gems-kernel/source/THIRDPARTY/xnu/bsd/net/necp_client.c
2024-06-03 11:29:39 -05:00

11359 lines
388 KiB
C

/*
* Copyright (c) 2015-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <string.h>
#include <kern/thread_call.h>
#include <kern/zalloc.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/net_api_stats.h>
#include <net/necp.h>
#include <net/network_agent.h>
#include <net/ntstat.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/mp_pcb.h>
#include <netinet/tcp_cc.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_cache.h>
#include <netinet6/in6_var.h>
#include <sys/domain.h>
#include <sys/file_internal.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/poll.h>
#include <sys/priv.h>
#include <sys/protosw.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysproto.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/codesign.h>
#include <libkern/section_keywords.h>
#include <IOKit/IOBSD.h>
#include <os/refcnt.h>
#include <CodeSignature/Entitlements.h>
#if SKYWALK
#include <skywalk/os_skywalk_private.h>
#include <skywalk/nexus/flowswitch/flow/flow_var.h>
#include <skywalk/nexus/flowswitch/nx_flowswitch.h>
#endif /* SKYWALK */
#if CONFIG_MACF
#include <security/mac_framework.h>
#endif
/*
* NECP Client Architecture
* ------------------------------------------------
* See <net/necp.c> for a discussion on NECP database architecture.
*
* Each client of NECP provides a set of parameters for a connection or network state
* evaluation, on which NECP policy evaluation is run. This produces a policy result
* which can be accessed by the originating process, along with events for when policies
* results have changed.
*
* ------------------------------------------------
* NECP Client FD
* ------------------------------------------------
* A process opens an NECP file descriptor using necp_open(). This is a very simple
* file descriptor, upon which the process may do the following operations:
* - necp_client_action(...), to add/remove/query clients
* - kqueue, to watch for readable events
* - close(), to close the client session and release all clients
*
* Client objects are allocated structures that hang off of the file descriptor. Each
* client contains:
* - Client ID, a UUID that references the client across the system
* - Parameters, a buffer of TLVs that describe the client's connection parameters,
* such as the remote and local endpoints, interface requirements, etc.
* - Result, a buffer of TLVs containing the current policy evaluation for the client.
* This result will be updated whenever a network change occurs that impacts the
* policy result for that client.
*
* +--------------+
* | NECP fd |
* +--------------+
* ||
* ==================================
* || || ||
* +--------------+ +--------------+ +--------------+
* | Client ID | | Client ID | | Client ID |
* | ---- | | ---- | | ---- |
* | Parameters | | Parameters | | Parameters |
* | ---- | | ---- | | ---- |
* | Result | | Result | | Result |
* +--------------+ +--------------+ +--------------+
*
* ------------------------------------------------
* Client Actions
* ------------------------------------------------
* - Add. Input parameters as a buffer of TLVs, and output a client ID. Allocates a
* new client structure on the file descriptor.
* - Remove. Input a client ID. Removes a client structure from the file descriptor.
* - Copy Parameters. Input a client ID, and output parameter TLVs.
* - Copy Result. Input a client ID, and output result TLVs. Alternatively, input empty
* client ID and get next unread client result.
* - Copy List. List all client IDs.
*
* ------------------------------------------------
* Client Policy Evaluation
* ------------------------------------------------
* Policies are evaluated for clients upon client creation, and upon update events,
* which are network/agent/policy changes coalesced by a timer.
*
* The policy evaluation goes through the following steps:
* 1. Parse client parameters.
* 2. Select a scoped interface if applicable. This involves using require/prohibit
* parameters, along with the local address, to select the most appropriate interface
* if not explicitly set by the client parameters.
* 3. Run NECP application-level policy evalution
* 4. Set policy result into client result buffer.
*
* ------------------------------------------------
* Client Observers
* ------------------------------------------------
* If necp_open() is called with the NECP_OPEN_FLAG_OBSERVER flag, and the process
* passes the necessary privilege check, the fd is allowed to use necp_client_action()
* to copy client state attached to the file descriptors of other processes, and to
* list all client IDs on the system.
*/
extern u_int32_t necp_debug;
static int necpop_select(struct fileproc *, int, void *, vfs_context_t);
static int necpop_close(struct fileglob *, vfs_context_t);
static int necpop_kqfilter(struct fileproc *, struct knote *, struct kevent_qos_s *);
// Timer functions
static int necp_timeout_microseconds = 1000 * 100; // 100ms
static int necp_timeout_leeway_microseconds = 1000 * 50; // 50ms
#if SKYWALK
static int necp_collect_stats_timeout_microseconds = 1000 * 1000 * 1; // 1s
static int necp_collect_stats_timeout_leeway_microseconds = 1000 * 500; // 500ms
static int necp_close_arenas_timeout_microseconds = 1000 * 1000 * 10; // 10s
static int necp_close_arenas_timeout_leeway_microseconds = 1000 * 1000 * 1; // 1s
#endif /* SKYWALK */
static int necp_client_fd_count = 0;
static int necp_observer_fd_count = 0;
static int necp_client_count = 0;
static int necp_socket_flow_count = 0;
static int necp_if_flow_count = 0;
static int necp_observer_message_limit = 256;
/*
* NECP client tracing control -
*
* necp_client_tracing_level : 1 for client trace, 2 for flow trace, 3 for parameter details
* necp_client_tracing_pid : match client with pid
*/
static int necp_client_tracing_level = 0;
static int necp_client_tracing_pid = 0;
#define NECP_CLIENT_TRACE_LEVEL_CLIENT 1
#define NECP_CLIENT_TRACE_LEVEL_FLOW 2
#define NECP_CLIENT_TRACE_LEVEL_PARAMS 3
#define NECP_CLIENT_TRACE_PID_MATCHED(pid) \
(pid == necp_client_tracing_pid)
#define NECP_ENABLE_CLIENT_TRACE(level) \
((necp_client_tracing_level >= level && \
(!necp_client_tracing_pid || NECP_CLIENT_TRACE_PID_MATCHED(client->proc_pid))) ? necp_client_tracing_level : 0)
#define NECP_CLIENT_LOG(client, fmt, ...) \
if (client && NECP_ENABLE_CLIENT_TRACE(NECP_CLIENT_TRACE_LEVEL_CLIENT)) { \
uuid_string_t client_uuid_str = { }; \
uuid_unparse_lower(client->client_id, client_uuid_str); \
NECPLOG(LOG_NOTICE, "NECP_CLIENT_LOG <pid %d %s>: " fmt "\n", client ? client->proc_pid : 0, client_uuid_str, ##__VA_ARGS__); \
}
#define NECP_CLIENT_FLOW_LOG(client, flow, fmt, ...) \
if (client && flow && NECP_ENABLE_CLIENT_TRACE(NECP_CLIENT_TRACE_LEVEL_FLOW)) { \
uuid_string_t client_uuid_str = { }; \
uuid_unparse_lower(client->client_id, client_uuid_str); \
uuid_string_t flow_uuid_str = { }; \
uuid_unparse_lower(flow->registration_id, flow_uuid_str); \
NECPLOG(LOG_NOTICE, "NECP CLIENT FLOW TRACE <pid %d %s> <flow %s>: " fmt "\n", client ? client->proc_pid : 0, client_uuid_str, flow_uuid_str, ##__VA_ARGS__); \
}
#define NECP_CLIENT_PARAMS_LOG(client, fmt, ...) \
if (client && NECP_ENABLE_CLIENT_TRACE(NECP_CLIENT_TRACE_LEVEL_PARAMS)) { \
uuid_string_t client_uuid_str = { }; \
uuid_unparse_lower(client->client_id, client_uuid_str); \
NECPLOG(LOG_NOTICE, "NECP_CLIENT_PARAMS_LOG <pid %d %s>: " fmt "\n", client ? client->proc_pid : 0, client_uuid_str, ##__VA_ARGS__); \
}
#define NECP_SOCKET_PID(so) \
((so->so_flags & SOF_DELEGATED) ? so->e_pid : so->last_pid)
#define NECP_ENABLE_SOCKET_TRACE(level) \
((necp_client_tracing_level >= level && \
(!necp_client_tracing_pid || NECP_CLIENT_TRACE_PID_MATCHED(NECP_SOCKET_PID(so)))) ? necp_client_tracing_level : 0)
#define NECP_SOCKET_PARAMS_LOG(so, fmt, ...) \
if (so && NECP_ENABLE_SOCKET_TRACE(NECP_CLIENT_TRACE_LEVEL_PARAMS)) { \
NECPLOG(LOG_NOTICE, "NECP_SOCKET_PARAMS_LOG <pid %d>: " fmt "\n", NECP_SOCKET_PID(so), ##__VA_ARGS__); \
}
#define NECP_SOCKET_ATTRIBUTE_LOG(fmt, ...) \
if (necp_client_tracing_level >= NECP_CLIENT_TRACE_LEVEL_PARAMS) { \
NECPLOG(LOG_NOTICE, "NECP_SOCKET_ATTRIBUTE_LOG: " fmt "\n", ##__VA_ARGS__); \
}
#define NECP_CLIENT_TRACKER_LOG(pid, fmt, ...) \
if (pid) { \
NECPLOG(LOG_NOTICE, "NECP_CLIENT_TRACKER_LOG <pid %d>: " fmt "\n", pid, ##__VA_ARGS__); \
}
#if SKYWALK
static int necp_arena_count = 0;
static int necp_sysctl_arena_count = 0;
static int necp_nexus_flow_count = 0;
/* userspace stats sanity check range, same unit as TCP (see TCP_RTT_SCALE) */
static uint32_t necp_client_stats_rtt_floor = 1; // 32us
static uint32_t necp_client_stats_rtt_ceiling = 1920000; // 60s
const static struct sk_stats_flow ntstat_sk_stats_zero;
#endif /* SKYWALK */
/*
* Global lock to protect socket inp_necp_attributes across updates.
* NECP updating these attributes and clients accessing these attributes
* must take this lock.
*/
static LCK_GRP_DECLARE(necp_socket_attr_lock_grp, "necpSocketAttrGroup");
LCK_MTX_DECLARE(necp_socket_attr_lock, &necp_socket_attr_lock_grp);
os_refgrp_decl(static, necp_client_refgrp, "NECPClientRefGroup", NULL);
SYSCTL_INT(_net_necp, NECPCTL_CLIENT_FD_COUNT, client_fd_count, CTLFLAG_LOCKED | CTLFLAG_RD, &necp_client_fd_count, 0, "");
SYSCTL_INT(_net_necp, NECPCTL_OBSERVER_FD_COUNT, observer_fd_count, CTLFLAG_LOCKED | CTLFLAG_RD, &necp_observer_fd_count, 0, "");
SYSCTL_INT(_net_necp, NECPCTL_CLIENT_COUNT, client_count, CTLFLAG_LOCKED | CTLFLAG_RD, &necp_client_count, 0, "");
SYSCTL_INT(_net_necp, NECPCTL_SOCKET_FLOW_COUNT, socket_flow_count, CTLFLAG_LOCKED | CTLFLAG_RD, &necp_socket_flow_count, 0, "");
SYSCTL_INT(_net_necp, NECPCTL_IF_FLOW_COUNT, if_flow_count, CTLFLAG_LOCKED | CTLFLAG_RD, &necp_if_flow_count, 0, "");
SYSCTL_INT(_net_necp, NECPCTL_OBSERVER_MESSAGE_LIMIT, observer_message_limit, CTLFLAG_LOCKED | CTLFLAG_RW, &necp_observer_message_limit, 256, "");
SYSCTL_INT(_net_necp, NECPCTL_CLIENT_TRACING_LEVEL, necp_client_tracing_level, CTLFLAG_LOCKED | CTLFLAG_RW, &necp_client_tracing_level, 0, "");
SYSCTL_INT(_net_necp, NECPCTL_CLIENT_TRACING_PID, necp_client_tracing_pid, CTLFLAG_LOCKED | CTLFLAG_RW, &necp_client_tracing_pid, 0, "");
#if SKYWALK
SYSCTL_INT(_net_necp, NECPCTL_ARENA_COUNT, arena_count, CTLFLAG_LOCKED | CTLFLAG_RD, &necp_arena_count, 0, "");
SYSCTL_INT(_net_necp, NECPCTL_SYSCTL_ARENA_COUNT, sysctl_arena_count, CTLFLAG_LOCKED | CTLFLAG_RD, &necp_sysctl_arena_count, 0, "");
SYSCTL_INT(_net_necp, NECPCTL_NEXUS_FLOW_COUNT, nexus_flow_count, CTLFLAG_LOCKED | CTLFLAG_RD, &necp_nexus_flow_count, 0, "");
#if (DEVELOPMENT || DEBUG)
SYSCTL_UINT(_net_necp, OID_AUTO, collect_stats_interval_us, CTLFLAG_RW | CTLFLAG_LOCKED, &necp_collect_stats_timeout_microseconds, 0, "");
SYSCTL_UINT(_net_necp, OID_AUTO, necp_client_stats_rtt_floor, CTLFLAG_RW | CTLFLAG_LOCKED, &necp_client_stats_rtt_floor, 0, "");
SYSCTL_UINT(_net_necp, OID_AUTO, necp_client_stats_rtt_ceiling, CTLFLAG_RW | CTLFLAG_LOCKED, &necp_client_stats_rtt_ceiling, 0, "");
#endif /* (DEVELOPMENT || DEBUG) */
#endif /* SKYWALK */
#define NECP_MAX_CLIENT_LIST_SIZE 1024 * 1024 // 1MB
#define NECP_MAX_AGENT_ACTION_SIZE 10 * 1024 // 10K
extern int tvtohz(struct timeval *);
extern unsigned int get_maxmtu(struct rtentry *);
// Parsed parameters
#define NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR 0x00001
#define NECP_PARSED_PARAMETERS_FIELD_REMOTE_ADDR 0x00002
#define NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IF 0x00004
#define NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_IF 0x00008
#define NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IFTYPE 0x00010
#define NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_IFTYPE 0x00020
#define NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT 0x00040
#define NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_AGENT 0x00080
#define NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT 0x00100
#define NECP_PARSED_PARAMETERS_FIELD_AVOIDED_AGENT 0x00200
#define NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT_TYPE 0x00400
#define NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_AGENT_TYPE 0x00800
#define NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT_TYPE 0x01000
#define NECP_PARSED_PARAMETERS_FIELD_AVOIDED_AGENT_TYPE 0x02000
#define NECP_PARSED_PARAMETERS_FIELD_FLAGS 0x04000
#define NECP_PARSED_PARAMETERS_FIELD_IP_PROTOCOL 0x08000
#define NECP_PARSED_PARAMETERS_FIELD_EFFECTIVE_PID 0x10000
#define NECP_PARSED_PARAMETERS_FIELD_EFFECTIVE_UUID 0x20000
#define NECP_PARSED_PARAMETERS_FIELD_TRAFFIC_CLASS 0x40000
#define NECP_PARSED_PARAMETERS_FIELD_LOCAL_PORT 0x80000
#define NECP_PARSED_PARAMETERS_FIELD_DELEGATED_UPID 0x100000
#define NECP_PARSED_PARAMETERS_FIELD_ETHERTYPE 0x200000
#define NECP_PARSED_PARAMETERS_FIELD_TRANSPORT_PROTOCOL 0x400000
#define NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR_PREFERENCE 0x800000
#define NECP_PARSED_PARAMETERS_FIELD_ATTRIBUTED_BUNDLE_IDENTIFIER 0x1000000
#define NECP_PARSED_PARAMETERS_FIELD_PARENT_UUID 0x2000000
#define NECP_PARSED_PARAMETERS_FIELD_FLOW_DEMUX_PATTERN 0x4000000
#define NECP_PARSED_PARAMETERS_FIELD_UID 0x8000000
#define NECP_PARSED_PARAMETERS_FIELD_PERSONA_ID 0x10000000
#define NECP_MAX_INTERFACE_PARAMETERS 16
#define NECP_MAX_AGENT_PARAMETERS 4
struct necp_client_parsed_parameters {
u_int32_t valid_fields;
u_int32_t flags;
u_int64_t delegated_upid;
union necp_sockaddr_union local_addr;
union necp_sockaddr_union remote_addr;
u_int32_t required_interface_index;
char prohibited_interfaces[NECP_MAX_INTERFACE_PARAMETERS][IFXNAMSIZ];
u_int8_t required_interface_type;
u_int8_t local_address_preference;
u_int8_t prohibited_interface_types[NECP_MAX_INTERFACE_PARAMETERS];
struct necp_client_parameter_netagent_type required_netagent_types[NECP_MAX_AGENT_PARAMETERS];
struct necp_client_parameter_netagent_type prohibited_netagent_types[NECP_MAX_AGENT_PARAMETERS];
struct necp_client_parameter_netagent_type preferred_netagent_types[NECP_MAX_AGENT_PARAMETERS];
struct necp_client_parameter_netagent_type avoided_netagent_types[NECP_MAX_AGENT_PARAMETERS];
uuid_t required_netagents[NECP_MAX_AGENT_PARAMETERS];
uuid_t prohibited_netagents[NECP_MAX_AGENT_PARAMETERS];
uuid_t preferred_netagents[NECP_MAX_AGENT_PARAMETERS];
uuid_t avoided_netagents[NECP_MAX_AGENT_PARAMETERS];
u_int8_t ip_protocol;
u_int8_t transport_protocol;
u_int16_t ethertype;
pid_t effective_pid;
uuid_t effective_uuid;
uuid_t parent_uuid;
u_int32_t traffic_class;
struct necp_demux_pattern demux_patterns[NECP_MAX_DEMUX_PATTERNS];
u_int8_t demux_pattern_count;
uid_t uid;
uid_t persona_id;
};
static bool
necp_find_matching_interface_index(struct necp_client_parsed_parameters *parsed_parameters,
u_int *return_ifindex, bool *validate_agents);
static bool
necp_ifnet_matches_local_address(struct ifnet *ifp, struct sockaddr *sa);
static bool
necp_ifnet_matches_parameters(struct ifnet *ifp,
struct necp_client_parsed_parameters *parsed_parameters,
u_int32_t override_flags,
u_int32_t *preferred_count,
bool secondary_interface,
bool require_scoped_field);
static const struct fileops necp_fd_ops = {
.fo_type = DTYPE_NETPOLICY,
.fo_read = fo_no_read,
.fo_write = fo_no_write,
.fo_ioctl = fo_no_ioctl,
.fo_select = necpop_select,
.fo_close = necpop_close,
.fo_drain = fo_no_drain,
.fo_kqfilter = necpop_kqfilter,
};
struct necp_client_assertion {
LIST_ENTRY(necp_client_assertion) assertion_chain;
uuid_t asserted_netagent;
};
struct necp_client_flow_header {
struct necp_tlv_header outer_header;
struct necp_tlv_header flow_id_tlv_header;
uuid_t flow_id;
struct necp_tlv_header flags_tlv_header;
u_int32_t flags_value;
struct necp_tlv_header interface_tlv_header;
struct necp_client_result_interface interface_value;
} __attribute__((__packed__));
struct necp_client_flow_protoctl_event_header {
struct necp_tlv_header protoctl_tlv_header;
struct necp_client_flow_protoctl_event protoctl_event;
} __attribute__((__packed__));
struct necp_client_nexus_flow_header {
struct necp_client_flow_header flow_header;
struct necp_tlv_header agent_tlv_header;
struct necp_client_result_netagent agent_value;
struct necp_tlv_header tfo_cookie_tlv_header;
u_int8_t tfo_cookie_value[NECP_TFO_COOKIE_LEN_MAX];
} __attribute__((__packed__));
#if SKYWALK
struct necp_arena_info;
#endif
struct necp_client_flow {
LIST_ENTRY(necp_client_flow) flow_chain;
unsigned invalid : 1;
unsigned nexus : 1; // If true, flow is a nexus; if false, flow is attached to socket
unsigned socket : 1;
unsigned viable : 1;
unsigned assigned : 1;
unsigned has_protoctl_event : 1;
unsigned check_tcp_heuristics : 1;
unsigned _reserved : 1;
union {
uuid_t nexus_agent;
struct {
void *socket_handle;
necp_client_flow_cb cb;
};
} u;
uint32_t interface_index;
u_short delegated_interface_index;
uint32_t interface_flags;
uint32_t necp_flow_flags;
struct necp_client_flow_protoctl_event protoctl_event;
union necp_sockaddr_union local_addr;
union necp_sockaddr_union remote_addr;
size_t assigned_results_length;
u_int8_t *assigned_results;
};
struct necp_client_flow_registration {
RB_ENTRY(necp_client_flow_registration) fd_link;
RB_ENTRY(necp_client_flow_registration) global_link;
RB_ENTRY(necp_client_flow_registration) client_link;
LIST_ENTRY(necp_client_flow_registration) collect_stats_chain;
uuid_t registration_id;
u_int32_t flags;
unsigned flow_result_read : 1;
unsigned defunct : 1;
void *interface_handle;
necp_client_flow_cb interface_cb;
struct necp_client *client;
LIST_HEAD(_necp_registration_flow_list, necp_client_flow) flow_list;
#if SKYWALK
struct necp_arena_info *stats_arena; /* arena where the stats objects came from */
void * kstats_kaddr; /* kernel snapshot of untrusted userspace stats, for calculating delta */
mach_vm_address_t ustats_uaddr; /* userspace stats (untrusted) */
nstat_userland_context stats_handler_context;
struct flow_stats *nexus_stats; /* shared stats objects between necp_client and skywalk */
#endif /* !SKYWALK */
u_int64_t last_interface_details __attribute__((aligned(sizeof(u_int64_t))));
};
static int necp_client_flow_id_cmp(struct necp_client_flow_registration *flow0, struct necp_client_flow_registration *flow1);
RB_HEAD(_necp_client_flow_tree, necp_client_flow_registration);
RB_PROTOTYPE_PREV(_necp_client_flow_tree, necp_client_flow_registration, client_link, necp_client_flow_id_cmp);
RB_GENERATE_PREV(_necp_client_flow_tree, necp_client_flow_registration, client_link, necp_client_flow_id_cmp);
