;
|
|
u_int32_t len = 0, mbcnt = 0;
|
|
lck_mtx_t *mutex_held;
|
|
|
|
if (sb->sb_so->so_proto->pr_getlock != NULL) {
|
|
mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0);
|
|
} else {
|
|
mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx;
|
|
}
|
|
|
|
LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
|
|
|
|
if (sbchecking == 0) {
|
|
return;
|
|
}
|
|
|
|
for (m = sb->sb_mb; m; m = n) {
|
|
n = m->m_nextpkt;
|
|
for (; m; m = m->m_next) {
|
|
len += m->m_len;
|
|
mbcnt += _MSIZE;
|
|
/* XXX pretty sure this is bogus */
|
|
if (m->m_flags & M_EXT) {
|
|
mbcnt += m->m_ext.ext_size;
|
|
}
|
|
}
|
|
}
|
|
if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
|
|
panic("cc %ld != %ld || mbcnt %ld != %ld", len, sb->sb_cc,
|
|
mbcnt, sb->sb_mbcnt);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void
|
|
sblastrecordchk(struct sockbuf *sb, const char *where)
|
|
{
|
|
struct mbuf *m = sb->sb_mb;
|
|
|
|
while (m && m->m_nextpkt) {
|
|
m = m->m_nextpkt;
|
|
}
|
|
|
|
if (m != sb->sb_lastrecord) {
|
|
printf("sblastrecordchk: mb 0x%llx lastrecord 0x%llx "
|
|
"last 0x%llx\n",
|
|
(uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb),
|
|
(uint64_t)VM_KERNEL_ADDRPERM(sb->sb_lastrecord),
|
|
(uint64_t)VM_KERNEL_ADDRPERM(m));
|
|
printf("packet chain:\n");
|
|
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
|
|
printf("\t0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(m));
|
|
}
|
|
panic("sblastrecordchk from %s", where);
|
|
}
|
|
}
|
|
|
|
void
|
|
sblastmbufchk(struct sockbuf *sb, const char *where)
|
|
{
|
|
struct mbuf *m = sb->sb_mb;
|
|
struct mbuf *n;
|
|
|
|
while (m && m->m_nextpkt) {
|
|
m = m->m_nextpkt;
|
|
}
|
|
|
|
while (m && m->m_next) {
|
|
m = m->m_next;
|
|
}
|
|
|
|
if (m != sb->sb_mbtail) {
|
|
printf("sblastmbufchk: mb 0x%llx mbtail 0x%llx last 0x%llx\n",
|
|
(uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb),
|
|
(uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mbtail),
|
|
(uint64_t)VM_KERNEL_ADDRPERM(m));
|
|
printf("packet tree:\n");
|
|
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
|
|
printf("\t");
|
|
for (n = m; n != NULL; n = n->m_next) {
|
|
printf("0x%llx ",
|
|
(uint64_t)VM_KERNEL_ADDRPERM(n));
|
|
}
|
|
printf("\n");
|
|
}
|
|
panic("sblastmbufchk from %s", where);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Similar to sbappend, except the mbuf chain begins a new record.
|
|
*/
|
|
static int
|
|
sbappendrecord_common(struct sockbuf *sb, struct mbuf *m0, boolean_t nodrop)
|
|
{
|
|
struct soflow_hash_entry *dgram_flow_entry = NULL;
|
|
struct socket *so = sb->sb_so;
|
|
struct mbuf *m;
|
|
int space = 0;
|
|
|
|
if (m0 == NULL || (sb->sb_flags & SB_DROP)) {
|
|
if (m0 != NULL && nodrop == FALSE) {
|
|
m_freem(m0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
for (m = m0; m != NULL; m = m->m_next) {
|
|
space += m->m_len;
|
|
}
|
|
|
|
if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) {
|
|
if (nodrop == FALSE) {
|
|
m_freem(m0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (SOCK_DOM(sb->sb_so) == PF_INET || SOCK_DOM(sb->sb_so) == PF_INET6) {
|
|
ASSERT(nodrop == FALSE);
|
|
|
|
if (NEED_DGRAM_FLOW_TRACKING(so)) {
|
|
dgram_flow_entry = soflow_get_flow(so, NULL, NULL, NULL, m0 != NULL ? m_length(m0) : 0, false, (m0 != NULL && m0->m_pkthdr.rcvif) ? m0->m_pkthdr.rcvif->if_index : 0);
|
|
}
|
|
|
|
if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
|
|
int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
|
|
sock_data_filt_flag_record);
|
|
|
|
#if CONTENT_FILTER
|
|
if (error == 0) {
|
|
error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0, dgram_flow_entry);
|
|
}
|
|
#endif /* CONTENT_FILTER */
|
|
|
|
if (error != 0) {
|
|
SBLASTRECORDCHK(sb, "sbappendrecord 1");
|
|
if (error != EJUSTRETURN) {
|
|
m_freem(m0);
|
|
}
|
|
if (dgram_flow_entry != NULL) {
|
|
soflow_free_flow(dgram_flow_entry);
|
|
}
|
|
return 0;
|
|
}
|
|
} else if (m0) {
|
|
m0->m_flags &= ~M_SKIPCFIL;
|
|
}
|
|
|
|
if (dgram_flow_entry != NULL) {
|
|
soflow_free_flow(dgram_flow_entry);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note this permits zero length records.
|
|
*/
|
|
sballoc(sb, m0);
|
|
SBLASTRECORDCHK(sb, "sbappendrecord 2");
|
|
if (sb->sb_lastrecord != NULL) {
|
|
sb->sb_lastrecord->m_nextpkt = m0;
|
|
} else {
|
|
sb->sb_mb = m0;
|
|
}
|
|
sb->sb_lastrecord = m0;
|
|
sb->sb_mbtail = m0;
|
|
|
|
m = m0->m_next;
|
|
m0->m_next = 0;
|
|
if (m && (m0->m_flags & M_EOR)) {
|
|
m0->m_flags &= ~M_EOR;
|
|
m->m_flags |= M_EOR;
|
|
}
|
|
sbcompress(sb, m, m0);
|
|
SBLASTRECORDCHK(sb, "sbappendrecord 3");
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
|
|
{
|
|
return sbappendrecord_common(sb, m0, FALSE);
|
|
}
|
|
|
|
int
|
|
sbappendrecord_nodrop(struct sockbuf *sb, struct mbuf *m0)
|
|
{
|
|
return sbappendrecord_common(sb, m0, TRUE);
|
|
}
|
|
|
|
/*
|
|
* Concatenate address (optional), control (optional) and data into one
|
|
* single mbuf chain. If sockbuf *sb is passed in, space check will be
|
|
* performed.
|
|
*
|
|
* Returns: mbuf chain pointer if succeeded, NULL if failed
|
|
*/
|
|
struct mbuf *
|
|
sbconcat_mbufs(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0, struct mbuf *control)
|
|
{
|
|
struct mbuf *m = NULL, *n = NULL;
|
|
int space = 0;
|
|
|
|
if (m0 && (m0->m_flags & M_PKTHDR) == 0) {
|
|
panic("sbconcat_mbufs");
|
|
}
|
|
|
|
if (m0) {
|
|
space += m0->m_pkthdr.len;
|
|
}
|
|
for (n = control; n; n = n->m_next) {
|
|
space += n->m_len;
|
|
if (n->m_next == 0) { /* keep pointer to last control buf */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (asa != NULL) {
|
|
_CASSERT(sizeof(asa->sa_len) == sizeof(__uint8_t));
|
|
#if _MSIZE <= UINT8_MAX
|
|
if (asa->sa_len > MLEN) {
|
|
return NULL;
|
|
}
|
|
#endif
|
|
_CASSERT(sizeof(asa->sa_len) == sizeof(__uint8_t));
|
|
space += asa->sa_len;
|
|
}
|
|
|
|
if (sb != NULL && space > sbspace(sb)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (n) {
|
|
n->m_next = m0; /* concatenate data to control */
|
|
} else {
|
|
control = m0;
|
|
}
|
|
|
|
if (asa != NULL) {
|
|
MGET(m, M_DONTWAIT, MT_SONAME);
|
|
if (m == 0) {
|
|
if (n) {
|
|
/* unchain control and data if necessary */
|
|
n->m_next = NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
m->m_len = asa->sa_len;
|
|
bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
|
|
|
|
m->m_next = control;
|
|
} else {
|
|
m = control;
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* Queue mbuf chain to the receive queue of a socket.
|
|
* Parameter space is the total len of the mbuf chain.
|
|
* If passed in, sockbuf space will be checked.
