gems-kernel/source/THIRDPARTY/xnu/bsd/kern/uipc_syscalls.c
2024-06-03 11:29:39 -05:00

4114 lines
101 KiB
C

/*
* Copyright (c) 2000-2024 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1982, 1986, 1989, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* sendfile(2) and related extensions:
* Copyright (c) 1998, David Greenman. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/filedesc.h>
#include <sys/proc_internal.h>
#include <sys/file_internal.h>
#include <sys/vnode_internal.h>
#include <sys/malloc.h>
#include <sys/mcache.h>
#include <sys/mbuf.h>
#include <kern/locks.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/kernel.h>
#include <sys/uio_internal.h>
#include <sys/kauth.h>
#include <kern/task.h>
#include <sys/priv.h>
#include <sys/sysctl.h>
#include <sys/sys_domain.h>
#include <sys/types.h>
#include <security/audit/audit.h>
#include <sys/kdebug.h>
#include <sys/sysproto.h>
#include <netinet/in.h>
#include <net/route.h>
#include <netinet/in_pcb.h>
#include <os/log.h>
#include <os/ptrtools.h>
#include <os/log.h>
#if CONFIG_MACF_SOCKET_SUBSET
#include <security/mac_framework.h>
#endif /* MAC_SOCKET_SUBSET */
#include <net/sockaddr_utils.h>
#define f_flag fp_glob->fg_flag
#define f_ops fp_glob->fg_ops
#define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETSOCK, 0)
#define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETSOCK, 2)
#define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETSOCK, 1)
#define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETSOCK, 3)
#define DBG_FNC_SENDMSG NETDBG_CODE(DBG_NETSOCK, (1 << 8) | 1)
#define DBG_FNC_SENDTO NETDBG_CODE(DBG_NETSOCK, (2 << 8) | 1)
#define DBG_FNC_SENDIT NETDBG_CODE(DBG_NETSOCK, (3 << 8) | 1)
#define DBG_FNC_RECVFROM NETDBG_CODE(DBG_NETSOCK, (5 << 8))
#define DBG_FNC_RECVMSG NETDBG_CODE(DBG_NETSOCK, (6 << 8))
#define DBG_FNC_RECVIT NETDBG_CODE(DBG_NETSOCK, (7 << 8))
#define DBG_FNC_SENDFILE NETDBG_CODE(DBG_NETSOCK, (10 << 8))
#define DBG_FNC_SENDFILE_WAIT NETDBG_CODE(DBG_NETSOCK, ((10 << 8) | 1))
#define DBG_FNC_SENDFILE_READ NETDBG_CODE(DBG_NETSOCK, ((10 << 8) | 2))
#define DBG_FNC_SENDFILE_SEND NETDBG_CODE(DBG_NETSOCK, ((10 << 8) | 3))
#define DBG_FNC_SENDMSG_X NETDBG_CODE(DBG_NETSOCK, (11 << 8))
#define DBG_FNC_RECVMSG_X NETDBG_CODE(DBG_NETSOCK, (12 << 8))
/* Forward declarations for referenced types */
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(void, void, __CCT_PTR);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(uint8_t, uint8_t, __CCT_PTR);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(int32_t, int32, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(int, int, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(user_ssize_t, user_ssize, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(unsigned int, uint, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(sae_connid_t, sae_connid, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(socklen_t, socklen, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(struct setsockopt_args, setsockopt_args, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(struct connectx_args, connectx_args, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(struct disconnectx_args, disconnectx_args, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(struct cmsghdr, cmsghdr, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(struct timeval, timeval, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(struct user64_timeval, user64_timeval, __CCT_REF);
__CCT_DECLARE_CONSTRAINED_PTR_TYPE(struct user32_timeval, user32_timeval, __CCT_REF);
static int sendit(proc_ref_t, socket_ref_t, user_msghdr_ref_t, uio_t,
int, int32_ref_t );
static int recvit(proc_ref_t, int, user_msghdr_ref_t, uio_t, user_addr_t,
int32_ref_t);
static int connectit(socket_ref_t, sockaddr_ref_t);
static int getsockaddr(socket_ref_t, sockaddr_ref_ref_t, user_addr_t,
size_t, boolean_t);
static int getsockaddr_s(socket_ref_t, sockaddr_storage_ref_t,
user_addr_t, size_t, boolean_t);
#if SENDFILE
static void alloc_sendpkt(int, size_t, uint_ref_t, mbuf_ref_ref_t,
boolean_t);
#endif /* SENDFILE */
static int connectx_nocancel(proc_ref_t, connectx_args_ref_t, int_ref_t);
static int connectitx(socket_ref_t, sockaddr_ref_t,
sockaddr_ref_t, proc_ref_t, uint32_t, sae_associd_t,
sae_connid_ref_t, uio_t, unsigned int, user_ssize_ref_t);
static int disconnectx_nocancel(proc_ref_t, disconnectx_args_ref_t,
int_ref_t);
static int socket_common(proc_ref_t, int, int, int, pid_t, int32_ref_t, int);
static int internalize_recv_msghdr_array(const void_ptr_t, int, int,
u_int count, user_msghdr_x_ptr_t, recv_msg_elem_ptr_t);
static u_int externalize_recv_msghdr_array(proc_ref_t, socket_ref_t, void_ptr_t,
u_int count, user_msghdr_x_ptr_t, recv_msg_elem_ptr_t, int_ref_t);
static recv_msg_elem_ptr_t alloc_recv_msg_array(u_int count);
static int recv_msg_array_is_valid(recv_msg_elem_ptr_t, u_int count);
static void free_recv_msg_array(recv_msg_elem_ptr_t, u_int count);
static int copyout_control(proc_ref_t, mbuf_ref_t, user_addr_t control,
socklen_ref_t, int_ref_t, socket_ref_t);
SYSCTL_DECL(_kern_ipc);
#define SO_MAX_MSG_X_DEFAULT 256
static u_int somaxsendmsgx = SO_MAX_MSG_X_DEFAULT;
SYSCTL_UINT(_kern_ipc, OID_AUTO, maxsendmsgx,
CTLFLAG_RW | CTLFLAG_LOCKED, &somaxsendmsgx, 0, "");
static u_int somaxrecvmsgx = SO_MAX_MSG_X_DEFAULT;
SYSCTL_UINT(_kern_ipc, OID_AUTO, maxrecvmsgx,
CTLFLAG_RW | CTLFLAG_LOCKED, &somaxrecvmsgx, 0, "");
static u_int missingpktinfo = 0;
SYSCTL_UINT(_kern_ipc, OID_AUTO, missingpktinfo,
CTLFLAG_RD | CTLFLAG_LOCKED, &missingpktinfo, 0, "");
static int do_recvmsg_x_donttrunc = 0;
SYSCTL_INT(_kern_ipc, OID_AUTO, do_recvmsg_x_donttrunc,
CTLFLAG_RW | CTLFLAG_LOCKED, &do_recvmsg_x_donttrunc, 0, "");
#if DEBUG || DEVELOPMENT
static int uipc_debug = 0;
SYSCTL_INT(_kern_ipc, OID_AUTO, debug,
CTLFLAG_RW | CTLFLAG_LOCKED, &uipc_debug, 0, "");
#define DEBUG_KERNEL_ADDRPERM(_v) (_v)
#define DBG_PRINTF(...) if (uipc_debug != 0) { \
os_log(OS_LOG_DEFAULT, __VA_ARGS__); \
}
#else
#define DEBUG_KERNEL_ADDRPERM(_v) VM_KERNEL_ADDRPERM(_v)
#define DBG_PRINTF(...) do { } while (0)
#endif
/*
* Values for sendmsg_x_mode
* 0: default
* 1: sendit loop one at a time
* 2: old implementation
*/
static u_int sendmsg_x_mode = 0;
SYSCTL_UINT(_kern_ipc, OID_AUTO, sendmsg_x_mode,
CTLFLAG_RW | CTLFLAG_LOCKED, &sendmsg_x_mode, 0, "");
/*
* System call interface to the socket abstraction.
*/
extern const struct fileops socketops;
/*
* Returns: 0 Success
* EACCES Mandatory Access Control failure
* falloc:ENFILE
* falloc:EMFILE
* falloc:ENOMEM
* socreate:EAFNOSUPPORT
* socreate:EPROTOTYPE
* socreate:EPROTONOSUPPORT
* socreate:ENOBUFS
* socreate:ENOMEM
* socreate:??? [other protocol families, IPSEC]
*/
int
socket(proc_ref_t p,
struct socket_args *uap,
int32_ref_t retval)
{
return socket_common(p, uap->domain, uap->type, uap->protocol,
proc_selfpid(), retval, 0);
}
int
socket_delegate(proc_ref_t p,
struct socket_delegate_args *uap,
int32_ref_t retval)
{
return socket_common(p, uap->domain, uap->type, uap->protocol,
uap->epid, retval, 1);
}
static int
socket_common(proc_ref_t p,
int domain,
int type,
int protocol,
pid_t epid,
int32_ref_t retval,
int delegate)
{
socket_ref_t so;
fileproc_ref_t fp;
int fd, error;
AUDIT_ARG(socket, domain, type, protocol);
#if CONFIG_MACF_SOCKET_SUBSET
if ((error = mac_socket_check_create(kauth_cred_get(), domain,
type, protocol)) != 0) {
return error;
}
#endif /* MAC_SOCKET_SUBSET */
if (delegate) {
error = priv_check_cred(kauth_cred_get(),
PRIV_NET_PRIVILEGED_SOCKET_DELEGATE, 0);
if (error) {
return EACCES;
}
}
error = falloc(p, &fp, &fd);
if (error) {
return error;
}
fp->f_flag = FREAD | FWRITE;
fp->f_ops = &socketops;
if (delegate) {
error = socreate_delegate(domain, &so, type, protocol, epid);
} else {
error = socreate(domain, &so, type, protocol);
}
if (error) {
fp_free(p, fd, fp);
} else {
fp_set_data(fp, so);
proc_fdlock(p);
procfdtbl_releasefd(p, fd, NULL);
if (ENTR_SHOULDTRACE) {
KERNEL_ENERGYTRACE(kEnTrActKernSocket, DBG_FUNC_START,
fd, 0, (int64_t)VM_KERNEL_ADDRPERM(so));
}
fp_drop(p, fd, fp, 1);
proc_fdunlock(p);
*retval = fd;
}
return error;
}
/*
* Returns: 0 Success
* EDESTADDRREQ Destination address required
* EBADF Bad file descriptor
* EACCES Mandatory Access Control failure
* file_socket:ENOTSOCK
* file_socket:EBADF
* getsockaddr:ENAMETOOLONG Filename too long
* getsockaddr:EINVAL Invalid argument
* getsockaddr:ENOMEM Not enough space
* getsockaddr:EFAULT Bad address
* sobindlock:???
*/
/* ARGSUSED */
int
bind(__unused proc_t p, struct bind_args *uap, __unused int32_ref_t retval)
{
struct sockaddr_storage ss;
sockaddr_ref_t sa = NULL;
socket_ref_t so;
boolean_t want_free = TRUE;
int error;
AUDIT_ARG(fd, uap->s);
error = file_socket(uap->s, &so);
if (error != 0) {
return error;
}
if (so == NULL) {
error = EBADF;
goto out;
}
if (uap->name == USER_ADDR_NULL) {
error = EDESTADDRREQ;
goto out;
}
if (uap->namelen > sizeof(ss)) {
error = getsockaddr(so, &sa, uap->name, uap->namelen, TRUE);
} else {
error = getsockaddr_s(so, &ss, uap->name, uap->namelen, TRUE);
if (error == 0) {
sa = SA(&ss);
want_free = FALSE;
}
}
if (error != 0) {
goto out;
}
AUDIT_ARG(sockaddr, vfs_context_cwd(vfs_context_current()), sa);
#if CONFIG_MACF_SOCKET_SUBSET
if ((sa != NULL && sa->sa_family == AF_SYSTEM) ||
(error = mac_socket_check_bind(kauth_cred_get(), so, sa)) == 0) {
error = sobindlock(so, sa, 1); /* will lock socket */
}
#else
error = sobindlock(so, sa, 1); /* will lock socket */
#endif /* MAC_SOCKET_SUBSET */
if (want_free) {
free_sockaddr(sa);
}
out:
file_drop(uap->s);
return error;
}
/*
* Returns: 0 Success
* EBADF
* EACCES Mandatory Access Control failure
* file_socket:ENOTSOCK
* file_socket:EBADF
* solisten:EINVAL
* solisten:EOPNOTSUPP
* solisten:???
*/
int
listen(__unused proc_ref_t p, struct listen_args *uap,
__unused int32_ref_t retval)
{
int error;
socket_ref_t so;
AUDIT_ARG(fd, uap->s);
error = file_socket(uap->s, &so);
if (error) {
return error;
}
if (so != NULL)
#if CONFIG_MACF_SOCKET_SUBSET
{
error = mac_socket_check_listen(kauth_cred_get(), so);
if (error == 0) {
error = solisten(so, uap->backlog);
}
}
#else
{ error = solisten(so, uap->backlog);}
#endif /* MAC_SOCKET_SUBSET */
else {
error = EBADF;
}
file_drop(uap->s);
return error;
}
/*
* Returns: fp_get_ftype:EBADF Bad file descriptor
* fp_get_ftype:ENOTSOCK Socket operation on non-socket
* :EFAULT Bad address on copyin/copyout
* :EBADF Bad file descriptor
* :EOPNOTSUPP Operation not supported on socket
* :EINVAL Invalid argument
* :EWOULDBLOCK Operation would block
* :ECONNABORTED Connection aborted
* :EINTR Interrupted function
* :EACCES Mandatory Access Control failure
* falloc:ENFILE Too many files open in system
* falloc:EMFILE Too many open files
* falloc:ENOMEM Not enough space
* 0 Success
*/
int
accept_nocancel(proc_ref_t p, struct accept_nocancel_args *uap,
int32_ref_t retval)
{
fileproc_ref_t fp;
sockaddr_ref_t sa = NULL;
socklen_t namelen;
int error;
socket_ref_t head;
socket_ref_t so = NULL;
lck_mtx_t *mutex_held;
int fd = uap->s;
int newfd;
unsigned int fflag;
int dosocklock = 0;
*retval = -1;
AUDIT_ARG(fd, uap->s);
if (uap->name) {
error = copyin(uap->anamelen, (caddr_t)&namelen,
sizeof(socklen_t));
if (error) {
return error;
}
}
error = fp_get_ftype(p, fd, DTYPE_SOCKET, ENOTSOCK, &fp);
if (error) {
return error;
}
head = (struct socket *)fp_get_data(fp);
#if CONFIG_MACF_SOCKET_SUBSET
if ((error = mac_socket_check_accept(kauth_cred_get(), head)) != 0) {
goto out;
}
#endif /* MAC_SOCKET_SUBSET */
socket_lock(head, 1);
if (head->so_proto->pr_getlock != NULL) {
mutex_held = (*head->so_proto->pr_getlock)(head, PR_F_WILLUNLOCK);
dosocklock = 1;
} else {
mutex_held = head->so_proto->pr_domain->dom_mtx;
dosocklock = 0;
}
if ((head->so_options & SO_ACCEPTCONN) == 0) {
if ((head->so_proto->pr_flags & PR_CONNREQUIRED) == 0) {
error = EOPNOTSUPP;
} else {
/* POSIX: The socket is not accepting connections */
error = EINVAL;
}
socket_unlock(head, 1);
goto out;
}
check_again:
if ((head->so_state & SS_NBIO) && head->so_comp.tqh_first == NULL) {
socket_unlock(head, 1);
error = EWOULDBLOCK;
goto out;
}
while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0) {
if (head->so_state & SS_CANTRCVMORE) {
head->so_error = ECONNABORTED;
break;
}
if (head->so_usecount < 1) {
panic("accept: head=%p refcount=%d", head,
head->so_usecount);
}
error = msleep((caddr_t)&head->so_timeo, mutex_held,
PSOCK | PCATCH, "accept", 0);
if (head->so_usecount < 1) {
panic("accept: 2 head=%p refcount=%d", head,
head->so_usecount);
}
if ((head->so_state & SS_DRAINING)) {
error = ECONNABORTED;
}
if (error) {
socket_unlock(head, 1);
goto out;
}
}
if (head->so_error) {
error = head->so_error;
head->so_error = 0;
socket_unlock(head, 1);
goto out;
}
/*
* At this point we know that there is at least one connection
* ready to be accepted. Remove it from the queue prior to
* allocating the file descriptor for it since falloc() may
* block allowing another process to accept the connection
* instead.