#define NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT 4
#define NECP_CLIENT_MAX_INTERFACE_OPTIONS 32
#define NECP_CLIENT_INTERFACE_OPTION_EXTRA_COUNT (NECP_CLIENT_MAX_INTERFACE_OPTIONS - NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT)
struct necp_client {
RB_ENTRY(necp_client) link;
RB_ENTRY(necp_client) global_link;
decl_lck_mtx_data(, lock);
decl_lck_mtx_data(, route_lock);
os_refcnt_t reference_count;
uuid_t client_id;
unsigned result_read : 1;
unsigned group_members_read : 1;
unsigned allow_multiple_flows : 1;
unsigned legacy_client_is_flow : 1;
unsigned platform_binary : 1;
unsigned validated_parent : 1;
size_t result_length;
u_int8_t result[NECP_BASE_CLIENT_RESULT_SIZE];
necp_policy_id policy_id;
necp_policy_id skip_policy_id;
u_int8_t ip_protocol;
int proc_pid;
u_int64_t delegated_upid;
struct _necp_client_flow_tree flow_registrations;
LIST_HEAD(_necp_client_assertion_list, necp_client_assertion) assertion_list;
size_t assigned_group_members_length;
u_int8_t *assigned_group_members;
struct rtentry *current_route;
struct necp_client_interface_option interface_options[NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT];
struct necp_client_interface_option *extra_interface_options;
u_int8_t interface_option_count; // Number in interface_options + extra_interface_options
struct necp_client_result_netagent failed_trigger_agent;
void *agent_handle;
uuid_t override_euuid;
#if SKYWALK
netns_token port_reservation;
nstat_context nstat_context;
uuid_t latest_flow_registration_id;
uuid_t parent_client_id;
struct necp_client *original_parameters_source;
#endif /* !SKYWALK */
size_t parameters_length;
u_int8_t *parameters;
};
#define NECP_CLIENT_LOCK(_c) lck_mtx_lock(&_c->lock)
#define NECP_CLIENT_UNLOCK(_c) lck_mtx_unlock(&_c->lock)
#define NECP_CLIENT_ASSERT_LOCKED(_c) LCK_MTX_ASSERT(&_c->lock, LCK_MTX_ASSERT_OWNED)
#define NECP_CLIENT_ASSERT_UNLOCKED(_c) LCK_MTX_ASSERT(&_c->lock, LCK_MTX_ASSERT_NOTOWNED)
#define NECP_CLIENT_ROUTE_LOCK(_c) lck_mtx_lock(&_c->route_lock)
#define NECP_CLIENT_ROUTE_UNLOCK(_c) lck_mtx_unlock(&_c->route_lock)
static void necp_client_retain_locked(struct necp_client *client);
static void necp_client_retain(struct necp_client *client);
static bool necp_client_release_locked(struct necp_client *client);
static bool necp_client_release(struct necp_client *client);
static void
necp_client_add_assertion(struct necp_client *client, uuid_t netagent_uuid);
static bool
necp_client_remove_assertion(struct necp_client *client, uuid_t netagent_uuid);
static int
necp_client_copy_parameters_locked(struct necp_client *client,
struct necp_client_nexus_parameters *parameters);
LIST_HEAD(_necp_flow_registration_list, necp_client_flow_registration);
static struct _necp_flow_registration_list necp_collect_stats_flow_list;
struct necp_flow_defunct {
LIST_ENTRY(necp_flow_defunct) chain;
uuid_t flow_id;
uuid_t nexus_agent;
void *agent_handle;
int proc_pid;
u_int32_t flags;
struct necp_client_agent_parameters close_parameters;
bool has_close_parameters;
};
LIST_HEAD(_necp_flow_defunct_list, necp_flow_defunct);
static int necp_client_id_cmp(struct necp_client *client0, struct necp_client *client1);
RB_HEAD(_necp_client_tree, necp_client);
RB_PROTOTYPE_PREV(_necp_client_tree, necp_client, link, necp_client_id_cmp);
RB_GENERATE_PREV(_necp_client_tree, necp_client, link, necp_client_id_cmp);
RB_HEAD(_necp_client_global_tree, necp_client);
RB_PROTOTYPE_PREV(_necp_client_global_tree, necp_client, global_link, necp_client_id_cmp);
RB_GENERATE_PREV(_necp_client_global_tree, necp_client, global_link, necp_client_id_cmp);
RB_HEAD(_necp_fd_flow_tree, necp_client_flow_registration);
RB_PROTOTYPE_PREV(_necp_fd_flow_tree, necp_client_flow_registration, fd_link, necp_client_flow_id_cmp);
RB_GENERATE_PREV(_necp_fd_flow_tree, necp_client_flow_registration, fd_link, necp_client_flow_id_cmp);
RB_HEAD(_necp_client_flow_global_tree, necp_client_flow_registration);
RB_PROTOTYPE_PREV(_necp_client_flow_global_tree, necp_client_flow_registration, global_link, necp_client_flow_id_cmp);
RB_GENERATE_PREV(_necp_client_flow_global_tree, necp_client_flow_registration, global_link, necp_client_flow_id_cmp);
static struct _necp_client_global_tree necp_client_global_tree;
static struct _necp_client_flow_global_tree necp_client_flow_global_tree;
struct necp_client_update {
TAILQ_ENTRY(necp_client_update) chain;
uuid_t client_id;
size_t update_length;
struct necp_client_observer_update *update;
};
#if SKYWALK
struct necp_arena_info {
LIST_ENTRY(necp_arena_info) nai_chain;
u_int32_t nai_flags;
pid_t nai_proc_pid;
struct skmem_arena *nai_arena;
struct skmem_arena_mmap_info nai_mmap;
mach_vm_offset_t nai_roff;
u_int32_t nai_use_count;
};
#endif /* !SKYWALK */
#define NAIF_ATTACHED 0x1 // arena is attached to list
#define NAIF_REDIRECT 0x2 // arena mmap has been redirected
#define NAIF_DEFUNCT 0x4 // arena is now defunct
#define NECP_FD_REPORTED_AGENT_COUNT 2
struct necp_fd_reported_agents {
uuid_t agent_uuid[NECP_FD_REPORTED_AGENT_COUNT];
};
struct necp_fd_data {
u_int8_t necp_fd_type;
LIST_ENTRY(necp_fd_data) chain;
struct _necp_client_tree clients;
struct _necp_fd_flow_tree flows;
TAILQ_HEAD(_necp_client_update_list, necp_client_update) update_list;
int update_count;
int flags;
unsigned background : 1;
unsigned request_in_process_flow_divert : 1;
int proc_pid;
decl_lck_mtx_data(, fd_lock);
struct selinfo si;
struct necp_fd_reported_agents reported_agents;
#if SKYWALK
// Arenas and their mmap info for per-process stats. Stats objects are allocated from an active arena
// that is not redirected/defunct. The stats_arena_active keeps track of such an arena, and it also
// holds a reference count on the object. Each flow allocating a stats object also holds a reference
// the necp_arena_info (where the object got allocated from). During defunct, we redirect the mapping
// of the arena such that any attempt to access (read/write) will result in getting zero-filled pages.
// We then go thru all of the flows for the process and free the stats objects associated with them,
// followed by destroying the skmem region(s) associated with the arena. The stats_arena_list keeps
// track of all current and defunct stats arenas; there could be more than one arena created for the
// process as the arena destruction happens when its reference count drops to 0.
struct necp_arena_info *stats_arena_active;
LIST_HEAD(_necp_arena_info_list, necp_arena_info) stats_arena_list;
u_int32_t stats_arena_gencnt;
struct skmem_arena *sysctl_arena;
struct skmem_arena_mmap_info sysctl_mmap;
mach_vm_offset_t system_sysctls_roff;
#endif /* !SKYWALK */
};
#define NECP_FD_LOCK(_f) lck_mtx_lock(&_f->fd_lock)
#define NECP_FD_UNLOCK(_f) lck_mtx_unlock(&_f->fd_lock)
#define NECP_FD_ASSERT_LOCKED(_f) LCK_MTX_ASSERT(&_f->fd_lock, LCK_MTX_ASSERT_OWNED)
#define NECP_FD_ASSERT_UNLOCKED(_f) LCK_MTX_ASSERT(&_f->fd_lock, LCK_MTX_ASSERT_NOTOWNED)
static LIST_HEAD(_necp_fd_list, necp_fd_data) necp_fd_list;
static LIST_HEAD(_necp_fd_observer_list, necp_fd_data) necp_fd_observer_list;
#if SKYWALK
static KALLOC_TYPE_DEFINE(necp_arena_info_zone, struct necp_arena_info, NET_KT_DEFAULT);
#endif /* !SKYWALK */
static LCK_ATTR_DECLARE(necp_fd_mtx_attr, 0, 0);
static LCK_GRP_DECLARE(necp_fd_mtx_grp, "necp_fd");
static LCK_RW_DECLARE_ATTR(necp_fd_lock, &necp_fd_mtx_grp, &necp_fd_mtx_attr);
static LCK_RW_DECLARE_ATTR(necp_observer_lock, &necp_fd_mtx_grp, &necp_fd_mtx_attr);
static LCK_RW_DECLARE_ATTR(necp_client_tree_lock, &necp_fd_mtx_grp, &necp_fd_mtx_attr);
static LCK_RW_DECLARE_ATTR(necp_flow_tree_lock, &necp_fd_mtx_grp, &necp_fd_mtx_attr);
static LCK_RW_DECLARE_ATTR(necp_collect_stats_list_lock, &necp_fd_mtx_grp, &necp_fd_mtx_attr);
#define NECP_STATS_LIST_LOCK_EXCLUSIVE() lck_rw_lock_exclusive(&necp_collect_stats_list_lock)
#define NECP_STATS_LIST_LOCK_SHARED() lck_rw_lock_shared(&necp_collect_stats_list_lock)
#define NECP_STATS_LIST_UNLOCK() lck_rw_done(&necp_collect_stats_list_lock)
#define NECP_CLIENT_TREE_LOCK_EXCLUSIVE() lck_rw_lock_exclusive(&necp_client_tree_lock)
#define NECP_CLIENT_TREE_LOCK_SHARED() lck_rw_lock_shared(&necp_client_tree_lock)
#define NECP_CLIENT_TREE_UNLOCK() lck_rw_done(&necp_client_tree_lock)
#define NECP_CLIENT_TREE_ASSERT_LOCKED() LCK_RW_ASSERT(&necp_client_tree_lock, LCK_RW_ASSERT_HELD)
#define NECP_FLOW_TREE_LOCK_EXCLUSIVE() lck_rw_lock_exclusive(&necp_flow_tree_lock)
#define NECP_FLOW_TREE_LOCK_SHARED() lck_rw_lock_shared(&necp_flow_tree_lock)
#define NECP_FLOW_TREE_UNLOCK() lck_rw_done(&necp_flow_tree_lock)
#define NECP_FLOW_TREE_ASSERT_LOCKED() LCK_RW_ASSERT(&necp_flow_tree_lock, LCK_RW_ASSERT_HELD)
#define NECP_FD_LIST_LOCK_EXCLUSIVE() lck_rw_lock_exclusive(&necp_fd_lock)
#define NECP_FD_LIST_LOCK_SHARED() lck_rw_lock_shared(&necp_fd_lock)
#define NECP_FD_LIST_UNLOCK() lck_rw_done(&necp_fd_lock)
#define NECP_FD_LIST_ASSERT_LOCKED() LCK_RW_ASSERT(&necp_fd_lock, LCK_RW_ASSERT_HELD)
#define NECP_OBSERVER_LIST_LOCK_EXCLUSIVE() lck_rw_lock_exclusive(&necp_observer_lock)
#define NECP_OBSERVER_LIST_LOCK_SHARED() lck_rw_lock_shared(&necp_observer_lock)
#define NECP_OBSERVER_LIST_UNLOCK() lck_rw_done(&necp_observer_lock)
// Locking Notes
// Take NECP_FD_LIST_LOCK when accessing or modifying the necp_fd_list
// Take NECP_CLIENT_TREE_LOCK when accessing or modifying the necp_client_global_tree
// Take NECP_FLOW_TREE_LOCK when accessing or modifying the necp_client_flow_global_tree
// Take NECP_STATS_LIST_LOCK when accessing or modifying the necp_collect_stats_flow_list
// Take NECP_FD_LOCK when accessing or modifying an necp_fd_data entry
// Take NECP_CLIENT_LOCK when accessing or modifying a single necp_client
// Take NECP_CLIENT_ROUTE_LOCK when accessing or modifying a client's route
// Precedence, where 1 is the first lock that must be taken
// 1. NECP_FD_LIST_LOCK
// 2. NECP_FD_LOCK (any)
// 3. NECP_CLIENT_TREE_LOCK
// 4. NECP_CLIENT_LOCK (any)
// 5. NECP_FLOW_TREE_LOCK
// 6. NECP_STATS_LIST_LOCK
// 7. NECP_CLIENT_ROUTE_LOCK (any)
static thread_call_t necp_client_update_tcall;
static uint32_t necp_update_all_clients_sched_cnt = 0;
static uint64_t necp_update_all_clients_sched_abstime = 0;
static LCK_RW_DECLARE_ATTR(necp_update_all_clients_lock, &necp_fd_mtx_grp, &necp_fd_mtx_attr);
#define NECP_UPDATE_ALL_CLIENTS_LOCK_EXCLUSIVE() lck_rw_lock_exclusive(&necp_update_all_clients_lock)
#define NECP_UPDATE_ALL_CLIENTS_SHARED_TO_EXCLUSIVE() lck_rw_lock_shared_to_exclusive(&necp_update_all_clients_lock)
#define NECP_UPDATE_ALL_CLIENTS_SHARED() lck_rw_lock_shared(&necp_update_all_clients_lock)
#define NECP_UPDATE_ALL_CLIENTS_UNLOCK() lck_rw_done(&necp_update_all_clients_lock)
// Array of PIDs that will trigger in-process flow divert, protected by NECP_FD_LIST_LOCK
#define NECP_MAX_FLOW_DIVERT_NEEDED_PIDS 4
static pid_t necp_flow_divert_needed_pids[NECP_MAX_FLOW_DIVERT_NEEDED_PIDS];
#if SKYWALK
static thread_call_t necp_client_collect_stats_tcall;
static thread_call_t necp_close_empty_arenas_tcall;
static void necp_fd_insert_stats_arena(struct necp_fd_data *fd_data, struct necp_arena_info *nai);
static void necp_fd_remove_stats_arena(struct necp_fd_data *fd_data, struct necp_arena_info *nai);
static struct necp_arena_info *necp_fd_mredirect_stats_arena(struct necp_fd_data *fd_data, struct proc *proc);
static void necp_arena_info_retain(struct necp_arena_info *nai);
static void necp_arena_info_release(struct necp_arena_info *nai);
static struct necp_arena_info *necp_arena_info_alloc(void);
static void necp_arena_info_free(struct necp_arena_info *nai);
static int necp_arena_initialize(struct necp_fd_data *fd_data, bool locked);
static int necp_stats_initialize(struct necp_fd_data *fd_data, struct necp_client *client,
struct necp_client_flow_registration *flow_registration, struct necp_stats_bufreq *bufreq);
static int necp_arena_create(struct necp_fd_data *fd_data, size_t obj_size, size_t obj_cnt, struct proc *p);
static int necp_arena_stats_obj_alloc(struct necp_fd_data *fd_data, mach_vm_offset_t *off, struct necp_arena_info **stats_arena, void **kstats_kaddr, boolean_t cansleep);
static void necp_arena_stats_obj_free(struct necp_fd_data *fd_data, struct necp_arena_info *stats_arena, void **kstats_kaddr, mach_vm_address_t *ustats_uaddr);
static void necp_stats_arenas_destroy(struct necp_fd_data *fd_data, boolean_t closing);
static int necp_sysctl_arena_initialize(struct necp_fd_data *fd_data, bool locked);
static void necp_sysctl_arena_destroy(struct necp_fd_data *fd_data);
static void *necp_arena_sysctls_obj(struct necp_fd_data *fd_data, mach_vm_offset_t *off, size_t *size);
#endif /* !SKYWALK */
void necp_copy_inp_domain_info(struct inpcb *, struct socket *, nstat_domain_info *);
void necp_with_inp_domain_name(struct socket *so, void *ctx, void (*with_func)(char *domain_name, void *ctx));
static void
necp_lock_socket_attributes(void)
{
lck_mtx_lock(&necp_socket_attr_lock);
}
static void
necp_unlock_socket_attributes(void)
{
lck_mtx_unlock(&necp_socket_attr_lock);
}
/// NECP file descriptor functions
static void
necp_fd_notify(struct necp_fd_data *fd_data, bool locked)
{
struct selinfo *si = &fd_data->si;
if (!locked) {
NECP_FD_LOCK(fd_data);
}
selwakeup(si);
// use a non-zero hint to tell the notification from the
// call done in kqueue_scan() which uses 0
KNOTE(&si->si_note, 1); // notification
if (!locked) {
NECP_FD_UNLOCK(fd_data);
}
}
static inline bool
necp_client_has_unread_flows(struct necp_client *client)
{
NECP_CLIENT_ASSERT_LOCKED(client);
struct necp_client_flow_registration *flow_registration = NULL;
RB_FOREACH(flow_registration, _necp_client_flow_tree, &client->flow_registrations) {
if (!flow_registration->flow_result_read) {
return true;
}
}
return false;
}
static int
necp_fd_poll(struct necp_fd_data *fd_data, int events, void *wql, struct proc *p, int is_kevent)
{
#pragma unused(wql, p, is_kevent)
u_int revents = 0;
u_int want_rx = events & (POLLIN | POLLRDNORM);
if (want_rx) {
if (fd_data->flags & NECP_OPEN_FLAG_PUSH_OBSERVER) {
// Push-mode observers are readable when they have a new update
if (!TAILQ_EMPTY(&fd_data->update_list)) {
revents |= want_rx;
}
} else {
// Standard fds are readable when some client is unread
struct necp_client *client = NULL;
bool has_unread_clients = FALSE;
RB_FOREACH(client, _necp_client_tree, &fd_data->clients) {
NECP_CLIENT_LOCK(client);
if (!client->result_read || !client->group_members_read || necp_client_has_unread_flows(client)) {
has_unread_clients = TRUE;
}
NECP_CLIENT_UNLOCK(client);
if (has_unread_clients) {
break;
}
}
if (has_unread_clients || fd_data->request_in_process_flow_divert) {
revents |= want_rx;
}
}
}
return revents;
}
static inline void
necp_generate_client_id(uuid_t client_id, bool is_flow)
{
uuid_generate_random(client_id);
if (is_flow) {
client_id[9] |= 0x01;
} else {
client_id[9] &= ~0x01;
}
}
static inline bool
necp_client_id_is_flow(uuid_t client_id)
{
return client_id[9] & 0x01;
}
static struct necp_client *
necp_find_client_and_lock(uuid_t client_id)
{
NECP_CLIENT_TREE_ASSERT_LOCKED();
struct necp_client *client = NULL;
if (necp_client_id_is_flow(client_id)) {
NECP_FLOW_TREE_LOCK_SHARED();
struct necp_client_flow_registration find;
uuid_copy(find.registration_id, client_id);
struct necp_client_flow_registration *flow = RB_FIND(_necp_client_flow_global_tree, &necp_client_flow_global_tree, &find);
if (flow != NULL) {
client = flow->client;
}
NECP_FLOW_TREE_UNLOCK();
} else {
struct necp_client find;
uuid_copy(find.client_id, client_id);
client = RB_FIND(_necp_client_global_tree, &necp_client_global_tree, &find);
}
if (client != NULL) {
NECP_CLIENT_LOCK(client);
}
return client;
}
static struct necp_client_flow_registration *
necp_client_find_flow(struct necp_client *client, uuid_t flow_id)
{
NECP_CLIENT_ASSERT_LOCKED(client);
struct necp_client_flow_registration *flow = NULL;
if (necp_client_id_is_flow(flow_id)) {
struct necp_client_flow_registration find;
uuid_copy(find.registration_id, flow_id);
flow = RB_FIND(_necp_client_flow_tree, &client->flow_registrations, &find);
} else {
flow = RB_ROOT(&client->flow_registrations);
}
return flow;
}
static struct necp_client *
necp_client_fd_find_client_unlocked(struct necp_fd_data *client_fd, uuid_t client_id)
{
NECP_FD_ASSERT_LOCKED(client_fd);
struct necp_client *client = NULL;
if (necp_client_id_is_flow(client_id)) {
struct necp_client_flow_registration find;
uuid_copy(find.registration_id, client_id);
struct necp_client_flow_registration *flow = RB_FIND(_necp_fd_flow_tree, &client_fd->flows, &find);
if (flow != NULL) {
client = flow->client;
}
} else {
struct necp_client find;
uuid_copy(find.client_id, client_id);
client = RB_FIND(_necp_client_tree, &client_fd->clients, &find);
}
return client;
}
static struct necp_client *
necp_client_fd_find_client_and_lock(struct necp_fd_data *client_fd, uuid_t client_id)
{
struct necp_client *client = necp_client_fd_find_client_unlocked(client_fd, client_id);
if (client != NULL) {
NECP_CLIENT_LOCK(client);
}
return client;
}
static inline int
necp_client_id_cmp(struct necp_client *client0, struct necp_client *client1)
{
return uuid_compare(client0->client_id, client1->client_id);
}
static inline int
necp_client_flow_id_cmp(struct necp_client_flow_registration *flow0, struct necp_client_flow_registration *flow1)
{
return uuid_compare(flow0->registration_id, flow1->registration_id);
}
static int
necpop_select(struct fileproc *fp, int which, void *wql, vfs_context_t ctx)
{
#pragma unused(fp, which, wql, ctx)
return 0;
struct necp_fd_data *fd_data = NULL;
int revents = 0;
int events = 0;
proc_t procp;
fd_data = (struct necp_fd_data *)fp_get_data(fp);
if (fd_data == NULL) {
return 0;
}
procp = vfs_context_proc(ctx);
switch (which) {
case FREAD: {
events = POLLIN;
break;
}
default: {
return 1;
}
}
NECP_FD_LOCK(fd_data);
revents = necp_fd_poll(fd_data, events, wql, procp, 0);
NECP_FD_UNLOCK(fd_data);
return (events & revents) ? 1 : 0;
}
static void
necp_fd_knrdetach(struct knote *kn)
{
struct necp_fd_data *fd_data = (struct necp_fd_data *)knote_kn_hook_get_raw(kn);
struct selinfo *si = &fd_data->si;
NECP_FD_LOCK(fd_data);
KNOTE_DETACH(&si->si_note, kn);
NECP_FD_UNLOCK(fd_data);
}
static int
necp_fd_knread(struct knote *kn, long hint)
{
#pragma unused(kn, hint)
return 1; /* assume we are ready */
}
static int
necp_fd_knrprocess(struct knote *kn, struct kevent_qos_s *kev)
{
struct necp_fd_data *fd_data;