|
|
*
|
|
* Returns: 0 Invalid mbuf chain
|
|
* 1 Success
|
|
*/
|
|
int
|
|
sbappendchain(struct sockbuf *sb, struct mbuf *m, int space)
|
|
{
|
|
struct mbuf *n, *nlast;
|
|
|
|
if (m == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (space != 0 && space > sbspace(sb)) {
|
|
return 0;
|
|
}
|
|
|
|
for (n = m; n->m_next != NULL; n = n->m_next) {
|
|
sballoc(sb, n);
|
|
}
|
|
sballoc(sb, n);
|
|
nlast = n;
|
|
|
|
if (sb->sb_lastrecord != NULL) {
|
|
sb->sb_lastrecord->m_nextpkt = m;
|
|
} else {
|
|
sb->sb_mb = m;
|
|
}
|
|
sb->sb_lastrecord = m;
|
|
sb->sb_mbtail = nlast;
|
|
|
|
SBLASTMBUFCHK(sb, __func__);
|
|
SBLASTRECORDCHK(sb, "sbappendadddr 2");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Returns: 0 Error: No space/out of mbufs/etc.
|
|
* 1 Success
|
|
*
|
|
* Imputed: (*error_out) errno for error
|
|
* ENOBUFS
|
|
* sflt_data_in:??? [whatever a filter author chooses]
|
|
*/
|
|
int
|
|
sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
|
|
struct mbuf *control, int *error_out)
|
|
{
|
|
int result = 0;
|
|
boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
|
|
struct mbuf *mbuf_chain = NULL;
|
|
struct soflow_hash_entry *dgram_flow_entry = NULL;
|
|
struct socket *so = sb->sb_so;
|
|
|
|
if (error_out) {
|
|
*error_out = 0;
|
|
}
|
|
|
|
if (m0 && (m0->m_flags & M_PKTHDR) == 0) {
|
|
panic("sbappendaddrorfree");
|
|
}
|
|
|
|
if (sb->sb_flags & SB_DROP) {
|
|
if (m0 != NULL) {
|
|
m_freem(m0);
|
|
}
|
|
if (control != NULL && !sb_unix) {
|
|
m_freem(control);
|
|
}
|
|
if (error_out != NULL) {
|
|
*error_out = EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (SOCK_DOM(sb->sb_so) == PF_INET || SOCK_DOM(sb->sb_so) == PF_INET6) {
|
|
/* Call socket data in filters */
|
|
|
|
if (NEED_DGRAM_FLOW_TRACKING(so)) {
|
|
dgram_flow_entry = soflow_get_flow(so, NULL, asa, control, m0 != NULL ? m_length(m0) : 0, false, (m0 != NULL && m0->m_pkthdr.rcvif) ? m0->m_pkthdr.rcvif->if_index : 0);
|
|
}
|
|
|
|
if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
|
|
int error;
|
|
error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0);
|
|
SBLASTRECORDCHK(sb, __func__);
|
|
|
|
#if CONTENT_FILTER
|
|
if (error == 0) {
|
|
error = cfil_sock_data_in(sb->sb_so, asa, m0, control,
|
|
0, dgram_flow_entry);
|
|
}
|
|
#endif /* CONTENT_FILTER */
|
|
|
|
if (error) {
|
|
if (error != EJUSTRETURN) {
|
|
if (m0) {
|
|
m_freem(m0);
|
|
}
|
|
if (control != NULL && !sb_unix) {
|
|
m_freem(control);
|
|
}
|
|
if (error_out) {
|
|
*error_out = error;
|
|
}
|
|
}
|
|
if (dgram_flow_entry != NULL) {
|
|
soflow_free_flow(dgram_flow_entry);
|
|
}
|
|
return 0;
|
|
}
|
|
} else if (m0) {
|
|
m0->m_flags &= ~M_SKIPCFIL;
|
|
}
|
|
|
|
if (dgram_flow_entry != NULL) {
|
|
soflow_free_flow(dgram_flow_entry);
|
|
}
|
|
}
|
|
|
|
mbuf_chain = sbconcat_mbufs(sb, asa, m0, control);
|
|
SBLASTRECORDCHK(sb, "sbappendadddr 1");
|
|
result = sbappendchain(sb, mbuf_chain, 0);
|
|
if (result == 0) {
|
|
if (m0) {
|
|
m_freem(m0);
|
|
}
|
|
if (control != NULL && !sb_unix) {
|
|
m_freem(control);
|
|
}
|
|
if (error_out) {
|
|
*error_out = ENOBUFS;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
inline boolean_t
|
|
is_cmsg_valid(struct mbuf *control, struct cmsghdr *cmsg)
|
|
{
|
|
if (cmsg == NULL) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (cmsg->cmsg_len < sizeof(struct cmsghdr)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if ((uint8_t *)control->m_data >= (uint8_t *)cmsg + cmsg->cmsg_len) {
|
|
return FALSE;
|
|
}
|
|
|
|
if ((uint8_t *)control->m_data + control->m_len <
|
|
(uint8_t *)cmsg + cmsg->cmsg_len) {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static int
|
|
sbappendcontrol_internal(struct sockbuf *sb, struct mbuf *m0,
|
|
struct mbuf *control)
|
|
{
|
|
struct mbuf *m, *mlast, *n;
|
|
int space = 0;
|
|
|
|
if (control == 0) {
|
|
panic("sbappendcontrol");
|
|
}
|
|
|
|
for (m = control;; m = m->m_next) {
|
|
space += m->m_len;
|
|
if (m->m_next == 0) {
|
|
break;
|
|
}
|
|
}
|
|
n = m; /* save pointer to last control buffer */
|
|
for (m = m0; m; m = m->m_next) {
|
|
space += m->m_len;
|
|
}
|
|
if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) {
|
|
return 0;
|
|
}
|
|
n->m_next = m0; /* concatenate data to control */
|
|
SBLASTRECORDCHK(sb, "sbappendcontrol 1");
|
|
|
|
for (m = control; m->m_next != NULL; m = m->m_next) {
|
|
sballoc(sb, m);
|
|
}
|
|
sballoc(sb, m);
|
|
mlast = m;
|
|
|
|
if (sb->sb_lastrecord != NULL) {
|
|
sb->sb_lastrecord->m_nextpkt = control;
|
|
} else {
|
|
sb->sb_mb = control;
|
|
}
|
|
sb->sb_lastrecord = control;
|
|
sb->sb_mbtail = mlast;
|
|
|
|
SBLASTMBUFCHK(sb, __func__);
|
|
SBLASTRECORDCHK(sb, "sbappendcontrol 2");
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
|
|
int *error_out)
|
|
{
|
|
struct soflow_hash_entry *dgram_flow_entry = NULL;
|
|
struct socket *so = sb->sb_so;
|
|
int result = 0;
|
|
boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
|
|
|
|
if (error_out) {
|
|
*error_out = 0;
|
|
}
|
|
|
|
if (sb->sb_flags & SB_DROP) {
|
|
if (m0 != NULL) {
|
|
m_freem(m0);
|
|
}
|
|
if (control != NULL && !sb_unix) {
|
|
m_freem(control);
|
|
}
|
|
if (error_out != NULL) {
|
|
*error_out = EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (SOCK_DOM(sb->sb_so) == PF_INET || SOCK_DOM(sb->sb_so) == PF_INET6) {
|
|
if (NEED_DGRAM_FLOW_TRACKING(so)) {
|
|
dgram_flow_entry = soflow_get_flow(so, NULL, NULL, control, m0 != NULL ? m_length(m0) : 0, false, (m0 != NULL && m0->m_pkthdr.rcvif) ? m0->m_pkthdr.rcvif->if_index : 0);
|
|
}
|
|
|
|
if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
|
|
int error;
|
|
|
|
error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0);
|
|
SBLASTRECORDCHK(sb, __func__);
|
|
|
|
#if CONTENT_FILTER
|
|
if (error == 0) {
|
|
error = cfil_sock_data_in(sb->sb_so, NULL, m0, control,
|
|
0, dgram_flow_entry);
|
|
}
|
|
#endif /* CONTENT_FILTER */
|
|
|
|
if (error) {
|
|
if (error != EJUSTRETURN) {
|
|
if (m0) {
|
|
m_freem(m0);
|
|
}
|
|
if (control != NULL && !sb_unix) {
|
|
m_freem(control);
|
|
}
|
|
if (error_out) {
|
|
*error_out = error;
|
|
}
|
|
}
|
|
if (dgram_flow_entry != NULL) {
|
|
soflow_free_flow(dgram_flow_entry);
|
|
}
|
|
return 0;
|
|
}
|
|
} else if (m0) {
|
|
m0->m_flags &= ~M_SKIPCFIL;
|
|
}
|
|
|
|
if (dgram_flow_entry != NULL) {
|
|
soflow_free_flow(dgram_flow_entry);
|
|
}
|
|
}
|
|
|
|
result = sbappendcontrol_internal(sb, m0, control);
|
|
if (result == 0) {
|
|
if (m0) {
|
|
m_freem(m0);
|
|
}
|
|
if (control != NULL && !sb_unix) {
|
|
m_freem(control);
|
|
}
|
|
if (error_out) {
|
|
*error_out = ENOBUFS;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* TCP streams have Multipath TCP support or are regular TCP sockets.
