gems-kernel/source/THIRDPARTY/xnu/bsd/net/if_llreach.c
2024-06-03 11:29:39 -05:00

647 lines
18 KiB
C

/*
* Copyright (c) 2011-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Link-layer Reachability Record
*
* Each interface maintains a red-black tree which contains records related
* to the on-link nodes which we are interested in communicating with. Each
* record gets allocated and inserted into the tree in the following manner:
* upon processing an ARP announcement or reply from a known node (i.e. there
* exists a ARP route entry for the node), and if a link-layer reachability
* record for the node doesn't yet exist; and, upon processing a ND6 RS/RA/
* NS/NA/redirect from a node, and if a link-layer reachability record for the
* node doesn't yet exist.
*
* Each newly created record is then referred to by the resolver route entry;
* if a record already exists, its reference count gets increased for the new
* resolver entry which now refers to it. A record gets removed from the tree
* and freed once its reference counts drops to zero, i.e. when there is no
* more resolver entry referring to it.
*
* A record contains the link-layer protocol (e.g. Ethertype IP/IPv6), the
* HW address of the sender, the "last heard from" timestamp (lr_lastrcvd) and
* the number of references made to it (lr_reqcnt). Because the key for each
* record in the red-black tree consists of the link-layer protocol, therefore
* the namespace for the records is partitioned based on the type of link-layer
* protocol, i.e. an Ethertype IP link-layer record is only referred to by one
* or more ARP entries; an Ethernet IPv6 link-layer record is only referred to
* by one or more ND6 entries. Therefore, lr_reqcnt represents the number of
* resolver entry references to the record for the same protocol family.
*
* Upon receiving packets from the network, the protocol's input callback
* (e.g. ether_inet{6}_input) informs the corresponding resolver (ARP/ND6)
* about the (link-layer) origin of the packet. This results in searching
* for a matching record in the red-black tree for the interface where the
* packet arrived on. If there's no match, no further processing takes place.
* Otherwise, the lr_lastrcvd timestamp of the record is updated.
*
* When an IP/IPv6 packet is transmitted to the resolver (i.e. the destination
* is on-link), ARP/ND6 records the "last spoken to" timestamp in the route
* entry ({la,ln}_lastused).
*
* The reachability of the on-link node is determined by the following logic,
* upon sending a packet thru the resolver:
*
* a) If the record is only used by exactly one resolver entry (lr_reqcnt
* is 1), i.e. the target host does not have IP/IPv6 aliases that we know
* of, check if lr_lastrcvd is "recent." If so, simply send the packet;
* otherwise, re-resolve the target node.
*
* b) If the record is shared by multiple resolver entries (lr_reqcnt is
* greater than 1), i.e. the target host has more than one IP/IPv6 aliases
* on the same network interface, we can't rely on lr_lastrcvd alone, as
* one of the IP/IPv6 aliases could have been silently moved to another
* node for which we don't have a link-layer record. If lr_lastrcvd is
* not "recent", we re-resolve the target node. Otherwise, we perform
* an additional check against {la,ln}_lastused to see whether it is also
* "recent", relative to lr_lastrcvd. If so, simply send the packet;
* otherwise, re-resolve the target node.
*
* The value for "recent" is configurable by adjusting the basetime value for
* net.link.ether.inet.arp_llreach_base or net.inet6.icmp6.nd6_llreach_base.
* The default basetime value is 30 seconds, and the actual expiration time
* is calculated by multiplying the basetime value with some random factor,
* which results in a number between 15 to 45 seconds. Setting the basetime
* value to 0 effectively disables this feature for the corresponding resolver.
*
* Assumptions:
*
* The above logic is based upon the following assumptions:
*
* i) Network traffics are mostly bi-directional, i.e. the act of sending
* packets to an on-link node would most likely cause us to receive
* packets from that node.
*
* ii) If the on-link node's IP/IPv6 address silently moves to another
* on-link node for which we are not aware of, non-unicast packets
* from the old node would trigger the record's lr_lastrcvd to be
* kept recent.