int revents;
int res;
fd_data = (struct necp_fd_data *)knote_kn_hook_get_raw(kn);
NECP_FD_LOCK(fd_data);
revents = necp_fd_poll(fd_data, POLLIN, NULL, current_proc(), 1);
res = ((revents & POLLIN) != 0);
if (res) {
knote_fill_kevent(kn, kev, 0);
}
NECP_FD_UNLOCK(fd_data);
return res;
}
static int
necp_fd_knrtouch(struct knote *kn, struct kevent_qos_s *kev)
{
#pragma unused(kev)
struct necp_fd_data *fd_data;
int revents;
fd_data = (struct necp_fd_data *)knote_kn_hook_get_raw(kn);
NECP_FD_LOCK(fd_data);
revents = necp_fd_poll(fd_data, POLLIN, NULL, current_proc(), 1);
NECP_FD_UNLOCK(fd_data);
return (revents & POLLIN) != 0;
}
SECURITY_READ_ONLY_EARLY(struct filterops) necp_fd_rfiltops = {
.f_isfd = 1,
.f_detach = necp_fd_knrdetach,
.f_event = necp_fd_knread,
.f_touch = necp_fd_knrtouch,
.f_process = necp_fd_knrprocess,
};
static int
necpop_kqfilter(struct fileproc *fp, struct knote *kn,
__unused struct kevent_qos_s *kev)
{
struct necp_fd_data *fd_data = NULL;
int revents;
if (kn->kn_filter != EVFILT_READ) {
NECPLOG(LOG_ERR, "bad filter request %d", kn->kn_filter);
knote_set_error(kn, EINVAL);
return 0;
}
fd_data = (struct necp_fd_data *)fp_get_data(fp);
if (fd_data == NULL) {
NECPLOG0(LOG_ERR, "No channel for kqfilter");
knote_set_error(kn, ENOENT);
return 0;
}
NECP_FD_LOCK(fd_data);
kn->kn_filtid = EVFILTID_NECP_FD;
knote_kn_hook_set_raw(kn, fd_data);
KNOTE_ATTACH(&fd_data->si.si_note, kn);
revents = necp_fd_poll(fd_data, POLLIN, NULL, current_proc(), 1);
NECP_FD_UNLOCK(fd_data);
return (revents & POLLIN) != 0;
}
#define INTERFACE_FLAGS_SHIFT 32
#define INTERFACE_FLAGS_MASK 0xffffffff
#define INTERFACE_INDEX_SHIFT 0
#define INTERFACE_INDEX_MASK 0xffffffff
static uint64_t
combine_interface_details(uint32_t interface_index, uint32_t interface_flags)
{
return ((uint64_t)interface_flags & INTERFACE_FLAGS_MASK) << INTERFACE_FLAGS_SHIFT |
((uint64_t)interface_index & INTERFACE_INDEX_MASK) << INTERFACE_INDEX_SHIFT;
}
#if SKYWALK
static void
split_interface_details(uint64_t combined_details, uint32_t *interface_index, uint32_t *interface_flags)
{
*interface_index = (combined_details >> INTERFACE_INDEX_SHIFT) & INTERFACE_INDEX_MASK;
*interface_flags = (combined_details >> INTERFACE_FLAGS_SHIFT) & INTERFACE_FLAGS_MASK;
}
static void
necp_flow_save_current_interface_details(struct necp_client_flow_registration *flow_registration)
{
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
if (flow->nexus) {
uint64_t combined_details = combine_interface_details(flow->interface_index, flow->interface_flags);
os_atomic_store(&flow_registration->last_interface_details, combined_details, release);
break;
}
}
}
static void
necp_client_collect_interface_stats(struct necp_client_flow_registration *flow_registration, struct ifnet_stats_per_flow *ifs)
{
struct necp_client_flow *flow = NULL;
if (ifs == NULL || ifs->txpackets == 0 || ifs->rxpackets == 0) {
return; // App might have crashed without publishing ifs
}
// Do malicious stats detection here
// Fold userspace stats into (trusted) kernel stats (stored in ifp).
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
uint32_t if_idx = flow->interface_index;
ifnet_t ifp = NULL;
ifnet_head_lock_shared();
if (if_idx != IFSCOPE_NONE && if_idx <= (uint32_t)if_index) {
ifp = ifindex2ifnet[if_idx];
ifnet_update_stats_per_flow(ifs, ifp);
}
ifnet_head_done();
// Currently there is only one flow that uses the shared necp
// stats region, so this loop should exit after updating an ifp
break;
}
}
static void
necp_client_collect_stats(struct necp_client_flow_registration *flow_registration)
{
struct necp_all_kstats *kstats = (struct necp_all_kstats *)flow_registration->kstats_kaddr;
if (kstats == NULL) {
return;
}
// Grab userspace stats delta (untrusted).
struct necp_tcp_stats *curr_tcpstats = (struct necp_tcp_stats *)kstats->necp_stats_ustats;
struct necp_tcp_stats *prev_tcpstats = (struct necp_tcp_stats *)&kstats->necp_stats_comm;
#define diff_n_update(field) \
u_int32_t d_##field = (curr_tcpstats->necp_tcp_counts.necp_stat_##field - prev_tcpstats->necp_tcp_counts.necp_stat_##field); \
prev_tcpstats->necp_tcp_counts.necp_stat_##field += d_##field;
diff_n_update(rxpackets);
diff_n_update(txpackets);
if (d_rxpackets == 0 && d_txpackets == 0) {
return; // no activity since last collection, stop here
}
diff_n_update(rxbytes);
diff_n_update(txbytes);
diff_n_update(rxduplicatebytes);
diff_n_update(rxoutoforderbytes);
diff_n_update(txretransmit);
diff_n_update(connectattempts);
diff_n_update(connectsuccesses);
uint32_t rtt = prev_tcpstats->necp_tcp_counts.necp_stat_avg_rtt = curr_tcpstats->necp_tcp_counts.necp_stat_avg_rtt;
uint32_t rtt_var = prev_tcpstats->necp_tcp_counts.necp_stat_var_rtt = curr_tcpstats->necp_tcp_counts.necp_stat_var_rtt;
#undef diff_n_update
// Do malicious stats detection with the deltas here.
// RTT check (not necessarily attacks, might just be not measured since we report stats async periodically).
if (rtt < necp_client_stats_rtt_floor || rtt > necp_client_stats_rtt_ceiling) {
rtt = rtt_var = 0; // nstat_route_update to skip 0 rtt
}
// Fold userspace stats into (trusted) kernel stats (stored in route).
NECP_CLIENT_ROUTE_LOCK(flow_registration->client);
struct rtentry *route = flow_registration->client->current_route;
if (route != NULL) {
nstat_route_update(route, d_connectattempts, d_connectsuccesses, d_rxpackets, d_rxbytes, d_rxduplicatebytes,
d_rxoutoforderbytes, d_txpackets, d_txbytes, d_txretransmit, rtt, rtt_var);
}
NECP_CLIENT_ROUTE_UNLOCK(flow_registration->client);
}
// This is called from various places; "closing" here implies the client being closed/removed if true, otherwise being
// defunct. In the former, we expect the caller to not hold the lock; for the latter it must have acquired it.
static void
necp_destroy_flow_stats(struct necp_fd_data *fd_data,
struct necp_client_flow_registration *flow_registration,
struct ifnet_stats_per_flow *flow_ifnet_stats,
boolean_t closing)
{
NECP_FD_ASSERT_LOCKED(fd_data);
struct necp_client *client = flow_registration->client;
if (closing) {
NECP_CLIENT_ASSERT_UNLOCKED(client);
NECP_CLIENT_LOCK(client);
} else {
NECP_CLIENT_ASSERT_LOCKED(client);
}
// the interface stats are independent of the flow stats, hence we check here
if (flow_ifnet_stats != NULL) {
necp_client_collect_interface_stats(flow_registration, flow_ifnet_stats);
}
if (flow_registration->kstats_kaddr != NULL) {
NECP_STATS_LIST_LOCK_EXCLUSIVE();
necp_client_collect_stats(flow_registration);
const bool destroyed = necp_client_release_locked(client); // Drop the reference held by the stats list
ASSERT(!destroyed);
(void)destroyed;
LIST_REMOVE(flow_registration, collect_stats_chain);
NECP_STATS_LIST_UNLOCK();
if (flow_registration->stats_handler_context != NULL) {
ntstat_userland_stats_close(flow_registration->stats_handler_context);
flow_registration->stats_handler_context = NULL;
}
necp_arena_stats_obj_free(fd_data, flow_registration->stats_arena, &flow_registration->kstats_kaddr, &flow_registration->ustats_uaddr);
ASSERT(flow_registration->kstats_kaddr == NULL);
ASSERT(flow_registration->ustats_uaddr == 0);
}
if (flow_registration->nexus_stats != NULL) {
flow_stats_release(flow_registration->nexus_stats);
flow_registration->nexus_stats = NULL;
}
if (closing) {
NECP_CLIENT_UNLOCK(client);
}
}
static void
necp_schedule_collect_stats_clients(bool recur)
{
if (necp_client_collect_stats_tcall == NULL ||
(!recur && thread_call_isactive(necp_client_collect_stats_tcall))) {
return;
}
uint64_t deadline = 0;
uint64_t leeway = 0;
clock_interval_to_deadline(necp_collect_stats_timeout_microseconds, NSEC_PER_USEC, &deadline);
clock_interval_to_absolutetime_interval(necp_collect_stats_timeout_leeway_microseconds, NSEC_PER_USEC, &leeway);
thread_call_enter_delayed_with_leeway(necp_client_collect_stats_tcall, NULL,
deadline, leeway, THREAD_CALL_DELAY_LEEWAY);
}
static void
necp_collect_stats_client_callout(__unused thread_call_param_t dummy,
__unused thread_call_param_t arg)
{
struct necp_client_flow_registration *flow_registration;
net_update_uptime();
NECP_STATS_LIST_LOCK_SHARED();
if (LIST_EMPTY(&necp_collect_stats_flow_list)) {
NECP_STATS_LIST_UNLOCK();
return;
}
LIST_FOREACH(flow_registration, &necp_collect_stats_flow_list, collect_stats_chain) {
// Collecting stats should be cheap (atomic increments)
// Values like flow_registration->kstats_kaddr are guaranteed to be valid
// as long as the flow_registration is in the stats list
necp_client_collect_stats(flow_registration);
}
NECP_STATS_LIST_UNLOCK();
necp_schedule_collect_stats_clients(TRUE); // recurring collection
}
#endif /* !SKYWALK */
static void
necp_defunct_flow_registration(struct necp_client *client,
struct necp_client_flow_registration *flow_registration,
struct _necp_flow_defunct_list *defunct_list)
{
NECP_CLIENT_ASSERT_LOCKED(client);
if (!flow_registration->defunct) {
bool needs_defunct = false;
struct necp_client_flow *search_flow = NULL;
LIST_FOREACH(search_flow, &flow_registration->flow_list, flow_chain) {
if (search_flow->nexus &&
!uuid_is_null(search_flow->u.nexus_agent)) {
// Save defunct values for the nexus
if (defunct_list != NULL) {
// Sleeping alloc won't fail; copy only what's necessary
struct necp_flow_defunct *flow_defunct = kalloc_type(struct necp_flow_defunct,
Z_WAITOK | Z_ZERO);
uuid_copy(flow_defunct->nexus_agent, search_flow->u.nexus_agent);
uuid_copy(flow_defunct->flow_id, ((flow_registration->flags & NECP_CLIENT_FLOW_FLAGS_USE_CLIENT_ID) ?
client->client_id :
flow_registration->registration_id));
flow_defunct->proc_pid = client->proc_pid;
flow_defunct->agent_handle = client->agent_handle;
flow_defunct->flags = flow_registration->flags;
#if SKYWALK
if (flow_registration->kstats_kaddr != NULL) {
struct necp_all_stats *ustats_kaddr = ((struct necp_all_kstats *)flow_registration->kstats_kaddr)->necp_stats_ustats;
struct necp_quic_stats *quicstats = (struct necp_quic_stats *)ustats_kaddr;
if (quicstats != NULL) {
memcpy(flow_defunct->close_parameters.u.close_token, quicstats->necp_quic_extra.ssr_token, sizeof(flow_defunct->close_parameters.u.close_token));
flow_defunct->has_close_parameters = true;
}
}
#endif /* SKYWALK */
// Add to the list provided by caller
LIST_INSERT_HEAD(defunct_list, flow_defunct, chain);
}
needs_defunct = true;
}
}
if (needs_defunct) {
#if SKYWALK
// Close the stats early
if (flow_registration->stats_handler_context != NULL) {
ntstat_userland_stats_event(flow_registration->stats_handler_context,
NECP_CLIENT_STATISTICS_EVENT_TIME_WAIT);
}
#endif /* SKYWALK */
// Only set defunct if there was some assigned flow
flow_registration->defunct = true;
}
}
}
static void
necp_defunct_client_for_policy(struct necp_client *client,
struct _necp_flow_defunct_list *defunct_list)
{
NECP_CLIENT_ASSERT_LOCKED(client);
struct necp_client_flow_registration *flow_registration = NULL;
RB_FOREACH(flow_registration, _necp_client_flow_tree, &client->flow_registrations) {
necp_defunct_flow_registration(client, flow_registration, defunct_list);
}
}
static void
necp_client_free(struct necp_client *client)
{
NECP_CLIENT_ASSERT_UNLOCKED(client);
kfree_data(client->extra_interface_options,
sizeof(struct necp_client_interface_option) * NECP_CLIENT_INTERFACE_OPTION_EXTRA_COUNT);
client->extra_interface_options = NULL;
kfree_data(client->parameters, client->parameters_length);
client->parameters = NULL;
kfree_data(client->assigned_group_members, client->assigned_group_members_length);
client->assigned_group_members = NULL;
lck_mtx_destroy(&client->route_lock, &necp_fd_mtx_grp);
lck_mtx_destroy(&client->lock, &necp_fd_mtx_grp);
kfree_type(struct necp_client, client);
}
static void
necp_client_retain_locked(struct necp_client *client)
{
NECP_CLIENT_ASSERT_LOCKED(client);
os_ref_retain_locked(&client->reference_count);
}
static void
necp_client_retain(struct necp_client *client)
{
NECP_CLIENT_LOCK(client);
necp_client_retain_locked(client);
NECP_CLIENT_UNLOCK(client);
}
static bool
necp_client_release_locked(struct necp_client *client)
{
NECP_CLIENT_ASSERT_LOCKED(client);
os_ref_count_t count = os_ref_release_locked(&client->reference_count);
if (count == 0) {
NECP_CLIENT_UNLOCK(client);
necp_client_free(client);
}
return count == 0;
}
static bool
necp_client_release(struct necp_client *client)
{
bool last_ref;
NECP_CLIENT_LOCK(client);
if (!(last_ref = necp_client_release_locked(client))) {
NECP_CLIENT_UNLOCK(client);
}
return last_ref;
}
static struct necp_client_update *
necp_client_update_alloc(const void *data, size_t length)
{
struct necp_client_update *client_update;
struct necp_client_observer_update *buffer;
size_t alloc_size;
if (os_add_overflow(length, sizeof(*buffer), &alloc_size)) {
return NULL;
}
buffer = kalloc_data(alloc_size, Z_WAITOK);
if (buffer == NULL) {
return NULL;
}
client_update = kalloc_type(struct necp_client_update,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
client_update->update_length = alloc_size;
client_update->update = buffer;
memcpy(buffer->tlv_buffer, data, length);
return client_update;
}
static void
necp_client_update_free(struct necp_client_update *client_update)
{
kfree_data(client_update->update, client_update->update_length);
kfree_type(struct necp_client_update, client_update);
}
static void
necp_client_update_observer_add_internal(struct necp_fd_data *observer_fd, struct necp_client *client)
{
struct necp_client_update *client_update;
NECP_FD_LOCK(observer_fd);
if (observer_fd->update_count >= necp_observer_message_limit) {
NECP_FD_UNLOCK(observer_fd);
return;
}
client_update = necp_client_update_alloc(client->parameters, client->parameters_length);
if (client_update != NULL) {
uuid_copy(client_update->client_id, client->client_id);
client_update->update->update_type = NECP_CLIENT_UPDATE_TYPE_PARAMETERS;
TAILQ_INSERT_TAIL(&observer_fd->update_list, client_update, chain);
observer_fd->update_count++;
necp_fd_notify(observer_fd, true);
}
NECP_FD_UNLOCK(observer_fd);
}
static void
necp_client_update_observer_update_internal(struct necp_fd_data *observer_fd, struct necp_client *client)
{
NECP_FD_LOCK(observer_fd);
if (observer_fd->update_count >= necp_observer_message_limit) {
NECP_FD_UNLOCK(observer_fd);
return;
}
struct necp_client_update *client_update = necp_client_update_alloc(client->result, client->result_length);
if (client_update != NULL) {
uuid_copy(client_update->client_id, client->client_id);
client_update->update->update_type = NECP_CLIENT_UPDATE_TYPE_RESULT;
TAILQ_INSERT_TAIL(&observer_fd->update_list, client_update, chain);
observer_fd->update_count++;
necp_fd_notify(observer_fd, true);
}
NECP_FD_UNLOCK(observer_fd);
}
static void
necp_client_update_observer_remove_internal(struct necp_fd_data *observer_fd, struct necp_client *client)
{
NECP_FD_LOCK(observer_fd);
if (observer_fd->update_count >= necp_observer_message_limit) {
NECP_FD_UNLOCK(observer_fd);
return;
}
struct necp_client_update *client_update = necp_client_update_alloc(NULL, 0);
if (client_update != NULL) {
uuid_copy(client_update->client_id, client->client_id);
client_update->update->update_type = NECP_CLIENT_UPDATE_TYPE_REMOVE;
TAILQ_INSERT_TAIL(&observer_fd->update_list, client_update, chain);
observer_fd->update_count++;
necp_fd_notify(observer_fd, true);
}
NECP_FD_UNLOCK(observer_fd);
}
static void
necp_client_update_observer_add(struct necp_client *client)
{
NECP_OBSERVER_LIST_LOCK_SHARED();
if (LIST_EMPTY(&necp_fd_observer_list)) {
// No observers, bail
NECP_OBSERVER_LIST_UNLOCK();
return;
}
struct necp_fd_data *observer_fd = NULL;
LIST_FOREACH(observer_fd, &necp_fd_observer_list, chain) {
necp_client_update_observer_add_internal(observer_fd, client);
}
NECP_OBSERVER_LIST_UNLOCK();
}
static void
necp_client_update_observer_update(struct necp_client *client)
{
NECP_OBSERVER_LIST_LOCK_SHARED();
if (LIST_EMPTY(&necp_fd_observer_list)) {
// No observers, bail
NECP_OBSERVER_LIST_UNLOCK();
return;
}
struct necp_fd_data *observer_fd = NULL;
LIST_FOREACH(observer_fd, &necp_fd_observer_list, chain) {
necp_client_update_observer_update_internal(observer_fd, client);
}
NECP_OBSERVER_LIST_UNLOCK();
}
static void
necp_client_update_observer_remove(struct necp_client *client)
{
NECP_OBSERVER_LIST_LOCK_SHARED();
if (LIST_EMPTY(&necp_fd_observer_list)) {
// No observers, bail
NECP_OBSERVER_LIST_UNLOCK();
return;
}
struct necp_fd_data *observer_fd = NULL;
LIST_FOREACH(observer_fd, &necp_fd_observer_list, chain) {
necp_client_update_observer_remove_internal(observer_fd, client);
}
NECP_OBSERVER_LIST_UNLOCK();
}
static void
necp_destroy_client_flow_registration(struct necp_client *client,
struct necp_client_flow_registration *flow_registration,
pid_t pid, bool abort)
{
NECP_CLIENT_ASSERT_LOCKED(client);
bool has_close_parameters = false;
struct necp_client_agent_parameters close_parameters = {};
memset(close_parameters.u.close_token, 0, sizeof(close_parameters.u.close_token));
#if SKYWALK
if (flow_registration->kstats_kaddr != NULL) {
struct necp_all_stats *ustats_kaddr = ((struct necp_all_kstats *)flow_registration->kstats_kaddr)->necp_stats_ustats;
struct necp_quic_stats *quicstats = (struct necp_quic_stats *)ustats_kaddr;
if (quicstats != NULL &&
quicstats->necp_quic_udp_stats.necp_udp_hdr.necp_stats_type == NECP_CLIENT_STATISTICS_TYPE_QUIC) {
memcpy(close_parameters.u.close_token, quicstats->necp_quic_extra.ssr_token, sizeof(close_parameters.u.close_token));
has_close_parameters = true;
}
}
// Release reference held on the stats arena
if (flow_registration->stats_arena != NULL) {
necp_arena_info_release(flow_registration->stats_arena);
flow_registration->stats_arena = NULL;
}
#endif /* SKYWALK */
struct necp_client_flow *search_flow = NULL;
struct necp_client_flow *temp_flow = NULL;
LIST_FOREACH_SAFE(search_flow, &flow_registration->flow_list, flow_chain, temp_flow) {
if (search_flow->nexus &&
!uuid_is_null(search_flow->u.nexus_agent)) {
// Don't unregister for defunct flows
if (!flow_registration->defunct) {
u_int8_t message_type = (abort ? NETAGENT_MESSAGE_TYPE_ABORT_NEXUS :
NETAGENT_MESSAGE_TYPE_CLOSE_NEXUS);
if (((flow_registration->flags & NECP_CLIENT_FLOW_FLAGS_BROWSE) ||
(flow_registration->flags & NECP_CLIENT_FLOW_FLAGS_RESOLVE)) &&
!(flow_registration->flags & NECP_CLIENT_FLOW_FLAGS_ALLOW_NEXUS)) {
message_type = NETAGENT_MESSAGE_TYPE_CLIENT_UNASSERT;
}
int netagent_error = netagent_client_message_with_params(search_flow->u.nexus_agent,
((flow_registration->flags & NECP_CLIENT_FLOW_FLAGS_USE_CLIENT_ID) ?