|
|
*/
|
|
int
|
|
sbappendstream_rcvdemux(struct socket *so, struct mbuf *m)
|
|
{
|
|
int ret = 0;
|
|
|
|
if ((m != NULL) &&
|
|
m_pktlen(m) <= 0 &&
|
|
!((so->so_flags & SOF_MP_SUBFLOW) &&
|
|
(m->m_flags & M_PKTHDR) &&
|
|
(m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN))) {
|
|
m_freem(m);
|
|
return ret;
|
|
}
|
|
|
|
#if MPTCP
|
|
if (so->so_flags & SOF_MP_SUBFLOW) {
|
|
return sbappendmptcpstream_rcv(&so->so_rcv, m);
|
|
} else
|
|
#endif /* MPTCP */
|
|
{
|
|
return sbappendstream(&so->so_rcv, m);
|
|
}
|
|
}
|
|
|
|
#if MPTCP
|
|
int
|
|
sbappendmptcpstream_rcv(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
struct socket *so = sb->sb_so;
|
|
|
|
VERIFY(m == NULL || (m->m_flags & M_PKTHDR));
|
|
/* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */
|
|
VERIFY((sb->sb_flags & (SB_RECV | SB_NOCOMPRESS)) ==
|
|
(SB_RECV | SB_NOCOMPRESS));
|
|
|
|
if (m == NULL || m_pktlen(m) == 0 || (sb->sb_flags & SB_DROP) ||
|
|
(so->so_state & SS_CANTRCVMORE)) {
|
|
if (m && (m->m_flags & M_PKTHDR) &&
|
|
m_pktlen(m) == 0 &&
|
|
(m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN)) {
|
|
mptcp_input(tptomptp(sototcpcb(so))->mpt_mpte, m);
|
|
return 1;
|
|
} else if (m != NULL) {
|
|
m_freem(m);
|
|
}
|
|
return 0;
|
|
}
|
|
/* the socket is not closed, so SOF_MP_SUBFLOW must be set */
|
|
VERIFY(so->so_flags & SOF_MP_SUBFLOW);
|
|
|
|
if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) {
|
|
panic("%s: nexpkt %p || mb %p != lastrecord %p", __func__,
|
|
m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
SBLASTMBUFCHK(sb, __func__);
|
|
|
|
/* No filter support (SB_RECV) on mptcp subflow sockets */
|
|
|
|
sbcompress(sb, m, sb->sb_mbtail);
|
|
sb->sb_lastrecord = sb->sb_mb;
|
|
SBLASTRECORDCHK(sb, __func__);
|
|
return 1;
|
|
}
|
|
#endif /* MPTCP */
|
|
|
|
/*
|
|
* Compress mbuf chain m into the socket
|
|
* buffer sb following mbuf n. If n
|
|
* is null, the buffer is presumed empty.
|
|
*/
|
|
static inline void
|
|
sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
|
|
{
|
|
int eor = 0, compress = (!(sb->sb_flags & SB_NOCOMPRESS));
|
|
struct mbuf *o;
|
|
|
|
if (m == NULL) {
|
|
/* There is nothing to compress; just update the tail */
|
|
for (; n->m_next != NULL; n = n->m_next) {
|
|
;
|
|
}
|
|
sb->sb_mbtail = n;
|
|
goto done;
|
|
}
|
|
|
|
while (m != NULL) {
|
|
eor |= m->m_flags & M_EOR;
|
|
if (compress && m->m_len == 0 && (eor == 0 ||
|
|
(((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) {
|
|
if (sb->sb_lastrecord == m) {
|
|
sb->sb_lastrecord = m->m_next;
|
|
}
|
|
m = m_free(m);
|
|
continue;
|
|
}
|
|
if (compress && n != NULL && (n->m_flags & M_EOR) == 0 &&
|
|
#ifndef __APPLE__
|
|
M_WRITABLE(n) &&
|
|
#endif
|
|
m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
|
|
m->m_len <= M_TRAILINGSPACE(n) &&
|
|
n->m_type == m->m_type) {
|
|
bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
|
|
(unsigned)m->m_len);
|
|
n->m_len += m->m_len;
|
|
sb->sb_cc += m->m_len;
|
|
if (!m_has_mtype(m, MTF_DATA | MTF_HEADER | MTF_OOBDATA)) {
|
|
/* XXX: Probably don't need */
|
|
sb->sb_ctl += m->m_len;
|
|
}
|
|
|
|
/* update send byte count */
|
|
if (sb->sb_flags & SB_SNDBYTE_CNT) {
|
|
inp_incr_sndbytes_total(sb->sb_so,
|
|
m->m_len);
|
|
inp_incr_sndbytes_unsent(sb->sb_so,
|
|
m->m_len);
|
|
}
|
|
m = m_free(m);
|
|
continue;
|
|
}
|
|
if (n != NULL) {
|
|
n->m_next = m;
|
|
} else {
|
|
sb->sb_mb = m;
|
|
}
|
|
sb->sb_mbtail = m;
|
|
sballoc(sb, m);
|
|
n = m;
|
|
m->m_flags &= ~M_EOR;
|
|
m = m->m_next;
|
|
n->m_next = NULL;
|
|
}
|
|
if (eor != 0) {
|
|
if (n != NULL) {
|
|
n->m_flags |= M_EOR;
|
|
} else {
|
|
printf("semi-panic: sbcompress\n");
|
|
}
|
|
}
|
|
done:
|
|
SBLASTMBUFCHK(sb, __func__);
|
|
}
|
|
|
|
void
|
|
sb_empty_assert(struct sockbuf *sb, const char *where)
|
|
{
|
|
if (!(sb->sb_cc == 0 && sb->sb_mb == NULL && sb->sb_mbcnt == 0 &&
|
|
sb->sb_mbtail == NULL && sb->sb_lastrecord == NULL)) {
|
|
panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
|
|
"lastrecord %p\n", where, sb, sb->sb_so, sb->sb_cc,
|
|
sb->sb_mbcnt, sb->sb_mb, sb->sb_mbtail,
|
|
sb->sb_lastrecord);
|
|
/* NOTREACHED */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free all mbufs in a sockbuf.
|
|
* Check that all resources are reclaimed.
|
|
*/
|
|
void
|
|
sbflush(struct sockbuf *sb)
|
|
{
|
|
void *lr_saved = __builtin_return_address(0);
|
|
struct socket *so = sb->sb_so;
|
|
|
|
/* so_usecount may be 0 if we get here from sofreelastref() */
|
|
if (so == NULL) {
|
|
panic("%s: null so, sb=%p sb_flags=0x%x lr=%p",
|
|
__func__, sb, sb->sb_flags, lr_saved);
|
|
/* NOTREACHED */
|
|
} else if (so->so_usecount < 0) {
|
|
panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
|
|
"lrh= %s\n", __func__, sb, sb->sb_flags, so,
|
|
so->so_usecount, lr_saved, solockhistory_nr(so));
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Obtain lock on the socket buffer (SB_LOCK). This is required
|
|
* to prevent the socket buffer from being unexpectedly altered
|
|
* while it is used by another thread in socket send/receive.
|
|
*
|
|
* sblock() must not fail here, hence the assertion.
|
|
*/
|
|
(void) sblock(sb, SBL_WAIT | SBL_NOINTR | SBL_IGNDEFUNCT);
|
|
VERIFY(sb->sb_flags & SB_LOCK);
|
|
|
|
while (sb->sb_mbcnt > 0) {
|
|
/*
|
|
* Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
|
|
* we would loop forever. Panic instead.
|
|
*/
|
|
if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) {
|
|
break;
|
|
}
|
|
sbdrop(sb, (int)sb->sb_cc);
|
|
}
|
|
|
|
if (sb->sb_flags & SB_SENDHEAD) {
|
|
sb->sb_sendhead = NULL;
|
|
}
|
|
|
|
sb_empty_assert(sb, __func__);
|
|
sbunlock(sb, TRUE); /* keep socket locked */
|
|
}
|
|
|
|
/*
|
|
* Drop data from (the front of) a sockbuf.
|
|
* use m_freem_list to free the mbuf structures
|
|
* under a single lock... this is done by pruning
|
|
* the top of the tree from the body by keeping track
|
|
* of where we get to in the tree and then zeroing the
|
|
* two pertinent pointers m_nextpkt and m_next
|
|
* the socket buffer is then updated to point at the new
|
|
* top of the tree and the pruned area is released via
|
|
* m_freem_list.