*/
lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
so_acquire_accept_list(head, NULL);
if (TAILQ_EMPTY(&head->so_comp)) {
so_release_accept_list(head);
goto check_again;
}
so = TAILQ_FIRST(&head->so_comp);
TAILQ_REMOVE(&head->so_comp, so, so_list);
/*
* Acquire the lock of the new connection
* as we may be in the process of receiving
* a packet that may change its so_state
* (e.g.: a TCP FIN).
*/
if (dosocklock) {
socket_lock(so, 0);
}
so->so_head = NULL;
so->so_state &= ~SS_COMP;
if (dosocklock) {
socket_unlock(so, 0);
}
head->so_qlen--;
so_release_accept_list(head);
/* unlock head to avoid deadlock with select, keep a ref on head */
socket_unlock(head, 0);
#if CONFIG_MACF_SOCKET_SUBSET
/*
* Pass the pre-accepted socket to the MAC framework. This is
* cheaper than allocating a file descriptor for the socket,
* calling the protocol accept callback, and possibly freeing
* the file descriptor should the MAC check fails.
*/
if ((error = mac_socket_check_accepted(kauth_cred_get(), so)) != 0) {
socket_lock(so, 1);
so->so_state &= ~SS_NOFDREF;
socket_unlock(so, 1);
soclose(so);
/* Drop reference on listening socket */
sodereference(head);
goto out;
}
#endif /* MAC_SOCKET_SUBSET */
/*
* Pass the pre-accepted socket to any interested socket filter(s).
* Upon failure, the socket would have been closed by the callee.
*/
if (so->so_filt != NULL && (error = soacceptfilter(so, head)) != 0) {
/* Drop reference on listening socket */
sodereference(head);
/* Propagate socket filter's error code to the caller */
goto out;
}
fflag = fp->f_flag;
error = falloc(p, &fp, &newfd);
if (error) {
/*
* Probably ran out of file descriptors.
*
* <rdar://problem/8554930>
* Don't put this back on the socket like we used to, that
* just causes the client to spin. Drop the socket.
*/
socket_lock(so, 1);
so->so_state &= ~SS_NOFDREF;
socket_unlock(so, 1);
soclose(so);
sodereference(head);
goto out;
}
*retval = newfd;
fp->f_flag = fflag;
fp->f_ops = &socketops;
fp_set_data(fp, so);
socket_lock(head, 0);
if (dosocklock) {
socket_lock(so, 1);
}
/* Sync socket non-blocking/async state with file flags */
if (fp->f_flag & FNONBLOCK) {
so->so_state |= SS_NBIO;
} else {
so->so_state &= ~SS_NBIO;
}
if (fp->f_flag & FASYNC) {
so->so_state |= SS_ASYNC;
so->so_rcv.sb_flags |= SB_ASYNC;
so->so_snd.sb_flags |= SB_ASYNC;
} else {
so->so_state &= ~SS_ASYNC;
so->so_rcv.sb_flags &= ~SB_ASYNC;
so->so_snd.sb_flags &= ~SB_ASYNC;
}
(void) soacceptlock(so, &sa, 0);
socket_unlock(head, 1);
if (sa == NULL) {
namelen = 0;
if (uap->name) {
goto gotnoname;
}
error = 0;
goto releasefd;
}
AUDIT_ARG(sockaddr, vfs_context_cwd(vfs_context_current()), sa);
if (uap->name) {
socklen_t sa_len;
/* save sa_len before it is destroyed */
sa_len = sa->sa_len;
namelen = MIN(namelen, sa_len);
error = copyout(sa, uap->name, namelen);
if (!error) {
/* return the actual, untruncated address length */
namelen = sa_len;
}
gotnoname:
error = copyout((caddr_t)&namelen, uap->anamelen,
sizeof(socklen_t));
}
free_sockaddr(sa);
releasefd:
/*
* If the socket has been marked as inactive by sosetdefunct(),
* disallow further operations on it.
*/
if (so->so_flags & SOF_DEFUNCT) {
sodefunct(current_proc(), so,
SHUTDOWN_SOCKET_LEVEL_DISCONNECT_INTERNAL);
}
if (dosocklock) {
socket_unlock(so, 1);
}
proc_fdlock(p);
procfdtbl_releasefd(p, newfd, NULL);
fp_drop(p, newfd, fp, 1);
proc_fdunlock(p);
out:
if (error == 0 && ENTR_SHOULDTRACE) {
KERNEL_ENERGYTRACE(kEnTrActKernSocket, DBG_FUNC_START,
newfd, 0, (int64_t)VM_KERNEL_ADDRPERM(so));
}
file_drop(fd);
return error;
}
int
accept(proc_ref_t p, struct accept_args *uap, int32_ref_t retval)
{
__pthread_testcancel(1);
return accept_nocancel(p, (struct accept_nocancel_args *)uap,
retval);
}
/*
* Returns: 0 Success
* EBADF Bad file descriptor
* EALREADY Connection already in progress
* EINPROGRESS Operation in progress
* ECONNABORTED Connection aborted
* EINTR Interrupted function
* EACCES Mandatory Access Control failure
* file_socket:ENOTSOCK
* file_socket:EBADF
* getsockaddr:ENAMETOOLONG Filename too long
* getsockaddr:EINVAL Invalid argument
* getsockaddr:ENOMEM Not enough space
* getsockaddr:EFAULT Bad address
* soconnectlock:EOPNOTSUPP
* soconnectlock:EISCONN
* soconnectlock:??? [depends on protocol, filters]
* msleep:EINTR
*
* Imputed: so_error error may be set from so_error, which
* may have been set by soconnectlock.
*/
/* ARGSUSED */
int
connect(proc_ref_t p, struct connect_args *uap, int32_ref_t retval)
{
__pthread_testcancel(1);
return connect_nocancel(p, (struct connect_nocancel_args *)uap,
retval);
}
int
connect_nocancel(proc_t p, struct connect_nocancel_args *uap, int32_ref_t retval)
{
#pragma unused(p, retval)
socket_ref_t so;
struct sockaddr_storage ss;
sockaddr_ref_t sa = NULL;
int error;
int fd = uap->s;
boolean_t dgram;
AUDIT_ARG(fd, uap->s);
error = file_socket(fd, &so);
if (error != 0) {
return error;
}
if (so == NULL) {
error = EBADF;
goto out;
}
/*
* Ask getsockaddr{_s} to not translate AF_UNSPEC to AF_INET
* if this is a datagram socket; translate for other types.
*/
dgram = (so->so_type == SOCK_DGRAM);
/* Get socket address now before we obtain socket lock */
if (uap->namelen > sizeof(ss)) {
error = getsockaddr(so, &sa, uap->name, uap->namelen, !dgram);
} else {
error = getsockaddr_s(so, &ss, uap->name, uap->namelen, !dgram);
if (error == 0) {
sa = SA(&ss);
}
}
if (error != 0) {
goto out;
}
error = connectit(so, sa);
if (sa != NULL && sa != SA(&ss)) {
free_sockaddr(sa);
}
if (error == ERESTART) {
error = EINTR;
}
out:
file_drop(fd);
return error;
}
static int
connectx_nocancel(proc_ref_t p, connectx_args_ref_t uap, int_ref_t retval)
{
#pragma unused(p, retval)
struct sockaddr_storage ss, sd;
sockaddr_ref_t src = NULL, dst = NULL;
socket_ref_t so;
int error, error1, fd = uap->socket;
boolean_t dgram;
sae_connid_t cid = SAE_CONNID_ANY;
struct user32_sa_endpoints ep32;
struct user64_sa_endpoints ep64;
struct user_sa_endpoints ep;
user_ssize_t bytes_written = 0;
struct user_iovec *iovp;
uio_t auio = NULL;
AUDIT_ARG(fd, uap->socket);
error = file_socket(fd, &so);
if (error != 0) {
return error;
}
if (so == NULL) {
error = EBADF;
goto out;
}
if (uap->endpoints == USER_ADDR_NULL) {
error = EINVAL;
goto out;
}
if (IS_64BIT_PROCESS(p)) {
error = copyin(uap->endpoints, (caddr_t)&ep64, sizeof(ep64));
if (error != 0) {
goto out;
}
ep.sae_srcif = ep64.sae_srcif;
ep.sae_srcaddr = (user_addr_t)ep64.sae_srcaddr;
ep.sae_srcaddrlen = ep64.sae_srcaddrlen;
ep.sae_dstaddr = (user_addr_t)ep64.sae_dstaddr;
ep.sae_dstaddrlen = ep64.sae_dstaddrlen;
} else {
error = copyin(uap->endpoints, (caddr_t)&ep32, sizeof(ep32));
if (error != 0) {
goto out;
}
ep.sae_srcif = ep32.sae_srcif;
ep.sae_srcaddr = ep32.sae_srcaddr;
ep.sae_srcaddrlen = ep32.sae_srcaddrlen;
ep.sae_dstaddr = ep32.sae_dstaddr;
ep.sae_dstaddrlen = ep32.sae_dstaddrlen;
}
/*
* Ask getsockaddr{_s} to not translate AF_UNSPEC to AF_INET
* if this is a datagram socket; translate for other types.
*/
dgram = (so->so_type == SOCK_DGRAM);
/* Get socket address now before we obtain socket lock */
if (ep.sae_srcaddr != USER_ADDR_NULL) {
if (ep.sae_srcaddrlen > sizeof(ss)) {
error = getsockaddr(so, &src, ep.sae_srcaddr, ep.sae_srcaddrlen, dgram);
} else {
error = getsockaddr_s(so, &ss, ep.sae_srcaddr, ep.sae_srcaddrlen, dgram);
if (error == 0) {
src = SA(&ss);
}
}
if (error) {
goto out;
}
}
if (ep.sae_dstaddr == USER_ADDR_NULL) {
error = EINVAL;
goto out;
}
/* Get socket address now before we obtain socket lock */
if (ep.sae_dstaddrlen > sizeof(sd)) {
error = getsockaddr(so, &dst, ep.sae_dstaddr, ep.sae_dstaddrlen, dgram);
} else {
error = getsockaddr_s(so, &sd, ep.sae_dstaddr, ep.sae_dstaddrlen, dgram);
if (error == 0) {
dst = SA(&sd);
}
}
if (error) {
goto out;
}
VERIFY(dst != NULL);
if (uap->iov != USER_ADDR_NULL) {
/* Verify range before calling uio_create() */
if (uap->iovcnt <= 0 || uap->iovcnt > UIO_MAXIOV) {
error = EINVAL;
goto out;
}
if (uap->len == USER_ADDR_NULL) {
error = EINVAL;
goto out;
}
/* allocate a uio to hold the number of iovecs passed */
auio = uio_create(uap->iovcnt, 0,
(IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32),
UIO_WRITE);
if (auio == NULL) {
error = ENOMEM;
goto out;
}
/*
* get location of iovecs within the uio.
* then copyin the iovecs from user space.
*/
iovp = uio_iovsaddr_user(auio);
if (iovp == NULL) {
error = ENOMEM;
goto out;
}
error = copyin_user_iovec_array(uap->iov,
IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32,
uap->iovcnt, iovp);
if (error != 0) {
goto out;
}
/* finish setup of uio_t */
error = uio_calculateresid_user(auio);
if (error != 0) {
goto out;
}
}
error = connectitx(so, src, dst, p, ep.sae_srcif, uap->associd,
&cid, auio, uap->flags, &bytes_written);
if (error == ERESTART) {
error = EINTR;
}
if (uap->len != USER_ADDR_NULL) {
if (IS_64BIT_PROCESS(p)) {
error1 = copyout(&bytes_written, uap->len, sizeof(user64_size_t));
} else {
error1 = copyout(&bytes_written, uap->len, sizeof(user32_size_t));
}
/* give precedence to connectitx errors */
if ((error1 != 0) && (error == 0)) {
error = error1;
}
}
if (uap->connid != USER_ADDR_NULL) {
error1 = copyout(&cid, uap->connid, sizeof(cid));
/* give precedence to connectitx errors */
if ((error1 != 0) && (error == 0)) {
error = error1;
}
}
out:
file_drop(fd);
if (auio != NULL) {
uio_free(auio);
}
if (src != NULL && src != SA(&ss)) {
free_sockaddr(src);
}
if (dst != NULL && dst != SA(&sd)) {
free_sockaddr(dst);
}
return error;
}
int
connectx(proc_ref_t p, struct connectx_args *uap, int *retval)
{
/*
* Due to similiarity with a POSIX interface, define as
* an unofficial cancellation point.
*/
__pthread_testcancel(1);
return connectx_nocancel(p, uap, retval);
}
static int
connectit(struct socket *so, sockaddr_ref_t sa)
{
int error;
AUDIT_ARG(sockaddr, vfs_context_cwd(vfs_context_current()), sa);
#if CONFIG_MACF_SOCKET_SUBSET
if ((error = mac_socket_check_connect(kauth_cred_get(), so, sa)) != 0) {
return error;
}
#endif /* MAC_SOCKET_SUBSET */
socket_lock(so, 1);
if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
error = EALREADY;
goto out;
}
error = soconnectlock(so, sa, 0);
if (error != 0) {
goto out;
}
if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
error = EINPROGRESS;
goto out;
}
while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
lck_mtx_t *mutex_held;
if (so->so_proto->pr_getlock != NULL) {
mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK);
} else {
mutex_held = so->so_proto->pr_domain->dom_mtx;
}
error = msleep((caddr_t)&so->so_timeo, mutex_held,
PSOCK | PCATCH, __func__, 0);
if (so->so_state & SS_DRAINING) {
error = ECONNABORTED;
}
if (error != 0) {
break;
}
}
if (error == 0) {
error = so->so_error;
so->so_error = 0;
}
out:
socket_unlock(so, 1);
return error;
}
static int
connectitx(struct socket *so, sockaddr_ref_t src,
sockaddr_ref_t dst, proc_ref_t p, uint32_t ifscope,
sae_associd_t aid, sae_connid_t *pcid, uio_t auio, unsigned int flags,
user_ssize_t *bytes_written)
{
int error;
VERIFY(dst != NULL);
AUDIT_ARG(sockaddr, vfs_context_cwd(vfs_context_current()), dst);
#if CONFIG_MACF_SOCKET_SUBSET
if ((error = mac_socket_check_connect(kauth_cred_get(), so, dst)) != 0) {
return error;
}
if (auio != NULL) {
if ((error = mac_socket_check_send(kauth_cred_get(), so, dst)) != 0) {
return error;
}
}
#endif /* MAC_SOCKET_SUBSET */
socket_lock(so, 1);
if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
error = EALREADY;
goto out;
}
error = soconnectxlocked(so, src, dst, p, ifscope,
aid, pcid, flags, NULL, 0, auio, bytes_written);
if (error != 0) {
goto out;
}
/*
* If, after the call to soconnectxlocked the flag is still set (in case
* data has been queued and the connect() has actually been triggered,
* it will have been unset by the transport), we exit immediately. There
* is no reason to wait on any event.