client->client_id :
flow_registration->registration_id),
pid, client->agent_handle,
message_type,
has_close_parameters ? &close_parameters : NULL,
NULL, 0);
if (netagent_error != 0 && netagent_error != ENOENT) {
NECPLOG(LOG_ERR, "necp_client_remove close nexus error (%d) MESSAGE TYPE %u", netagent_error, message_type);
}
}
uuid_clear(search_flow->u.nexus_agent);
}
if (search_flow->assigned_results != NULL) {
kfree_data(search_flow->assigned_results, search_flow->assigned_results_length);
search_flow->assigned_results = NULL;
}
LIST_REMOVE(search_flow, flow_chain);
#if SKYWALK
if (search_flow->nexus) {
OSDecrementAtomic(&necp_nexus_flow_count);
} else
#endif /* SKYWALK */
if (search_flow->socket) {
OSDecrementAtomic(&necp_socket_flow_count);
} else {
OSDecrementAtomic(&necp_if_flow_count);
}
kfree_type(struct necp_client_flow, search_flow);
}
RB_REMOVE(_necp_client_flow_tree, &client->flow_registrations, flow_registration);
flow_registration->client = NULL;
kfree_type(struct necp_client_flow_registration, flow_registration);
}
static void
necp_destroy_client(struct necp_client *client, pid_t pid, bool abort)
{
NECP_CLIENT_ASSERT_UNLOCKED(client);
#if SKYWALK
if (client->nstat_context != NULL) {
// This is a catch-all that should be rarely used.
nstat_provider_stats_close(client->nstat_context);
client->nstat_context = NULL;
}
if (client->original_parameters_source != NULL) {
necp_client_release(client->original_parameters_source);
client->original_parameters_source = NULL;
}
#endif /* SKYWALK */
necp_client_update_observer_remove(client);
NECP_CLIENT_LOCK(client);
// Free route
NECP_CLIENT_ROUTE_LOCK(client);
if (client->current_route != NULL) {
rtfree(client->current_route);
client->current_route = NULL;
}
NECP_CLIENT_ROUTE_UNLOCK(client);
// Remove flow assignments
struct necp_client_flow_registration *flow_registration = NULL;
struct necp_client_flow_registration *temp_flow_registration = NULL;
RB_FOREACH_SAFE(flow_registration, _necp_client_flow_tree, &client->flow_registrations, temp_flow_registration) {
necp_destroy_client_flow_registration(client, flow_registration, pid, abort);
}
#if SKYWALK
// Remove port reservation
if (NETNS_TOKEN_VALID(&client->port_reservation)) {
netns_release(&client->port_reservation);
}
#endif /* !SKYWALK */
// Remove agent assertions
struct necp_client_assertion *search_assertion = NULL;
struct necp_client_assertion *temp_assertion = NULL;
LIST_FOREACH_SAFE(search_assertion, &client->assertion_list, assertion_chain, temp_assertion) {
int netagent_error = netagent_client_message(search_assertion->asserted_netagent, client->client_id, pid,
client->agent_handle, NETAGENT_MESSAGE_TYPE_CLIENT_UNASSERT);
if (netagent_error != 0) {
NECPLOG((netagent_error == ENOENT ? LOG_DEBUG : LOG_ERR),
"necp_client_remove unassert agent error (%d)", netagent_error);
}
LIST_REMOVE(search_assertion, assertion_chain);
kfree_type(struct necp_client_assertion, search_assertion);
}
if (!necp_client_release_locked(client)) {
NECP_CLIENT_UNLOCK(client);
}
OSDecrementAtomic(&necp_client_count);
}
static bool
necp_defunct_client_fd_locked_inner(struct necp_fd_data *client_fd, struct _necp_flow_defunct_list *defunct_list, bool destroy_stats);
static void
necp_process_defunct_list(struct _necp_flow_defunct_list *defunct_list)
{
if (!LIST_EMPTY(defunct_list)) {
struct necp_flow_defunct *flow_defunct = NULL;
struct necp_flow_defunct *temp_flow_defunct = NULL;
// For each newly defunct client, send a message to the nexus to remove the flow
LIST_FOREACH_SAFE(flow_defunct, defunct_list, chain, temp_flow_defunct) {
if (!uuid_is_null(flow_defunct->nexus_agent)) {
u_int8_t message_type = NETAGENT_MESSAGE_TYPE_ABORT_NEXUS;
if (((flow_defunct->flags & NECP_CLIENT_FLOW_FLAGS_BROWSE) ||
(flow_defunct->flags & NECP_CLIENT_FLOW_FLAGS_RESOLVE)) &&
!(flow_defunct->flags & NECP_CLIENT_FLOW_FLAGS_ALLOW_NEXUS)) {
message_type = NETAGENT_MESSAGE_TYPE_CLIENT_UNASSERT;
}
int netagent_error = netagent_client_message_with_params(flow_defunct->nexus_agent,
flow_defunct->flow_id,
flow_defunct->proc_pid,
flow_defunct->agent_handle,
message_type,
flow_defunct->has_close_parameters ? &flow_defunct->close_parameters : NULL,
NULL, 0);
if (netagent_error != 0) {
char namebuf[MAXCOMLEN + 1];
(void) strlcpy(namebuf, "unknown", sizeof(namebuf));
proc_name(flow_defunct->proc_pid, namebuf, sizeof(namebuf));
NECPLOG((netagent_error == ENOENT ? LOG_DEBUG : LOG_ERR), "necp_update_client abort nexus error (%d) for pid %d %s", netagent_error, flow_defunct->proc_pid, namebuf);
}
}
LIST_REMOVE(flow_defunct, chain);
kfree_type(struct necp_flow_defunct, flow_defunct);
}
}
ASSERT(LIST_EMPTY(defunct_list));
}
static int
necpop_close(struct fileglob *fg, vfs_context_t ctx)
{
#pragma unused(ctx)
struct necp_fd_data *fd_data = NULL;
int error = 0;
fd_data = (struct necp_fd_data *)fg_get_data(fg);
fg_set_data(fg, NULL);
if (fd_data != NULL) {
struct _necp_client_tree clients_to_close;
RB_INIT(&clients_to_close);
// Remove from list quickly
if (fd_data->flags & NECP_OPEN_FLAG_PUSH_OBSERVER) {
NECP_OBSERVER_LIST_LOCK_EXCLUSIVE();
LIST_REMOVE(fd_data, chain);
NECP_OBSERVER_LIST_UNLOCK();
} else {
NECP_FD_LIST_LOCK_EXCLUSIVE();
LIST_REMOVE(fd_data, chain);
NECP_FD_LIST_UNLOCK();
}
NECP_FD_LOCK(fd_data);
pid_t pid = fd_data->proc_pid;
struct _necp_flow_defunct_list defunct_list;
LIST_INIT(&defunct_list);
(void)necp_defunct_client_fd_locked_inner(fd_data, &defunct_list, false);
struct necp_client_flow_registration *flow_registration = NULL;
struct necp_client_flow_registration *temp_flow_registration = NULL;
RB_FOREACH_SAFE(flow_registration, _necp_fd_flow_tree, &fd_data->flows, temp_flow_registration) {
#if SKYWALK
necp_destroy_flow_stats(fd_data, flow_registration, NULL, TRUE);
#endif /* SKYWALK */
NECP_FLOW_TREE_LOCK_EXCLUSIVE();
RB_REMOVE(_necp_client_flow_global_tree, &necp_client_flow_global_tree, flow_registration);
NECP_FLOW_TREE_UNLOCK();
RB_REMOVE(_necp_fd_flow_tree, &fd_data->flows, flow_registration);
}
struct necp_client *client = NULL;
struct necp_client *temp_client = NULL;
RB_FOREACH_SAFE(client, _necp_client_tree, &fd_data->clients, temp_client) {
// Clear out the agent_handle to avoid dangling pointers back to fd_data
NECP_CLIENT_LOCK(client);
client->agent_handle = NULL;
NECP_CLIENT_UNLOCK(client);
NECP_CLIENT_TREE_LOCK_EXCLUSIVE();
RB_REMOVE(_necp_client_global_tree, &necp_client_global_tree, client);
NECP_CLIENT_TREE_UNLOCK();
RB_REMOVE(_necp_client_tree, &fd_data->clients, client);
RB_INSERT(_necp_client_tree, &clients_to_close, client);
}
struct necp_client_update *client_update = NULL;
struct necp_client_update *temp_update = NULL;
TAILQ_FOREACH_SAFE(client_update, &fd_data->update_list, chain, temp_update) {
// Flush pending updates
TAILQ_REMOVE(&fd_data->update_list, client_update, chain);
necp_client_update_free(client_update);
}
fd_data->update_count = 0;
#if SKYWALK
// Cleanup stats arena(s); indicate that we're closing
necp_stats_arenas_destroy(fd_data, TRUE);
ASSERT(fd_data->stats_arena_active == NULL);
ASSERT(LIST_EMPTY(&fd_data->stats_arena_list));
// Cleanup systctl arena
necp_sysctl_arena_destroy(fd_data);
ASSERT(fd_data->sysctl_arena == NULL);
#endif /* SKYWALK */
NECP_FD_UNLOCK(fd_data);
selthreadclear(&fd_data->si);
lck_mtx_destroy(&fd_data->fd_lock, &necp_fd_mtx_grp);
if (fd_data->flags & NECP_OPEN_FLAG_PUSH_OBSERVER) {
OSDecrementAtomic(&necp_observer_fd_count);
} else {
OSDecrementAtomic(&necp_client_fd_count);
}
kfree_type(struct necp_fd_data, fd_data);
RB_FOREACH_SAFE(client, _necp_client_tree, &clients_to_close, temp_client) {
RB_REMOVE(_necp_client_tree, &clients_to_close, client);
necp_destroy_client(client, pid, true);
}
necp_process_defunct_list(&defunct_list);
}
return error;
}
/// NECP client utilities
static inline bool
necp_address_is_wildcard(const union necp_sockaddr_union * const addr)
{
return (addr->sa.sa_family == AF_INET && addr->sin.sin_addr.s_addr == INADDR_ANY) ||
(addr->sa.sa_family == AF_INET6 && IN6_IS_ADDR_UNSPECIFIED(&addr->sin6.sin6_addr));
}
static int
necp_find_fd_data(struct proc *p, int fd,
struct fileproc **fpp, struct necp_fd_data **fd_data)
{
struct fileproc *fp;
int error = fp_get_ftype(p, fd, DTYPE_NETPOLICY, ENODEV, &fp);
if (error == 0) {
*fd_data = (struct necp_fd_data *)fp_get_data(fp);
*fpp = fp;
if ((*fd_data)->necp_fd_type != necp_fd_type_client) {
// Not a client fd, ignore
fp_drop(p, fd, fp, 0);
error = EINVAL;
}
}
return error;
}
static void
necp_client_add_nexus_flow(struct necp_client_flow_registration *flow_registration,
uuid_t nexus_agent,
uint32_t interface_index,
uint32_t interface_flags)
{
struct necp_client_flow *new_flow = kalloc_type(struct necp_client_flow, Z_WAITOK | Z_ZERO | Z_NOFAIL);
new_flow->nexus = TRUE;
uuid_copy(new_flow->u.nexus_agent, nexus_agent);
new_flow->interface_index = interface_index;
new_flow->interface_flags = interface_flags;
new_flow->check_tcp_heuristics = TRUE;
#if SKYWALK
OSIncrementAtomic(&necp_nexus_flow_count);
#endif /* SKYWALK */
LIST_INSERT_HEAD(&flow_registration->flow_list, new_flow, flow_chain);
#if SKYWALK
necp_flow_save_current_interface_details(flow_registration);
#endif /* SKYWALK */
}
static void
necp_client_add_nexus_flow_if_needed(struct necp_client_flow_registration *flow_registration,
uuid_t nexus_agent,
uint32_t interface_index)
{
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
if (flow->nexus &&
uuid_compare(flow->u.nexus_agent, nexus_agent) == 0) {
return;
}
}
uint32_t interface_flags = 0;
ifnet_t ifp = NULL;
ifnet_head_lock_shared();
if (interface_index != IFSCOPE_NONE && interface_index <= (u_int32_t)if_index) {
ifp = ifindex2ifnet[interface_index];
if (ifp != NULL) {
ifnet_lock_shared(ifp);
interface_flags = nstat_ifnet_to_flags(ifp);
ifnet_lock_done(ifp);
}
}
ifnet_head_done();
necp_client_add_nexus_flow(flow_registration, nexus_agent, interface_index, interface_flags);
}
static struct necp_client_flow *
necp_client_add_interface_flow(struct necp_client_flow_registration *flow_registration,
uint32_t interface_index)
{
struct necp_client_flow *new_flow = kalloc_type(struct necp_client_flow, Z_WAITOK | Z_ZERO | Z_NOFAIL);
// Neither nexus nor socket
new_flow->interface_index = interface_index;
new_flow->u.socket_handle = flow_registration->interface_handle;
new_flow->u.cb = flow_registration->interface_cb;
OSIncrementAtomic(&necp_if_flow_count);
LIST_INSERT_HEAD(&flow_registration->flow_list, new_flow, flow_chain);
return new_flow;
}
static struct necp_client_flow *
necp_client_add_interface_flow_if_needed(struct necp_client *client,
struct necp_client_flow_registration *flow_registration,
uint32_t interface_index)
{
if (!client->allow_multiple_flows ||
interface_index == IFSCOPE_NONE) {
// Interface not set, or client not allowed to use this mode
return NULL;
}
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
if (!flow->nexus && !flow->socket && flow->interface_index == interface_index) {
// Already have the flow
flow->invalid = FALSE;
flow->u.socket_handle = flow_registration->interface_handle;
flow->u.cb = flow_registration->interface_cb;
return NULL;
}
}
return necp_client_add_interface_flow(flow_registration, interface_index);
}
static void
necp_client_add_interface_option_if_needed(struct necp_client *client,
uint32_t interface_index,
uint32_t interface_generation,
uuid_t *nexus_agent,
bool network_provider)
{
if ((interface_index == IFSCOPE_NONE && !network_provider) ||
(client->interface_option_count != 0 && !client->allow_multiple_flows)) {
// Interface not set, or client not allowed to use this mode
return;
}
if (client->interface_option_count >= NECP_CLIENT_MAX_INTERFACE_OPTIONS) {
// Cannot take any more interface options
return;
}
// Check if already present
for (u_int32_t option_i = 0; option_i < client->interface_option_count; option_i++) {
if (option_i < NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT) {
struct necp_client_interface_option *option = &client->interface_options[option_i];
if (option->interface_index == interface_index) {
if (nexus_agent == NULL) {
return;
}
if (uuid_compare(option->nexus_agent, *nexus_agent) == 0) {
return;
}
if (uuid_is_null(option->nexus_agent)) {
uuid_copy(option->nexus_agent, *nexus_agent);
return;
}
// If we get to this point, this is a new nexus flow
}
} else {
struct necp_client_interface_option *option = &client->extra_interface_options[option_i - NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT];
if (option->interface_index == interface_index) {
if (nexus_agent == NULL) {
return;
}
if (uuid_compare(option->nexus_agent, *nexus_agent) == 0) {
return;
}
if (uuid_is_null(option->nexus_agent)) {
uuid_copy(option->nexus_agent, *nexus_agent);
return;
}
// If we get to this point, this is a new nexus flow
}
}
}
// Add a new entry
if (client->interface_option_count < NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT) {
// Add to static
struct necp_client_interface_option *option = &client->interface_options[client->interface_option_count];
option->interface_index = interface_index;
option->interface_generation = interface_generation;
if (nexus_agent != NULL) {
uuid_copy(option->nexus_agent, *nexus_agent);
} else {
uuid_clear(option->nexus_agent);
}
client->interface_option_count++;
} else {
// Add to extra
if (client->extra_interface_options == NULL) {
client->extra_interface_options = (struct necp_client_interface_option *)kalloc_data(
sizeof(struct necp_client_interface_option) * NECP_CLIENT_INTERFACE_OPTION_EXTRA_COUNT, Z_WAITOK | Z_ZERO);
}
if (client->extra_interface_options != NULL) {
struct necp_client_interface_option *option = &client->extra_interface_options[client->interface_option_count - NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT];
option->interface_index = interface_index;
option->interface_generation = interface_generation;
if (nexus_agent != NULL) {
uuid_copy(option->nexus_agent, *nexus_agent);
} else {
uuid_clear(option->nexus_agent);
}
client->interface_option_count++;
}
}
}
static bool
necp_client_flow_is_viable(proc_t proc, struct necp_client *client,
struct necp_client_flow *flow)
{
struct necp_aggregate_result result;
bool ignore_address = (client->allow_multiple_flows && !flow->nexus && !flow->socket);
flow->necp_flow_flags = 0;
int error = necp_application_find_policy_match_internal(proc, client->parameters,
(u_int32_t)client->parameters_length,
&result, &flow->necp_flow_flags, NULL,
flow->interface_index,
&flow->local_addr, &flow->remote_addr, NULL, NULL,
NULL, ignore_address, true, NULL);
// Check for blocking agents
for (int i = 0; i < NECP_MAX_NETAGENTS; i++) {
if (uuid_is_null(result.netagents[i])) {
// Passed end of valid agents
break;
}
if (result.netagent_use_flags[i] & NECP_AGENT_USE_FLAG_REMOVE) {
// A removed agent, ignore
continue;
}
u_int32_t flags = netagent_get_flags(result.netagents[i]);
if ((flags & NETAGENT_FLAG_REGISTERED) &&
!(flags & NETAGENT_FLAG_VOLUNTARY) &&
!(flags & NETAGENT_FLAG_ACTIVE) &&
!(flags & NETAGENT_FLAG_SPECIFIC_USE_ONLY)) {
// A required agent is not active, cause the flow to be marked non-viable
return false;
}
}
if (flow->interface_index != IFSCOPE_NONE) {
ifnet_head_lock_shared();
struct ifnet *ifp = ifindex2ifnet[flow->interface_index];
if (ifp && ifp->if_delegated.ifp != IFSCOPE_NONE) {
flow->delegated_interface_index = ifp->if_delegated.ifp->if_index;
}
ifnet_head_done();
}
return error == 0 &&
result.routed_interface_index != IFSCOPE_NONE &&
result.routing_result != NECP_KERNEL_POLICY_RESULT_DROP;
}
static void
necp_flow_add_interface_flows(proc_t proc,
struct necp_client *client,
struct necp_client_flow_registration *flow_registration,
bool send_initial)
{
// Traverse all interfaces and add a tracking flow if needed
for (u_int32_t option_i = 0; option_i < client->interface_option_count; option_i++) {
if (option_i < NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT) {
struct necp_client_interface_option *option = &client->interface_options[option_i];
struct necp_client_flow *flow = necp_client_add_interface_flow_if_needed(client, flow_registration, option->interface_index);
if (flow != NULL && send_initial) {
flow->viable = necp_client_flow_is_viable(proc, client, flow);
if (flow->viable && flow->u.cb) {
bool viable = flow->viable;
flow->u.cb(flow_registration->interface_handle, NECP_CLIENT_CBACTION_INITIAL, flow->interface_index, flow->necp_flow_flags, &viable);
flow->viable = viable;
}
}
} else {
struct necp_client_interface_option *option = &client->extra_interface_options[option_i - NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT];
struct necp_client_flow *flow = necp_client_add_interface_flow_if_needed(client, flow_registration, option->interface_index);
if (flow != NULL && send_initial) {
flow->viable = necp_client_flow_is_viable(proc, client, flow);
if (flow->viable && flow->u.cb) {
bool viable = flow->viable;
flow->u.cb(flow_registration->interface_handle, NECP_CLIENT_CBACTION_INITIAL, flow->interface_index, flow->necp_flow_flags, &viable);
flow->viable = viable;
}
}
}
}
}
static bool
necp_client_update_flows(proc_t proc,
struct necp_client *client,
struct _necp_flow_defunct_list *defunct_list)
{
NECP_CLIENT_ASSERT_LOCKED(client);
bool any_client_updated = FALSE;
struct necp_client_flow *flow = NULL;
struct necp_client_flow *temp_flow = NULL;
struct necp_client_flow_registration *flow_registration = NULL;
RB_FOREACH(flow_registration, _necp_client_flow_tree, &client->flow_registrations) {
if (flow_registration->interface_cb != NULL) {
// Add any interface flows that are not already tracked
necp_flow_add_interface_flows(proc, client, flow_registration, false);
}
LIST_FOREACH_SAFE(flow, &flow_registration->flow_list, flow_chain, temp_flow) {
bool client_updated = FALSE;
// Check policy result for flow
u_short old_delegated_ifindex = flow->delegated_interface_index;
int old_flags = flow->necp_flow_flags;
bool viable = necp_client_flow_is_viable(proc, client, flow);
// TODO: Defunct nexus flows that are blocked by policy
if (flow->viable != viable) {
flow->viable = viable;
client_updated = TRUE;
}
if ((old_flags & NECP_CLIENT_RESULT_FLAG_FORCE_UPDATE) !=
(flow->necp_flow_flags & NECP_CLIENT_RESULT_FLAG_FORCE_UPDATE)) {
client_updated = TRUE;
}
if (flow->delegated_interface_index != old_delegated_ifindex) {
client_updated = TRUE;
}
if (flow->viable && client_updated && (flow->socket || (!flow->socket && !flow->nexus)) && flow->u.cb) {
bool flow_viable = flow->viable;
flow->u.cb(flow->u.socket_handle, NECP_CLIENT_CBACTION_VIABLE, flow->interface_index, flow->necp_flow_flags, &flow_viable);
flow->viable = flow_viable;
}
if (!flow->viable || flow->invalid) {
if (client_updated && (flow->socket || (!flow->socket && !flow->nexus)) && flow->u.cb) {
bool flow_viable = flow->viable;
flow->u.cb(flow->u.socket_handle, NECP_CLIENT_CBACTION_NONVIABLE, flow->interface_index, flow->necp_flow_flags, &flow_viable);
flow->viable = flow_viable;
}
// The callback might change the viable-flag of the
// flow depending on its policy. Thus, we need to
// check the flags again after the callback.