*
* We can mitigate the above by having the resolver check its {la,ln}_lastused
* timestamp at all times, i.e. not only when lr_reqcnt is greater than 1; but
* we currently optimize for the common cases.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/tree.h>
#include <sys/sysctl.h>
#include <sys/mcache.h>
#include <sys/protosw.h>
#include <dev/random/randomdev.h>
#include <net/if_dl.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_llreach.h>
#include <net/dlil.h>
#include <net/kpi_interface.h>
#include <net/route.h>
#include <kern/assert.h>
#include <kern/locks.h>
#include <kern/zalloc.h>
#include <netinet6/in6_var.h>
#include <netinet6/nd6.h>
static KALLOC_TYPE_DEFINE(iflr_zone, struct if_llreach, NET_KT_DEFAULT);
static struct if_llreach *iflr_alloc(zalloc_flags_t);
static void iflr_free(struct if_llreach *);
static __inline int iflr_cmp(const struct if_llreach *,
const struct if_llreach *);
static __inline int iflr_reachable(struct if_llreach *, int, u_int64_t);
static int sysctl_llreach_ifinfo SYSCTL_HANDLER_ARGS;
/* The following is protected by if_llreach_lock */
RB_GENERATE_PREV(ll_reach_tree, if_llreach, lr_link, iflr_cmp);
SYSCTL_DECL(_net_link_generic_system);
SYSCTL_NODE(_net_link_generic_system, OID_AUTO, llreach_info,
CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_llreach_ifinfo,
"Per-interface tree of source link-layer reachability records");
/*
* Link-layer reachability is based off node constants in RFC4861.
*/
#define LL_COMPUTE_RTIME(x) ND_COMPUTE_RTIME(x)
void
ifnet_llreach_ifattach(struct ifnet *ifp, boolean_t reuse)
{
lck_rw_lock_exclusive(&ifp->if_llreach_lock);
/* Initialize link-layer source tree (if not already) */
if (!reuse) {
RB_INIT(&ifp->if_ll_srcs);
}
lck_rw_done(&ifp->if_llreach_lock);
}
void
ifnet_llreach_ifdetach(struct ifnet *ifp)
{
#pragma unused(ifp)
/*
* Nothing to do for now; the link-layer source tree might
* contain entries at this point, that are still referred
* to by route entries pointing to this ifp.
*/
}
/*
* Link-layer source tree comparison function.
*
* An ordered predicate is necessary; bcmp() is not documented to return
* an indication of order, memcmp() is, and is an ISO C99 requirement.
*/
static __inline int
iflr_cmp(const struct if_llreach *a, const struct if_llreach *b)
{
return memcmp(&a->lr_key, &b->lr_key, sizeof(a->lr_key));
}
static __inline int
iflr_reachable(struct if_llreach *lr, int cmp_delta, u_int64_t tval)
{
u_int64_t now;
u_int64_t expire;
now = net_uptime(); /* current approx. uptime */
/*
* No need for lr_lock; atomically read the last rcvd uptime.
*/
expire = lr->lr_lastrcvd + lr->lr_reachable;
/*
* If we haven't heard back from the local host for over
* lr_reachable seconds, consider that the host is no
* longer reachable.
*/
if (!cmp_delta) {
return expire >= now;
}
/*
* If the caller supplied a reference time, consider the
* host is reachable if the record hasn't expired (see above)
* and if the reference time is within the past lr_reachable
* seconds.
*/
return (expire >= now) && (now - tval) < lr->lr_reachable;
}
int
ifnet_llreach_reachable(struct if_llreach *lr)
{
/*
* Check whether the cache is too old to be trusted.
*/
return iflr_reachable(lr, 0, 0);
}
int
ifnet_llreach_reachable_delta(struct if_llreach *lr, u_int64_t tval)
{
/*
* Check whether the cache is too old to be trusted.
*/
return iflr_reachable(lr, 1, tval);
}
void
ifnet_llreach_set_reachable(struct ifnet *ifp, u_int16_t llproto, void *addr,
unsigned int alen)
{
struct if_llreach find, *lr;
VERIFY(alen == IF_LLREACH_MAXLEN); /* for now */
find.lr_key.proto = llproto;
bcopy(addr, &find.lr_key.addr, IF_LLREACH_MAXLEN);
lck_rw_lock_shared(&ifp->if_llreach_lock);
lr = RB_FIND(ll_reach_tree, &ifp->if_ll_srcs, &find);
if (lr == NULL) {
lck_rw_done(&ifp->if_llreach_lock);
return;
}
/*
* No need for lr_lock; atomically update the last rcvd uptime.