*/
if (so->so_flags1 & SOF1_PRECONNECT_DATA) {
error = 0;
goto out;
}
if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
error = EINPROGRESS;
goto out;
}
while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
lck_mtx_t *mutex_held;
if (so->so_proto->pr_getlock != NULL) {
mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK);
} else {
mutex_held = so->so_proto->pr_domain->dom_mtx;
}
error = msleep((caddr_t)&so->so_timeo, mutex_held,
PSOCK | PCATCH, __func__, 0);
if (so->so_state & SS_DRAINING) {
error = ECONNABORTED;
}
if (error != 0) {
break;
}
}
if (error == 0) {
error = so->so_error;
so->so_error = 0;
}
out:
socket_unlock(so, 1);
return error;
}
int
peeloff(proc_ref_t p, struct peeloff_args *uap, int *retval)
{
#pragma unused(p, uap, retval)
/*
* Due to similiarity with a POSIX interface, define as
* an unofficial cancellation point.
*/
__pthread_testcancel(1);
return 0;
}
int
disconnectx(proc_ref_t p, struct disconnectx_args *uap, int *retval)
{
/*
* Due to similiarity with a POSIX interface, define as
* an unofficial cancellation point.
*/
__pthread_testcancel(1);
return disconnectx_nocancel(p, uap, retval);
}
static int
disconnectx_nocancel(proc_ref_t p, struct disconnectx_args *uap, int *retval)
{
#pragma unused(p, retval)
socket_ref_t so;
int fd = uap->s;
int error;
error = file_socket(fd, &so);
if (error != 0) {
return error;
}
if (so == NULL) {
error = EBADF;
goto out;
}
error = sodisconnectx(so, uap->aid, uap->cid);
out:
file_drop(fd);
return error;
}
/*
* Returns: 0 Success
* socreate:EAFNOSUPPORT
* socreate:EPROTOTYPE
* socreate:EPROTONOSUPPORT
* socreate:ENOBUFS
* socreate:ENOMEM
* socreate:EISCONN
* socreate:??? [other protocol families, IPSEC]
* falloc:ENFILE
* falloc:EMFILE
* falloc:ENOMEM
* copyout:EFAULT
* soconnect2:EINVAL
* soconnect2:EPROTOTYPE
* soconnect2:??? [other protocol families[
*/
int
socketpair(proc_ref_t p, struct socketpair_args *uap,
__unused int32_ref_t retval)
{
fileproc_ref_t fp1, fp2;
socket_ref_t so1, so2;
int fd, error, sv[2];
AUDIT_ARG(socket, uap->domain, uap->type, uap->protocol);
error = socreate(uap->domain, &so1, uap->type, uap->protocol);
if (error) {
return error;
}
error = socreate(uap->domain, &so2, uap->type, uap->protocol);
if (error) {
goto free1;
}
error = falloc(p, &fp1, &fd);
if (error) {
goto free2;
}
fp1->f_flag = FREAD | FWRITE;
fp1->f_ops = &socketops;
fp_set_data(fp1, so1);
sv[0] = fd;
error = falloc(p, &fp2, &fd);
if (error) {
goto free3;
}
fp2->f_flag = FREAD | FWRITE;
fp2->f_ops = &socketops;
fp_set_data(fp2, so2);
sv[1] = fd;
error = soconnect2(so1, so2);
if (error) {
goto free4;
}
if (uap->type == SOCK_DGRAM) {
/*
* Datagram socket connection is asymmetric.
*/
error = soconnect2(so2, so1);
if (error) {
goto free4;
}
}
if ((error = copyout(sv, uap->rsv, 2 * sizeof(int))) != 0) {
goto free4;
}
proc_fdlock(p);
procfdtbl_releasefd(p, sv[0], NULL);
procfdtbl_releasefd(p, sv[1], NULL);
fp_drop(p, sv[0], fp1, 1);
fp_drop(p, sv[1], fp2, 1);
proc_fdunlock(p);
return 0;
free4:
fp_free(p, sv[1], fp2);
free3:
fp_free(p, sv[0], fp1);
free2:
(void) soclose(so2);
free1:
(void) soclose(so1);
return error;
}
/*
* Returns: 0 Success
* EINVAL
* ENOBUFS
* EBADF
* EPIPE
* EACCES Mandatory Access Control failure
* file_socket:ENOTSOCK
* file_socket:EBADF
* getsockaddr:ENAMETOOLONG Filename too long
* getsockaddr:EINVAL Invalid argument
* getsockaddr:ENOMEM Not enough space
* getsockaddr:EFAULT Bad address
* <pru_sosend>:EACCES[TCP]
* <pru_sosend>:EADDRINUSE[TCP]
* <pru_sosend>:EADDRNOTAVAIL[TCP]
* <pru_sosend>:EAFNOSUPPORT[TCP]
* <pru_sosend>:EAGAIN[TCP]
* <pru_sosend>:EBADF
* <pru_sosend>:ECONNRESET[TCP]
* <pru_sosend>:EFAULT
* <pru_sosend>:EHOSTUNREACH[TCP]
* <pru_sosend>:EINTR
* <pru_sosend>:EINVAL
* <pru_sosend>:EISCONN[AF_INET]
* <pru_sosend>:EMSGSIZE[TCP]
* <pru_sosend>:ENETDOWN[TCP]
* <pru_sosend>:ENETUNREACH[TCP]
* <pru_sosend>:ENOBUFS
* <pru_sosend>:ENOMEM[TCP]
* <pru_sosend>:ENOTCONN[AF_INET]
* <pru_sosend>:EOPNOTSUPP
* <pru_sosend>:EPERM[TCP]
* <pru_sosend>:EPIPE
* <pru_sosend>:EWOULDBLOCK
* <pru_sosend>:???[TCP] [ignorable: mostly IPSEC/firewall/DLIL]
* <pru_sosend>:???[AF_INET] [whatever a filter author chooses]
* <pru_sosend>:??? [value from so_error]
* sockargs:???
*/
static int
sendit(proc_ref_t p, struct socket *so, user_msghdr_ref_t mp, uio_t uiop,
int flags, int32_ref_t retval)
{
mbuf_ref_t control = NULL;
struct sockaddr_storage ss;
sockaddr_ref_t to = NULL;
boolean_t want_free = TRUE;
int error;
user_ssize_t len;
KERNEL_DEBUG(DBG_FNC_SENDIT | DBG_FUNC_START, 0, 0, 0, 0, 0);
if (mp->msg_name != USER_ADDR_NULL) {
if (mp->msg_namelen > sizeof(ss)) {
error = getsockaddr(so, &to, mp->msg_name,
mp->msg_namelen, TRUE);
} else {
error = getsockaddr_s(so, &ss, mp->msg_name,
mp->msg_namelen, TRUE);
if (error == 0) {
to = SA(&ss);
want_free = FALSE;
}
}
if (error != 0) {
goto out;
}
AUDIT_ARG(sockaddr, vfs_context_cwd(vfs_context_current()), to);
}
if (mp->msg_control != USER_ADDR_NULL) {
if (mp->msg_controllen < sizeof(struct cmsghdr)) {
error = EINVAL;
goto bad;
}
error = sockargs(&control, mp->msg_control,
mp->msg_controllen, MT_CONTROL);
if (error != 0) {
goto bad;
}
}
#if CONFIG_MACF_SOCKET_SUBSET
/*
* We check the state without holding the socket lock;
* if a race condition occurs, it would simply result
* in an extra call to the MAC check function.
*/
if (to != NULL &&
!(so->so_state & SS_DEFUNCT) &&
(error = mac_socket_check_send(kauth_cred_get(), so, to)) != 0) {
if (control != NULL) {
m_freem(control);
}
goto bad;
}
#endif /* MAC_SOCKET_SUBSET */
len = uio_resid(uiop);
error = so->so_proto->pr_usrreqs->pru_sosend(so, to, uiop, 0,
control, flags);
if (error != 0) {
if (uio_resid(uiop) != len && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK)) {
error = 0;
}
/* Generation of SIGPIPE can be controlled per socket */
if (error == EPIPE && !(so->so_flags & SOF_NOSIGPIPE) &&
!(flags & MSG_NOSIGNAL)) {
psignal(p, SIGPIPE);
}
}
if (error == 0) {
*retval = (int)(len - uio_resid(uiop));
}
bad:
if (want_free) {
free_sockaddr(to);
}
out:
KERNEL_DEBUG(DBG_FNC_SENDIT | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
/*
* Returns: 0 Success
* ENOMEM
* sendit:??? [see sendit definition in this file]
* write:??? [4056224: applicable for pipes]
*/
int
sendto(proc_ref_t p, struct sendto_args *uap, int32_ref_t retval)
{
__pthread_testcancel(1);
return sendto_nocancel(p, (struct sendto_nocancel_args *)uap, retval);
}
int
sendto_nocancel(proc_ref_t p,
struct sendto_nocancel_args *uap,
int32_ref_t retval)
{
struct user_msghdr msg;
int error;
uio_t auio = NULL;
socket_ref_t so;
KERNEL_DEBUG(DBG_FNC_SENDTO | DBG_FUNC_START, 0, 0, 0, 0, 0);
AUDIT_ARG(fd, uap->s);
if (uap->flags & MSG_SKIPCFIL) {
error = EPERM;
goto done;
}
if (uap->len > LONG_MAX) {
error = EINVAL;
goto done;
}
auio = uio_create(1, 0,
(IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32),
UIO_WRITE);
if (auio == NULL) {
error = ENOMEM;
goto done;
}
uio_addiov(auio, uap->buf, uap->len);
msg.msg_name = uap->to;
msg.msg_namelen = uap->tolen;
/* no need to set up msg_iov. sendit uses uio_t we send it */
msg.msg_iov = 0;
msg.msg_iovlen = 0;
msg.msg_control = 0;
msg.msg_flags = 0;
error = file_socket(uap->s, &so);
if (error) {
goto done;
}
if (so == NULL) {
error = EBADF;
} else {
error = sendit(p, so, &msg, auio, uap->flags, retval);
}
file_drop(uap->s);
done:
if (auio != NULL) {
uio_free(auio);
}
KERNEL_DEBUG(DBG_FNC_SENDTO | DBG_FUNC_END, error, *retval, 0, 0, 0);
return error;
}
/*
* Returns: 0 Success
* ENOBUFS
* copyin:EFAULT
* sendit:??? [see sendit definition in this file]
*/
int
sendmsg(proc_ref_t p, struct sendmsg_args *uap, int32_ref_t retval)
{
__pthread_testcancel(1);
return sendmsg_nocancel(p, (struct sendmsg_nocancel_args *)uap,
retval);
}
int
sendmsg_nocancel(proc_ref_t p, struct sendmsg_nocancel_args *uap,
int32_ref_t retval)
{
struct user32_msghdr msg32;
struct user64_msghdr msg64;
struct user_msghdr user_msg;
caddr_t msghdrp;
int size_of_msghdr;
int error;
uio_t auio = NULL;
struct user_iovec *iovp;
socket_ref_t so;
const bool is_p_64bit_process = IS_64BIT_PROCESS(p);
KERNEL_DEBUG(DBG_FNC_SENDMSG | DBG_FUNC_START, 0, 0, 0, 0, 0);
AUDIT_ARG(fd, uap->s);
if (uap->flags & MSG_SKIPCFIL) {
error = EPERM;
goto done;
}
if (is_p_64bit_process) {
msghdrp = (caddr_t)&msg64;
size_of_msghdr = sizeof(msg64);
} else {
msghdrp = (caddr_t)&msg32;
size_of_msghdr = sizeof(msg32);
}
error = copyin(uap->msg, msghdrp, size_of_msghdr);
if (error) {
KERNEL_DEBUG(DBG_FNC_SENDMSG | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
if (is_p_64bit_process) {
user_msg.msg_flags = msg64.msg_flags;
user_msg.msg_controllen = msg64.msg_controllen;
user_msg.msg_control = (user_addr_t)msg64.msg_control;
user_msg.msg_iovlen = msg64.msg_iovlen;
user_msg.msg_iov = (user_addr_t)msg64.msg_iov;
user_msg.msg_namelen = msg64.msg_namelen;
user_msg.msg_name = (user_addr_t)msg64.msg_name;
} else {
user_msg.msg_flags = msg32.msg_flags;
user_msg.msg_controllen = msg32.msg_controllen;
user_msg.msg_control = msg32.msg_control;
user_msg.msg_iovlen = msg32.msg_iovlen;
user_msg.msg_iov = msg32.msg_iov;
user_msg.msg_namelen = msg32.msg_namelen;
user_msg.msg_name = msg32.msg_name;
}
if (user_msg.msg_iovlen <= 0 || user_msg.msg_iovlen > UIO_MAXIOV) {
KERNEL_DEBUG(DBG_FNC_SENDMSG | DBG_FUNC_END, EMSGSIZE,
0, 0, 0, 0);
return EMSGSIZE;
}
/* allocate a uio large enough to hold the number of iovecs passed */
auio = uio_create(user_msg.msg_iovlen, 0,
(is_p_64bit_process ? UIO_USERSPACE64 : UIO_USERSPACE32),
UIO_WRITE);
if (auio == NULL) {
error = ENOBUFS;
goto done;
}
if (user_msg.msg_iovlen) {
/*
* get location of iovecs within the uio.
* then copyin the iovecs from user space.