}
#if SKYWALK
if (defunct_list != NULL) {
if (flow->invalid && flow->nexus && flow->assigned && !uuid_is_null(flow->u.nexus_agent)) {
// This is a nexus flow that was assigned, but not found on path
u_int32_t flags = netagent_get_flags(flow->u.nexus_agent);
if (!(flags & NETAGENT_FLAG_REGISTERED)) {
// The agent is no longer registered! Mark defunct.
necp_defunct_flow_registration(client, flow_registration, defunct_list);
client_updated = TRUE;
}
}
}
#else /* !SKYWALK */
(void)defunct_list;
#endif /* !SKYWALK */
// Handle flows that no longer match
if (!flow->viable || flow->invalid) {
// Drop them as long as they aren't assigned data
if (!flow->nexus && !flow->assigned) {
if (flow->assigned_results != NULL) {
kfree_data(flow->assigned_results, flow->assigned_results_length);
flow->assigned_results = NULL;
client_updated = TRUE;
}
LIST_REMOVE(flow, flow_chain);
#if SKYWALK
if (flow->nexus) {
OSDecrementAtomic(&necp_nexus_flow_count);
} else
#endif /* SKYWALK */
if (flow->socket) {
OSDecrementAtomic(&necp_socket_flow_count);
} else {
OSDecrementAtomic(&necp_if_flow_count);
}
kfree_type(struct necp_client_flow, flow);
}
}
any_client_updated |= client_updated;
}
#if SKYWALK
necp_flow_save_current_interface_details(flow_registration);
#endif /* SKYWALK */
}
return any_client_updated;
}
static void
necp_client_mark_all_nonsocket_flows_as_invalid(struct necp_client *client)
{
struct necp_client_flow_registration *flow_registration = NULL;
struct necp_client_flow *flow = NULL;
RB_FOREACH(flow_registration, _necp_client_flow_tree, &client->flow_registrations) {
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
if (!flow->socket) { // Socket flows are not marked as invalid
flow->invalid = TRUE;
}
}
}
// Reset option count every update
client->interface_option_count = 0;
}
static inline bool
necp_netagent_is_requested(const struct necp_client_parsed_parameters *parameters,
uuid_t *netagent_uuid)
{
// Specific use agents only apply when requested
bool requested = false;
if (parameters != NULL) {
// Check required agent UUIDs
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (uuid_is_null(parameters->required_netagents[i])) {
break;
}
if (uuid_compare(parameters->required_netagents[i], *netagent_uuid) == 0) {
requested = true;
break;
}
}
if (!requested) {
// Check required agent types
bool fetched_type = false;
char netagent_domain[NETAGENT_DOMAINSIZE];
char netagent_type[NETAGENT_TYPESIZE];
memset(&netagent_domain, 0, NETAGENT_DOMAINSIZE);
memset(&netagent_type, 0, NETAGENT_TYPESIZE);
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (strlen(parameters->required_netagent_types[i].netagent_domain) == 0 ||
strlen(parameters->required_netagent_types[i].netagent_type) == 0) {
break;
}
if (!fetched_type) {
if (netagent_get_agent_domain_and_type(*netagent_uuid, netagent_domain, netagent_type)) {
fetched_type = TRUE;
} else {
break;
}
}
if ((strlen(parameters->required_netagent_types[i].netagent_domain) == 0 ||
strncmp(netagent_domain, parameters->required_netagent_types[i].netagent_domain, NETAGENT_DOMAINSIZE) == 0) &&
(strlen(parameters->required_netagent_types[i].netagent_type) == 0 ||
strncmp(netagent_type, parameters->required_netagent_types[i].netagent_type, NETAGENT_TYPESIZE) == 0)) {
requested = true;
break;
}
}
}
// Check preferred agent UUIDs
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (uuid_is_null(parameters->preferred_netagents[i])) {
break;
}
if (uuid_compare(parameters->preferred_netagents[i], *netagent_uuid) == 0) {
requested = true;
break;
}
}
if (!requested) {
// Check preferred agent types
bool fetched_type = false;
char netagent_domain[NETAGENT_DOMAINSIZE];
char netagent_type[NETAGENT_TYPESIZE];
memset(&netagent_domain, 0, NETAGENT_DOMAINSIZE);
memset(&netagent_type, 0, NETAGENT_TYPESIZE);
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (strlen(parameters->preferred_netagent_types[i].netagent_domain) == 0 ||
strlen(parameters->preferred_netagent_types[i].netagent_type) == 0) {
break;
}
if (!fetched_type) {
if (netagent_get_agent_domain_and_type(*netagent_uuid, netagent_domain, netagent_type)) {
fetched_type = TRUE;
} else {
break;
}
}
if ((strlen(parameters->preferred_netagent_types[i].netagent_domain) == 0 ||
strncmp(netagent_domain, parameters->preferred_netagent_types[i].netagent_domain, NETAGENT_DOMAINSIZE) == 0) &&
(strlen(parameters->preferred_netagent_types[i].netagent_type) == 0 ||
strncmp(netagent_type, parameters->preferred_netagent_types[i].netagent_type, NETAGENT_TYPESIZE) == 0)) {
requested = true;
break;
}
}
}
}
return requested;
}
static bool
necp_netagent_applies_to_client(struct necp_client *client,
const struct necp_client_parsed_parameters *parameters,
uuid_t *netagent_uuid, bool allow_nexus,
uint32_t interface_index, uint32_t interface_generation)
{
#pragma unused(interface_index, interface_generation)
bool applies = FALSE;
u_int32_t flags = netagent_get_flags(*netagent_uuid);
if (!(flags & NETAGENT_FLAG_REGISTERED)) {
// Unregistered agents never apply
return applies;
}
const bool is_nexus_agent = ((flags & NETAGENT_FLAG_NEXUS_PROVIDER) ||
(flags & NETAGENT_FLAG_NEXUS_LISTENER) ||
(flags & NETAGENT_FLAG_CUSTOM_ETHER_NEXUS) ||
(flags & NETAGENT_FLAG_CUSTOM_IP_NEXUS) ||
(flags & NETAGENT_FLAG_INTERPOSE_NEXUS));
if (is_nexus_agent) {
if (!allow_nexus) {
// Hide nexus providers unless allowed
// Direct interfaces and direct policies are allowed to use a nexus
// Delegate interfaces or re-scoped interfaces are not allowed
return applies;
}
if ((parameters->flags & NECP_CLIENT_PARAMETER_FLAG_CUSTOM_ETHER) &&
!(flags & NETAGENT_FLAG_CUSTOM_ETHER_NEXUS)) {
// Client requested a custom ether nexus, but this nexus isn't one
return applies;
}
if ((parameters->flags & NECP_CLIENT_PARAMETER_FLAG_CUSTOM_IP) &&
!(flags & NETAGENT_FLAG_CUSTOM_IP_NEXUS)) {
// Client requested a custom IP nexus, but this nexus isn't one
return applies;
}
if ((parameters->flags & NECP_CLIENT_PARAMETER_FLAG_INTERPOSE) &&
!(flags & NETAGENT_FLAG_INTERPOSE_NEXUS)) {
// Client requested an interpose nexus, but this nexus isn't one
return applies;
}
if (!(parameters->flags & NECP_CLIENT_PARAMETER_FLAG_CUSTOM_ETHER) &&
!(parameters->flags & NECP_CLIENT_PARAMETER_FLAG_CUSTOM_IP) &&
!(parameters->flags & NECP_CLIENT_PARAMETER_FLAG_INTERPOSE) &&
!(flags & NETAGENT_FLAG_NEXUS_PROVIDER)) {
// Client requested default parameters, but this nexus isn't generic
return applies;
}
}
if (uuid_compare(client->failed_trigger_agent.netagent_uuid, *netagent_uuid) == 0) {
if (client->failed_trigger_agent.generation == netagent_get_generation(*netagent_uuid)) {
// If this agent was triggered, and failed, and hasn't changed, keep hiding it
return applies;
} else {
// Mismatch generation, clear out old trigger
uuid_clear(client->failed_trigger_agent.netagent_uuid);
client->failed_trigger_agent.generation = 0;
}
}
if (flags & NETAGENT_FLAG_SPECIFIC_USE_ONLY) {
// Specific use agents only apply when requested
applies = necp_netagent_is_requested(parameters, netagent_uuid);
} else {
applies = TRUE;
}
#if SKYWALK
// Add nexus agent if it is a nexus, and either is not a listener, or the nexus supports listeners
if (applies && is_nexus_agent &&
!(parameters->flags & NECP_CLIENT_PARAMETER_FLAG_BROWSE) && // Don't add for browse paths
((flags & NETAGENT_FLAG_NEXUS_LISTENER) || !(parameters->flags & NECP_CLIENT_PARAMETER_FLAG_LISTENER))) {
necp_client_add_interface_option_if_needed(client, interface_index,
interface_generation, netagent_uuid,
(flags & NETAGENT_FLAG_NETWORK_PROVIDER));
}
#endif /* SKYWALK */
return applies;
}
static void
necp_client_add_agent_interface_options(struct necp_client *client,
const struct necp_client_parsed_parameters *parsed_parameters,
ifnet_t ifp)
{
if (ifp != NULL && ifp->if_agentids != NULL) {
for (u_int32_t i = 0; i < ifp->if_agentcount; i++) {
if (uuid_is_null(ifp->if_agentids[i])) {
continue;
}
// Relies on the side effect that nexus agents that apply will create flows
(void)necp_netagent_applies_to_client(client, parsed_parameters, &ifp->if_agentids[i], TRUE,
ifp->if_index, ifnet_get_generation(ifp));
}
}
}
static void
necp_client_add_browse_interface_options(struct necp_client *client,
const struct necp_client_parsed_parameters *parsed_parameters,
ifnet_t ifp)
{
if (ifp != NULL && ifp->if_agentids != NULL) {
for (u_int32_t i = 0; i < ifp->if_agentcount; i++) {
if (uuid_is_null(ifp->if_agentids[i])) {
continue;
}
u_int32_t flags = netagent_get_flags(ifp->if_agentids[i]);
if ((flags & NETAGENT_FLAG_REGISTERED) &&
(flags & NETAGENT_FLAG_ACTIVE) &&
(flags & NETAGENT_FLAG_SUPPORTS_BROWSE) &&
(!(flags & NETAGENT_FLAG_SPECIFIC_USE_ONLY) ||
necp_netagent_is_requested(parsed_parameters, &ifp->if_agentids[i]))) {
necp_client_add_interface_option_if_needed(client, ifp->if_index, ifnet_get_generation(ifp), &ifp->if_agentids[i], (flags & NETAGENT_FLAG_NETWORK_PROVIDER));
// Finding one is enough
break;
}
}
}
}
static inline bool
_necp_client_address_is_valid(struct sockaddr *address)
{
if (address->sa_family == AF_INET) {
return address->sa_len == sizeof(struct sockaddr_in);
} else if (address->sa_family == AF_INET6) {
return address->sa_len == sizeof(struct sockaddr_in6);
} else {
return FALSE;
}
}
#define necp_client_address_is_valid(S) _necp_client_address_is_valid(SA(S))
static inline bool
necp_client_endpoint_is_unspecified(struct necp_client_endpoint *endpoint)
{
if (necp_client_address_is_valid(&endpoint->u.sa)) {
if (endpoint->u.sa.sa_family == AF_INET) {
return endpoint->u.sin.sin_addr.s_addr == INADDR_ANY;
} else if (endpoint->u.sa.sa_family == AF_INET6) {
return IN6_IS_ADDR_UNSPECIFIED(&endpoint->u.sin6.sin6_addr);
} else {
return TRUE;
}
} else {
return TRUE;
}
}
#if SKYWALK
static void
necp_client_update_local_port_parameters(u_int8_t *parameters,
u_int32_t parameters_size,
uint16_t local_port)
{
size_t offset = 0;
while ((offset + sizeof(struct necp_tlv_header)) <= parameters_size) {
u_int8_t type = necp_buffer_get_tlv_type(parameters, offset);
u_int32_t length = necp_buffer_get_tlv_length(parameters, offset);
if (length > (parameters_size - (offset + sizeof(struct necp_tlv_header)))) {
// If the length is larger than what can fit in the remaining parameters size, bail
NECPLOG(LOG_ERR, "Invalid TLV length (%u)", length);
break;
}
if (length > 0) {
u_int8_t *value = necp_buffer_get_tlv_value(parameters, offset, NULL);
if (value != NULL) {
switch (type) {
case NECP_CLIENT_PARAMETER_LOCAL_ADDRESS: {
if (length >= sizeof(struct necp_policy_condition_addr)) {
struct necp_policy_condition_addr *address_struct = (struct necp_policy_condition_addr *)(void *)value;
if (necp_client_address_is_valid(&address_struct->address.sa)) {
if (address_struct->address.sa.sa_family == AF_INET) {
address_struct->address.sin.sin_port = local_port;
} else if (address_struct->address.sa.sa_family == AF_INET6) {
address_struct->address.sin6.sin6_port = local_port;
}
}
}
break;
}
case NECP_CLIENT_PARAMETER_LOCAL_ENDPOINT: {
if (length >= sizeof(struct necp_client_endpoint)) {
struct necp_client_endpoint *endpoint = (struct necp_client_endpoint *)(void *)value;
if (necp_client_address_is_valid(&endpoint->u.sa)) {
if (endpoint->u.sa.sa_family == AF_INET) {
endpoint->u.sin.sin_port = local_port;
} else if (endpoint->u.sa.sa_family == AF_INET6) {
endpoint->u.sin6.sin6_port = local_port;
}
}
}
break;
}
default: {
break;
}
}
}
}
offset += sizeof(struct necp_tlv_header) + length;
}
}
#endif /* !SKYWALK */
#define NECP_MAX_SOCKET_ATTRIBUTE_STRING_LENGTH 253
static void
necp_client_trace_parameter_parsing(struct necp_client *client, u_int8_t type, u_int8_t *value, u_int32_t length)
{
uint64_t num = 0;
uint16_t shortBuf;
uint32_t intBuf;
char buffer[NECP_MAX_SOCKET_ATTRIBUTE_STRING_LENGTH + 1];
if (value != NULL && length > 0) {
switch (length) {
case 1:
num = *value;
break;
case 2:
memcpy(&shortBuf, value, sizeof(shortBuf));
num = shortBuf;
break;
case 4:
memcpy(&intBuf, value, sizeof(intBuf));
num = intBuf;
break;
case 8:
memcpy(&num, value, sizeof(num));
break;
default:
num = 0;
break;
}
int len = NECP_MAX_SOCKET_ATTRIBUTE_STRING_LENGTH < length ? NECP_MAX_SOCKET_ATTRIBUTE_STRING_LENGTH : length;
memcpy(buffer, value, len);
buffer[len] = 0;
NECP_CLIENT_PARAMS_LOG(client, "Parsing param - type %d length %d value <%llu (%llX)> %s", type, length, num, num, buffer);
} else {
NECP_CLIENT_PARAMS_LOG(client, "Parsing param - type %d length %d", type, length);
}
}
static void
necp_client_trace_parsed_parameters(struct necp_client *client, struct necp_client_parsed_parameters *parsed_parameters)
{
int i;
char local_buffer[64] = { };
char remote_buffer[64] = { };
uuid_string_t uuid_str = { };
uuid_unparse_lower(parsed_parameters->effective_uuid, uuid_str);
switch (parsed_parameters->local_addr.sa.sa_family) {
case AF_INET:
if (parsed_parameters->local_addr.sa.sa_len == sizeof(struct sockaddr_in)) {
struct sockaddr_in *addr = &parsed_parameters->local_addr.sin;
inet_ntop(AF_INET, &(addr->sin_addr), local_buffer, sizeof(local_buffer));
}
break;
case AF_INET6:
if (parsed_parameters->local_addr.sa.sa_len == sizeof(struct sockaddr_in6)) {
struct sockaddr_in6 *addr6 = &parsed_parameters->local_addr.sin6;
inet_ntop(AF_INET6, &(addr6->sin6_addr), local_buffer, sizeof(local_buffer));
}
break;
default:
break;
}
switch (parsed_parameters->remote_addr.sa.sa_family) {
case AF_INET:
if (parsed_parameters->remote_addr.sa.sa_len == sizeof(struct sockaddr_in)) {
struct sockaddr_in *addr = &parsed_parameters->remote_addr.sin;
inet_ntop(AF_INET, &(addr->sin_addr), remote_buffer, sizeof(remote_buffer));
}
break;
case AF_INET6:
if (parsed_parameters->remote_addr.sa.sa_len == sizeof(struct sockaddr_in6)) {
struct sockaddr_in6 *addr6 = &parsed_parameters->remote_addr.sin6;
inet_ntop(AF_INET6, &(addr6->sin6_addr), remote_buffer, sizeof(remote_buffer));
}
break;
default:
break;
}
NECP_CLIENT_PARAMS_LOG(client, "Parsed params - valid_fields %X flags %X delegated_upid %llu local_addr %s remote_addr %s "
"required_interface_index %u required_interface_type %d local_address_preference %d "
"ip_protocol %d transport_protocol %d ethertype %d effective_pid %d effective_uuid %s uid %d persona_id %d traffic_class %d",
parsed_parameters->valid_fields,
parsed_parameters->flags,
parsed_parameters->delegated_upid,
local_buffer, remote_buffer,
parsed_parameters->required_interface_index,
parsed_parameters->required_interface_type,
parsed_parameters->local_address_preference,
parsed_parameters->ip_protocol,
parsed_parameters->transport_protocol,
parsed_parameters->ethertype,
parsed_parameters->effective_pid,
uuid_str,
parsed_parameters->uid,
parsed_parameters->persona_id,
parsed_parameters->traffic_class);
NECP_CLIENT_PARAMS_LOG(client, "Parsed params - tracker flags <known-tracker %X> <non-app-initiated %X> <silent %X> <app-approved %X>",
parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_KNOWN_TRACKER,
parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_NON_APP_INITIATED,
parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_SILENT,
parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_APPROVED_APP_DOMAIN);
for (i = 0; i < NECP_MAX_INTERFACE_PARAMETERS && parsed_parameters->prohibited_interfaces[i][0]; i++) {
NECP_CLIENT_PARAMS_LOG(client, "Parsed prohibited_interfaces[%d] <%s>", i, parsed_parameters->prohibited_interfaces[i]);
}
for (i = 0; i < NECP_MAX_AGENT_PARAMETERS && parsed_parameters->required_netagent_types[i].netagent_domain[0]; i++) {
NECP_CLIENT_PARAMS_LOG(client, "Parsed required_netagent_types[%d] <%s> <%s>", i,
parsed_parameters->required_netagent_types[i].netagent_domain,
parsed_parameters->required_netagent_types[i].netagent_type);
}
for (i = 0; i < NECP_MAX_AGENT_PARAMETERS && parsed_parameters->prohibited_netagent_types[i].netagent_domain[0]; i++) {
NECP_CLIENT_PARAMS_LOG(client, "Parsed prohibited_netagent_types[%d] <%s> <%s>", i,
parsed_parameters->prohibited_netagent_types[i].netagent_domain,
parsed_parameters->prohibited_netagent_types[i].netagent_type);
}
for (i = 0; i < NECP_MAX_AGENT_PARAMETERS && parsed_parameters->preferred_netagent_types[i].netagent_domain[0]; i++) {
NECP_CLIENT_PARAMS_LOG(client, "Parsed preferred_netagent_types[%d] <%s> <%s>", i,
parsed_parameters->preferred_netagent_types[i].netagent_domain,
parsed_parameters->preferred_netagent_types[i].netagent_type);
}
for (i = 0; i < NECP_MAX_AGENT_PARAMETERS && parsed_parameters->avoided_netagent_types[i].netagent_domain[0]; i++) {
NECP_CLIENT_PARAMS_LOG(client, "Parsed avoided_netagent_types[%d] <%s> <%s>", i,
parsed_parameters->avoided_netagent_types[i].netagent_domain,
parsed_parameters->avoided_netagent_types[i].netagent_type);
}
for (i = 0; i < NECP_MAX_AGENT_PARAMETERS && !uuid_is_null(parsed_parameters->required_netagents[i]); i++) {
uuid_unparse_lower(parsed_parameters->required_netagents[i], uuid_str);
NECP_CLIENT_PARAMS_LOG(client, "Parsed required_netagents[%d] <%s>", i, uuid_str);
}
for (i = 0; i < NECP_MAX_AGENT_PARAMETERS && !uuid_is_null(parsed_parameters->prohibited_netagents[i]); i++) {
uuid_unparse_lower(parsed_parameters->prohibited_netagents[i], uuid_str);
NECP_CLIENT_PARAMS_LOG(client, "Parsed prohibited_netagents[%d] <%s>", i, uuid_str);
}
for (i = 0; i < NECP_MAX_AGENT_PARAMETERS && !uuid_is_null(parsed_parameters->preferred_netagents[i]); i++) {
uuid_unparse_lower(parsed_parameters->preferred_netagents[i], uuid_str);
NECP_CLIENT_PARAMS_LOG(client, "Parsed preferred_netagents[%d] <%s>", i, uuid_str);
}
for (i = 0; i < NECP_MAX_AGENT_PARAMETERS && !uuid_is_null(parsed_parameters->avoided_netagents[i]); i++) {
uuid_unparse_lower(parsed_parameters->avoided_netagents[i], uuid_str);
NECP_CLIENT_PARAMS_LOG(client, "Parsed avoided_netagents[%d] <%s>", i, uuid_str);
}
}
static bool
necp_client_strings_are_equal(const char *string1, size_t string1_length,
const char *string2, size_t string2_length)
{
if (string1 == NULL || string2 == NULL) {
return false;
}
const size_t string1_actual_length = strnlen(string1, string1_length);
const size_t string2_actual_length = strnlen(string2, string2_length);
if (string1_actual_length != string2_actual_length) {
return false;
}
return strncmp(string1, string2, string1_actual_length) == 0;
}
static int
necp_client_parse_parameters(struct necp_client *client, u_int8_t *parameters,
u_int32_t parameters_size,
struct necp_client_parsed_parameters *parsed_parameters)
{
int error = 0;
size_t offset = 0;
u_int32_t num_prohibited_interfaces = 0;
u_int32_t num_prohibited_interface_types = 0;
u_int32_t num_required_agents = 0;
u_int32_t num_prohibited_agents = 0;
u_int32_t num_preferred_agents = 0;
u_int32_t num_avoided_agents = 0;
u_int32_t num_required_agent_types = 0;
u_int32_t num_prohibited_agent_types = 0;
u_int32_t num_preferred_agent_types = 0;
u_int32_t num_avoided_agent_types = 0;
u_int8_t *resolver_tag = NULL;
u_int32_t resolver_tag_length = 0;
u_int8_t *client_hostname = NULL;
u_int32_t hostname_length = 0;
uuid_t parent_id = {};
if (parsed_parameters == NULL) {
return EINVAL;
}