*/
lr->lr_lastrcvd = net_uptime();
lck_rw_done(&ifp->if_llreach_lock);
}
struct if_llreach *
ifnet_llreach_alloc(struct ifnet *ifp, u_int16_t llproto, void *addr,
unsigned int alen, u_int32_t llreach_base)
{
struct if_llreach find, *lr;
struct timeval cnow;
if (llreach_base == 0) {
return NULL;
}
VERIFY(alen == IF_LLREACH_MAXLEN); /* for now */
find.lr_key.proto = llproto;
bcopy(addr, &find.lr_key.addr, IF_LLREACH_MAXLEN);
lck_rw_lock_shared(&ifp->if_llreach_lock);
lr = RB_FIND(ll_reach_tree, &ifp->if_ll_srcs, &find);
if (lr != NULL) {
found:
IFLR_LOCK(lr);
VERIFY(lr->lr_reqcnt >= 1);
lr->lr_reqcnt++;
VERIFY(lr->lr_reqcnt != 0);
IFLR_ADDREF_LOCKED(lr); /* for caller */
lr->lr_lastrcvd = net_uptime(); /* current approx. uptime */
IFLR_UNLOCK(lr);
lck_rw_done(&ifp->if_llreach_lock);
return lr;
}
if (!lck_rw_lock_shared_to_exclusive(&ifp->if_llreach_lock)) {
lck_rw_lock_exclusive(&ifp->if_llreach_lock);
}
LCK_RW_ASSERT(&ifp->if_llreach_lock, LCK_RW_ASSERT_EXCLUSIVE);
/* in case things have changed while becoming writer */
lr = RB_FIND(ll_reach_tree, &ifp->if_ll_srcs, &find);
if (lr != NULL) {
goto found;
}
lr = iflr_alloc(Z_WAITOK);
IFLR_LOCK(lr);
lr->lr_reqcnt++;
VERIFY(lr->lr_reqcnt == 1);
IFLR_ADDREF_LOCKED(lr); /* for RB tree */
IFLR_ADDREF_LOCKED(lr); /* for caller */
lr->lr_lastrcvd = net_uptime(); /* current approx. uptime */
lr->lr_baseup = lr->lr_lastrcvd; /* base uptime */
getmicrotime(&cnow);
lr->lr_basecal = cnow.tv_sec; /* base calendar time */
lr->lr_basereachable = llreach_base;
lr->lr_reachable = LL_COMPUTE_RTIME(lr->lr_basereachable * 1000);
lr->lr_debug |= IFD_ATTACHED;
lr->lr_ifp = ifp;
lr->lr_key.proto = llproto;
bcopy(addr, &lr->lr_key.addr, IF_LLREACH_MAXLEN);
lr->lr_rssi = IFNET_RSSI_UNKNOWN;
lr->lr_lqm = IFNET_LQM_THRESH_UNKNOWN;
lr->lr_npm = IFNET_NPM_THRESH_UNKNOWN;
RB_INSERT(ll_reach_tree, &ifp->if_ll_srcs, lr);
IFLR_UNLOCK(lr);
lck_rw_done(&ifp->if_llreach_lock);
return lr;
}
void
ifnet_llreach_free(struct if_llreach *lr)
{
struct ifnet *ifp;
/* no need to lock here; lr_ifp never changes */
ifp = lr->lr_ifp;
lck_rw_lock_exclusive(&ifp->if_llreach_lock);
IFLR_LOCK(lr);
if (lr->lr_reqcnt == 0) {
panic("%s: lr=%p negative reqcnt", __func__, lr);
/* NOTREACHED */
}
--lr->lr_reqcnt;
if (lr->lr_reqcnt > 0) {
IFLR_UNLOCK(lr);
lck_rw_done(&ifp->if_llreach_lock);
IFLR_REMREF(lr); /* for caller */
return;
}
if (!(lr->lr_debug & IFD_ATTACHED)) {
panic("%s: Attempt to detach an unattached llreach lr=%p",
__func__, lr);
/* NOTREACHED */
}
lr->lr_debug &= ~IFD_ATTACHED;
RB_REMOVE(ll_reach_tree, &ifp->if_ll_srcs, lr);
IFLR_UNLOCK(lr);
lck_rw_done(&ifp->if_llreach_lock);
IFLR_REMREF(lr); /* for RB tree */
IFLR_REMREF(lr); /* for caller */
}
u_int64_t
ifnet_llreach_up2calexp(struct if_llreach *lr, u_int64_t uptime)
{
u_int64_t calendar = 0;
if (uptime != 0) {
struct timeval cnow;
u_int64_t unow;
getmicrotime(&cnow); /* current calendar time */
unow = net_uptime(); /* current approx. uptime */
/*
* Take into account possible calendar time changes;
* adjust base calendar value if necessary, i.e.