*/
iovp = uio_iovsaddr_user(auio);
if (iovp == NULL) {
error = ENOBUFS;
goto done;
}
error = copyin_user_iovec_array(user_msg.msg_iov,
is_p_64bit_process ? UIO_USERSPACE64 : UIO_USERSPACE32,
user_msg.msg_iovlen, iovp);
if (error) {
goto done;
}
user_msg.msg_iov = CAST_USER_ADDR_T(iovp);
/* finish setup of uio_t */
error = uio_calculateresid_user(auio);
if (error) {
goto done;
}
} else {
user_msg.msg_iov = 0;
}
/* msg_flags is ignored for send */
user_msg.msg_flags = 0;
error = file_socket(uap->s, &so);
if (error) {
goto done;
}
if (so == NULL) {
error = EBADF;
} else {
error = sendit(p, so, &user_msg, auio, uap->flags, retval);
}
file_drop(uap->s);
done:
if (auio != NULL) {
uio_free(auio);
}
KERNEL_DEBUG(DBG_FNC_SENDMSG | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
static int
internalize_user_msg_x(struct user_msghdr *user_msg, uio_t *auiop, proc_ref_t p, void_ptr_t user_msghdr_x_src)
{
const bool is_p_64bit_process = IS_64BIT_PROCESS(p);
uio_t auio = *auiop;
int error;
if (is_p_64bit_process) {
struct user64_msghdr_x msghdrx64;
error = copyin((user_addr_t)user_msghdr_x_src,
&msghdrx64, sizeof(msghdrx64));
if (error != 0) {
DBG_PRINTF("%s copyin() msghdrx64 failed %d",
__func__, error);
goto done;
}
user_msg->msg_name = msghdrx64.msg_name;
user_msg->msg_namelen = msghdrx64.msg_namelen;
user_msg->msg_iov = msghdrx64.msg_iov;
user_msg->msg_iovlen = msghdrx64.msg_iovlen;
user_msg->msg_control = msghdrx64.msg_control;
user_msg->msg_controllen = msghdrx64.msg_controllen;
} else {
struct user32_msghdr_x msghdrx32;
error = copyin((user_addr_t)user_msghdr_x_src,
&msghdrx32, sizeof(msghdrx32));
if (error != 0) {
DBG_PRINTF("%s copyin() msghdrx32 failed %d",
__func__, error);
goto done;
}
user_msg->msg_name = msghdrx32.msg_name;
user_msg->msg_namelen = msghdrx32.msg_namelen;
user_msg->msg_iov = msghdrx32.msg_iov;
user_msg->msg_iovlen = msghdrx32.msg_iovlen;
user_msg->msg_control = msghdrx32.msg_control;
user_msg->msg_controllen = msghdrx32.msg_controllen;
}
/* msg_flags is ignored for send */
user_msg->msg_flags = 0;
if (user_msg->msg_iovlen <= 0 || user_msg->msg_iovlen > UIO_MAXIOV) {
error = EMSGSIZE;
DBG_PRINTF("%s bad msg_iovlen, error %d",
__func__, error);
goto done;
}
/*
* Attempt to reuse the uio if large enough, otherwise we need
* a new one
*/
if (auio != NULL) {
if (auio->uio_max_iovs >= user_msg->msg_iovlen) {
uio_reset_fast(auio, 0,
is_p_64bit_process ? UIO_USERSPACE64 : UIO_USERSPACE32,
UIO_WRITE);
} else {
uio_free(auio);
auio = NULL;
}
}
if (auio == NULL) {
auio = uio_create(user_msg->msg_iovlen, 0,
is_p_64bit_process ? UIO_USERSPACE64 : UIO_USERSPACE32,
UIO_WRITE);
if (auio == NULL) {
error = ENOBUFS;
DBG_PRINTF("%s uio_create() failed %d",
__func__, error);
goto done;
}
}
if (user_msg->msg_iovlen) {
/*
* get location of iovecs within the uio.
* then copyin the iovecs from user space.
*/
struct user_iovec *iovp = uio_iovsaddr_user(auio);
if (iovp == NULL) {
error = ENOBUFS;
goto done;
}
error = copyin_user_iovec_array(user_msg->msg_iov,
is_p_64bit_process ? UIO_USERSPACE64 : UIO_USERSPACE32,
user_msg->msg_iovlen, iovp);
if (error != 0) {
goto done;
}
user_msg->msg_iov = CAST_USER_ADDR_T(iovp);
/* finish setup of uio_t */
error = uio_calculateresid_user(auio);
if (error) {
goto done;
}
} else {
user_msg->msg_iov = 0;
}
done:
*auiop = auio;
return error;
}
static int
mbuf_packet_from_uio(socket_ref_t so, mbuf_ref_ref_t mp, uio_t auio)
{
int error = 0;
uint16_t headroom = 0;
size_t bytes_to_alloc;
mbuf_ref_t top = NULL, m;
if (soreserveheadroom != 0) {
headroom = so->so_pktheadroom;
}
bytes_to_alloc = headroom + uio_resid(auio);
error = mbuf_allocpacket(MBUF_WAITOK, bytes_to_alloc, NULL, &top);
if (error != 0) {
os_log(OS_LOG_DEFAULT, "mbuf_packet_from_uio: mbuf_allocpacket %zu error %d",
bytes_to_alloc, error);
goto done;
}
if (headroom > 0 && headroom < mbuf_maxlen(top)) {
top->m_data += headroom;
}
for (m = top; m != NULL; m = m->m_next) {
int bytes_to_copy = (int)uio_resid(auio);
ssize_t mlen;
if ((m->m_flags & M_EXT)) {
mlen = m->m_ext.ext_size -
M_LEADINGSPACE(m);
} else if ((m->m_flags & M_PKTHDR)) {
mlen = MHLEN - M_LEADINGSPACE(m);
m_add_crumb(m, PKT_CRUMB_SOSEND);
} else {
mlen = MLEN - M_LEADINGSPACE(m);
}
int len = imin((int)mlen, bytes_to_copy);
error = uio_copyin_user(mtod(m, caddr_t), (int)len, auio);
if (error != 0) {
os_log(OS_LOG_DEFAULT, "mbuf_packet_from_uio: len %d error %d",
len, error);
goto done;
}
m->m_len = len;
top->m_pkthdr.len += len;
}
done:
if (error != 0) {
m_freem(top);
} else {
*mp = top;
}
return error;
}
static int
sendit_x(proc_ref_t p, socket_ref_t so, struct sendmsg_x_args *uap, u_int *retval)
{
int error = 0;
uio_t auio = NULL;
const bool is_p_64bit_process = IS_64BIT_PROCESS(p);
void_ptr_t src;
MBUFQ_HEAD() pktlist = {};
size_t total_pkt_len = 0;
u_int pkt_cnt = 0;
int flags = uap->flags;
mbuf_ref_t top;
MBUFQ_INIT(&pktlist);
*retval = 0;
/* We re-use the uio when possible */
auio = uio_create(1, 0,
(is_p_64bit_process ? UIO_USERSPACE64 : UIO_USERSPACE32),
UIO_WRITE);
if (auio == NULL) {
error = ENOBUFS;
DBG_PRINTF("%s uio_create() failed %d",
__func__, error);
goto done;
}
src = (void_ptr_t)uap->msgp;
/*
* Create a list of packets
*/
for (u_int i = 0; i < uap->cnt; i++) {
struct user_msghdr user_msg = {};
mbuf_ref_t m = NULL;
if (is_p_64bit_process) {
error = internalize_user_msg_x(&user_msg, &auio, p, ((struct user64_msghdr_x *)src) + i);
if (error != 0) {
os_log(OS_LOG_DEFAULT, "sendit_x: internalize_user_msg_x error %d\n", error);
goto done;
}
} else {
error = internalize_user_msg_x(&user_msg, &auio, p, ((struct user32_msghdr_x *)src) + i);
if (error != 0) {
os_log(OS_LOG_DEFAULT, "sendit_x: internalize_user_msg_x error %d\n", error);
goto done;
}
}
/*
* Stop on the first datagram that is too large
*/
if (uio_resid(auio) > so->so_snd.sb_hiwat) {
if (i == 0) {
error = EMSGSIZE;
goto done;
}
break;
}
/*
* An mbuf packet has the control mbuf(s) followed by data
* We allocate the mbufs in reverse order
*/
error = mbuf_packet_from_uio(so, &m, auio);
if (error != 0) {
os_log(OS_LOG_DEFAULT, "sendit_x: mbuf_packet_from_uio error %d\n", error);
goto done;
}
total_pkt_len += m->m_pkthdr.len;
if (user_msg.msg_control != USER_ADDR_NULL && user_msg.msg_controllen != 0) {
mbuf_ref_t control = NULL;
error = sockargs(&control, user_msg.msg_control, user_msg.msg_controllen, MT_CONTROL);
if (error != 0) {
os_log(OS_LOG_DEFAULT, "sendit_x: sockargs error %d\n", error);
goto done;
}
control->m_next = m;
m = control;
}
MBUFQ_ENQUEUE(&pktlist, m);
pkt_cnt += 1;
}
top = MBUFQ_FIRST(&pktlist);
MBUFQ_INIT(&pktlist);
error = sosend_list(so, top, total_pkt_len, &pkt_cnt, flags);
if (error != 0) {
os_log(OS_LOG_DEFAULT, "sendit_x: sosend_list error %d\n", error);
goto done;
}
done:
*retval = pkt_cnt;
if (auio != NULL) {
uio_free(auio);
}
MBUFQ_DRAIN(&pktlist);
return error;
}
int
sendmsg_x(proc_ref_t p, struct sendmsg_x_args *uap, user_ssize_t *retval)
{
void_ptr_t src;
int error;
uio_t auio = NULL;
socket_ref_t so;
u_int uiocnt = 0;
const bool is_p_64bit_process = IS_64BIT_PROCESS(p);
KERNEL_DEBUG(DBG_FNC_SENDMSG_X | DBG_FUNC_START, 0, 0, 0, 0, 0);
AUDIT_ARG(fd, uap->s);
if (uap->flags & MSG_SKIPCFIL) {
error = EPERM;
goto done_no_filedrop;
}
error = file_socket(uap->s, &so);
if (error) {
goto done_no_filedrop;
}
if (so == NULL) {
error = EBADF;
goto done;
}
/*
* For an atomic datagram connected socket we can build the list of
* mbuf packets with sosend_list()
*/
if (so->so_type == SOCK_DGRAM && sosendallatonce(so) &&
(so->so_state & SS_ISCONNECTED) && sendmsg_x_mode != 1) {
error = sendit_x(p, so, uap, &uiocnt);
if (error != 0) {
DBG_PRINTF("%s sendit_x() failed %d",
__func__, error);
}
goto done;
}
src = (void_ptr_t)uap->msgp;
/* We re-use the uio when possible */
auio = uio_create(1, 0,
(is_p_64bit_process ? UIO_USERSPACE64 : UIO_USERSPACE32),
UIO_WRITE);
if (auio == NULL) {
error = ENOBUFS;
DBG_PRINTF("%s uio_create() failed %d",
__func__, error);
goto done;
}
for (u_int i = 0; i < uap->cnt; i++) {
struct user_msghdr user_msg = {};
if (is_p_64bit_process) {
error = internalize_user_msg_x(&user_msg, &auio, p, ((struct user64_msghdr_x *)src) + i);
if (error != 0) {
goto done;
}
} else {
error = internalize_user_msg_x(&user_msg, &auio, p, ((struct user32_msghdr_x *)src) + i);
if (error != 0) {
goto done;
}
}
int32_t len = 0;
error = sendit(p, so, &user_msg, auio, uap->flags, &len);
if (error != 0) {
break;
}
uiocnt += 1;
}
done:
if (error != 0) {
if (uiocnt != 0 && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK ||
error == ENOBUFS || error == EMSGSIZE)) {
error = 0;
}
/* Generation of SIGPIPE can be controlled per socket */
if (error == EPIPE && !(so->so_flags & SOF_NOSIGPIPE) &&
!(uap->flags & MSG_NOSIGNAL)) {
psignal(p, SIGPIPE);
}
}
if (error == 0) {
*retval = (int)(uiocnt);
}
file_drop(uap->s);
done_no_filedrop:
if (auio != NULL) {
uio_free(auio);
}
KERNEL_DEBUG(DBG_FNC_SENDMSG_X | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
static int
copyout_sa(sockaddr_ref_t fromsa, user_addr_t name, socklen_t *namelen)
{
int error = 0;
socklen_t sa_len = 0;
ssize_t len;
len = *namelen;
if (len <= 0 || fromsa == 0) {
len = 0;
} else {
#ifndef MIN
#define MIN(a, b) ((a) > (b) ? (b) : (a))
#endif
sa_len = fromsa->sa_len;
len = MIN((unsigned int)len, sa_len);
error = copyout(fromsa, name, (unsigned)len);
if (error) {
goto out;
}
}
*namelen = sa_len;
out:
return 0;
}
static int
copyout_maddr(struct mbuf *m, user_addr_t name, socklen_t *namelen)
{
int error = 0;
socklen_t sa_len = 0;
ssize_t len;
len = *namelen;
if (len <= 0 || m == NULL) {
len = 0;
} else {
#ifndef MIN
#define MIN(a, b) ((a) > (b) ? (b) : (a))
#endif
struct sockaddr *fromsa = mtod(m, struct sockaddr *);
sa_len = fromsa->sa_len;
len = MIN((unsigned int)len, sa_len);
error = copyout(fromsa, name, (unsigned)len);
if (error != 0) {
goto out;
}
}
*namelen = sa_len;
out:
return 0;
}
static int
copyout_control(proc_ref_t p, mbuf_ref_t m, user_addr_t control,
socklen_ref_t controllen, int_ref_t flags, socket_ref_t so)
{
int error = 0;
socklen_t len;
user_addr_t ctlbuf;
struct inpcb *inp = NULL;
bool want_pktinfo = false;
bool seen_pktinfo = false;
if (so != NULL && (SOCK_DOM(so) == PF_INET6 || SOCK_DOM(so) == PF_INET)) {
inp = sotoinpcb(so);
want_pktinfo = (inp->inp_flags & IN6P_PKTINFO) != 0;
}
len = *controllen;
*controllen = 0;
ctlbuf = control;
while (m && len > 0) {
socklen_t tocopy;
struct cmsghdr *cp = mtod(m, struct cmsghdr *);
socklen_t cp_size = CMSG_ALIGN(cp->cmsg_len);
socklen_t buflen = m->m_len;
while (buflen > 0 && len > 0) {
/*
* SCM_TIMESTAMP hack because struct timeval has a
* different size for 32 bits and 64 bits processes
*/
if (cp->cmsg_level == SOL_SOCKET && cp->cmsg_type == SCM_TIMESTAMP) {
unsigned char tmp_buffer[CMSG_SPACE(sizeof(struct user64_timeval))] = {};
struct cmsghdr *tmp_cp = (struct cmsghdr *)(void *)tmp_buffer;
socklen_t tmp_space;
struct timeval *tv = (struct timeval *)(void *)CMSG_DATA(cp);
tmp_cp->cmsg_level = SOL_SOCKET;
tmp_cp->cmsg_type = SCM_TIMESTAMP;
if (proc_is64bit(p)) {
struct user64_timeval *tv64 = (struct user64_timeval *)(void *)CMSG_DATA(tmp_cp);
os_unaligned_deref(&tv64->tv_sec) = tv->tv_sec;
os_unaligned_deref(&tv64->tv_usec) = tv->tv_usec;
tmp_cp->cmsg_len = CMSG_LEN(sizeof(struct user64_timeval));
tmp_space = CMSG_SPACE(sizeof(struct user64_timeval));
} else {
struct user32_timeval *tv32 = (struct user32_timeval *)(void *)CMSG_DATA(tmp_cp);
tv32->tv_sec = (user32_time_t)tv->tv_sec;
tv32->tv_usec = tv->tv_usec;
tmp_cp->cmsg_len = CMSG_LEN(sizeof(struct user32_timeval));
tmp_space = CMSG_SPACE(sizeof(struct user32_timeval));
}
if (len >= tmp_space) {
tocopy = tmp_space;
} else {
*flags |= MSG_CTRUNC;
tocopy = len;
}
error = copyout(tmp_buffer, ctlbuf, tocopy);
if (error) {
goto out;
}
} else {
/* If socket has flow tracking and socket did not request address, ignore it */
if (SOFLOW_ENABLED(so) &&
((cp->cmsg_level == IPPROTO_IP && cp->cmsg_type == IP_RECVDSTADDR && inp != NULL &&
!(inp->inp_flags & INP_RECVDSTADDR)) ||
(cp->cmsg_level == IPPROTO_IPV6 && (cp->cmsg_type == IPV6_PKTINFO || cp->cmsg_type == IPV6_2292PKTINFO) && inp &&
!(inp->inp_flags & IN6P_PKTINFO)))) {
tocopy = 0;
} else {
if (cp_size > buflen) {
panic("cp_size > buflen, something wrong with alignment!");
}
if (len >= cp_size) {
tocopy = cp_size;
} else {
*flags |= MSG_CTRUNC;
tocopy = len;
}
error = copyout((caddr_t) cp, ctlbuf, tocopy);
if (error) {
goto out;
}
if (want_pktinfo && cp->cmsg_level == IPPROTO_IPV6 &&
(cp->cmsg_type == IPV6_PKTINFO || cp->cmsg_type == IPV6_2292PKTINFO)) {
seen_pktinfo = true;
}
}
}
ctlbuf += tocopy;
len -= tocopy;
buflen -= cp_size;
cp = (struct cmsghdr *)(void *)
((unsigned char *) cp + cp_size);
cp_size = CMSG_ALIGN(cp->cmsg_len);
}
m = m->m_next;
}
*controllen = (socklen_t)(ctlbuf - control);
out:
if (want_pktinfo && !seen_pktinfo) {
missingpktinfo += 1;
#if (DEBUG || DEVELOPMENT)
char pname[MAXCOMLEN];
char local[MAX_IPv6_STR_LEN + 6];
char remote[MAX_IPv6_STR_LEN + 6];
proc_name(so->last_pid, pname, sizeof(MAXCOMLEN));
if (inp->inp_vflag & INP_IPV6) {
inet_ntop(AF_INET6, &inp->in6p_laddr.s6_addr, local, sizeof(local));
inet_ntop(AF_INET6, &inp->in6p_faddr.s6_addr, remote, sizeof(local));
} else {
inet_ntop(AF_INET, &inp->inp_laddr.s_addr, local, sizeof(local));
inet_ntop(AF_INET, &inp->inp_faddr.s_addr, remote, sizeof(local));
}
os_log(OS_LOG_DEFAULT,
"cmsg IPV6_PKTINFO missing for %s:%u > %s:%u proc %s.%u error %d\n",
local, ntohs(inp->inp_lport), remote, ntohs(inp->inp_fport),
pname, so->last_pid, error);
#endif /* (DEBUG || DEVELOPMENT) */
}
return error;
}
/*
* Returns: 0 Success
* ENOTSOCK
* EINVAL
* EBADF
* EACCES Mandatory Access Control failure
* copyout:EFAULT
* fp_lookup:EBADF
* <pru_soreceive>:ENOBUFS
* <pru_soreceive>:ENOTCONN
* <pru_soreceive>:EWOULDBLOCK
* <pru_soreceive>:EFAULT
* <pru_soreceive>:EINTR
* <pru_soreceive>:EBADF
* <pru_soreceive>:EINVAL
* <pru_soreceive>:EMSGSIZE
* <pru_soreceive>:???