memset(parsed_parameters, 0, sizeof(struct necp_client_parsed_parameters));
while ((offset + sizeof(struct necp_tlv_header)) <= parameters_size) {
u_int8_t type = necp_buffer_get_tlv_type(parameters, offset);
u_int32_t length = necp_buffer_get_tlv_length(parameters, offset);
if (length > (parameters_size - (offset + sizeof(struct necp_tlv_header)))) {
// If the length is larger than what can fit in the remaining parameters size, bail
NECPLOG(LOG_ERR, "Invalid TLV length (%u)", length);
break;
}
if (length > 0) {
u_int8_t *value = necp_buffer_get_tlv_value(parameters, offset, NULL);
if (value != NULL) {
switch (type) {
case NECP_CLIENT_PARAMETER_BOUND_INTERFACE: {
if (length <= IFXNAMSIZ && length > 0) {
ifnet_t bound_interface = NULL;
char interface_name[IFXNAMSIZ];
memcpy(interface_name, value, length);
interface_name[length - 1] = 0; // Make sure the string is NULL terminated
if (ifnet_find_by_name(interface_name, &bound_interface) == 0) {
parsed_parameters->required_interface_index = bound_interface->if_index;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IF;
ifnet_release(bound_interface);
}
}
break;
}
case NECP_CLIENT_PARAMETER_LOCAL_ADDRESS: {
if (length >= sizeof(struct necp_policy_condition_addr)) {
struct necp_policy_condition_addr *address_struct = (struct necp_policy_condition_addr *)(void *)value;
if (necp_client_address_is_valid(&address_struct->address.sa)) {
memcpy(&parsed_parameters->local_addr, &address_struct->address, sizeof(address_struct->address));
if (!necp_address_is_wildcard(&parsed_parameters->local_addr)) {
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR;
}
if ((parsed_parameters->local_addr.sa.sa_family == AF_INET && parsed_parameters->local_addr.sin.sin_port) ||
(parsed_parameters->local_addr.sa.sa_family == AF_INET6 && parsed_parameters->local_addr.sin6.sin6_port)) {
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_LOCAL_PORT;
}
}
}
break;
}
case NECP_CLIENT_PARAMETER_LOCAL_ENDPOINT: {
if (length >= sizeof(struct necp_client_endpoint)) {
struct necp_client_endpoint *endpoint = (struct necp_client_endpoint *)(void *)value;
if (necp_client_address_is_valid(&endpoint->u.sa)) {
memcpy(&parsed_parameters->local_addr, &endpoint->u.sa, sizeof(union necp_sockaddr_union));
if (!necp_address_is_wildcard(&parsed_parameters->local_addr)) {
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR;
}
if ((parsed_parameters->local_addr.sa.sa_family == AF_INET && parsed_parameters->local_addr.sin.sin_port) ||
(parsed_parameters->local_addr.sa.sa_family == AF_INET6 && parsed_parameters->local_addr.sin6.sin6_port)) {
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_LOCAL_PORT;
}
}
}
break;
}
case NECP_CLIENT_PARAMETER_REMOTE_ADDRESS: {
if (length >= sizeof(struct necp_policy_condition_addr)) {
struct necp_policy_condition_addr *address_struct = (struct necp_policy_condition_addr *)(void *)value;
if (necp_client_address_is_valid(&address_struct->address.sa)) {
memcpy(&parsed_parameters->remote_addr, &address_struct->address, sizeof(address_struct->address));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_REMOTE_ADDR;
}
}
break;
}
case NECP_CLIENT_PARAMETER_REMOTE_ENDPOINT: {
if (length >= sizeof(struct necp_client_endpoint)) {
struct necp_client_endpoint *endpoint = (struct necp_client_endpoint *)(void *)value;
if (necp_client_address_is_valid(&endpoint->u.sa)) {
memcpy(&parsed_parameters->remote_addr, &endpoint->u.sa, sizeof(union necp_sockaddr_union));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_REMOTE_ADDR;
}
}
break;
}
case NECP_CLIENT_PARAMETER_PROHIBIT_INTERFACE: {
if (num_prohibited_interfaces >= NECP_MAX_INTERFACE_PARAMETERS) {
break;
}
if (length <= IFXNAMSIZ && length > 0) {
memcpy(parsed_parameters->prohibited_interfaces[num_prohibited_interfaces], value, length);
parsed_parameters->prohibited_interfaces[num_prohibited_interfaces][length - 1] = 0; // Make sure the string is NULL terminated
num_prohibited_interfaces++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_IF;
}
break;
}
case NECP_CLIENT_PARAMETER_REQUIRE_IF_TYPE: {
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IFTYPE) {
break;
}
if (length >= sizeof(u_int8_t)) {
memcpy(&parsed_parameters->required_interface_type, value, sizeof(u_int8_t));
if (parsed_parameters->required_interface_type) {
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IFTYPE;
}
}
break;
}
case NECP_CLIENT_PARAMETER_PROHIBIT_IF_TYPE: {
if (num_prohibited_interface_types >= NECP_MAX_INTERFACE_PARAMETERS) {
break;
}
if (length >= sizeof(u_int8_t)) {
memcpy(&parsed_parameters->prohibited_interface_types[num_prohibited_interface_types], value, sizeof(u_int8_t));
num_prohibited_interface_types++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_IFTYPE;
}
break;
}
case NECP_CLIENT_PARAMETER_REQUIRE_AGENT: {
if (num_required_agents >= NECP_MAX_AGENT_PARAMETERS) {
break;
}
if (length >= sizeof(uuid_t)) {
memcpy(&parsed_parameters->required_netagents[num_required_agents], value, sizeof(uuid_t));
num_required_agents++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT;
}
break;
}
case NECP_CLIENT_PARAMETER_PROHIBIT_AGENT: {
if (num_prohibited_agents >= NECP_MAX_AGENT_PARAMETERS) {
break;
}
if (length >= sizeof(uuid_t)) {
memcpy(&parsed_parameters->prohibited_netagents[num_prohibited_agents], value, sizeof(uuid_t));
num_prohibited_agents++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_AGENT;
}
break;
}
case NECP_CLIENT_PARAMETER_PREFER_AGENT: {
if (num_preferred_agents >= NECP_MAX_AGENT_PARAMETERS) {
break;
}
if (length >= sizeof(uuid_t)) {
memcpy(&parsed_parameters->preferred_netagents[num_preferred_agents], value, sizeof(uuid_t));
num_preferred_agents++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT;
}
break;
}
case NECP_CLIENT_PARAMETER_AVOID_AGENT: {
if (num_avoided_agents >= NECP_MAX_AGENT_PARAMETERS) {
break;
}
if (length >= sizeof(uuid_t)) {
memcpy(&parsed_parameters->avoided_netagents[num_avoided_agents], value, sizeof(uuid_t));
num_avoided_agents++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_AVOIDED_AGENT;
}
break;
}
case NECP_CLIENT_PARAMETER_REQUIRE_AGENT_TYPE: {
if (num_required_agent_types >= NECP_MAX_AGENT_PARAMETERS) {
break;
}
if (length >= sizeof(struct necp_client_parameter_netagent_type)) {
memcpy(&parsed_parameters->required_netagent_types[num_required_agent_types], value, sizeof(struct necp_client_parameter_netagent_type));
num_required_agent_types++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT_TYPE;
}
break;
}
case NECP_CLIENT_PARAMETER_PROHIBIT_AGENT_TYPE: {
if (num_prohibited_agent_types >= NECP_MAX_AGENT_PARAMETERS) {
break;
}
if (length >= sizeof(struct necp_client_parameter_netagent_type)) {
memcpy(&parsed_parameters->prohibited_netagent_types[num_prohibited_agent_types], value, sizeof(struct necp_client_parameter_netagent_type));
num_prohibited_agent_types++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_AGENT_TYPE;
}
break;
}
case NECP_CLIENT_PARAMETER_PREFER_AGENT_TYPE: {
if (num_preferred_agent_types >= NECP_MAX_AGENT_PARAMETERS) {
break;
}
if (length >= sizeof(struct necp_client_parameter_netagent_type)) {
memcpy(&parsed_parameters->preferred_netagent_types[num_preferred_agent_types], value, sizeof(struct necp_client_parameter_netagent_type));
num_preferred_agent_types++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT_TYPE;
}
break;
}
case NECP_CLIENT_PARAMETER_AVOID_AGENT_TYPE: {
if (num_avoided_agent_types >= NECP_MAX_AGENT_PARAMETERS) {
break;
}
if (length >= sizeof(struct necp_client_parameter_netagent_type)) {
memcpy(&parsed_parameters->avoided_netagent_types[num_avoided_agent_types], value, sizeof(struct necp_client_parameter_netagent_type));
num_avoided_agent_types++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_AVOIDED_AGENT_TYPE;
}
break;
}
case NECP_CLIENT_PARAMETER_FLAGS: {
if (length >= sizeof(u_int32_t)) {
memcpy(&parsed_parameters->flags, value, sizeof(parsed_parameters->flags));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_FLAGS;
}
break;
}
case NECP_CLIENT_PARAMETER_IP_PROTOCOL: {
if (length == sizeof(u_int16_t)) {
u_int16_t large_ip_protocol = 0;
memcpy(&large_ip_protocol, value, sizeof(large_ip_protocol));
parsed_parameters->ip_protocol = (u_int8_t)large_ip_protocol;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_IP_PROTOCOL;
} else if (length >= sizeof(parsed_parameters->ip_protocol)) {
memcpy(&parsed_parameters->ip_protocol, value, sizeof(parsed_parameters->ip_protocol));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_IP_PROTOCOL;
}
break;
}
case NECP_CLIENT_PARAMETER_TRANSPORT_PROTOCOL: {
if (length >= sizeof(parsed_parameters->transport_protocol)) {
memcpy(&parsed_parameters->transport_protocol, value, sizeof(parsed_parameters->transport_protocol));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_TRANSPORT_PROTOCOL;
}
break;
}
case NECP_CLIENT_PARAMETER_PID: {
if (length >= sizeof(parsed_parameters->effective_pid)) {
memcpy(&parsed_parameters->effective_pid, value, sizeof(parsed_parameters->effective_pid));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_EFFECTIVE_PID;
}
break;
}
case NECP_CLIENT_PARAMETER_DELEGATED_UPID: {
if (length >= sizeof(parsed_parameters->delegated_upid)) {
memcpy(&parsed_parameters->delegated_upid, value, sizeof(parsed_parameters->delegated_upid));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_DELEGATED_UPID;
}
break;
}
case NECP_CLIENT_PARAMETER_ETHERTYPE: {
if (length >= sizeof(parsed_parameters->ethertype)) {
memcpy(&parsed_parameters->ethertype, value, sizeof(parsed_parameters->ethertype));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_ETHERTYPE;
}
break;
}
case NECP_CLIENT_PARAMETER_APPLICATION: {
if (length >= sizeof(parsed_parameters->effective_uuid)) {
memcpy(&parsed_parameters->effective_uuid, value, sizeof(parsed_parameters->effective_uuid));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_EFFECTIVE_UUID;
}
break;
}
case NECP_CLIENT_PARAMETER_TRAFFIC_CLASS: {
if (length >= sizeof(parsed_parameters->traffic_class)) {
memcpy(&parsed_parameters->traffic_class, value, sizeof(parsed_parameters->traffic_class));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_TRAFFIC_CLASS;
}
break;
}
case NECP_CLIENT_PARAMETER_RESOLVER_TAG: {
if (length > 0) {
if (resolver_tag != NULL) {
// Multiple resolver tags is invalid
NECPLOG0(LOG_ERR, "Multiple resolver tags are not supported");
error = EINVAL;
} else {
resolver_tag = (u_int8_t *)value;
resolver_tag_length = length;
}
}
break;
}
case NECP_CLIENT_PARAMETER_DOMAIN: {
if (length > 0) {
client_hostname = (u_int8_t *)value;
hostname_length = length;
}
break;
}
case NECP_CLIENT_PARAMETER_PARENT_ID: {
if (length == sizeof(parent_id)) {
uuid_copy(parent_id, value);
memcpy(&parsed_parameters->parent_uuid, value, sizeof(parsed_parameters->parent_uuid));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_PARENT_UUID;
}
break;
}
case NECP_CLIENT_PARAMETER_LOCAL_ADDRESS_PREFERENCE: {
if (length >= sizeof(parsed_parameters->local_address_preference)) {
memcpy(&parsed_parameters->local_address_preference, value, sizeof(parsed_parameters->local_address_preference));
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR_PREFERENCE;
}
break;
}
case NECP_CLIENT_PARAMETER_ATTRIBUTED_BUNDLE_IDENTIFIER: {
if (length > 0) {
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_ATTRIBUTED_BUNDLE_IDENTIFIER;
}
break;
}
case NECP_CLIENT_PARAMETER_FLOW_DEMUX_PATTERN: {
if (parsed_parameters->demux_pattern_count >= NECP_MAX_DEMUX_PATTERNS) {
break;
}
if (length >= sizeof(struct necp_demux_pattern)) {
memcpy(&parsed_parameters->demux_patterns[parsed_parameters->demux_pattern_count], value, sizeof(struct necp_demux_pattern));
parsed_parameters->demux_pattern_count++;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_FLOW_DEMUX_PATTERN;
}
break;
}
case NECP_CLIENT_PARAMETER_APPLICATION_ID: {
if (length >= sizeof(necp_application_id_t)) {
necp_application_id_t *application_id = (necp_application_id_t *)(void *)value;
// UID
parsed_parameters->uid = application_id->uid;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_UID;
// EUUID
uuid_copy(parsed_parameters->effective_uuid, application_id->effective_uuid);
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_EFFECTIVE_UUID;
// PERSONA
parsed_parameters->persona_id = application_id->persona_id;
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_PERSONA_ID;
}
break;
}
default: {
break;
}
}
}
if (NECP_ENABLE_CLIENT_TRACE(NECP_CLIENT_TRACE_LEVEL_PARAMS)) {
necp_client_trace_parameter_parsing(client, type, value, length);
}
}
offset += sizeof(struct necp_tlv_header) + length;
}
if (resolver_tag != NULL) {
struct necp_client_validatable *validatable = (struct necp_client_validatable *)resolver_tag;
if (resolver_tag_length <= sizeof(struct necp_client_validatable)) {
error = EINVAL;
NECPLOG(LOG_ERR, "Resolver tag length too short: %u", resolver_tag_length);
} else {
bool matches = true;
// Check the client UUID for client-specific results
if (validatable->signable.sign_type == NECP_CLIENT_SIGN_TYPE_RESOLVER_ANSWER ||
validatable->signable.sign_type == NECP_CLIENT_SIGN_TYPE_BROWSE_RESULT ||
validatable->signable.sign_type == NECP_CLIENT_SIGN_TYPE_SERVICE_RESOLVER_ANSWER) {
if (uuid_compare(parent_id, validatable->signable.client_id) != 0 &&
uuid_compare(client->client_id, validatable->signable.client_id) != 0) {
NECPLOG0(LOG_ERR, "Resolver tag invalid client ID");
matches = false;
}
}
size_t data_length = resolver_tag_length - sizeof(struct necp_client_validatable);
switch (validatable->signable.sign_type) {
case NECP_CLIENT_SIGN_TYPE_RESOLVER_ANSWER:
case NECP_CLIENT_SIGN_TYPE_SYSTEM_RESOLVER_ANSWER: {
if (data_length < (sizeof(struct necp_client_host_resolver_answer) - sizeof(struct necp_client_signable))) {
NECPLOG0(LOG_ERR, "Resolver tag invalid length for resolver answer");
matches = false;
} else {
struct necp_client_host_resolver_answer *answer_struct = (struct necp_client_host_resolver_answer *)&validatable->signable;
if (data_length != (sizeof(struct necp_client_host_resolver_answer) + answer_struct->hostname_length - sizeof(struct necp_client_signable))) {
NECPLOG0(LOG_ERR, "Resolver tag invalid length for resolver answer");
matches = false;
} else {
if (answer_struct->hostname_length != 0 && // If the hostname on the signed answer is empty, ignore
!necp_client_strings_are_equal((const char *)client_hostname, hostname_length,
answer_struct->hostname, answer_struct->hostname_length)) {
NECPLOG0(LOG_ERR, "Resolver tag hostname does not match");
matches = false;
} else if (answer_struct->address_answer.sa.sa_family != parsed_parameters->remote_addr.sa.sa_family ||
answer_struct->address_answer.sa.sa_len != parsed_parameters->remote_addr.sa.sa_len) {
NECPLOG0(LOG_ERR, "Resolver tag address type does not match");
matches = false;
} else if (answer_struct->address_answer.sin.sin_port != 0 && // If the port on the signed answer is empty, ignore
answer_struct->address_answer.sin.sin_port != parsed_parameters->remote_addr.sin.sin_port) {
NECPLOG0(LOG_ERR, "Resolver tag port does not match");
matches = false;
} else if ((answer_struct->address_answer.sa.sa_family == AF_INET &&
answer_struct->address_answer.sin.sin_addr.s_addr != parsed_parameters->remote_addr.sin.sin_addr.s_addr) ||
(answer_struct->address_answer.sa.sa_family == AF_INET6 &&
memcmp(&answer_struct->address_answer.sin6.sin6_addr, &parsed_parameters->remote_addr.sin6.sin6_addr, sizeof(struct in6_addr)) != 0)) {
NECPLOG0(LOG_ERR, "Resolver tag address does not match");
matches = false;
}
}
}
break;
}
case NECP_CLIENT_SIGN_TYPE_BROWSE_RESULT:
case NECP_CLIENT_SIGN_TYPE_SYSTEM_BROWSE_RESULT: {
if (data_length < (sizeof(struct necp_client_browse_result) - sizeof(struct necp_client_signable))) {
NECPLOG0(LOG_ERR, "Resolver tag invalid length for browse result");
matches = false;
} else {
struct necp_client_browse_result *answer_struct = (struct necp_client_browse_result *)&validatable->signable;
if (data_length != (sizeof(struct necp_client_browse_result) + answer_struct->service_length - sizeof(struct necp_client_signable))) {
NECPLOG0(LOG_ERR, "Resolver tag invalid length for browse result");
matches = false;
}
}
break;
}
case NECP_CLIENT_SIGN_TYPE_SERVICE_RESOLVER_ANSWER:
case NECP_CLIENT_SIGN_TYPE_SYSTEM_SERVICE_RESOLVER_ANSWER: {
if (data_length < (sizeof(struct necp_client_service_resolver_answer) - sizeof(struct necp_client_signable))) {
NECPLOG0(LOG_ERR, "Resolver tag invalid length for service resolver answer");
matches = false;
} else {
struct necp_client_service_resolver_answer *answer_struct = (struct necp_client_service_resolver_answer *)&validatable->signable;
if (data_length != (sizeof(struct necp_client_service_resolver_answer) + answer_struct->service_length + answer_struct->hostname_length - sizeof(struct necp_client_signable))) {
NECPLOG0(LOG_ERR, "Resolver tag invalid length for service resolver answer");
matches = false;
}
}
break;
}
default: {
NECPLOG(LOG_ERR, "Resolver tag unknown sign type: %u", validatable->signable.sign_type);
matches = false;
break;
}
}
if (!matches) {
error = EAUTH;
} else {
const bool validated = necp_validate_resolver_answer(validatable->signable.client_id,
validatable->signable.sign_type,
validatable->signable.signable_data, data_length,
validatable->signature.signed_tag, sizeof(validatable->signature.signed_tag));
if (!validated) {
error = EAUTH;
NECPLOG0(LOG_ERR, "Failed to validate resolve answer");
}
}
}
}
if (NECP_ENABLE_CLIENT_TRACE(NECP_CLIENT_TRACE_LEVEL_PARAMS)) {
necp_client_trace_parsed_parameters(client, parsed_parameters);
}
return error;
}
static int
necp_client_parse_result(u_int8_t *result,
u_int32_t result_size,
union necp_sockaddr_union *local_address,
union necp_sockaddr_union *remote_address,
void **flow_stats)
{
#pragma unused(flow_stats)
int error = 0;
size_t offset = 0;
while ((offset + sizeof(struct necp_tlv_header)) <= result_size) {
u_int8_t type = necp_buffer_get_tlv_type(result, offset);
u_int32_t length = necp_buffer_get_tlv_length(result, offset);
if (length > 0 && (offset + sizeof(struct necp_tlv_header) + length) <= result_size) {
u_int8_t *value = necp_buffer_get_tlv_value(result, offset, NULL);
if (value != NULL) {
switch (type) {
case NECP_CLIENT_RESULT_LOCAL_ENDPOINT: {
if (length >= sizeof(struct necp_client_endpoint)) {
struct necp_client_endpoint *endpoint = (struct necp_client_endpoint *)(void *)value;
if (local_address != NULL && necp_client_address_is_valid(&endpoint->u.sa)) {
memcpy(local_address, &endpoint->u.sa, endpoint->u.sa.sa_len);
}
}
break;
}
case NECP_CLIENT_RESULT_REMOTE_ENDPOINT: {
if (length >= sizeof(struct necp_client_endpoint)) {
struct necp_client_endpoint *endpoint = (struct necp_client_endpoint *)(void *)value;
if (remote_address != NULL && necp_client_address_is_valid(&endpoint->u.sa)) {
memcpy(remote_address, &endpoint->u.sa, endpoint->u.sa.sa_len);
}
}
break;
}
#if SKYWALK
case NECP_CLIENT_RESULT_NEXUS_FLOW_STATS: {
// this TLV contains flow_stats pointer which is refcnt'ed.