* the calendar skew should equate to the uptime skew.
*/
lr->lr_basecal += (cnow.tv_sec - lr->lr_basecal) -
(unow - lr->lr_baseup);
calendar = lr->lr_basecal + lr->lr_reachable +
(uptime - lr->lr_baseup);
}
return calendar;
}
u_int64_t
ifnet_llreach_up2upexp(struct if_llreach *lr, u_int64_t uptime)
{
return lr->lr_reachable + uptime;
}
int
ifnet_llreach_get_defrouter(struct ifnet *ifp, sa_family_t af,
struct ifnet_llreach_info *iflri)
{
struct radix_node_head *rnh;
struct sockaddr_storage dst_ss, mask_ss;
struct rtentry *rt;
int error = ESRCH;
VERIFY(ifp != NULL && iflri != NULL &&
(af == AF_INET || af == AF_INET6));
bzero(iflri, sizeof(*iflri));
if ((rnh = rt_tables[af]) == NULL) {
return error;
}
bzero(&dst_ss, sizeof(dst_ss));
bzero(&mask_ss, sizeof(mask_ss));
dst_ss.ss_family = af;
dst_ss.ss_len = (af == AF_INET) ? sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6);
lck_mtx_lock(rnh_lock);
rt = rt_lookup(TRUE, SA(&dst_ss), SA(&mask_ss), rnh, ifp->if_index);
if (rt != NULL) {
struct rtentry *gwrt;
RT_LOCK(rt);
if ((rt->rt_flags & RTF_GATEWAY) &&
(gwrt = rt->rt_gwroute) != NULL &&
rt_key(rt)->sa_family == rt_key(gwrt)->sa_family &&
(gwrt->rt_flags & RTF_UP)) {
RT_UNLOCK(rt);
RT_LOCK(gwrt);
if (gwrt->rt_llinfo_get_iflri != NULL) {
(*gwrt->rt_llinfo_get_iflri)(gwrt, iflri);
error = 0;
}
RT_UNLOCK(gwrt);
} else {
RT_UNLOCK(rt);
}
rtfree_locked(rt);
}
lck_mtx_unlock(rnh_lock);
return error;
}
static struct if_llreach *
iflr_alloc(zalloc_flags_t how)
{
struct if_llreach *lr = zalloc_flags(iflr_zone, how | Z_ZERO);
if (lr) {
lck_mtx_init(&lr->lr_lock, &ifnet_lock_group, &ifnet_lock_attr);
lr->lr_debug |= IFD_ALLOC;
}
return lr;
}
static void
iflr_free(struct if_llreach *lr)
{
IFLR_LOCK(lr);
if (lr->lr_debug & IFD_ATTACHED) {
panic("%s: attached lr=%p is being freed", __func__, lr);
/* NOTREACHED */
} else if (!(lr->lr_debug & IFD_ALLOC)) {
panic("%s: lr %p cannot be freed", __func__, lr);
/* NOTREACHED */
} else if (lr->lr_refcnt != 0) {
panic("%s: non-zero refcount lr=%p", __func__, lr);
/* NOTREACHED */
} else if (lr->lr_reqcnt != 0) {
panic("%s: non-zero reqcnt lr=%p", __func__, lr);
/* NOTREACHED */
}
lr->lr_debug &= ~IFD_ALLOC;
IFLR_UNLOCK(lr);
lck_mtx_destroy(&lr->lr_lock, &ifnet_lock_group);
zfree(iflr_zone, lr);
}
void
iflr_addref(struct if_llreach *lr, int locked)
{
if (!locked) {
IFLR_LOCK(lr);
} else {
IFLR_LOCK_ASSERT_HELD(lr);
}
if (++lr->lr_refcnt == 0) {
panic("%s: lr=%p wraparound refcnt", __func__, lr);
/* NOTREACHED */
}
if (!locked) {
IFLR_UNLOCK(lr);
}
}
void
iflr_remref(struct if_llreach *lr)
{
IFLR_LOCK(lr);
if (lr->lr_refcnt == 0) {
panic("%s: lr=%p negative refcnt", __func__, lr);
/* NOTREACHED */
}
--lr->lr_refcnt;
if (lr->lr_refcnt > 0) {
IFLR_UNLOCK(lr);
return;
}
IFLR_UNLOCK(lr);
iflr_free(lr); /* deallocate it */
}
void
ifnet_lr2ri(struct if_llreach *lr, struct rt_reach_info *ri)
{
struct if_llreach_info lri;
IFLR_LOCK_ASSERT_HELD(lr);
bzero(ri, sizeof(*ri));
ifnet_lr2lri(lr, &lri);
ri->ri_refcnt = lri.lri_refcnt;
ri->ri_probes = lri.lri_probes;
ri->ri_rcv_expire = lri.lri_expire;
ri->ri_rssi = lri.lri_rssi;
ri->ri_lqm = lri.lri_lqm;
ri->ri_npm = lri.lri_npm;
}
void
ifnet_lr2iflri(struct if_llreach *lr, struct ifnet_llreach_info *iflri)
{
IFLR_LOCK_ASSERT_HELD(lr);
bzero(iflri, sizeof(*iflri));
/*
* Note here we return request count, not actual memory refcnt.