|
|
*/
|
|
void
|
|
sbdrop(struct sockbuf *sb, int len)
|
|
{
|
|
struct mbuf *m, *free_list, *ml;
|
|
struct mbuf *next, *last;
|
|
|
|
next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
|
|
#if MPTCP
|
|
if (m != NULL && len > 0 && !(sb->sb_flags & SB_RECV) &&
|
|
((sb->sb_so->so_flags & SOF_MP_SUBFLOW) ||
|
|
(SOCK_CHECK_DOM(sb->sb_so, PF_MULTIPATH) &&
|
|
SOCK_CHECK_PROTO(sb->sb_so, IPPROTO_TCP))) &&
|
|
!(sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC)) {
|
|
mptcp_preproc_sbdrop(sb->sb_so, m, (unsigned int)len);
|
|
}
|
|
if (m != NULL && len > 0 && !(sb->sb_flags & SB_RECV) &&
|
|
(sb->sb_so->so_flags & SOF_MP_SUBFLOW) &&
|
|
(sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC)) {
|
|
mptcp_fallback_sbdrop(sb->sb_so, m, len);
|
|
}
|
|
#endif /* MPTCP */
|
|
KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
|
|
|
|
free_list = last = m;
|
|
ml = (struct mbuf *)0;
|
|
|
|
if (sb->sb_flags & SB_SENDHEAD) {
|
|
sb->sb_sendoff -= MIN(len, sb->sb_sendoff);
|
|
}
|
|
|
|
while (len > 0) {
|
|
if (m == NULL) {
|
|
if (next == NULL) {
|
|
/*
|
|
* temporarily replacing this panic with printf
|
|
* because it occurs occasionally when closing
|
|
* a socket when there is no harm in ignoring
|
|
* it. This problem will be investigated
|
|
* further.
|
|
*/
|
|
/* panic("sbdrop"); */
|
|
printf("sbdrop - count not zero\n");
|
|
len = 0;
|
|
/*
|
|
* zero the counts. if we have no mbufs,
|
|
* we have no data (PR-2986815)
|
|
*/
|
|
sb->sb_cc = 0;
|
|
sb->sb_mbcnt = 0;
|
|
break;
|
|
}
|
|
m = last = next;
|
|
next = m->m_nextpkt;
|
|
continue;
|
|
}
|
|
if (m->m_len > len) {
|
|
m->m_len -= len;
|
|
m->m_data += len;
|
|
sb->sb_cc -= len;
|
|
/* update the send byte count */
|
|
if (sb->sb_flags & SB_SNDBYTE_CNT) {
|
|
inp_decr_sndbytes_total(sb->sb_so, len);
|
|
}
|
|
if (sb->sb_flags & SB_SENDHEAD) {
|
|
if (sb->sb_sendhead == m) {
|
|
sb->sb_sendhead = NULL;
|
|
}
|
|
}
|
|
if (!m_has_mtype(m, MTF_DATA | MTF_HEADER | MTF_OOBDATA)) {
|
|
sb->sb_ctl -= len;
|
|
}
|
|
break;
|
|
}
|
|
len -= m->m_len;
|
|
sbfree(sb, m);
|
|
|
|
ml = m;
|
|
m = m->m_next;
|
|
}
|
|
while (m && m->m_len == 0) {
|
|
sbfree(sb, m);
|
|
|
|
ml = m;
|
|
m = m->m_next;
|
|
}
|
|
if (ml) {
|
|
ml->m_next = (struct mbuf *)0;
|
|
last->m_nextpkt = (struct mbuf *)0;
|
|
m_freem_list(free_list);
|
|
}
|
|
if (m) {
|
|
sb->sb_mb = m;
|
|
m->m_nextpkt = next;
|
|
} else {
|
|
sb->sb_mb = next;
|
|
}
|
|
|
|
/*
|
|
* First part is an inline SB_EMPTY_FIXUP(). Second part
|
|
* makes sure sb_lastrecord is up-to-date if we dropped
|
|
* part of the last record.
|
|
*/
|
|
m = sb->sb_mb;
|
|
if (m == NULL) {
|
|
sb->sb_mbtail = NULL;
|
|
sb->sb_lastrecord = NULL;
|
|
} else if (m->m_nextpkt == NULL) {
|
|
sb->sb_lastrecord = m;
|
|
}
|
|
|
|
#if CONTENT_FILTER
|
|
cfil_sock_buf_update(sb);
|
|
#endif /* CONTENT_FILTER */
|
|
|
|
KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* Drop a record off the front of a sockbuf
|
|
* and move the next record to the front.
|
|
*/
|
|
void
|
|
sbdroprecord(struct sockbuf *sb)
|
|
{
|
|
struct mbuf *m, *mn;
|
|
|
|
m = sb->sb_mb;
|
|
if (m) {
|
|
sb->sb_mb = m->m_nextpkt;
|
|
do {
|
|
sbfree(sb, m);
|
|
MFREE(m, mn);
|
|
m = mn;
|
|
} while (m);
|
|
}
|
|
SB_EMPTY_FIXUP(sb);
|
|
}
|
|
|
|
/*
|
|
* Create a "control" mbuf containing the specified data
|
|
* with the specified type for presentation on a socket buffer.
|
|
*/
|
|
struct mbuf *
|
|
sbcreatecontrol(caddr_t p, int size, int type, int level)
|
|
{
|
|
struct cmsghdr *cp;
|
|
struct mbuf *m;
|
|
|
|
if (CMSG_SPACE((u_int)size) > MLEN) {
|
|
return (struct mbuf *)NULL;
|
|
}
|
|
if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) {
|
|
return (struct mbuf *)NULL;
|
|
}
|
|
cp = mtod(m, struct cmsghdr *);
|
|
VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t)));
|
|
/* XXX check size? */
|
|
(void) memcpy(CMSG_DATA(cp), p, size);
|
|
m->m_len = (int32_t)CMSG_SPACE(size);
|
|
cp->cmsg_len = CMSG_LEN(size);
|
|
cp->cmsg_level = level;
|
|
cp->cmsg_type = type;
|
|
return m;
|
|
}
|
|
|
|
struct mbuf **
|
|
sbcreatecontrol_mbuf(caddr_t p, int size, int type, int level, struct mbuf **mp)
|
|
{
|
|
struct mbuf *m;
|
|
struct cmsghdr *cp;
|
|
|
|
if (*mp == NULL) {
|
|
*mp = sbcreatecontrol(p, size, type, level);
|
|
return mp;
|
|
}
|
|
|
|
if (CMSG_SPACE((u_int)size) + (*mp)->m_len > MLEN) {
|
|
mp = &(*mp)->m_next;
|
|
*mp = sbcreatecontrol(p, size, type, level);
|
|
return mp;
|
|
}
|
|
|
|
m = *mp;
|
|
|
|
cp = (struct cmsghdr *)(void *)(mtod(m, char *) + m->m_len);
|
|
/* CMSG_SPACE ensures 32-bit alignment */
|
|
VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t)));
|
|
m->m_len += (int32_t)CMSG_SPACE(size);
|
|
|
|
/* XXX check size? */
|
|
(void) memcpy(CMSG_DATA(cp), p, size);
|
|
cp->cmsg_len = CMSG_LEN(size);
|
|
cp->cmsg_level = level;
|
|
cp->cmsg_type = type;
|
|
|
|
return mp;
|
|
}
|
|
|
|
|
|
/*
|
|
* Some routines that return EOPNOTSUPP for entry points that are not
|
|
* supported by a protocol. Fill in as needed.
|
|
*/
|
|
int
|
|
pru_abort_notsupp(struct socket *so)
|
|
{
|
|
#pragma unused(so)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
#pragma unused(so, nam)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_attach_notsupp(struct socket *so, int proto, struct proc *p)
|
|
{
|
|
#pragma unused(so, proto, p)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
|
|
{
|
|
#pragma unused(so, nam, p)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
|
|
{
|
|
#pragma unused(so, nam, p)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_connect2_notsupp(struct socket *so1, struct socket *so2)
|
|
{
|
|
#pragma unused(so1, so2)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_connectx_notsupp(struct socket *so, struct sockaddr *src,
|
|
struct sockaddr *dst, struct proc *p, uint32_t ifscope,
|
|
sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg,
|
|
uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written)
|
|
{
|
|
#pragma unused(so, src, dst, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
|
|
struct ifnet *ifp, struct proc *p)
|
|
{
|
|
#pragma unused(so, cmd, data, ifp, p)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_detach_notsupp(struct socket *so)
|
|
{
|
|
#pragma unused(so)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_disconnect_notsupp(struct socket *so)
|
|
{
|
|
#pragma unused(so)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_disconnectx_notsupp(struct socket *so, sae_associd_t aid, sae_connid_t cid)
|
|
{
|
|
#pragma unused(so, aid, cid)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_listen_notsupp(struct socket *so, struct proc *p)
|
|
{
|
|
#pragma unused(so, p)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
#pragma unused(so, nam)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_rcvd_notsupp(struct socket *so, int flags)
|
|
{
|
|
#pragma unused(so, flags)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
|
|
{
|
|
#pragma unused(so, m, flags)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
|
|
struct sockaddr *addr, struct mbuf *control, struct proc *p)
|
|
{
|
|
#pragma unused(so, flags, m, addr, control, p)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_send_list_notsupp(struct socket *so, struct mbuf *m, u_int *pktcnt,
|
|
int flags)
|
|
{
|
|
#pragma unused(so, m, pktcnt, flags)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* This isn't really a ``null'' operation, but it's the default one
|
|
* and doesn't do anything destructive.