*
* Notes: Additional return values from calls through <pru_soreceive>
* depend on protocols other than TCP or AF_UNIX, which are
* documented above.
*/
static int
recvit(proc_ref_t p, int s, user_msghdr_ref_t mp, uio_t uiop,
user_addr_t namelenp, int32_ref_t retval)
{
ssize_t len;
int error;
mbuf_ref_t control = 0;
socket_ref_t so;
sockaddr_ref_t fromsa = 0;
fileproc_ref_t fp;
KERNEL_DEBUG(DBG_FNC_RECVIT | DBG_FUNC_START, 0, 0, 0, 0, 0);
if ((error = fp_get_ftype(p, s, DTYPE_SOCKET, ENOTSOCK, &fp))) {
KERNEL_DEBUG(DBG_FNC_RECVIT | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
so = (struct socket *)fp_get_data(fp);
#if CONFIG_MACF_SOCKET_SUBSET
/*
* We check the state without holding the socket lock;
* if a race condition occurs, it would simply result
* in an extra call to the MAC check function.
*/
if (!(so->so_state & SS_DEFUNCT) &&
!(so->so_state & SS_ISCONNECTED) &&
!(so->so_proto->pr_flags & PR_CONNREQUIRED) &&
(error = mac_socket_check_receive(kauth_cred_get(), so)) != 0) {
goto out1;
}
#endif /* MAC_SOCKET_SUBSET */
if (uio_resid(uiop) < 0 || uio_resid(uiop) > INT_MAX) {
KERNEL_DEBUG(DBG_FNC_RECVIT | DBG_FUNC_END, EINVAL, 0, 0, 0, 0);
error = EINVAL;
goto out1;
}
len = uio_resid(uiop);
error = so->so_proto->pr_usrreqs->pru_soreceive(so, &fromsa, uiop,
NULL, mp->msg_control ? &control : NULL,
&mp->msg_flags);
if (fromsa) {
AUDIT_ARG(sockaddr, vfs_context_cwd(vfs_context_current()),
fromsa);
}
if (error) {
if (uio_resid(uiop) != len && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK)) {
error = 0;
}
}
if (error) {
goto out;
}
*retval = (int32_t)(len - uio_resid(uiop));
if (mp->msg_name) {
error = copyout_sa(fromsa, mp->msg_name, &mp->msg_namelen);
if (error) {
goto out;
}
/* return the actual, untruncated address length */
if (namelenp &&
(error = copyout((caddr_t)&mp->msg_namelen, namelenp,
sizeof(int)))) {
goto out;
}
}
if (mp->msg_control) {
error = copyout_control(p, control, mp->msg_control,
&mp->msg_controllen, &mp->msg_flags, so);
}
out:
free_sockaddr(fromsa);
if (control) {
m_freem(control);
}
KERNEL_DEBUG(DBG_FNC_RECVIT | DBG_FUNC_END, error, 0, 0, 0, 0);
out1:
fp_drop(p, s, fp, 0);
return error;
}
/*
* Returns: 0 Success
* ENOMEM
* copyin:EFAULT
* recvit:???
* read:??? [4056224: applicable for pipes]
*
* Notes: The read entry point is only called as part of support for
* binary backward compatability; new code should use read
* instead of recv or recvfrom when attempting to read data
* from pipes.
*
* For full documentation of the return codes from recvit, see
* the block header for the recvit function.
*/
int
recvfrom(proc_ref_t p, struct recvfrom_args *uap, int32_ref_t retval)
{
__pthread_testcancel(1);
return recvfrom_nocancel(p, (struct recvfrom_nocancel_args *)uap,
retval);
}
int
recvfrom_nocancel(proc_ref_t p, struct recvfrom_nocancel_args *uap,
int32_ref_t retval)
{
struct user_msghdr msg;
int error;
uio_t auio = NULL;
KERNEL_DEBUG(DBG_FNC_RECVFROM | DBG_FUNC_START, 0, 0, 0, 0, 0);
AUDIT_ARG(fd, uap->s);
if (uap->fromlenaddr) {
error = copyin(uap->fromlenaddr,
(caddr_t)&msg.msg_namelen, sizeof(msg.msg_namelen));
if (error) {
return error;
}
} else {
msg.msg_namelen = 0;
}
msg.msg_name = uap->from;
auio = uio_create(1, 0,
(IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32),
UIO_READ);
if (auio == NULL) {
return ENOMEM;
}
uio_addiov(auio, uap->buf, uap->len);
/* no need to set up msg_iov. recvit uses uio_t we send it */
msg.msg_iov = 0;
msg.msg_iovlen = 0;
msg.msg_control = 0;
msg.msg_controllen = 0;
msg.msg_flags = uap->flags;
error = recvit(p, uap->s, &msg, auio, uap->fromlenaddr, retval);
if (auio != NULL) {
uio_free(auio);
}
KERNEL_DEBUG(DBG_FNC_RECVFROM | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
/*
* Returns: 0 Success
* EMSGSIZE
* ENOMEM
* copyin:EFAULT
* copyout:EFAULT
* recvit:???
*
* Notes: For full documentation of the return codes from recvit, see
* the block header for the recvit function.
*/
int
recvmsg(proc_ref_t p, struct recvmsg_args *uap, int32_ref_t retval)
{
__pthread_testcancel(1);
return recvmsg_nocancel(p, (struct recvmsg_nocancel_args *)uap,
retval);
}
int
recvmsg_nocancel(proc_ref_t p, struct recvmsg_nocancel_args *uap,
int32_ref_t retval)
{
struct user32_msghdr msg32;
struct user64_msghdr msg64;
struct user_msghdr user_msg;
caddr_t msghdrp;
int size_of_msghdr;
user_addr_t uiov;
int error;
uio_t auio = NULL;
struct user_iovec *iovp;
const bool is_p_64bit_process = IS_64BIT_PROCESS(p);
KERNEL_DEBUG(DBG_FNC_RECVMSG | DBG_FUNC_START, 0, 0, 0, 0, 0);
AUDIT_ARG(fd, uap->s);
if (is_p_64bit_process) {
msghdrp = (caddr_t)&msg64;
size_of_msghdr = sizeof(msg64);
} else {
msghdrp = (caddr_t)&msg32;
size_of_msghdr = sizeof(msg32);
}
error = copyin(uap->msg, msghdrp, size_of_msghdr);
if (error) {
KERNEL_DEBUG(DBG_FNC_RECVMSG | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
/* only need to copy if user process is not 64-bit */
if (is_p_64bit_process) {
user_msg.msg_flags = msg64.msg_flags;
user_msg.msg_controllen = msg64.msg_controllen;
user_msg.msg_control = (user_addr_t)msg64.msg_control;
user_msg.msg_iovlen = msg64.msg_iovlen;
user_msg.msg_iov = (user_addr_t)msg64.msg_iov;
user_msg.msg_namelen = msg64.msg_namelen;
user_msg.msg_name = (user_addr_t)msg64.msg_name;
} else {
user_msg.msg_flags = msg32.msg_flags;
user_msg.msg_controllen = msg32.msg_controllen;
user_msg.msg_control = msg32.msg_control;
user_msg.msg_iovlen = msg32.msg_iovlen;
user_msg.msg_iov = msg32.msg_iov;
user_msg.msg_namelen = msg32.msg_namelen;
user_msg.msg_name = msg32.msg_name;
}
if (user_msg.msg_iovlen <= 0 || user_msg.msg_iovlen > UIO_MAXIOV) {
KERNEL_DEBUG(DBG_FNC_RECVMSG | DBG_FUNC_END, EMSGSIZE,
0, 0, 0, 0);
return EMSGSIZE;
}
user_msg.msg_flags = uap->flags;
/* allocate a uio large enough to hold the number of iovecs passed */
auio = uio_create(user_msg.msg_iovlen, 0,
(is_p_64bit_process ? UIO_USERSPACE64 : UIO_USERSPACE32),
UIO_READ);
if (auio == NULL) {
error = ENOMEM;
goto done;
}
/*
* get location of iovecs within the uio. then copyin the iovecs from
* user space.
*/
iovp = uio_iovsaddr_user(auio);
if (iovp == NULL) {
error = ENOMEM;
goto done;
}
uiov = user_msg.msg_iov;
user_msg.msg_iov = CAST_USER_ADDR_T(iovp);
error = copyin_user_iovec_array(uiov,
is_p_64bit_process ? UIO_USERSPACE64 : UIO_USERSPACE32,
user_msg.msg_iovlen, iovp);
if (error) {
goto done;
}
/* finish setup of uio_t */
error = uio_calculateresid_user(auio);
if (error) {
goto done;
}
error = recvit(p, uap->s, &user_msg, auio, 0, retval);
if (!error) {
user_msg.msg_iov = uiov;
if (is_p_64bit_process) {
msg64.msg_flags = user_msg.msg_flags;
msg64.msg_controllen = user_msg.msg_controllen;
msg64.msg_control = user_msg.msg_control;
msg64.msg_iovlen = user_msg.msg_iovlen;
msg64.msg_iov = user_msg.msg_iov;
msg64.msg_namelen = user_msg.msg_namelen;
msg64.msg_name = user_msg.msg_name;
} else {
msg32.msg_flags = user_msg.msg_flags;
msg32.msg_controllen = user_msg.msg_controllen;
msg32.msg_control = (user32_addr_t)user_msg.msg_control;
msg32.msg_iovlen = user_msg.msg_iovlen;
msg32.msg_iov = (user32_addr_t)user_msg.msg_iov;
msg32.msg_namelen = user_msg.msg_namelen;
msg32.msg_name = (user32_addr_t)user_msg.msg_name;
}
error = copyout(msghdrp, uap->msg, size_of_msghdr);
}
done:
if (auio != NULL) {
uio_free(auio);
}
KERNEL_DEBUG(DBG_FNC_RECVMSG | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
__attribute__((noinline))
static int
recvmsg_x_array(proc_ref_t p, socket_ref_t so, struct recvmsg_x_args *uap, user_ssize_t *retval)
{
int error = EOPNOTSUPP;
user_msghdr_x_ptr_t user_msg_x = NULL;
recv_msg_elem_ptr_t recv_msg_array = NULL;
user_ssize_t len_before = 0, len_after;
size_t size_of_msghdr;
void_ptr_t umsgp = NULL;
u_int i;
u_int uiocnt;
int flags = uap->flags;
const bool is_p_64bit_process = IS_64BIT_PROCESS(p);
size_of_msghdr = is_p_64bit_process ?
sizeof(struct user64_msghdr_x) : sizeof(struct user32_msghdr_x);
/*
* Support only a subset of message flags
*/
if (uap->flags & ~(MSG_PEEK | MSG_WAITALL | MSG_DONTWAIT | MSG_NEEDSA | MSG_NBIO)) {
return EOPNOTSUPP;
}
/*
* Input parameter range check
*/
if (uap->cnt == 0 || uap->cnt > UIO_MAXIOV) {
error = EINVAL;
goto out;
}
if (uap->cnt > somaxrecvmsgx) {
uap->cnt = somaxrecvmsgx > 0 ? somaxrecvmsgx : 1;
}
user_msg_x = kalloc_type(struct user_msghdr_x, uap->cnt,
Z_WAITOK | Z_ZERO);
if (user_msg_x == NULL) {
DBG_PRINTF("%s user_msg_x alloc failed", __func__);
error = ENOMEM;
goto out;
}
recv_msg_array = alloc_recv_msg_array(uap->cnt);
if (recv_msg_array == NULL) {
DBG_PRINTF("%s alloc_recv_msg_array() failed", __func__);
error = ENOMEM;
goto out;
}
umsgp = kalloc_data(uap->cnt * size_of_msghdr, Z_WAITOK | Z_ZERO);
if (umsgp == NULL) {
DBG_PRINTF("%s umsgp alloc failed", __func__);
error = ENOMEM;
goto out;
}
error = copyin(uap->msgp, umsgp, uap->cnt * size_of_msghdr);
if (error) {
DBG_PRINTF("%s copyin() failed", __func__);
goto out;
}
error = internalize_recv_msghdr_array(umsgp,
is_p_64bit_process ? UIO_USERSPACE64 : UIO_USERSPACE32,
UIO_READ, uap->cnt, user_msg_x, recv_msg_array);
if (error) {
DBG_PRINTF("%s copyin_user_msghdr_array() failed", __func__);
goto out;
}
/*
* Make sure the size of each message iovec and
* the aggregate size of all the iovec is valid
*/
if (recv_msg_array_is_valid(recv_msg_array, uap->cnt) == 0) {
error = EINVAL;
goto out;
}
/*
* Sanity check on passed arguments
*/
for (i = 0; i < uap->cnt; i++) {
struct user_msghdr_x *mp = user_msg_x + i;
if (mp->msg_flags != 0) {
error = EINVAL;
goto out;
}
}
#if CONFIG_MACF_SOCKET_SUBSET
/*
* We check the state without holding the socket lock;
* if a race condition occurs, it would simply result
* in an extra call to the MAC check function.