*/
iflri->iflri_refcnt = lr->lr_reqcnt;
iflri->iflri_probes = lr->lr_probes;
iflri->iflri_rcv_expire = ifnet_llreach_up2upexp(lr, lr->lr_lastrcvd);
iflri->iflri_curtime = net_uptime();
switch (lr->lr_key.proto) {
case ETHERTYPE_IP:
iflri->iflri_netproto = PF_INET;
break;
case ETHERTYPE_IPV6:
iflri->iflri_netproto = PF_INET6;
break;
default:
/*
* This shouldn't be possible for the time being,
* since link-layer reachability records are only
* kept for ARP and ND6.
*/
iflri->iflri_netproto = PF_UNSPEC;
break;
}
bcopy(&lr->lr_key.addr, &iflri->iflri_addr, IF_LLREACH_MAXLEN);
iflri->iflri_rssi = lr->lr_rssi;
iflri->iflri_lqm = lr->lr_lqm;
iflri->iflri_npm = lr->lr_npm;
}
void
ifnet_lr2lri(struct if_llreach *lr, struct if_llreach_info *lri)
{
IFLR_LOCK_ASSERT_HELD(lr);
bzero(lri, sizeof(*lri));
/*
* Note here we return request count, not actual memory refcnt.
*/
lri->lri_refcnt = lr->lr_reqcnt;
lri->lri_ifindex = lr->lr_ifp->if_index;
lri->lri_probes = lr->lr_probes;
lri->lri_expire = ifnet_llreach_up2calexp(lr, lr->lr_lastrcvd);
lri->lri_proto = lr->lr_key.proto;
bcopy(&lr->lr_key.addr, &lri->lri_addr, IF_LLREACH_MAXLEN);
lri->lri_rssi = lr->lr_rssi;
lri->lri_lqm = lr->lr_lqm;
lri->lri_npm = lr->lr_npm;
}
static int
sysctl_llreach_ifinfo SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp)
int *name, retval = 0;
unsigned int namelen;
uint32_t ifindex;
struct if_llreach *lr;
struct if_llreach_info lri = {};
struct ifnet *ifp;
name = (int *)arg1;
namelen = (unsigned int)arg2;
if (req->newptr != USER_ADDR_NULL) {
return EPERM;
}
if (namelen != 1) {
return EINVAL;
}
ifindex = name[0];
ifnet_head_lock_shared();
if (ifindex <= 0 || ifindex > (u_int)if_index) {
printf("%s: ifindex %u out of range\n", __func__, ifindex);
ifnet_head_done();
return ENOENT;
}
ifp = ifindex2ifnet[ifindex];
ifnet_head_done();
if (ifp == NULL) {
printf("%s: no ifp for ifindex %u\n", __func__, ifindex);
return ENOENT;
}
lck_rw_lock_shared(&ifp->if_llreach_lock);
RB_FOREACH(lr, ll_reach_tree, &ifp->if_ll_srcs) {
/* Export to if_llreach_info structure */
IFLR_LOCK(lr);
ifnet_lr2lri(lr, &lri);
IFLR_UNLOCK(lr);
if ((retval = SYSCTL_OUT(req, &lri, sizeof(lri))) != 0) {
break;
}
}
lck_rw_done(&ifp->if_llreach_lock);
return retval;
}