|
|
*/
|
|
int
|
|
pru_sense_null(struct socket *so, void *ub, int isstat64)
|
|
{
|
|
if (isstat64 != 0) {
|
|
struct stat64 *sb64;
|
|
|
|
sb64 = (struct stat64 *)ub;
|
|
sb64->st_blksize = so->so_snd.sb_hiwat;
|
|
} else {
|
|
struct stat *sb;
|
|
|
|
sb = (struct stat *)ub;
|
|
sb->st_blksize = so->so_snd.sb_hiwat;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
|
|
struct mbuf *top, struct mbuf *control, int flags)
|
|
{
|
|
#pragma unused(so, addr, uio, top, control, flags)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_sosend_list_notsupp(struct socket *so, struct mbuf *m, size_t total_len, u_int *pktcnt, int flags)
|
|
{
|
|
#pragma unused(so, m, total_len, pktcnt, flags)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
|
|
struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
|
|
{
|
|
#pragma unused(so, paddr, uio, mp0, controlp, flagsp)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_shutdown_notsupp(struct socket *so)
|
|
{
|
|
#pragma unused(so)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
#pragma unused(so, nam)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_sopoll_notsupp(struct socket *so, int events, kauth_cred_t cred, void *wql)
|
|
{
|
|
#pragma unused(so, events, cred, wql)
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_socheckopt_null(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
#pragma unused(so, sopt)
|
|
/*
|
|
* Allow all options for set/get by default.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pru_preconnect_null(struct socket *so)
|
|
{
|
|
#pragma unused(so)
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pru_defunct_null(struct socket *so)
|
|
{
|
|
#pragma unused(so)
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
pru_sanitize(struct pr_usrreqs *pru)
|
|
{
|
|
#define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar)
|
|
DEFAULT(pru->pru_abort, pru_abort_notsupp);
|
|
DEFAULT(pru->pru_accept, pru_accept_notsupp);
|
|
DEFAULT(pru->pru_attach, pru_attach_notsupp);
|
|
DEFAULT(pru->pru_bind, pru_bind_notsupp);
|
|
DEFAULT(pru->pru_connect, pru_connect_notsupp);
|
|
DEFAULT(pru->pru_connect2, pru_connect2_notsupp);
|
|
DEFAULT(pru->pru_connectx, pru_connectx_notsupp);
|
|
DEFAULT(pru->pru_control, pru_control_notsupp);
|
|
DEFAULT(pru->pru_detach, pru_detach_notsupp);
|
|
DEFAULT(pru->pru_disconnect, pru_disconnect_notsupp);
|
|
DEFAULT(pru->pru_disconnectx, pru_disconnectx_notsupp);
|
|
DEFAULT(pru->pru_listen, pru_listen_notsupp);
|
|
DEFAULT(pru->pru_peeraddr, pru_peeraddr_notsupp);
|
|
DEFAULT(pru->pru_rcvd, pru_rcvd_notsupp);
|
|
DEFAULT(pru->pru_rcvoob, pru_rcvoob_notsupp);
|
|
DEFAULT(pru->pru_send, pru_send_notsupp);
|
|
DEFAULT(pru->pru_send_list, pru_send_list_notsupp);
|
|
DEFAULT(pru->pru_sense, pru_sense_null);
|
|
DEFAULT(pru->pru_shutdown, pru_shutdown_notsupp);
|
|
DEFAULT(pru->pru_sockaddr, pru_sockaddr_notsupp);
|
|
DEFAULT(pru->pru_sopoll, pru_sopoll_notsupp);
|
|
DEFAULT(pru->pru_soreceive, pru_soreceive_notsupp);
|
|
DEFAULT(pru->pru_sosend, pru_sosend_notsupp);
|
|
DEFAULT(pru->pru_sosend_list, pru_sosend_list_notsupp);
|
|
DEFAULT(pru->pru_socheckopt, pru_socheckopt_null);
|
|
DEFAULT(pru->pru_preconnect, pru_preconnect_null);
|
|
DEFAULT(pru->pru_defunct, pru_defunct_null);
|
|
#undef DEFAULT
|
|
}
|
|
|
|
/*
|
|
* The following are macros on BSD and functions on Darwin
|
|
*/
|
|
|
|
/*
|
|
* Do we need to notify the other side when I/O is possible?
|
|
*/
|
|
|
|
int
|
|
sb_notify(struct sockbuf *sb)
|
|
{
|
|
return sb->sb_waiters > 0 ||
|
|
(sb->sb_flags & (SB_SEL | SB_ASYNC | SB_UPCALL | SB_KNOTE));
|
|
}
|
|
|
|
/*
|
|
* How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
|
|
* This is problematical if the fields are unsigned, as the space might
|
|
* still be negative (cc > hiwat or mbcnt > mbmax). Should detect
|
|
* overflow and return 0.
|
|
*/
|
|
int
|
|
sbspace(struct sockbuf *sb)
|
|
{
|
|
int pending = 0;
|
|
int space;
|
|
|
|
if (sb->sb_flags & SB_KCTL) {
|
|
space = (int)(sb->sb_hiwat - sb->sb_cc);
|
|
} else {
|
|
space = imin((int)(sb->sb_hiwat - sb->sb_cc),
|
|
(int)(sb->sb_mbmax - sb->sb_mbcnt));
|
|
}
|
|
if (sb->sb_preconn_hiwat != 0) {
|
|
space = imin((int)(sb->sb_preconn_hiwat - sb->sb_cc), space);
|
|
}
|
|
|
|
if (space < 0) {
|
|
space = 0;
|
|
}
|
|
|
|
/* Compensate for data being processed by content filters */
|
|
#if CONTENT_FILTER
|
|
pending = cfil_sock_data_space(sb);
|
|
#endif /* CONTENT_FILTER */
|
|
if (pending > space) {
|
|
space = 0;
|
|
} else {
|
|
space -= pending;
|
|
}
|
|
|
|
return space;
|
|
}
|
|
|
|
/* do we have to send all at once on a socket? */
|
|
int
|
|
sosendallatonce(struct socket *so)
|
|
{
|
|
return so->so_proto->pr_flags & PR_ATOMIC;
|
|
}
|
|
|
|
/* can we read something from so? */
|
|
int
|
|
soreadable(struct socket *so)
|
|
{
|
|
return so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
|
|
((so->so_state & SS_CANTRCVMORE)
|
|
#if CONTENT_FILTER
|
|
&& cfil_sock_data_pending(&so->so_rcv) == 0
|
|
#endif /* CONTENT_FILTER */
|
|
) ||
|
|
so->so_comp.tqh_first || so->so_error;
|
|
}
|
|
|
|
/* can we write something to so? */
|
|
|
|
int
|
|
sowriteable(struct socket *so)
|
|
{
|
|
if ((so->so_state & SS_CANTSENDMORE) ||
|
|
so->so_error > 0) {
|
|
return 1;
|
|
}
|
|
if (so_wait_for_if_feedback(so) || !socanwrite(so)) {
|
|
return 0;
|
|
}
|
|
if (so->so_flags1 & SOF1_PRECONNECT_DATA) {
|
|
return 1;
|
|
}
|
|
|
|
int64_t data = sbspace(&so->so_snd);
|
|
int64_t lowat = so->so_snd.sb_lowat;
|
|
/*
|
|
* Deal with connected UNIX domain sockets which
|
|
* rely on the fact that the sender's socket buffer is
|
|
* actually the receiver's socket buffer.
|
|
*/
|
|
if (SOCK_DOM(so) == PF_LOCAL) {
|
|
struct unpcb *unp = sotounpcb(so);
|
|
if (unp != NULL && unp->unp_conn != NULL &&
|
|
unp->unp_conn->unp_socket != NULL) {
|
|
struct socket *so2 = unp->unp_conn->unp_socket;
|
|
/*
|
|
* At this point we know that `so' is locked
|
|
* and that `unp_conn` isn't going to change.
|
|
* However, we don't lock `so2` because doing so
|
|
* may require unlocking `so'
|
|
* (see unp_get_locks_in_order()).