*/
if (!(so->so_state & SS_DEFUNCT) &&
!(so->so_state & SS_ISCONNECTED) &&
!(so->so_proto->pr_flags & PR_CONNREQUIRED) &&
(error = mac_socket_check_receive(kauth_cred_get(), so)) != 0) {
goto out;
}
#endif /* MAC_SOCKET_SUBSET */
len_before = recv_msg_array_resid(recv_msg_array, uap->cnt);
for (i = 0; i < uap->cnt; i++) {
struct recv_msg_elem *recv_msg_elem;
uio_t auio;
sockaddr_ref_ref_t psa;
struct mbuf **controlp;
recv_msg_elem = recv_msg_array + i;
auio = recv_msg_elem->uio;
/*
* Do not block if we got at least one packet
*/
if (i > 0) {
flags |= MSG_DONTWAIT;
}
psa = (recv_msg_elem->which & SOCK_MSG_SA) ?
&recv_msg_elem->psa : NULL;
controlp = (recv_msg_elem->which & SOCK_MSG_CONTROL) ?
&recv_msg_elem->controlp : NULL;
error = so->so_proto->pr_usrreqs->pru_soreceive(so, psa,
auio, NULL, controlp, &flags);
if (error) {
break;
}
/*
* We have some data
*/
recv_msg_elem->which |= SOCK_MSG_DATA;
/*
* Set the messages flags for this packet
*/
flags &= ~MSG_DONTWAIT;
recv_msg_elem->flags = flags;
/*
* Stop on partial copy
*/
if (recv_msg_elem->flags & (MSG_RCVMORE | MSG_TRUNC)) {
break;
}
}
len_after = recv_msg_array_resid(recv_msg_array, uap->cnt);
if (error) {
if (len_after != len_before && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK)) {
error = 0;
} else {
goto out;
}
}
uiocnt = externalize_recv_msghdr_array(p, so, umsgp,
uap->cnt, user_msg_x, recv_msg_array, &error);
if (error != 0) {
goto out;
}
error = copyout(umsgp, uap->msgp, uap->cnt * size_of_msghdr);
if (error) {
DBG_PRINTF("%s copyout() failed", __func__);
goto out;
}
*retval = (int)(uiocnt);
out:
kfree_data(umsgp, uap->cnt * size_of_msghdr);
free_recv_msg_array(recv_msg_array, uap->cnt);
kfree_type(struct user_msghdr_x, uap->cnt, user_msg_x);
return error;
}
int
recvmsg_x(struct proc *p, struct recvmsg_x_args *uap, user_ssize_t *retval)
{
int error = EOPNOTSUPP;
socket_ref_t so;
size_t size_of_msghdrx;
caddr_t msghdrxp;
struct user32_msghdr_x msghdrx32 = {};
struct user64_msghdr_x msghdrx64 = {};
int spacetype;
u_int i;
uio_t auio = NULL;
caddr_t src;
int flags;
struct mbuf *pkt_list = NULL, *m;
struct mbuf *addr_list = NULL, *m_addr;
struct mbuf *ctl_list = NULL, *control;
u_int pktcnt;
KERNEL_DEBUG(DBG_FNC_RECVMSG_X | DBG_FUNC_START, 0, 0, 0, 0, 0);
error = file_socket(uap->s, &so);
if (error) {
goto done_no_filedrop;
}
if (so == NULL) {
error = EBADF;
goto done;
}
#if CONFIG_MACF_SOCKET_SUBSET
/*
* We check the state without holding the socket lock;
* if a race condition occurs, it would simply result
* in an extra call to the MAC check function.
*/
if (!(so->so_state & SS_DEFUNCT) &&
!(so->so_state & SS_ISCONNECTED) &&
!(so->so_proto->pr_flags & PR_CONNREQUIRED) &&
(error = mac_socket_check_receive(kauth_cred_get(), so)) != 0) {
goto done;
}
#endif /* MAC_SOCKET_SUBSET */
/*
* With soreceive_m_list, all packets must be uniform, with address and
* control as they are returned in parallel lists and it's only guaranteed
* when pru_send_list is supported
*/
if (do_recvmsg_x_donttrunc != 0 || (so->so_options & SO_DONTTRUNC)) {
error = recvmsg_x_array(p, so, uap, retval);
goto done;
}
/*
* Input parameter range check
*/
if (uap->cnt == 0 || uap->cnt > UIO_MAXIOV) {
error = EINVAL;
goto done;
}
if (uap->cnt > somaxrecvmsgx) {
uap->cnt = somaxrecvmsgx > 0 ? somaxrecvmsgx : 1;
}
if (IS_64BIT_PROCESS(p)) {
msghdrxp = (caddr_t)&msghdrx64;
size_of_msghdrx = sizeof(struct user64_msghdr_x);
spacetype = UIO_USERSPACE64;
} else {
msghdrxp = (caddr_t)&msghdrx32;
size_of_msghdrx = sizeof(struct user32_msghdr_x);
spacetype = UIO_USERSPACE32;
}
src = (caddr_t)uap->msgp;
flags = uap->flags;
/*
* Only allow MSG_DONTWAIT
*/
if ((flags & ~(MSG_DONTWAIT | MSG_NBIO)) != 0) {
error = EINVAL;
goto done;
}
/*
* Receive list of packet in a single call
*/
pktcnt = uap->cnt;
error = soreceive_m_list(so, &pktcnt, &addr_list, &pkt_list, &ctl_list,
&flags);
if (error != 0) {
if (pktcnt != 0 && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK)) {
error = 0;
} else {
goto done;
}
}
m_addr = addr_list;
m = pkt_list;
control = ctl_list;
for (i = 0; i < pktcnt; i++) {
struct user_msghdr user_msg;
ssize_t len;
struct user_iovec *iovp;
struct mbuf *n;
if (!m_has_mtype(m, MTF_DATA | MTF_HEADER | MTF_OOBDATA)) {
panic("%s: m %p m_type %d != MT_DATA", __func__, m, m->m_type);
}
error = copyin((user_addr_t)(src + i * size_of_msghdrx),
msghdrxp, size_of_msghdrx);
if (error) {
DBG_PRINTF("%s copyin() msghdrx failed %d\n",
__func__, error);
goto done;
}
if (spacetype == UIO_USERSPACE64) {
user_msg.msg_name = msghdrx64.msg_name;
user_msg.msg_namelen = msghdrx64.msg_namelen;
user_msg.msg_iov = msghdrx64.msg_iov;
user_msg.msg_iovlen = msghdrx64.msg_iovlen;
user_msg.msg_control = msghdrx64.msg_control;
user_msg.msg_controllen = msghdrx64.msg_controllen;
} else {
user_msg.msg_name = msghdrx32.msg_name;
user_msg.msg_namelen = msghdrx32.msg_namelen;
user_msg.msg_iov = msghdrx32.msg_iov;
user_msg.msg_iovlen = msghdrx32.msg_iovlen;
user_msg.msg_control = msghdrx32.msg_control;
user_msg.msg_controllen = msghdrx32.msg_controllen;
}
user_msg.msg_flags = 0;
if (user_msg.msg_iovlen <= 0 ||
user_msg.msg_iovlen > UIO_MAXIOV) {
error = EMSGSIZE;
DBG_PRINTF("%s bad msg_iovlen, error %d\n",
__func__, error);
goto done;
}
/*
* Attempt to reuse the uio if large enough, otherwise we need
* a new one
*/
if (auio != NULL) {
if (auio->uio_max_iovs <= user_msg.msg_iovlen) {
uio_reset_fast(auio, 0, spacetype, UIO_READ);
} else {
uio_free(auio);
auio = NULL;
}
}
if (auio == NULL) {
auio = uio_create(user_msg.msg_iovlen, 0, spacetype,
UIO_READ);
if (auio == NULL) {
error = ENOBUFS;
DBG_PRINTF("%s uio_create() failed %d\n",
__func__, error);
goto done;
}
}
/*
* get location of iovecs within the uio then copy the iovecs
* from user space.
*/
iovp = uio_iovsaddr_user(auio);
if (iovp == NULL) {
error = ENOMEM;
DBG_PRINTF("%s uio_iovsaddr() failed %d\n",
__func__, error);
goto done;
}
error = copyin_user_iovec_array(user_msg.msg_iov,
spacetype, user_msg.msg_iovlen, iovp);
if (error != 0) {
DBG_PRINTF("%s copyin_user_iovec_array() failed %d\n",
__func__, error);
goto done;
}
error = uio_calculateresid_user(auio);
if (error != 0) {
DBG_PRINTF("%s uio_calculateresid() failed %d\n",
__func__, error);
goto done;
}
user_msg.msg_iov = CAST_USER_ADDR_T(iovp);
len = uio_resid(auio);
for (n = m; n != NULL; n = n->m_next) {
user_ssize_t resid = uio_resid(auio);
if (resid < n->m_len) {
error = uio_copyout_user(mtod(n, caddr_t), (int)n->m_len, auio);
if (error != 0) {
DBG_PRINTF("%s uiomove() failed\n",
__func__);
goto done;
}
flags |= MSG_TRUNC;
break;
}
error = uio_copyout_user(mtod(n, caddr_t), (int)n->m_len, auio);
if (error != 0) {
DBG_PRINTF("%s uiomove() failed\n",
__func__);
goto done;
}
}
len -= uio_resid(auio);
if (user_msg.msg_name != 0 && user_msg.msg_namelen != 0) {
error = copyout_maddr(m_addr, user_msg.msg_name,
&user_msg.msg_namelen);
if (error) {
DBG_PRINTF("%s copyout_maddr() failed\n",
__func__);
goto done;
}
}
if (user_msg.msg_control != 0 && user_msg.msg_controllen != 0) {
error = copyout_control(p, control,
user_msg.msg_control, &user_msg.msg_controllen,
&user_msg.msg_flags, so);
if (error) {
DBG_PRINTF("%s copyout_control() failed\n",
__func__);
goto done;
}
}
/*
* Note: the original msg_iovlen and msg_iov do not change
*/
if (spacetype == UIO_USERSPACE64) {
msghdrx64.msg_flags = user_msg.msg_flags;
msghdrx64.msg_controllen = user_msg.msg_controllen;
msghdrx64.msg_control = user_msg.msg_control;
msghdrx64.msg_namelen = user_msg.msg_namelen;
msghdrx64.msg_name = user_msg.msg_name;
msghdrx64.msg_datalen = len;
} else {
msghdrx32.msg_flags = user_msg.msg_flags;
msghdrx32.msg_controllen = user_msg.msg_controllen;
msghdrx32.msg_control = (user32_addr_t) user_msg.msg_control;
msghdrx32.msg_name = user_msg.msg_namelen;
msghdrx32.msg_name = (user32_addr_t) user_msg.msg_name;
msghdrx32.msg_datalen = (user32_size_t) len;
}
error = copyout(msghdrxp,
(user_addr_t)(src + i * size_of_msghdrx),
size_of_msghdrx);
if (error) {
DBG_PRINTF("%s copyout() msghdrx failed\n", __func__);
goto done;
}
m = m->m_nextpkt;
if (control != NULL) {
control = control->m_nextpkt;
}
if (m_addr != NULL) {
m_addr = m_addr->m_nextpkt;
}
}
uap->flags = flags;
*retval = (int)i;
done:
file_drop(uap->s);
done_no_filedrop:
if (pkt_list != NULL) {
m_freem_list(pkt_list);
}
if (addr_list != NULL) {
m_freem_list(addr_list);
}
if (ctl_list != NULL) {
m_freem_list(ctl_list);
}
if (auio != NULL) {
uio_free(auio);
}
KERNEL_DEBUG(DBG_FNC_RECVMSG_X | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
/*
* Returns: 0 Success
* EBADF
* file_socket:ENOTSOCK
* file_socket:EBADF
* soshutdown:EINVAL
* soshutdown:ENOTCONN
* soshutdown:EADDRNOTAVAIL[TCP]
* soshutdown:ENOBUFS[TCP]
* soshutdown:EMSGSIZE[TCP]
* soshutdown:EHOSTUNREACH[TCP]
* soshutdown:ENETUNREACH[TCP]
* soshutdown:ENETDOWN[TCP]
* soshutdown:ENOMEM[TCP]
* soshutdown:EACCES[TCP]
* soshutdown:EMSGSIZE[TCP]
* soshutdown:ENOBUFS[TCP]
* soshutdown:???[TCP] [ignorable: mostly IPSEC/firewall/DLIL]
* soshutdown:??? [other protocol families]
*/
/* ARGSUSED */
int
shutdown(__unused proc_ref_t p, struct shutdown_args *uap,
__unused int32_ref_t retval)
{
socket_ref_t so;
int error;
AUDIT_ARG(fd, uap->s);
error = file_socket(uap->s, &so);
if (error) {
return error;
}
if (so == NULL) {
error = EBADF;
goto out;
}
error = soshutdown((struct socket *)so, uap->how);
out:
file_drop(uap->s);
return error;
}
/*
* Returns: 0 Success
* EFAULT
* EINVAL
* EACCES Mandatory Access Control failure
* file_socket:ENOTSOCK
* file_socket:EBADF
* sosetopt:EINVAL
* sosetopt:ENOPROTOOPT
* sosetopt:ENOBUFS
* sosetopt:EDOM
* sosetopt:EFAULT
* sosetopt:EOPNOTSUPP[AF_UNIX]
* sosetopt:???
*/
/* ARGSUSED */
int
setsockopt(proc_ref_t p, setsockopt_args_ref_t uap,
__unused int32_ref_t retval)
{
socket_ref_t so;
struct sockopt sopt;
int error;
AUDIT_ARG(fd, uap->s);
if (uap->val == 0 && uap->valsize != 0) {
return EFAULT;
}
/* No bounds checking on size (it's unsigned) */
error = file_socket(uap->s, &so);
if (error) {
return error;
}
sopt.sopt_dir = SOPT_SET;
sopt.sopt_level = uap->level;
sopt.sopt_name = uap->name;
sopt.sopt_val = uap->val;
sopt.sopt_valsize = uap->valsize;
sopt.sopt_p = p;
if (so == NULL) {
error = EINVAL;
goto out;
}
#if CONFIG_MACF_SOCKET_SUBSET
if ((error = mac_socket_check_setsockopt(kauth_cred_get(), so,
&sopt)) != 0) {
goto out;
}
#endif /* MAC_SOCKET_SUBSET */
error = sosetoptlock(so, &sopt, 1); /* will lock socket */
out:
file_drop(uap->s);
return error;
}
/*
* Returns: 0 Success
* EINVAL
* EBADF
* EACCES Mandatory Access Control failure
* copyin:EFAULT
* copyout:EFAULT
* file_socket:ENOTSOCK
* file_socket:EBADF
* sogetopt:???
*/
int
getsockopt(proc_ref_t p, struct getsockopt_args *uap,
__unused int32_ref_t retval)
{
int error;
socklen_t valsize;
struct sockopt sopt;
socket_ref_t so;
error = file_socket(uap->s, &so);
if (error) {
return error;
}
if (uap->val) {
error = copyin(uap->avalsize, (caddr_t)&valsize,
sizeof(valsize));
if (error) {
goto out;
}
/* No bounds checking on size (it's unsigned) */
} else {
valsize = 0;
}
sopt.sopt_dir = SOPT_GET;
sopt.sopt_level = uap->level;
sopt.sopt_name = uap->name;
sopt.sopt_val = uap->val;
sopt.sopt_valsize = (size_t)valsize; /* checked non-negative above */
sopt.sopt_p = p;
if (so == NULL) {
error = EBADF;
goto out;
}
#if CONFIG_MACF_SOCKET_SUBSET
if ((error = mac_socket_check_getsockopt(kauth_cred_get(), so,
&sopt)) != 0) {
goto out;
}
#endif /* MAC_SOCKET_SUBSET */
error = sogetoptlock((struct socket *)so, &sopt, 1); /* will lock */
if (error == 0) {
valsize = (socklen_t)sopt.sopt_valsize;
error = copyout((caddr_t)&valsize, uap->avalsize,
sizeof(valsize));
}
out:
file_drop(uap->s);
return error;
}
/*
* Get socket name.