if (flow_stats != NULL && length >= sizeof(struct sk_stats_flow *)) {
struct flow_stats *fs = *(void **)(void *)value;
// transfer the refcnt to flow_stats pointer
*flow_stats = fs;
}
memset(value, 0, length); // nullify TLV always
break;
}
#endif /* SKYWALK */
default: {
break;
}
}
}
}
offset += sizeof(struct necp_tlv_header) + length;
}
return error;
}
static struct necp_client_flow_registration *
necp_client_create_flow_registration(struct necp_fd_data *fd_data, struct necp_client *client)
{
NECP_FD_ASSERT_LOCKED(fd_data);
NECP_CLIENT_ASSERT_LOCKED(client);
struct necp_client_flow_registration *new_registration = kalloc_type(struct necp_client_flow_registration, Z_WAITOK | Z_ZERO | Z_NOFAIL);
new_registration->last_interface_details = combine_interface_details(IFSCOPE_NONE, NSTAT_IFNET_IS_UNKNOWN_TYPE);
necp_generate_client_id(new_registration->registration_id, true);
LIST_INIT(&new_registration->flow_list);
// Add registration to client list
RB_INSERT(_necp_client_flow_tree, &client->flow_registrations, new_registration);
// Add registration to fd list
RB_INSERT(_necp_fd_flow_tree, &fd_data->flows, new_registration);
// Add registration to global tree for lookup
NECP_FLOW_TREE_LOCK_EXCLUSIVE();
RB_INSERT(_necp_client_flow_global_tree, &necp_client_flow_global_tree, new_registration);
NECP_FLOW_TREE_UNLOCK();
new_registration->client = client;
#if SKYWALK
{
// The uuid caching here is something of a hack, but saves a dynamic lookup with attendant lock hierarchy issues
uint64_t stats_event_type = (uuid_is_null(client->latest_flow_registration_id)) ? NSTAT_EVENT_SRC_FLOW_UUID_ASSIGNED : NSTAT_EVENT_SRC_FLOW_UUID_CHANGED;
uuid_copy(client->latest_flow_registration_id, new_registration->registration_id);
// With the flow uuid known, push a new statistics update to ensure the uuid gets known by any clients before the flow can close
if (client->nstat_context != NULL) {
nstat_provider_stats_event(client->nstat_context, stats_event_type);
}
}
#endif /* !SKYWALK */
// Start out assuming there is nothing to read from the flow
new_registration->flow_result_read = true;
return new_registration;
}
static void
necp_client_add_socket_flow(struct necp_client_flow_registration *flow_registration,
struct inpcb *inp)
{
struct necp_client_flow *new_flow = kalloc_type(struct necp_client_flow, Z_WAITOK | Z_ZERO | Z_NOFAIL);
new_flow->socket = TRUE;
new_flow->u.socket_handle = inp;
new_flow->u.cb = inp->necp_cb;
OSIncrementAtomic(&necp_socket_flow_count);
LIST_INSERT_HEAD(&flow_registration->flow_list, new_flow, flow_chain);
}
static int
necp_client_register_socket_inner(pid_t pid, uuid_t client_id, struct inpcb *inp, bool is_listener)
{
int error = 0;
struct necp_fd_data *client_fd = NULL;
bool found_client = FALSE;
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
NECP_FD_LOCK(client_fd);
struct necp_client *client = necp_client_fd_find_client_and_lock(client_fd, client_id);
if (client != NULL) {
if (!pid || client->proc_pid == pid) {
if (is_listener) {
found_client = TRUE;
#if SKYWALK
// Check netns token for registration
if (!NETNS_TOKEN_VALID(&client->port_reservation)) {
error = EINVAL;
}
#endif /* !SKYWALK */
} else {
// Find client flow and assign from socket
struct necp_client_flow_registration *flow_registration = necp_client_find_flow(client, client_id);
if (flow_registration != NULL) {
// Found the right client and flow registration, add a new flow
found_client = TRUE;
necp_client_add_socket_flow(flow_registration, inp);
} else if (RB_EMPTY(&client->flow_registrations) && !necp_client_id_is_flow(client_id)) {
// No flows yet on this client, add a new registration
flow_registration = necp_client_create_flow_registration(client_fd, client);
if (flow_registration == NULL) {
error = ENOMEM;
} else {
// Add a new flow
found_client = TRUE;
necp_client_add_socket_flow(flow_registration, inp);
}
}
}
}
NECP_CLIENT_UNLOCK(client);
}
NECP_FD_UNLOCK(client_fd);
if (found_client) {
break;
}
}
NECP_FD_LIST_UNLOCK();
if (!found_client) {
error = ENOENT;
} else {
// Count the sockets that have the NECP client UUID set
struct socket *so = inp->inp_socket;
if (!(so->so_flags1 & SOF1_HAS_NECP_CLIENT_UUID)) {
so->so_flags1 |= SOF1_HAS_NECP_CLIENT_UUID;
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_necp_clientuuid_total);
}
}
return error;
}
int
necp_client_register_socket_flow(pid_t pid, uuid_t client_id, struct inpcb *inp)
{
return necp_client_register_socket_inner(pid, client_id, inp, false);
}
int
necp_client_register_socket_listener(pid_t pid, uuid_t client_id, struct inpcb *inp)
{
return necp_client_register_socket_inner(pid, client_id, inp, true);
}
#if SKYWALK
int
necp_client_get_netns_flow_info(uuid_t client_id, struct ns_flow_info *flow_info)
{
int error = 0;
struct necp_fd_data *client_fd = NULL;
bool found_client = FALSE;
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
NECP_FD_LOCK(client_fd);
struct necp_client *client = necp_client_fd_find_client_and_lock(client_fd, client_id);
if (client != NULL) {
found_client = TRUE;
if (!NETNS_TOKEN_VALID(&client->port_reservation)) {
error = EINVAL;
} else {
error = netns_get_flow_info(&client->port_reservation, flow_info);
}
NECP_CLIENT_UNLOCK(client);
}
NECP_FD_UNLOCK(client_fd);
if (found_client) {
break;
}
}
NECP_FD_LIST_UNLOCK();
if (!found_client) {
error = ENOENT;
}
return error;
}
#endif /* !SKYWALK */
static void
necp_client_add_multipath_interface_flows(struct necp_client_flow_registration *flow_registration,
struct necp_client *client,
struct mppcb *mpp)
{
flow_registration->interface_handle = mpp;
flow_registration->interface_cb = mpp->necp_cb;
proc_t proc = proc_find(client->proc_pid);
if (proc == PROC_NULL) {
return;
}
// Traverse all interfaces and add a tracking flow if needed
necp_flow_add_interface_flows(proc, client, flow_registration, true);
proc_rele(proc);
proc = PROC_NULL;
}
int
necp_client_register_multipath_cb(pid_t pid, uuid_t client_id, struct mppcb *mpp)
{
int error = 0;
struct necp_fd_data *client_fd = NULL;
bool found_client = FALSE;
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
NECP_FD_LOCK(client_fd);
struct necp_client *client = necp_client_fd_find_client_and_lock(client_fd, client_id);
if (client != NULL) {
if (!pid || client->proc_pid == pid) {
struct necp_client_flow_registration *flow_registration = necp_client_find_flow(client, client_id);
if (flow_registration != NULL) {
// Found the right client and flow registration, add a new flow
found_client = TRUE;
necp_client_add_multipath_interface_flows(flow_registration, client, mpp);
} else if (RB_EMPTY(&client->flow_registrations) && !necp_client_id_is_flow(client_id)) {
// No flows yet on this client, add a new registration
flow_registration = necp_client_create_flow_registration(client_fd, client);
if (flow_registration == NULL) {
error = ENOMEM;
} else {
// Add a new flow
found_client = TRUE;
necp_client_add_multipath_interface_flows(flow_registration, client, mpp);
}
}
}
NECP_CLIENT_UNLOCK(client);
}
NECP_FD_UNLOCK(client_fd);
if (found_client) {
break;
}
}
NECP_FD_LIST_UNLOCK();
if (!found_client && error == 0) {
error = ENOENT;
}
return error;
}
#define NETAGENT_DOMAIN_RADIO_MANAGER "WirelessRadioManager"
#define NETAGENT_TYPE_RADIO_MANAGER "WirelessRadioManager:BB Manager"
static int
necp_client_lookup_bb_radio_manager(struct necp_client *client,
uuid_t netagent_uuid)
{
char netagent_domain[NETAGENT_DOMAINSIZE];
char netagent_type[NETAGENT_TYPESIZE];
struct necp_aggregate_result result;
proc_t proc;
int error;
proc = proc_find(client->proc_pid);
if (proc == PROC_NULL) {
return ESRCH;
}
error = necp_application_find_policy_match_internal(proc, client->parameters, (u_int32_t)client->parameters_length,
&result, NULL, NULL, 0, NULL, NULL, NULL, NULL, NULL, true, true, NULL);
proc_rele(proc);
proc = PROC_NULL;
if (error) {
return error;
}
for (int i = 0; i < NECP_MAX_NETAGENTS; i++) {
if (uuid_is_null(result.netagents[i])) {
// Passed end of valid agents
break;
}
memset(&netagent_domain, 0, NETAGENT_DOMAINSIZE);
memset(&netagent_type, 0, NETAGENT_TYPESIZE);
if (netagent_get_agent_domain_and_type(result.netagents[i], netagent_domain, netagent_type) == FALSE) {
continue;
}
if (strncmp(netagent_domain, NETAGENT_DOMAIN_RADIO_MANAGER, NETAGENT_DOMAINSIZE) != 0) {
continue;
}
if (strncmp(netagent_type, NETAGENT_TYPE_RADIO_MANAGER, NETAGENT_TYPESIZE) != 0) {
continue;
}
uuid_copy(netagent_uuid, result.netagents[i]);
break;
}
return 0;
}
static int
necp_client_assert_bb_radio_manager_common(struct necp_client *client, bool assert)
{
uuid_t netagent_uuid;
uint8_t assert_type;
int error;
error = necp_client_lookup_bb_radio_manager(client, netagent_uuid);
if (error) {
NECPLOG0(LOG_ERR, "BB radio manager agent not found");
return error;
}
// Before unasserting, verify that the assertion was already taken
if (assert == FALSE) {
assert_type = NETAGENT_MESSAGE_TYPE_CLIENT_UNASSERT;
if (!necp_client_remove_assertion(client, netagent_uuid)) {
return EINVAL;
}
} else {
assert_type = NETAGENT_MESSAGE_TYPE_CLIENT_ASSERT;
}
error = netagent_client_message(netagent_uuid, client->client_id, client->proc_pid, client->agent_handle, assert_type);
if (error) {
NECPLOG0(LOG_ERR, "netagent_client_message failed");
return error;
}
// Only save the assertion if the action succeeded
if (assert == TRUE) {
necp_client_add_assertion(client, netagent_uuid);
}
return 0;
}
int
necp_client_assert_bb_radio_manager(uuid_t client_id, bool assert)
{
struct necp_client *client;
int error = 0;
NECP_CLIENT_TREE_LOCK_SHARED();
client = necp_find_client_and_lock(client_id);
if (client) {
// Found the right client!
error = necp_client_assert_bb_radio_manager_common(client, assert);
NECP_CLIENT_UNLOCK(client);
} else {
NECPLOG0(LOG_ERR, "Couldn't find client");
error = ENOENT;
}
NECP_CLIENT_TREE_UNLOCK();
return error;
}
static int
necp_client_unregister_socket_flow(uuid_t client_id, void *handle)
{
int error = 0;
struct necp_fd_data *client_fd = NULL;
bool found_client = FALSE;
bool client_updated = FALSE;
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
NECP_FD_LOCK(client_fd);
struct necp_client *client = necp_client_fd_find_client_and_lock(client_fd, client_id);
if (client != NULL) {
struct necp_client_flow_registration *flow_registration = necp_client_find_flow(client, client_id);
if (flow_registration != NULL) {
// Found the right client and flow!
found_client = TRUE;
// Remove flow assignment
struct necp_client_flow *search_flow = NULL;
struct necp_client_flow *temp_flow = NULL;
LIST_FOREACH_SAFE(search_flow, &flow_registration->flow_list, flow_chain, temp_flow) {
if (search_flow->socket && search_flow->u.socket_handle == handle) {
if (search_flow->assigned_results != NULL) {
kfree_data(search_flow->assigned_results, search_flow->assigned_results_length);
search_flow->assigned_results = NULL;
}
client_updated = TRUE;
flow_registration->flow_result_read = FALSE;
LIST_REMOVE(search_flow, flow_chain);
OSDecrementAtomic(&necp_socket_flow_count);
kfree_type(struct necp_client_flow, search_flow);
}
}
}
NECP_CLIENT_UNLOCK(client);
}
if (client_updated) {
necp_fd_notify(client_fd, true);
}
NECP_FD_UNLOCK(client_fd);
if (found_client) {
break;
}
}
NECP_FD_LIST_UNLOCK();
if (!found_client) {
error = ENOENT;
}
return error;
}
static int
necp_client_unregister_multipath_cb(uuid_t client_id, void *handle)
{
int error = 0;
bool found_client = FALSE;
NECP_CLIENT_TREE_LOCK_SHARED();
struct necp_client *client = necp_find_client_and_lock(client_id);
if (client != NULL) {
struct necp_client_flow_registration *flow_registration = necp_client_find_flow(client, client_id);
if (flow_registration != NULL) {
// Found the right client and flow!
found_client = TRUE;
// Remove flow assignment
struct necp_client_flow *search_flow = NULL;
struct necp_client_flow *temp_flow = NULL;
LIST_FOREACH_SAFE(search_flow, &flow_registration->flow_list, flow_chain, temp_flow) {
if (!search_flow->socket && !search_flow->nexus &&
search_flow->u.socket_handle == handle) {
search_flow->u.socket_handle = NULL;
search_flow->u.cb = NULL;
}
}
flow_registration->interface_handle = NULL;
flow_registration->interface_cb = NULL;
}
NECP_CLIENT_UNLOCK(client);
}
NECP_CLIENT_TREE_UNLOCK();
if (!found_client) {
error = ENOENT;
}
return error;
}
int
necp_client_assign_from_socket(pid_t pid, uuid_t client_id, struct inpcb *inp)
{
int error = 0;
struct necp_fd_data *client_fd = NULL;
bool found_client = FALSE;
bool client_updated = FALSE;
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
if (pid && client_fd->proc_pid != pid) {
continue;
}
proc_t proc = proc_find(client_fd->proc_pid);
if (proc == PROC_NULL) {
continue;
}
NECP_FD_LOCK(client_fd);
struct necp_client *client = necp_client_fd_find_client_and_lock(client_fd, client_id);
if (client != NULL) {
struct necp_client_flow_registration *flow_registration = necp_client_find_flow(client, client_id);
if (flow_registration == NULL && RB_EMPTY(&client->flow_registrations) && !necp_client_id_is_flow(client_id)) {
// No flows yet on this client, add a new registration
flow_registration = necp_client_create_flow_registration(client_fd, client);
if (flow_registration == NULL) {
error = ENOMEM;
}
}
if (flow_registration != NULL) {
// Found the right client and flow!
found_client = TRUE;
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
if (flow->socket && flow->u.socket_handle == inp) {
// Release prior results and route
if (flow->assigned_results != NULL) {
kfree_data(flow->assigned_results, flow->assigned_results_length);
flow->assigned_results = NULL;
}
ifnet_t ifp = NULL;
if ((inp->inp_flags & INP_BOUND_IF) && inp->inp_boundifp) {
ifp = inp->inp_boundifp;
} else {
ifp = inp->inp_last_outifp;
}
if (ifp != NULL) {
flow->interface_index = ifp->if_index;
} else {
flow->interface_index = IFSCOPE_NONE;
}
if (inp->inp_vflag & INP_IPV4) {
flow->local_addr.sin.sin_family = AF_INET;
flow->local_addr.sin.sin_len = sizeof(struct sockaddr_in);
flow->local_addr.sin.sin_port = inp->inp_lport;
memcpy(&flow->local_addr.sin.sin_addr, &inp->inp_laddr, sizeof(struct in_addr));
flow->remote_addr.sin.sin_family = AF_INET;
flow->remote_addr.sin.sin_len = sizeof(struct sockaddr_in);
flow->remote_addr.sin.sin_port = inp->inp_fport;
memcpy(&flow->remote_addr.sin.sin_addr, &inp->inp_faddr, sizeof(struct in_addr));
} else if (inp->inp_vflag & INP_IPV6) {
in6_ip6_to_sockaddr(&inp->in6p_laddr, inp->inp_lport, inp->inp_lifscope, &flow->local_addr.sin6, sizeof(flow->local_addr));
in6_ip6_to_sockaddr(&inp->in6p_faddr, inp->inp_fport, inp->inp_fifscope, &flow->remote_addr.sin6, sizeof(flow->remote_addr));
}
flow->viable = necp_client_flow_is_viable(proc, client, flow);
uuid_t empty_uuid;
uuid_clear(empty_uuid);
flow->assigned = TRUE;
flow->assigned_results = necp_create_nexus_assign_message(empty_uuid, 0, NULL, 0,
(struct necp_client_endpoint *)&flow->local_addr,
(struct necp_client_endpoint *)&flow->remote_addr,
NULL, 0, NULL, &flow->assigned_results_length);
flow_registration->flow_result_read = FALSE;
client_updated = TRUE;
break;
}
}
}
NECP_CLIENT_UNLOCK(client);
}
if (client_updated) {
necp_fd_notify(client_fd, true);
}
NECP_FD_UNLOCK(client_fd);
proc_rele(proc);
proc = PROC_NULL;
if (found_client) {
break;
}
}
NECP_FD_LIST_UNLOCK();
if (error == 0) {
if (!found_client) {
error = ENOENT;
} else if (!client_updated) {
error = EINVAL;
}
}
return error;
}
bool
necp_socket_is_allowed_to_recv_on_interface(struct inpcb *inp, ifnet_t interface)
{
if (interface == NULL ||
inp == NULL ||
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
uuid_is_null(inp->necp_client_uuid)) {
// If there's no interface or client ID to check,
// or if this is not a listener, pass.