|
|
*
|
|
* Two cases can happen:
|
|
*
|
|
* 1) we return 1 and tell the application that
|
|
* it can write. Meanwhile, another thread
|
|
* fills up the socket buffer. This will either
|
|
* lead to a blocking send or EWOULDBLOCK
|
|
* which the application should deal with.
|
|
* 2) we return 0 and tell the application that
|
|
* the socket is not writable. Meanwhile,
|
|
* another thread depletes the receive socket
|
|
* buffer. In this case the application will
|
|
* be woken up by sb_notify().
|
|
*
|
|
* MIN() is required because otherwise sosendcheck()
|
|
* may return EWOULDBLOCK since it only considers
|
|
* so->so_snd.
|
|
*/
|
|
data = MIN(data, sbspace(&so2->so_rcv));
|
|
}
|
|
}
|
|
|
|
if (data >= lowat) {
|
|
if (so->so_flags & SOF_NOTSENT_LOWAT) {
|
|
if ((SOCK_DOM(so) == PF_INET6 ||
|
|
SOCK_DOM(so) == PF_INET) &&
|
|
so->so_type == SOCK_STREAM) {
|
|
return tcp_notsent_lowat_check(so);
|
|
}
|
|
#if MPTCP
|
|
else if ((SOCK_DOM(so) == PF_MULTIPATH) &&
|
|
(SOCK_PROTO(so) == IPPROTO_TCP)) {
|
|
return mptcp_notsent_lowat_check(so);
|
|
}
|
|
#endif
|
|
else {
|
|
return 1;
|
|
}
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* adjust counters in sb reflecting allocation of m */
|
|
|
|
void
|
|
sballoc(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
sb->sb_cc += m->m_len;
|
|
if (!m_has_mtype(m, MTF_DATA | MTF_HEADER | MTF_OOBDATA)) {
|
|
sb->sb_ctl += m->m_len;
|
|
}
|
|
sb->sb_mbcnt += _MSIZE;
|
|
|
|
if (m->m_flags & M_EXT) {
|
|
sb->sb_mbcnt += m->m_ext.ext_size;
|
|
}
|
|
|
|
/*
|
|
* If data is being added to the send socket buffer,
|
|
* update the send byte count
|
|
*/
|
|
if (sb->sb_flags & SB_SNDBYTE_CNT) {
|
|
inp_incr_sndbytes_total(sb->sb_so, m->m_len);
|
|
inp_incr_sndbytes_unsent(sb->sb_so, m->m_len);
|
|
}
|
|
}
|
|
|
|
/* adjust counters in sb reflecting freeing of m */
|
|
void
|
|
sbfree(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
sb->sb_cc -= m->m_len;
|
|
if (!m_has_mtype(m, MTF_DATA | MTF_HEADER | MTF_OOBDATA)) {
|
|
sb->sb_ctl -= m->m_len;
|
|
}
|
|
sb->sb_mbcnt -= _MSIZE;
|
|
if (m->m_flags & M_EXT) {
|
|
sb->sb_mbcnt -= m->m_ext.ext_size;
|
|
}
|
|
|
|
/*
|
|
* If data is being removed from the send socket buffer,
|
|
* update the send byte count
|
|
*/
|
|
if (sb->sb_flags & SB_SNDBYTE_CNT) {
|
|
inp_decr_sndbytes_total(sb->sb_so, m->m_len);
|
|
}
|
|
|
|
if (sb->sb_flags & SB_SENDHEAD) {
|
|
if (m == sb->sb_sendhead) {
|
|
sb->sb_sendhead = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set lock on sockbuf sb; sleep if lock is already held.
|
|
* Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
|
|
* Returns error without lock if sleep is interrupted.
|
|
*/
|
|
int
|
|
sblock(struct sockbuf *sb, uint32_t flags)
|
|
{
|
|
boolean_t nointr = ((sb->sb_flags & SB_NOINTR) || (flags & SBL_NOINTR));
|
|
void *lr_saved = __builtin_return_address(0);
|
|
struct socket *so = sb->sb_so;
|
|
void * wchan;
|
|
int error = 0;
|
|
thread_t tp = current_thread();
|
|
|
|
VERIFY((flags & SBL_VALID) == flags);
|
|
|
|
/* so_usecount may be 0 if we get here from sofreelastref() */
|
|
if (so == NULL) {
|
|
panic("%s: null so, sb=%p sb_flags=0x%x lr=%p",
|
|
__func__, sb, sb->sb_flags, lr_saved);
|
|
/* NOTREACHED */
|
|
} else if (so->so_usecount < 0) {
|
|
panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
|
|
"lrh= %s\n", __func__, sb, sb->sb_flags, so,
|
|
so->so_usecount, lr_saved, solockhistory_nr(so));
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* The content filter thread must hold the sockbuf lock
|
|
*/
|
|
if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) {
|
|
/*
|
|
* Don't panic if we are defunct because SB_LOCK has
|
|
* been cleared by sodefunct()
|
|
*/
|
|
if (!(so->so_flags & SOF_DEFUNCT) && !(sb->sb_flags & SB_LOCK)) {
|
|
panic("%s: SB_LOCK not held for %p",
|
|
__func__, sb);
|
|
}
|
|
|
|
/* Keep the sockbuf locked */
|
|
return 0;
|
|
}
|
|
|
|
if ((sb->sb_flags & SB_LOCK) && !(flags & SBL_WAIT)) {
|
|
return EWOULDBLOCK;
|
|
}
|
|
/*
|
|
* We may get here from sorflush(), in which case "sb" may not
|
|
* point to the real socket buffer. Use the actual socket buffer
|
|
* address from the socket instead.
|
|
*/
|
|
wchan = (sb->sb_flags & SB_RECV) ?
|
|
&so->so_rcv.sb_flags : &so->so_snd.sb_flags;
|
|
|
|
/*
|
|
* A content filter thread has exclusive access to the sockbuf
|
|
* until it clears the
|
|
*/
|
|
while ((sb->sb_flags & SB_LOCK) ||
|
|
((so->so_flags & SOF_CONTENT_FILTER) &&
|
|
sb->sb_cfil_thread != NULL)) {
|
|
lck_mtx_t *mutex_held;
|
|
|
|
/*
|
|
* XXX: This code should be moved up above outside of this loop;
|
|
* however, we may get here as part of sofreelastref(), and
|
|
* at that time pr_getlock() may no longer be able to return
|
|
* us the lock. This will be fixed in future.
|
|
*/
|
|
if (so->so_proto->pr_getlock != NULL) {
|
|
mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK);
|
|
} else {
|
|
mutex_held = so->so_proto->pr_domain->dom_mtx;
|
|
}
|
|
|
|
LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
|
|
|
|
sb->sb_wantlock++;
|
|
VERIFY(sb->sb_wantlock != 0);
|
|
|
|
error = msleep(wchan, mutex_held,
|
|
nointr ? PSOCK : PSOCK | PCATCH,
|
|
nointr ? "sb_lock_nointr" : "sb_lock", NULL);
|
|
|
|
VERIFY(sb->sb_wantlock != 0);
|
|
sb->sb_wantlock--;
|
|
|
|
if (error == 0 && (so->so_flags & SOF_DEFUNCT) &&
|
|
!(flags & SBL_IGNDEFUNCT)) {
|
|
error = EBADF;
|
|
SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llu [%d,%d] "
|
|
"(%d)\n", __func__, proc_selfpid(),
|
|
proc_best_name(current_proc()),
|
|
so->so_gencnt,
|
|
SOCK_DOM(so), SOCK_TYPE(so), error);
|
|
}
|
|
|
|
if (error != 0) {
|
|
return error;
|
|
}
|
|
}
|
|
sb->sb_flags |= SB_LOCK;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Release lock on sockbuf sb
|
|
*/
|
|
void
|
|
sbunlock(struct sockbuf *sb, boolean_t keeplocked)
|
|
{
|
|
void *lr_saved = __builtin_return_address(0);
|
|
struct socket *so = sb->sb_so;
|
|
thread_t tp = current_thread();
|
|
|
|
/* so_usecount may be 0 if we get here from sofreelastref() */
|
|
if (so == NULL) {
|
|
panic("%s: null so, sb=%p sb_flags=0x%x lr=%p",
|
|
__func__, sb, sb->sb_flags, lr_saved);
|
|
/* NOTREACHED */
|
|
} else if (so->so_usecount < 0) {
|
|
panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
|
|
"lrh= %s\n", __func__, sb, sb->sb_flags, so,
|
|
so->so_usecount, lr_saved, solockhistory_nr(so));
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* The content filter thread must hold the sockbuf lock
|
|
*/
|
|
if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) {
|
|
/*
|
|
* Don't panic if we are defunct because SB_LOCK has
|
|
* been cleared by sodefunct()
|
|
*/
|
|
if (!(so->so_flags & SOF_DEFUNCT) &&
|
|
!(sb->sb_flags & SB_LOCK) &&
|
|
!(so->so_state & SS_DEFUNCT) &&
|
|
!(so->so_flags1 & SOF1_DEFUNCTINPROG)) {
|
|
panic("%s: SB_LOCK not held for %p",
|
|
__func__, sb);
|
|
}
|
|
/* Keep the sockbuf locked and proceed */
|
|
} else {
|
|
VERIFY((sb->sb_flags & SB_LOCK) ||
|
|
(so->so_state & SS_DEFUNCT) ||
|
|
(so->so_flags1 & SOF1_DEFUNCTINPROG));
|
|
|
|
sb->sb_flags &= ~SB_LOCK;
|
|
|
|
if (sb->sb_wantlock > 0) {
|
|
/*
|
|
* We may get here from sorflush(), in which case "sb"
|
|
* may not point to the real socket buffer. Use the
|
|
* actual socket buffer address from the socket instead.