*
* Returns: 0 Success
* EBADF
* file_socket:ENOTSOCK
* file_socket:EBADF
* copyin:EFAULT
* copyout:EFAULT
* <pru_sockaddr>:ENOBUFS[TCP]
* <pru_sockaddr>:ECONNRESET[TCP]
* <pru_sockaddr>:EINVAL[AF_UNIX]
* <sf_getsockname>:???
*/
/* ARGSUSED */
int
getsockname(__unused proc_ref_t p, struct getsockname_args *uap,
__unused int32_ref_t retval)
{
socket_ref_t so;
sockaddr_ref_t sa;
socklen_t len;
socklen_t sa_len;
int error;
error = file_socket(uap->fdes, &so);
if (error) {
return error;
}
error = copyin(uap->alen, (caddr_t)&len, sizeof(socklen_t));
if (error) {
goto out;
}
if (so == NULL) {
error = EBADF;
goto out;
}
sa = 0;
socket_lock(so, 1);
error = (*so->so_proto->pr_usrreqs->pru_sockaddr)(so, &sa);
if (error == 0) {
error = sflt_getsockname(so, &sa);
if (error == EJUSTRETURN) {
error = 0;
}
}
socket_unlock(so, 1);
if (error) {
goto bad;
}
if (sa == 0) {
len = 0;
goto gotnothing;
}
sa_len = sa->sa_len;
len = MIN(len, sa_len);
error = copyout((caddr_t)sa, uap->asa, len);
if (error) {
goto bad;
}
/* return the actual, untruncated address length */
len = sa_len;
gotnothing:
error = copyout((caddr_t)&len, uap->alen, sizeof(socklen_t));
bad:
free_sockaddr(sa);
out:
file_drop(uap->fdes);
return error;
}
/*
* Get name of peer for connected socket.
*
* Returns: 0 Success
* EBADF
* EINVAL
* ENOTCONN
* file_socket:ENOTSOCK
* file_socket:EBADF
* copyin:EFAULT
* copyout:EFAULT
* <pru_peeraddr>:???
* <sf_getpeername>:???
*/
/* ARGSUSED */
int
getpeername(__unused proc_ref_t p, struct getpeername_args *uap,
__unused int32_ref_t retval)
{
socket_ref_t so;
sockaddr_ref_t sa;
socklen_t len;
socklen_t sa_len;
int error;
error = file_socket(uap->fdes, &so);
if (error) {
return error;
}
if (so == NULL) {
error = EBADF;
goto out;
}
socket_lock(so, 1);
if ((so->so_state & (SS_CANTRCVMORE | SS_CANTSENDMORE)) ==
(SS_CANTRCVMORE | SS_CANTSENDMORE)) {
/* the socket has been shutdown, no more getpeername's */
socket_unlock(so, 1);
error = EINVAL;
goto out;
}
if ((so->so_state & (SS_ISCONNECTED | SS_ISCONFIRMING)) == 0) {
socket_unlock(so, 1);
error = ENOTCONN;
goto out;
}
error = copyin(uap->alen, (caddr_t)&len, sizeof(socklen_t));
if (error) {
socket_unlock(so, 1);
goto out;
}
sa = 0;
error = (*so->so_proto->pr_usrreqs->pru_peeraddr)(so, &sa);
if (error == 0) {
error = sflt_getpeername(so, &sa);
if (error == EJUSTRETURN) {
error = 0;
}
}
socket_unlock(so, 1);
if (error) {
goto bad;
}
if (sa == 0) {
len = 0;
goto gotnothing;
}
sa_len = sa->sa_len;
len = MIN(len, sa_len);
error = copyout(sa, uap->asa, len);
if (error) {
goto bad;
}
/* return the actual, untruncated address length */
len = sa_len;
gotnothing:
error = copyout((caddr_t)&len, uap->alen, sizeof(socklen_t));
bad:
free_sockaddr(sa);
out:
file_drop(uap->fdes);
return error;
}
int
sockargs(struct mbuf **mp, user_addr_t data, socklen_t buflen, int type)
{
sockaddr_ref_t sa;
struct mbuf *m;
int error;
socklen_t alloc_buflen = buflen;
if (buflen > INT_MAX / 2) {
return EINVAL;
}
if (type == MT_SONAME && (buflen > SOCK_MAXADDRLEN ||
buflen < offsetof(struct sockaddr, sa_data[0]))) {
return EINVAL;
}
if (type == MT_CONTROL && buflen < sizeof(struct cmsghdr)) {
return EINVAL;
}
#ifdef __LP64__
/*
* The fd's in the buffer must expand to be pointers, thus we need twice
* as much space
*/
if (type == MT_CONTROL) {
alloc_buflen = ((buflen - sizeof(struct cmsghdr)) * 2) +
sizeof(struct cmsghdr);
}
#endif
if (alloc_buflen > MLEN) {
if (type == MT_SONAME && alloc_buflen <= 112) {
alloc_buflen = MLEN; /* unix domain compat. hack */
} else if (alloc_buflen > MCLBYTES) {
return EINVAL;
}
}
m = m_get(M_WAIT, type);
if (m == NULL) {
return ENOBUFS;
}
if (alloc_buflen > MLEN) {
MCLGET(m, M_WAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
return ENOBUFS;
}
}
/*
* K64: We still copyin the original buflen because it gets expanded
* later and we lie about the size of the mbuf because it only affects
* unp_* functions
*/
m->m_len = buflen;
error = copyin(data, mtod(m, caddr_t), (u_int)buflen);
if (error) {
(void) m_free(m);
} else {
*mp = m;
if (type == MT_SONAME) {
VERIFY(buflen <= SOCK_MAXADDRLEN);
sa = mtod(m, sockaddr_ref_t);
sa->sa_len = (__uint8_t)buflen;
}
}
return error;
}
/*
* Given a user_addr_t of length len, allocate and fill out a *sa.
*
* Returns: 0 Success
* ENAMETOOLONG Filename too long
* EINVAL Invalid argument
* ENOMEM Not enough space
* copyin:EFAULT Bad address
*/
static int
getsockaddr(struct socket *so, sockaddr_ref_ref_t namp, user_addr_t uaddr,
size_t len, boolean_t translate_unspec)
{
sockaddr_ref_t sa;
int error;
if (len > SOCK_MAXADDRLEN) {
return ENAMETOOLONG;
}
if (len < offsetof(struct sockaddr, sa_data[0])) {
return EINVAL;
}
sa = SA(alloc_sockaddr(len, Z_WAITOK | Z_NOFAIL));
error = copyin(uaddr, (caddr_t)sa, len);
if (error) {
free_sockaddr(sa);
} else {
/*
* Force sa_family to AF_INET on AF_INET sockets to handle
* legacy applications that use AF_UNSPEC (0). On all other
* sockets we leave it unchanged and let the lower layer
* handle it.
*/
if (translate_unspec && sa->sa_family == AF_UNSPEC &&
SOCK_CHECK_DOM(so, PF_INET) &&
len == sizeof(struct sockaddr_in)) {
sa->sa_family = AF_INET;
}
VERIFY(len <= SOCK_MAXADDRLEN);
sa = *&sa;
sa->sa_len = (__uint8_t)len;
*namp = sa;
}
return error;
}
static int
getsockaddr_s(struct socket *so, sockaddr_storage_ref_t ss,
user_addr_t uaddr, size_t len, boolean_t translate_unspec)
{
int error;
if (ss == NULL || uaddr == USER_ADDR_NULL ||
len < offsetof(struct sockaddr, sa_data[0])) {
return EINVAL;
}
/*
* sockaddr_storage size is less than SOCK_MAXADDRLEN,
* so the check here is inclusive.
*/
if (len > sizeof(*ss)) {
return ENAMETOOLONG;
}
bzero(ss, sizeof(*ss));
error = copyin(uaddr, (caddr_t)ss, len);
if (error == 0) {
/*
* Force sa_family to AF_INET on AF_INET sockets to handle
* legacy applications that use AF_UNSPEC (0). On all other
* sockets we leave it unchanged and let the lower layer
* handle it.
*/
if (translate_unspec && ss->ss_family == AF_UNSPEC &&
SOCK_CHECK_DOM(so, PF_INET) &&
len == sizeof(struct sockaddr_in)) {
ss->ss_family = AF_INET;
}
ss->ss_len = (__uint8_t)len;
}
return error;
}
int
internalize_recv_msghdr_array(const void_ptr_t src, int spacetype, int direction,
u_int count, user_msghdr_x_ptr_t dst,
recv_msg_elem_ptr_t recv_msg_array)
{
int error = 0;
u_int i;
for (i = 0; i < count; i++) {
struct user_iovec *iovp;
struct user_msghdr_x *user_msg = dst + i;
struct recv_msg_elem *recv_msg_elem = recv_msg_array + i;
if (spacetype == UIO_USERSPACE64) {
const struct user64_msghdr_x *msghdr64;
msghdr64 = ((const struct user64_msghdr_x *)src) + i;
user_msg->msg_name = (user_addr_t)msghdr64->msg_name;
user_msg->msg_namelen = msghdr64->msg_namelen;
user_msg->msg_iov = (user_addr_t)msghdr64->msg_iov;
user_msg->msg_iovlen = msghdr64->msg_iovlen;
user_msg->msg_control = (user_addr_t)msghdr64->msg_control;
user_msg->msg_controllen = msghdr64->msg_controllen;
user_msg->msg_flags = msghdr64->msg_flags;
user_msg->msg_datalen = (size_t)msghdr64->msg_datalen;
} else {
const struct user32_msghdr_x *msghdr32;
msghdr32 = ((const struct user32_msghdr_x *)src) + i;
user_msg->msg_name = msghdr32->msg_name;
user_msg->msg_namelen = msghdr32->msg_namelen;
user_msg->msg_iov = msghdr32->msg_iov;
user_msg->msg_iovlen = msghdr32->msg_iovlen;
user_msg->msg_control = msghdr32->msg_control;
user_msg->msg_controllen = msghdr32->msg_controllen;
user_msg->msg_flags = msghdr32->msg_flags;
user_msg->msg_datalen = msghdr32->msg_datalen;
}
if (user_msg->msg_iovlen <= 0 ||
user_msg->msg_iovlen > UIO_MAXIOV) {
error = EMSGSIZE;
goto done;
}
recv_msg_elem->uio = uio_create(user_msg->msg_iovlen, 0,
spacetype, direction);
if (recv_msg_elem->uio == NULL) {
error = ENOMEM;
goto done;
}
iovp = uio_iovsaddr_user(recv_msg_elem->uio);
if (iovp == NULL) {
error = ENOMEM;
goto done;
}
error = copyin_user_iovec_array(user_msg->msg_iov,
spacetype, user_msg->msg_iovlen, iovp);
if (error) {
goto done;
}
user_msg->msg_iov = CAST_USER_ADDR_T(iovp);
error = uio_calculateresid_user(recv_msg_elem->uio);
if (error) {
goto done;
}
user_msg->msg_datalen = uio_resid(recv_msg_elem->uio);
if (user_msg->msg_name && user_msg->msg_namelen) {
recv_msg_elem->which |= SOCK_MSG_SA;
}
if (user_msg->msg_control && user_msg->msg_controllen) {
recv_msg_elem->which |= SOCK_MSG_CONTROL;
}
}
done:
return error;
}
u_int
externalize_recv_msghdr_array(proc_ref_t p, socket_ref_t so, void_ptr_t dst,
u_int count, user_msghdr_x_ptr_t src,
recv_msg_elem_ptr_t recv_msg_array, int_ref_t ret_error)
{
u_int i;
u_int retcnt = 0;
int spacetype = IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32;
*ret_error = 0;
for (i = 0; i < count; i++) {
struct user_msghdr_x *user_msg = src + i;
struct recv_msg_elem *recv_msg_elem = recv_msg_array + i;
user_ssize_t len = 0;
int error;
len = user_msg->msg_datalen - uio_resid(recv_msg_elem->uio);
if ((recv_msg_elem->which & SOCK_MSG_DATA)) {
retcnt++;
if (recv_msg_elem->which & SOCK_MSG_SA) {
error = copyout_sa(recv_msg_elem->psa, user_msg->msg_name,
&user_msg->msg_namelen);
if (error != 0) {
*ret_error = error;
return 0;
}
}
if (recv_msg_elem->which & SOCK_MSG_CONTROL) {
error = copyout_control(p, recv_msg_elem->controlp,
user_msg->msg_control, &user_msg->msg_controllen,
&recv_msg_elem->flags, so);
if (error != 0) {
*ret_error = error;
return 0;
}
}
}
if (spacetype == UIO_USERSPACE64) {
struct user64_msghdr_x *msghdr64 = ((struct user64_msghdr_x *)dst) + i;
msghdr64->msg_namelen = user_msg->msg_namelen;
msghdr64->msg_controllen = user_msg->msg_controllen;
msghdr64->msg_flags = recv_msg_elem->flags;
msghdr64->msg_datalen = len;
} else {
struct user32_msghdr_x *msghdr32 = ((struct user32_msghdr_x *)dst) + i;
msghdr32->msg_namelen = user_msg->msg_namelen;
msghdr32->msg_controllen = user_msg->msg_controllen;
msghdr32->msg_flags = recv_msg_elem->flags;
msghdr32->msg_datalen = (user32_size_t)len;
}
}
return retcnt;
}
recv_msg_elem_ptr_t
alloc_recv_msg_array(u_int count)
{
return kalloc_type(struct recv_msg_elem, count, Z_WAITOK | Z_ZERO);
}
void
free_recv_msg_array(recv_msg_elem_ptr_t recv_msg_array, u_int count)
{
if (recv_msg_array == NULL) {
return;
}
for (uint32_t i = 0; i < count; i++) {
struct recv_msg_elem *recv_msg_elem = recv_msg_array + i;
if (recv_msg_elem->uio != NULL) {
uio_free(recv_msg_elem->uio);
}
free_sockaddr(recv_msg_elem->psa);
if (recv_msg_elem->controlp != NULL) {
m_freem(recv_msg_elem->controlp);
}
}
kfree_type(struct recv_msg_elem, count, recv_msg_array);
}
/* Extern linkage requires using __counted_by instead of bptr */
__private_extern__ user_ssize_t
recv_msg_array_resid(struct recv_msg_elem * __counted_by(count)recv_msg_array, u_int count)
{
user_ssize_t len = 0;
u_int i;
for (i = 0; i < count; i++) {
struct recv_msg_elem *recv_msg_elem = recv_msg_array + i;
if (recv_msg_elem->uio != NULL) {
len += uio_resid(recv_msg_elem->uio);
}
}
return len;
}
int
recv_msg_array_is_valid(recv_msg_elem_ptr_t recv_msg_array, u_int count)
{
user_ssize_t len = 0;
u_int i;
for (i = 0; i < count; i++) {
struct recv_msg_elem *recv_msg_elem = recv_msg_array + i;
if (recv_msg_elem->uio != NULL) {
user_ssize_t resid = uio_resid(recv_msg_elem->uio);
/*
* Sanity check on the validity of the iovec:
* no point of going over sb_max
*/
if (resid < 0 || (u_int32_t)resid > sb_max) {
return 0;
}
len += resid;
if (len < 0 || (u_int32_t)len > sb_max) {
return 0;
}
}
}
return 1;
}
#if SENDFILE
#define SFUIOBUFS 64
/* Macros to compute the number of mbufs needed depending on cluster size */
#define HOWMANY_16K(n) ((((unsigned int)(n) - 1) >> M16KCLSHIFT) + 1)
#define HOWMANY_4K(n) ((((unsigned int)(n) - 1) >> MBIGCLSHIFT) + 1)
/* Upper send limit in bytes (SFUIOBUFS * PAGESIZE) */
#define SENDFILE_MAX_BYTES (SFUIOBUFS << PGSHIFT)
/* Upper send limit in the number of mbuf clusters */
#define SENDFILE_MAX_16K HOWMANY_16K(SENDFILE_MAX_BYTES)
#define SENDFILE_MAX_4K HOWMANY_4K(SENDFILE_MAX_BYTES)
static void
alloc_sendpkt(int how, size_t pktlen, unsigned int *maxchunks,
mbuf_ref_ref_t m, boolean_t jumbocl)
{
unsigned int needed;
if (pktlen == 0) {
panic("%s: pktlen (%ld) must be non-zero", __func__, pktlen);
}
/*
* Try to allocate for the whole thing. Since we want full control
* over the buffer size and be able to accept partial result, we can't
* use mbuf_allocpacket(). The logic below is similar to sosend().