|
|
*/
|
|
wakeup((sb->sb_flags & SB_RECV) ? &so->so_rcv.sb_flags :
|
|
&so->so_snd.sb_flags);
|
|
}
|
|
}
|
|
|
|
if (!keeplocked) { /* unlock on exit */
|
|
if (so->so_flags & SOF_MP_SUBFLOW || SOCK_DOM(so) == PF_MULTIPATH) {
|
|
(*so->so_proto->pr_unlock)(so, 1, lr_saved);
|
|
} else {
|
|
lck_mtx_t *mutex_held;
|
|
|
|
if (so->so_proto->pr_getlock != NULL) {
|
|
mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK);
|
|
} else {
|
|
mutex_held = so->so_proto->pr_domain->dom_mtx;
|
|
}
|
|
|
|
LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
|
|
|
|
VERIFY(so->so_usecount > 0);
|
|
so->so_usecount--;
|
|
so->unlock_lr[so->next_unlock_lr] = lr_saved;
|
|
so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;
|
|
lck_mtx_unlock(mutex_held);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
sorwakeup(struct socket *so)
|
|
{
|
|
if (sb_notify(&so->so_rcv)) {
|
|
sowakeup(so, &so->so_rcv, NULL);
|
|
}
|
|
}
|
|
|
|
void
|
|
sowwakeup(struct socket *so)
|
|
{
|
|
if (sb_notify(&so->so_snd)) {
|
|
sowakeup(so, &so->so_snd, NULL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
soevupcall(struct socket *so, uint32_t hint)
|
|
{
|
|
if (so->so_event != NULL) {
|
|
caddr_t so_eventarg = so->so_eventarg;
|
|
|
|
hint &= so->so_eventmask;
|
|
if (hint != 0) {
|
|
so->so_event(so, so_eventarg, hint);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
soevent(struct socket *so, uint32_t hint)
|
|
{
|
|
if (net_wake_pkt_debug > 0 && (hint & SO_FILT_HINT_WAKE_PKT)) {
|
|
os_log(OS_LOG_DEFAULT, "%s: SO_FILT_HINT_WAKE_PKT so %p",
|
|
__func__, so);
|
|
}
|
|
|
|
if (so->so_flags & SOF_KNOTE) {
|
|
KNOTE(&so->so_klist, hint);
|
|
}
|
|
|
|
soevupcall(so, hint);
|
|
|
|
/*
|
|
* Don't post an event if this a subflow socket or
|
|
* the app has opted out of using cellular interface
|
|
*/
|
|
if ((hint & SO_FILT_HINT_IFDENIED) &&
|
|
!(so->so_flags & SOF_MP_SUBFLOW) &&
|
|
!(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR) &&
|
|
!(so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE) &&
|
|
!(so->so_restrictions & SO_RESTRICT_DENY_CONSTRAINED)) {
|
|
soevent_ifdenied(so);
|
|
}
|
|
}
|
|
|
|
static void
|
|
soevent_ifdenied(struct socket *so)
|
|
{
|
|
struct kev_netpolicy_ifdenied ev_ifdenied;
|
|
|
|
bzero(&ev_ifdenied, sizeof(ev_ifdenied));
|
|
/*
|
|
* The event consumer is interested about the effective {upid,pid,uuid}
|
|
* info which can be different than the those related to the process
|
|
* that recently performed a system call on the socket, i.e. when the
|
|
* socket is delegated.
|
|
*/
|
|
if (so->so_flags & SOF_DELEGATED) {
|
|
ev_ifdenied.ev_data.eupid = so->e_upid;
|
|
ev_ifdenied.ev_data.epid = so->e_pid;
|
|
uuid_copy(ev_ifdenied.ev_data.euuid, so->e_uuid);
|
|
} else {
|
|
ev_ifdenied.ev_data.eupid = so->last_upid;
|
|
ev_ifdenied.ev_data.epid = so->last_pid;
|
|
uuid_copy(ev_ifdenied.ev_data.euuid, so->last_uuid);
|
|
}
|
|
|
|
if (++so->so_ifdenied_notifies > 1) {
|
|
/*
|
|
* Allow for at most one kernel event to be generated per
|
|
* socket; so_ifdenied_notifies is reset upon changes in
|
|
* the UUID policy. See comments in inp_update_policy.
|
|
*/
|
|
if (net_io_policy_log) {
|
|
uuid_string_t buf;
|
|
|
|
uuid_unparse(ev_ifdenied.ev_data.euuid, buf);
|
|
log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %llu "
|
|
"euuid %s%s has %d redundant events supressed\n",
|
|
__func__, so->last_pid,
|
|
(uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
|
|
SOCK_TYPE(so), ev_ifdenied.ev_data.epid, buf,
|
|
((so->so_flags & SOF_DELEGATED) ?
|
|
" [delegated]" : ""), so->so_ifdenied_notifies);
|
|
}
|
|
} else {
|
|
if (net_io_policy_log) {
|
|
uuid_string_t buf;
|
|
|
|
uuid_unparse(ev_ifdenied.ev_data.euuid, buf);
|
|
log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %llu "
|
|
"euuid %s%s event posted\n", __func__,
|
|
so->last_pid, (uint64_t)VM_KERNEL_ADDRPERM(so),
|
|
SOCK_DOM(so), SOCK_TYPE(so),
|
|
ev_ifdenied.ev_data.epid, buf,
|
|
((so->so_flags & SOF_DELEGATED) ?
|
|
" [delegated]" : ""));
|
|
}
|
|
netpolicy_post_msg(KEV_NETPOLICY_IFDENIED, &ev_ifdenied.ev_data,
|
|
sizeof(ev_ifdenied));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make a copy of a sockaddr in a malloced buffer of type SONAME.
|
|
*/
|
|
struct sockaddr *
|
|
dup_sockaddr(struct sockaddr *sa, int canwait)
|
|
{
|
|
struct sockaddr *sa2;
|
|
|
|
sa2 = SA(alloc_sockaddr(sa->sa_len, canwait ? Z_WAITOK : Z_NOWAIT));
|
|
if (sa2 != NULL) {
|
|
SOCKADDR_COPY(sa, sa2, sa->sa_len);
|
|
}
|
|
return sa2;
|
|
}
|
|
|
|
void * __header_indexable
|
|
alloc_sockaddr(size_t size, zalloc_flags_t flags)
|
|
{
|
|
VERIFY((size) <= UINT8_MAX);
|
|
|
|
__typed_allocators_ignore_push
|
|
void * buf = kheap_alloc(KHEAP_SONAME, size, flags | Z_ZERO);
|
|
__typed_allocators_ignore_pop
|
|
if (buf != NULL) {
|
|
struct sockaddr *sa = SA(buf);
|
|
sa->sa_len = (uint8_t)size;
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Create an external-format (``xsocket'') structure using the information
|
|
* in the kernel-format socket structure pointed to by so. This is done
|
|
* to reduce the spew of irrelevant information over this interface,
|
|
* to isolate user code from changes in the kernel structure, and
|
|
* potentially to provide information-hiding if we decide that
|
|
* some of this information should be hidden from users.
|
|
*/
|
|
void
|
|
sotoxsocket(struct socket *so, struct xsocket *xso)
|
|
{
|
|
xso->xso_len = sizeof(*xso);
|
|
xso->xso_so = (_XSOCKET_PTR(struct socket *))VM_KERNEL_ADDRPERM(so);
|
|
xso->so_type = so->so_type;
|
|
xso->so_options = (short)(so->so_options & 0xffff);
|
|
xso->so_linger = so->so_linger;
|
|
xso->so_state = so->so_state;
|
|
xso->so_pcb = (_XSOCKET_PTR(caddr_t))VM_KERNEL_ADDRPERM(so->so_pcb);
|
|
if (so->so_proto) {
|
|
xso->xso_protocol = SOCK_PROTO(so);
|
|
xso->xso_family = SOCK_DOM(so);
|
|
} else {
|
|
xso->xso_protocol = xso->xso_family = 0;
|
|
}
|
|
xso->so_qlen = so->so_qlen;
|
|
xso->so_incqlen = so->so_incqlen;
|
|
xso->so_qlimit = so->so_qlimit;
|
|
xso->so_timeo = so->so_timeo;
|
|
xso->so_error = so->so_error;
|
|
xso->so_pgid = so->so_pgid;
|
|
xso->so_oobmark = so->so_oobmark;
|
|
sbtoxsockbuf(&so->so_snd, &xso->so_snd);
|
|
sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
|
|
xso->so_uid = kauth_cred_getuid(so->so_cred);
|
|
}
|
|
|
|
|
|
#if XNU_TARGET_OS_OSX
|
|
|
|
void
|
|
sotoxsocket64(struct socket *so, struct xsocket64 *xso)
|
|
{
|
|
xso->xso_len = sizeof(*xso);
|
|
xso->xso_so = (u_int64_t)VM_KERNEL_ADDRPERM(so);
|
|
xso->so_type = so->so_type;
|
|
xso->so_options = (short)(so->so_options & 0xffff);
|
|
xso->so_linger = so->so_linger;
|
|
xso->so_state = so->so_state;
|
|
xso->so_pcb = (u_int64_t)VM_KERNEL_ADDRPERM(so->so_pcb);
|
|
if (so->so_proto) {
|
|
xso->xso_protocol = SOCK_PROTO(so);
|
|
xso->xso_family = SOCK_DOM(so);
|
|
} else {
|
|
xso->xso_protocol = xso->xso_family = 0;
|
|
}
|
|
xso->so_qlen = so->so_qlen;
|
|
xso->so_incqlen = so->so_incqlen;
|
|
xso->so_qlimit = so->so_qlimit;
|
|
xso->so_timeo = so->so_timeo;
|
|
xso->so_error = so->so_error;
|
|
xso->so_pgid = so->so_pgid;
|
|
xso->so_oobmark = so->so_oobmark;
|
|
sbtoxsockbuf(&so->so_snd, &xso->so_snd);
|
|
sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
|
|
xso->so_uid = kauth_cred_getuid(so->so_cred);
|
|
}
|
|
|
|
#endif /* XNU_TARGET_OS_OSX */
|
|
|
|
/*
|
|
* This does the same for sockbufs. Note that the xsockbuf structure,
|
|
* since it is always embedded in a socket, does not include a self
|
|
* pointer nor a length. We make this entry point public in case
|
|
* some other mechanism needs it.
|
|
*/
|
|
void
|
|
sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
|
|
{
|
|
xsb->sb_cc = sb->sb_cc;
|
|
xsb->sb_hiwat = sb->sb_hiwat;
|
|
xsb->sb_mbcnt = sb->sb_mbcnt;
|
|
xsb->sb_mbmax = sb->sb_mbmax;
|
|
xsb->sb_lowat = sb->sb_lowat;
|
|
xsb->sb_flags = (short)sb->sb_flags;
|
|
xsb->sb_timeo = (short)
|
|
((sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick);
|
|
if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0) {
|
|
xsb->sb_timeo = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Based on the policy set by an all knowing decison maker, throttle sockets
|
|
* that either have been marked as belonging to "background" process.
|
|
*/
|
|
inline int
|
|
soisthrottled(struct socket *so)
|
|
{
|
|
return so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND;
|
|
}
|
|
|
|
inline int
|
|
soisprivilegedtraffic(struct socket *so)
|
|
{
|
|
return (so->so_flags & SOF_PRIVILEGED_TRAFFIC_CLASS) ? 1 : 0;
|
|
}
|
|
|
|
inline int
|
|
soissrcbackground(struct socket *so)
|
|
{
|
|
return (so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND) ||
|
|
IS_SO_TC_BACKGROUND(so->so_traffic_class);
|
|
}
|
|
|
|
inline int
|
|
soissrcrealtime(struct socket *so)
|
|
{
|
|
return so->so_traffic_class >= SO_TC_AV &&
|
|
so->so_traffic_class <= SO_TC_VO;
|
|
}
|
|
|
|
inline int
|
|
soissrcbesteffort(struct socket *so)
|
|
{
|
|
return so->so_traffic_class == SO_TC_BE ||
|
|
so->so_traffic_class == SO_TC_RD ||
|
|
so->so_traffic_class == SO_TC_OAM;
|
|
}
|
|
|
|
void
|
|
soclearfastopen(struct socket *so)
|
|
{
|
|
if (so->so_flags1 & SOF1_PRECONNECT_DATA) {
|
|
so->so_flags1 &= ~SOF1_PRECONNECT_DATA;
|
|
}
|
|
|
|
if (so->so_flags1 & SOF1_DATA_IDEMPOTENT) {
|
|
so->so_flags1 &= ~SOF1_DATA_IDEMPOTENT;
|
|
}
|
|
}
|
|
|
|
void
|
|
sonullevent(struct socket *so, void *arg, uint32_t hint)
|
|
{
|
|
#pragma unused(so, arg, hint)
|
|
}
|
|
|
|
/*
|
|
* Here is the definition of some of the basic objects in the kern.ipc
|
|
* branch of the MIB.
|
|
*/
|
|
SYSCTL_NODE(_kern, KERN_IPC, ipc,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY, 0, "IPC");
|
|
|
|
/* Check that the maximum socket buffer size is within a range */
|
|
|
|
static int
|
|
sysctl_sb_max SYSCTL_HANDLER_ARGS
|
|
{
|
|
#pragma unused(oidp, arg1, arg2)
|
|
u_int32_t new_value;
|
|
int changed = 0;
|
|
int error = sysctl_io_number(req, sb_max, sizeof(u_int32_t),
|
|
&new_value, &changed);
|
|
if (!error && changed) {
|
|
if (new_value > LOW_SB_MAX && new_value <= high_sb_max) {
|
|
sb_max = new_value;
|
|
} else {
|
|
error = ERANGE;
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
SYSCTL_PROC(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&sb_max, 0, &sysctl_sb_max, "IU", "Maximum socket buffer size");
|
|
|
|
SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &sb_efficiency, 0, "");
|
|
|
|
SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters,
|
|
CTLFLAG_RD | CTLFLAG_LOCKED, &nmbclusters, 0, "");
|
|
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, njcl,
|
|
CTLFLAG_RD | CTLFLAG_LOCKED, &njcl, 0, "");
|
|
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, njclbytes,
|
|
CTLFLAG_RD | CTLFLAG_LOCKED, &njclbytes, 0, "");
|
|
|
|
SYSCTL_INT(_kern_ipc, KIPC_SOQLIMITCOMPAT, soqlimitcompat,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &soqlimitcompat, 1,
|
|
"Enable socket queue limit compatibility");
|
|
|
|
/*
|
|
* Hack alert -- rdar://33572856
|
|
* A loopback test we cannot change was failing because it sets
|
|
* SO_SENDTIMEO to 5 seconds and that's also the value
|
|
* of the minimum persist timer. Because of the persist timer,
|
|
* the connection was not idle for 5 seconds and SO_SNDTIMEO
|
|
* was not triggering at 5 seconds causing the test failure.
|
|
* As a workaround we check the sysctl soqlencomp the test is already
|
|
* setting to set disable auto tuning of the receive buffer.
|
|
*/
|
|
|
|
extern u_int32_t tcp_do_autorcvbuf;
|
|
|
|
static int
|
|
sysctl_soqlencomp SYSCTL_HANDLER_ARGS
|
|
{
|
|
#pragma unused(oidp, arg1, arg2)
|
|
u_int32_t new_value;
|
|
int changed = 0;
|
|
int error = sysctl_io_number(req, soqlencomp, sizeof(u_int32_t),
|
|
&new_value, &changed);
|
|
if (!error && changed) {
|
|
soqlencomp = new_value;
|
|
if (new_value != 0) {
|
|
tcp_do_autorcvbuf = 0;
|
|
tcptv_persmin_val = 6 * TCP_RETRANSHZ;
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, soqlencomp,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&soqlencomp, 0, &sysctl_soqlencomp, "IU", "");
|
|
|
|
SYSCTL_NODE(_kern_ipc, OID_AUTO, io_policy, CTLFLAG_RW, 0, "network IO policy");
|
|
|
|
SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, log, CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&net_io_policy_log, 0, "");
|
|
|
|
#if CONFIG_PROC_UUID_POLICY
|
|
SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, uuid, CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&net_io_policy_uuid, 0, "");
|
|
#endif /* CONFIG_PROC_UUID_POLICY */
|