*/
*m = NULL;
if (pktlen > MBIGCLBYTES && jumbocl) {
needed = MIN(SENDFILE_MAX_16K, HOWMANY_16K(pktlen));
*m = m_getpackets_internal(&needed, 1, how, 0, M16KCLBYTES);
}
if (*m == NULL) {
needed = MIN(SENDFILE_MAX_4K, HOWMANY_4K(pktlen));
*m = m_getpackets_internal(&needed, 1, how, 0, MBIGCLBYTES);
}
/*
* Our previous attempt(s) at allocation had failed; the system
* may be short on mbufs, and we want to block until they are
* available. This time, ask just for 1 mbuf and don't return
* until we get it.
*/
if (*m == NULL) {
needed = 1;
*m = m_getpackets_internal(&needed, 1, M_WAIT, 1, MBIGCLBYTES);
}
if (*m == NULL) {
panic("%s: blocking allocation returned NULL", __func__);
}
*maxchunks = needed;
}
/*
* sendfile(2).
* int sendfile(int fd, int s, off_t offset, off_t *nbytes,
* struct sf_hdtr *hdtr, int flags)
*
* Send a file specified by 'fd' and starting at 'offset' to a socket
* specified by 's'. Send only '*nbytes' of the file or until EOF if
* *nbytes == 0. Optionally add a header and/or trailer to the socket
* output. If specified, write the total number of bytes sent into *nbytes.
*/
int
sendfile(proc_ref_t p, struct sendfile_args *uap, __unused int *retval)
{
fileproc_ref_t fp;
vnode_ref_t vp;
socket_ref_t so;
struct writev_nocancel_args nuap;
user_ssize_t writev_retval;
struct user_sf_hdtr user_hdtr;
struct user32_sf_hdtr user32_hdtr;
struct user64_sf_hdtr user64_hdtr;
off_t off, xfsize;
off_t nbytes = 0, sbytes = 0;
int error = 0;
size_t sizeof_hdtr;
off_t file_size;
struct vfs_context context = *vfs_context_current();
const bool is_p_64bit_process = IS_64BIT_PROCESS(p);
KERNEL_DEBUG_CONSTANT((DBG_FNC_SENDFILE | DBG_FUNC_START), uap->s,
0, 0, 0, 0);
AUDIT_ARG(fd, uap->fd);
AUDIT_ARG(value32, uap->s);
/*
* Do argument checking. Must be a regular file in, stream
* type and connected socket out, positive offset.
*/
if ((error = fp_getfvp(p, uap->fd, &fp, &vp))) {
goto done;
}
if ((fp->f_flag & FREAD) == 0) {
error = EBADF;
goto done1;
}
if (vnode_isreg(vp) == 0) {
error = ENOTSUP;
goto done1;
}
error = file_socket(uap->s, &so);
if (error) {
goto done1;
}
if (so == NULL) {
error = EBADF;
goto done2;
}
if (so->so_type != SOCK_STREAM) {
error = EINVAL;
goto done2;
}
if ((so->so_state & SS_ISCONNECTED) == 0) {
error = ENOTCONN;
goto done2;
}
if (uap->offset < 0) {
error = EINVAL;
goto done2;
}
if (uap->nbytes == USER_ADDR_NULL) {
error = EINVAL;
goto done2;
}
if (uap->flags != 0) {
error = EINVAL;
goto done2;
}
context.vc_ucred = fp->fp_glob->fg_cred;
#if CONFIG_MACF_SOCKET_SUBSET
/* JMM - fetch connected sockaddr? */
error = mac_socket_check_send(context.vc_ucred, so, NULL);
if (error) {
goto done2;
}
#endif
/*
* Get number of bytes to send
* Should it applies to size of header and trailer?
*/
error = copyin(uap->nbytes, &nbytes, sizeof(off_t));
if (error) {
goto done2;
}
/*
* If specified, get the pointer to the sf_hdtr struct for
* any headers/trailers.
*/
if (uap->hdtr != USER_ADDR_NULL) {
caddr_t hdtrp;
bzero(&user_hdtr, sizeof(user_hdtr));
if (is_p_64bit_process) {
hdtrp = (caddr_t)&user64_hdtr;
sizeof_hdtr = sizeof(user64_hdtr);
} else {
hdtrp = (caddr_t)&user32_hdtr;
sizeof_hdtr = sizeof(user32_hdtr);
}
error = copyin(uap->hdtr, hdtrp, sizeof_hdtr);
if (error) {
goto done2;
}
if (is_p_64bit_process) {
user_hdtr.headers = user64_hdtr.headers;
user_hdtr.hdr_cnt = user64_hdtr.hdr_cnt;
user_hdtr.trailers = user64_hdtr.trailers;
user_hdtr.trl_cnt = user64_hdtr.trl_cnt;
} else {
user_hdtr.headers = user32_hdtr.headers;
user_hdtr.hdr_cnt = user32_hdtr.hdr_cnt;
user_hdtr.trailers = user32_hdtr.trailers;
user_hdtr.trl_cnt = user32_hdtr.trl_cnt;
}
/*
* Send any headers. Wimp out and use writev(2).
*/
if (user_hdtr.headers != USER_ADDR_NULL) {
bzero(&nuap, sizeof(struct writev_args));
nuap.fd = uap->s;
nuap.iovp = user_hdtr.headers;
nuap.iovcnt = user_hdtr.hdr_cnt;
error = writev_nocancel(p, &nuap, &writev_retval);
if (error) {
goto done2;
}
sbytes += writev_retval;
}
}
/*
* Get the file size for 2 reasons:
* 1. We don't want to allocate more mbufs than necessary
* 2. We don't want to read past the end of file
*/
if ((error = vnode_size(vp, &file_size, vfs_context_current())) != 0) {
goto done2;
}
/*
* Simply read file data into a chain of mbufs that used with scatter
* gather reads. We're not (yet?) setup to use zero copy external
* mbufs that point to the file pages.
*/
socket_lock(so, 1);
error = sblock(&so->so_snd, SBL_WAIT);
if (error) {
socket_unlock(so, 1);
goto done2;
}
for (off = uap->offset;; off += xfsize, sbytes += xfsize) {
mbuf_ref_t m0 = NULL;
mbuf_t m;
unsigned int nbufs = SFUIOBUFS, i;
uio_t auio;
UIO_STACKBUF(uio_buf, SFUIOBUFS); /* 1KB !!! */
size_t uiolen;
user_ssize_t rlen;
off_t pgoff;
size_t pktlen;
boolean_t jumbocl;
/*
* Calculate the amount to transfer.
* Align to round number of pages.
* Not to exceed send socket buffer,
* the EOF, or the passed in nbytes.
*/
xfsize = sbspace(&so->so_snd);
if (xfsize <= 0) {
if (so->so_state & SS_CANTSENDMORE) {
error = EPIPE;
goto done3;
} else if ((so->so_state & SS_NBIO)) {
error = EAGAIN;
goto done3;
} else {
xfsize = PAGE_SIZE;
}
}
if (xfsize > SENDFILE_MAX_BYTES) {
xfsize = SENDFILE_MAX_BYTES;
} else if (xfsize > PAGE_SIZE) {
xfsize = trunc_page(xfsize);
}
pgoff = off & PAGE_MASK_64;
if (pgoff > 0 && PAGE_SIZE - pgoff < xfsize) {
xfsize = PAGE_SIZE_64 - pgoff;
}
if (nbytes && xfsize > (nbytes - sbytes)) {
xfsize = nbytes - sbytes;
}
if (xfsize <= 0) {
break;
}
if (off + xfsize > file_size) {
xfsize = file_size - off;
}
if (xfsize <= 0) {
break;
}
/*
* Attempt to use larger than system page-size clusters for
* large writes only if there is a jumbo cluster pool and
* if the socket is marked accordingly.
*/
jumbocl = sosendjcl && njcl > 0 &&
((so->so_flags & SOF_MULTIPAGES) || sosendjcl_ignore_capab);
socket_unlock(so, 0);
alloc_sendpkt(M_WAIT, xfsize, &nbufs, &m0, jumbocl);
pktlen = mbuf_pkthdr_maxlen(m0);
if (pktlen < (size_t)xfsize) {
xfsize = pktlen;
}
auio = uio_createwithbuffer(nbufs, off, UIO_SYSSPACE,
UIO_READ, &uio_buf[0], sizeof(uio_buf));
if (auio == NULL) {
DBG_PRINTF("sendfile failed. nbufs = %d. %s", nbufs,
"File a radar related to rdar://10146739.\n");
mbuf_freem(m0);
error = ENXIO;
socket_lock(so, 0);
goto done3;
}
for (i = 0, m = m0, uiolen = 0;
i < nbufs && m != NULL && uiolen < (size_t)xfsize;
i++, m = mbuf_next(m)) {
size_t mlen = mbuf_maxlen(m);
if (mlen + uiolen > (size_t)xfsize) {
mlen = xfsize - uiolen;
}
mbuf_setlen(m, mlen);
uio_addiov(auio, CAST_USER_ADDR_T(mbuf_datastart(m)),
mlen);
uiolen += mlen;
}
if (xfsize != uio_resid(auio)) {
DBG_PRINTF("sendfile: xfsize: %lld != uio_resid(auio): "
"%lld\n", xfsize, (long long)uio_resid(auio));
}
KERNEL_DEBUG_CONSTANT((DBG_FNC_SENDFILE_READ | DBG_FUNC_START),
uap->s, (unsigned int)((xfsize >> 32) & 0x0ffffffff),
(unsigned int)(xfsize & 0x0ffffffff), 0, 0);
error = fo_read(fp, auio, FOF_OFFSET, &context);
socket_lock(so, 0);
if (error != 0) {
if (uio_resid(auio) != xfsize && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK)) {
error = 0;
} else {
mbuf_freem(m0);
goto done3;
}
}
xfsize -= uio_resid(auio);
KERNEL_DEBUG_CONSTANT((DBG_FNC_SENDFILE_READ | DBG_FUNC_END),
uap->s, (unsigned int)((xfsize >> 32) & 0x0ffffffff),
(unsigned int)(xfsize & 0x0ffffffff), 0, 0);
if (xfsize == 0) {
break;
}
if (xfsize + off > file_size) {
DBG_PRINTF("sendfile: xfsize: %lld + off: %lld > file_size:"
"%lld\n", xfsize, off, file_size);
}
for (i = 0, m = m0, rlen = 0;
i < nbufs && m != NULL && rlen < xfsize;
i++, m = mbuf_next(m)) {
size_t mlen = mbuf_maxlen(m);
if (rlen + mlen > (size_t)xfsize) {
mlen = xfsize - rlen;
}
mbuf_setlen(m, mlen);
rlen += mlen;
}
mbuf_pkthdr_setlen(m0, xfsize);
retry_space:
/*
* Make sure that the socket is still able to take more data.
* CANTSENDMORE being true usually means that the connection
* was closed. so_error is true when an error was sensed after
* a previous send.
* The state is checked after the page mapping and buffer
* allocation above since those operations may block and make
* any socket checks stale. From this point forward, nothing
* blocks before the pru_send (or more accurately, any blocking
* results in a loop back to here to re-check).
*/
if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
if (so->so_state & SS_CANTSENDMORE) {
error = EPIPE;
} else {
error = so->so_error;
so->so_error = 0;
}
m_freem(m0);
goto done3;
}
/*
* Wait for socket space to become available. We do this just
* after checking the connection state above in order to avoid
* a race condition with sbwait().
*/
if (sbspace(&so->so_snd) < (long)so->so_snd.sb_lowat) {
if (so->so_state & SS_NBIO) {
m_freem(m0);
error = EAGAIN;
goto done3;
}
KERNEL_DEBUG_CONSTANT((DBG_FNC_SENDFILE_WAIT |
DBG_FUNC_START), uap->s, 0, 0, 0, 0);
error = sbwait(&so->so_snd);
KERNEL_DEBUG_CONSTANT((DBG_FNC_SENDFILE_WAIT |
DBG_FUNC_END), uap->s, 0, 0, 0, 0);
/*
* An error from sbwait usually indicates that we've
* been interrupted by a signal. If we've sent anything
* then return bytes sent, otherwise return the error.
*/
if (error) {
m_freem(m0);
goto done3;
}
goto retry_space;
}
mbuf_ref_t control = NULL;
{
/*
* Socket filter processing
*/
error = sflt_data_out(so, NULL, &m0, &control, 0);
if (error) {
if (error == EJUSTRETURN) {
error = 0;
continue;
}
goto done3;
}
/*
* End Socket filter processing
*/
}
KERNEL_DEBUG_CONSTANT((DBG_FNC_SENDFILE_SEND | DBG_FUNC_START),
uap->s, 0, 0, 0, 0);
error = (*so->so_proto->pr_usrreqs->pru_send)(so, 0, m0,
NULL, control, p);
KERNEL_DEBUG_CONSTANT((DBG_FNC_SENDFILE_SEND | DBG_FUNC_START),
uap->s, 0, 0, 0, 0);
if (error) {
goto done3;
}
}
sbunlock(&so->so_snd, FALSE); /* will unlock socket */
/*
* Send trailers. Wimp out and use writev(2).
*/
if (uap->hdtr != USER_ADDR_NULL &&
user_hdtr.trailers != USER_ADDR_NULL) {
bzero(&nuap, sizeof(struct writev_args));
nuap.fd = uap->s;
nuap.iovp = user_hdtr.trailers;
nuap.iovcnt = user_hdtr.trl_cnt;
error = writev_nocancel(p, &nuap, &writev_retval);
if (error) {
goto done2;
}
sbytes += writev_retval;
}
done2:
file_drop(uap->s);
done1:
file_drop(uap->fd);
done:
if (uap->nbytes != USER_ADDR_NULL) {
/* XXX this appears bogus for some early failure conditions */
copyout(&sbytes, uap->nbytes, sizeof(off_t));
}
KERNEL_DEBUG_CONSTANT((DBG_FNC_SENDFILE | DBG_FUNC_END), uap->s,
(unsigned int)((sbytes >> 32) & 0x0ffffffff),
(unsigned int)(sbytes & 0x0ffffffff), error, 0);
return error;
done3:
sbunlock(&so->so_snd, FALSE); /* will unlock socket */
goto done2;
}
#endif /* SENDFILE */