// Outbound connections will have already been
// validated for policy.
return TRUE;
}
// Only filter out listener sockets (no remote address specified)
if ((inp->inp_vflag & INP_IPV4) &&
inp->inp_faddr.s_addr != INADDR_ANY) {
return TRUE;
}
if ((inp->inp_vflag & INP_IPV6) &&
!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
return TRUE;
}
bool allowed = TRUE;
NECP_CLIENT_TREE_LOCK_SHARED();
struct necp_client *client = necp_find_client_and_lock(inp->necp_client_uuid);
if (client != NULL) {
struct necp_client_parsed_parameters *parsed_parameters = NULL;
parsed_parameters = kalloc_type(struct necp_client_parsed_parameters,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
int error = necp_client_parse_parameters(client, client->parameters, (u_int32_t)client->parameters_length, parsed_parameters);
if (error == 0) {
if (!necp_ifnet_matches_parameters(interface, parsed_parameters, 0, NULL, true, false)) {
allowed = FALSE;
}
}
kfree_type(struct necp_client_parsed_parameters, parsed_parameters);
NECP_CLIENT_UNLOCK(client);
}
NECP_CLIENT_TREE_UNLOCK();
return allowed;
}
int
necp_update_flow_protoctl_event(uuid_t netagent_uuid, uuid_t client_id,
uint32_t protoctl_event_code, uint32_t protoctl_event_val,
uint32_t protoctl_event_tcp_seq_number)
{
int error = 0;
struct necp_fd_data *client_fd = NULL;
bool found_client = FALSE;
bool client_updated = FALSE;
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
proc_t proc = proc_find(client_fd->proc_pid);
if (proc == PROC_NULL) {
continue;
}
NECP_FD_LOCK(client_fd);
struct necp_client *client = necp_client_fd_find_client_and_lock(client_fd, client_id);
if (client != NULL) {
struct necp_client_flow_registration *flow_registration = necp_client_find_flow(client, client_id);
if (flow_registration != NULL) {
// Found the right client and flow!
found_client = TRUE;
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
// Verify that the client nexus agent matches
if ((flow->nexus && uuid_compare(flow->u.nexus_agent, netagent_uuid) == 0) ||
flow->socket) {
flow->has_protoctl_event = TRUE;
flow->protoctl_event.protoctl_event_code = protoctl_event_code;
flow->protoctl_event.protoctl_event_val = protoctl_event_val;
flow->protoctl_event.protoctl_event_tcp_seq_num = protoctl_event_tcp_seq_number;
flow_registration->flow_result_read = FALSE;
client_updated = TRUE;
break;
}
}
}
NECP_CLIENT_UNLOCK(client);
}
if (client_updated) {
necp_fd_notify(client_fd, true);
}
NECP_FD_UNLOCK(client_fd);
proc_rele(proc);
proc = PROC_NULL;
if (found_client) {
break;
}
}
NECP_FD_LIST_UNLOCK();
if (!found_client) {
error = ENOENT;
} else if (!client_updated) {
error = EINVAL;
}
return error;
}
static bool
necp_assign_client_result_locked(struct proc *proc,
struct necp_fd_data *client_fd,
struct necp_client *client,
struct necp_client_flow_registration *flow_registration,
uuid_t netagent_uuid,
u_int8_t *assigned_results,
size_t assigned_results_length,
bool notify_fd,
bool assigned_from_userspace_agent)
{
bool client_updated = FALSE;
NECP_FD_ASSERT_LOCKED(client_fd);
NECP_CLIENT_ASSERT_LOCKED(client);
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
// Verify that the client nexus agent matches
if (flow->nexus &&
uuid_compare(flow->u.nexus_agent, netagent_uuid) == 0) {
// Release prior results and route
if (flow->assigned_results != NULL) {
kfree_data(flow->assigned_results, flow->assigned_results_length);
flow->assigned_results = NULL;
}
void *nexus_stats = NULL;
if (assigned_results != NULL && assigned_results_length > 0) {
int error = necp_client_parse_result(assigned_results, (u_int32_t)assigned_results_length,
&flow->local_addr, &flow->remote_addr,
assigned_from_userspace_agent ? NULL : &nexus_stats); // Only assign stats from kernel agents
VERIFY(error == 0);
}
flow->viable = necp_client_flow_is_viable(proc, client, flow);
flow->assigned = TRUE;
flow->assigned_results = assigned_results;
flow->assigned_results_length = assigned_results_length;
flow_registration->flow_result_read = FALSE;
#if SKYWALK
if (nexus_stats != NULL) {
if (flow_registration->nexus_stats != NULL) {
flow_stats_release(flow_registration->nexus_stats);
}
flow_registration->nexus_stats = nexus_stats;
}
#endif /* SKYWALK */
client_updated = TRUE;
break;
}
}
if (client_updated && notify_fd) {
necp_fd_notify(client_fd, true);
}
// if not updated, client must free assigned_results
return client_updated;
}
int
necp_assign_client_result(uuid_t netagent_uuid, uuid_t client_id,
u_int8_t *assigned_results, size_t assigned_results_length)
{
int error = 0;
struct necp_fd_data *client_fd = NULL;
bool found_client = FALSE;
bool client_updated = FALSE;
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
proc_t proc = proc_find(client_fd->proc_pid);
if (proc == PROC_NULL) {
continue;
}
NECP_FD_LOCK(client_fd);
struct necp_client *client = necp_client_fd_find_client_and_lock(client_fd, client_id);
if (client != NULL) {
struct necp_client_flow_registration *flow_registration = necp_client_find_flow(client, client_id);
if (flow_registration != NULL) {
// Found the right client and flow!
found_client = TRUE;
if (necp_assign_client_result_locked(proc, client_fd, client, flow_registration, netagent_uuid,
assigned_results, assigned_results_length, true, true)) {
client_updated = TRUE;
}
}
NECP_CLIENT_UNLOCK(client);
}
NECP_FD_UNLOCK(client_fd);
proc_rele(proc);
proc = PROC_NULL;
if (found_client) {
break;
}
}
NECP_FD_LIST_UNLOCK();
// upon error, client must free assigned_results
if (!found_client) {
error = ENOENT;
} else if (!client_updated) {
error = EINVAL;
}
return error;
}
int
necp_assign_client_group_members(uuid_t netagent_uuid, uuid_t client_id,
u_int8_t *assigned_group_members, size_t assigned_group_members_length)
{
#pragma unused(netagent_uuid)
int error = 0;
struct necp_fd_data *client_fd = NULL;
bool found_client = false;
bool client_updated = false;
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
proc_t proc = proc_find(client_fd->proc_pid);
if (proc == PROC_NULL) {
continue;
}
NECP_FD_LOCK(client_fd);
struct necp_client *client = necp_client_fd_find_client_and_lock(client_fd, client_id);
if (client != NULL) {
found_client = true;
// Release prior results
if (client->assigned_group_members != NULL) {
kfree_data(client->assigned_group_members, client->assigned_group_members_length);
client->assigned_group_members = NULL;
}
// Save new results
client->assigned_group_members = assigned_group_members;
client->assigned_group_members_length = assigned_group_members_length;
client->group_members_read = false;
client_updated = true;
necp_fd_notify(client_fd, true);
NECP_CLIENT_UNLOCK(client);
}
NECP_FD_UNLOCK(client_fd);
proc_rele(proc);
proc = PROC_NULL;
if (found_client) {
break;
}
}
NECP_FD_LIST_UNLOCK();
// upon error, client must free assigned_results
if (!found_client) {
error = ENOENT;
} else if (!client_updated) {
error = EINVAL;
}
return error;
}
/// Client updating
static bool
necp_update_parsed_parameters(struct necp_client_parsed_parameters *parsed_parameters,
struct necp_aggregate_result *result)
{
if (parsed_parameters == NULL ||
result == NULL) {
return false;
}
bool updated = false;
for (int i = 0; i < NECP_MAX_NETAGENTS; i++) {
if (uuid_is_null(result->netagents[i])) {
// Passed end of valid agents
break;
}
if (!(result->netagent_use_flags[i] & NECP_AGENT_USE_FLAG_SCOPE)) {
// Not a scoped agent, ignore
continue;
}
// This is a scoped agent. Add it to the required agents.
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT) {
// Already some required agents, add this at the end
for (int j = 0; j < NECP_MAX_AGENT_PARAMETERS; j++) {
if (uuid_compare(parsed_parameters->required_netagents[j], result->netagents[i]) == 0) {
// Already required, break
break;
}
if (uuid_is_null(parsed_parameters->required_netagents[j])) {
// Add here
memcpy(&parsed_parameters->required_netagents[j], result->netagents[i], sizeof(uuid_t));
updated = true;
break;
}
}
} else {
// No required agents yet, add this one
parsed_parameters->valid_fields |= NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT;
memcpy(&parsed_parameters->required_netagents[0], result->netagents[i], sizeof(uuid_t));
updated = true;
}
// Remove requirements for agents of the same type
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT_TYPE) {
char remove_agent_domain[NETAGENT_DOMAINSIZE] = { 0 };
char remove_agent_type[NETAGENT_TYPESIZE] = { 0 };
if (netagent_get_agent_domain_and_type(result->netagents[i], remove_agent_domain, remove_agent_type)) {
for (int j = 0; j < NECP_MAX_AGENT_PARAMETERS; j++) {
if (strlen(parsed_parameters->required_netagent_types[j].netagent_domain) == 0 &&
strlen(parsed_parameters->required_netagent_types[j].netagent_type) == 0) {
break;
}
if (strncmp(parsed_parameters->required_netagent_types[j].netagent_domain, remove_agent_domain, NETAGENT_DOMAINSIZE) == 0 &&
strncmp(parsed_parameters->required_netagent_types[j].netagent_type, remove_agent_type, NETAGENT_TYPESIZE) == 0) {
updated = true;
if (j == NECP_MAX_AGENT_PARAMETERS - 1) {
// Last field, just clear and break
memset(&parsed_parameters->required_netagent_types[NECP_MAX_AGENT_PARAMETERS - 1], 0, sizeof(struct necp_client_parameter_netagent_type));
break;
} else {
// Move the parameters down, clear the last entry
memmove(&parsed_parameters->required_netagent_types[j],
&parsed_parameters->required_netagent_types[j + 1],
sizeof(struct necp_client_parameter_netagent_type) * (NECP_MAX_AGENT_PARAMETERS - (j + 1)));
memset(&parsed_parameters->required_netagent_types[NECP_MAX_AGENT_PARAMETERS - 1], 0, sizeof(struct necp_client_parameter_netagent_type));
// Continue, don't increment but look at the new shifted item instead
continue;
}
}
// Increment j to look at the next agent type parameter
j++;
}
}
}
}
if (updated &&
parsed_parameters->required_interface_index != IFSCOPE_NONE &&
(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IF) == 0) {
// A required interface index was added after the fact. Clear it.
parsed_parameters->required_interface_index = IFSCOPE_NONE;
}
return updated;
}
static inline bool
necp_agent_types_match(const char *agent_domain1, const char *agent_type1,
const char *agent_domain2, const char *agent_type2)
{
return (strlen(agent_domain1) == 0 ||
strncmp(agent_domain2, agent_domain1, NETAGENT_DOMAINSIZE) == 0) &&
(strlen(agent_type1) == 0 ||
strncmp(agent_type2, agent_type1, NETAGENT_TYPESIZE) == 0);
}
static inline bool
necp_calculate_client_result(proc_t proc,
struct necp_client *client,
struct necp_client_parsed_parameters *parsed_parameters,
struct necp_aggregate_result *result,
u_int32_t *flags,
u_int32_t *reason,
struct necp_client_endpoint *v4_gateway,
struct necp_client_endpoint *v6_gateway,
uuid_t *override_euuid)
{
struct rtentry *route = NULL;
// Check parameters to find best interface
bool validate_agents = false;
u_int matching_if_index = 0;
if (necp_find_matching_interface_index(parsed_parameters, &matching_if_index, &validate_agents)) {
if (matching_if_index != 0) {
parsed_parameters->required_interface_index = matching_if_index;
}
// Interface found or not needed, match policy.
memset(result, 0, sizeof(*result));
int error = necp_application_find_policy_match_internal(proc, client->parameters,
(u_int32_t)client->parameters_length,
result, flags, reason, matching_if_index,
NULL, NULL,
v4_gateway, v6_gateway,
&route, false, true,
override_euuid);
if (error != 0) {
if (route != NULL) {
rtfree(route);
}
return FALSE;
}
if (validate_agents) {
bool requirement_failed = FALSE;
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT) {
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (uuid_is_null(parsed_parameters->required_netagents[i])) {
break;
}
bool requirement_found = FALSE;
for (int j = 0; j < NECP_MAX_NETAGENTS; j++) {
if (uuid_is_null(result->netagents[j])) {
break;
}
if (result->netagent_use_flags[j] & NECP_AGENT_USE_FLAG_REMOVE) {
// A removed agent, ignore
continue;
}
if (uuid_compare(parsed_parameters->required_netagents[i], result->netagents[j]) == 0) {
requirement_found = TRUE;
break;
}
}
if (!requirement_found) {
requirement_failed = TRUE;
break;
}
}
}
if (!requirement_failed && parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT_TYPE) {
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (strlen(parsed_parameters->required_netagent_types[i].netagent_domain) == 0 &&
strlen(parsed_parameters->required_netagent_types[i].netagent_type) == 0) {
break;
}
bool requirement_found = FALSE;
for (int j = 0; j < NECP_MAX_NETAGENTS; j++) {
if (uuid_is_null(result->netagents[j])) {
break;
}
if (result->netagent_use_flags[j] & NECP_AGENT_USE_FLAG_REMOVE) {
// A removed agent, ignore
continue;
}
char policy_agent_domain[NETAGENT_DOMAINSIZE] = { 0 };
char policy_agent_type[NETAGENT_TYPESIZE] = { 0 };
if (netagent_get_agent_domain_and_type(result->netagents[j], policy_agent_domain, policy_agent_type)) {
if (necp_agent_types_match(parsed_parameters->required_netagent_types[i].netagent_domain,
parsed_parameters->required_netagent_types[i].netagent_type,
policy_agent_domain, policy_agent_type)) {
requirement_found = TRUE;
break;
}
}
}
if (!requirement_found) {
requirement_failed = TRUE;
break;
}
}
}
if (requirement_failed) {
// Agent requirement failed. Clear out the whole result, make everything fail.
memset(result, 0, sizeof(*result));
if (route != NULL) {
rtfree(route);
}
return TRUE;
}
}
// Reset current route
NECP_CLIENT_ROUTE_LOCK(client);
if (client->current_route != NULL) {
rtfree(client->current_route);
}
client->current_route = route;
NECP_CLIENT_ROUTE_UNLOCK(client);
} else {
// Interface not found. Clear out the whole result, make everything fail.
memset(result, 0, sizeof(*result));
}
return TRUE;
}
#define NECP_PARSED_PARAMETERS_REQUIRED_FIELDS (NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IF | \
NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IFTYPE | \
NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT | \
NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT_TYPE)
static bool
necp_update_client_result(proc_t proc,
struct necp_fd_data *client_fd,
struct necp_client *client,
struct _necp_flow_defunct_list *defunct_list)
{
struct necp_client_result_netagent netagent;
struct necp_aggregate_result result;
struct necp_client_parsed_parameters *parsed_parameters = NULL;
u_int32_t flags = 0;
u_int32_t reason = 0;
NECP_CLIENT_ASSERT_LOCKED(client);
parsed_parameters = kalloc_type(struct necp_client_parsed_parameters,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
// Nexus flows will be brought back if they are still valid
necp_client_mark_all_nonsocket_flows_as_invalid(client);
int error = necp_client_parse_parameters(client, client->parameters, (u_int32_t)client->parameters_length, parsed_parameters);
if (error != 0) {
kfree_type(struct necp_client_parsed_parameters, parsed_parameters);
return FALSE;
}
// Update saved IP protocol
client->ip_protocol = parsed_parameters->ip_protocol;
// Calculate the policy result
struct necp_client_endpoint v4_gateway = {};
struct necp_client_endpoint v6_gateway = {};
uuid_t override_euuid;
uuid_clear(override_euuid);
if (!necp_calculate_client_result(proc, client, parsed_parameters, &result, &flags, &reason, &v4_gateway, &v6_gateway, &override_euuid)) {
kfree_type(struct necp_client_parsed_parameters, parsed_parameters);
return FALSE;
}
if (necp_update_parsed_parameters(parsed_parameters, &result)) {
// Changed the parameters based on result, try again (only once)
if (!necp_calculate_client_result(proc, client, parsed_parameters, &result, &flags, &reason, &v4_gateway, &v6_gateway, &override_euuid)) {
kfree_type(struct necp_client_parsed_parameters, parsed_parameters);
return FALSE;
}
}
if ((parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_LISTENER) &&
parsed_parameters->required_interface_index != IFSCOPE_NONE &&
(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IF) == 0) {
// Listener should not apply required interface index if
parsed_parameters->required_interface_index = IFSCOPE_NONE;
}
// Save the last policy id on the client
client->policy_id = result.policy_id;
client->skip_policy_id = result.skip_policy_id;
uuid_copy(client->override_euuid, override_euuid);
if ((parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_MULTIPATH) ||
(parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_BROWSE) ||
((parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_LISTENER) &&
result.routing_result != NECP_KERNEL_POLICY_RESULT_SOCKET_SCOPED)) {
client->allow_multiple_flows = TRUE;
} else {
client->allow_multiple_flows = FALSE;
}
// If the original request was scoped, and the policy result matches, make sure the result is scoped
if ((result.routing_result == NECP_KERNEL_POLICY_RESULT_NONE ||
result.routing_result == NECP_KERNEL_POLICY_RESULT_PASS) &&
result.routed_interface_index != IFSCOPE_NONE &&
parsed_parameters->required_interface_index == result.routed_interface_index) {
result.routing_result = NECP_KERNEL_POLICY_RESULT_SOCKET_SCOPED;
result.routing_result_parameter.scoped_interface_index = result.routed_interface_index;
}
if (defunct_list != NULL &&
result.routing_result == NECP_KERNEL_POLICY_RESULT_DROP) {
// If we are forced to drop the client, defunct it if it has flows
necp_defunct_client_for_policy(client, defunct_list);
}
// Recalculate flags
if (parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_LISTENER) {
// Listeners are valid as long as they aren't dropped
if (result.routing_result != NECP_KERNEL_POLICY_RESULT_DROP) {
flags |= NECP_CLIENT_RESULT_FLAG_SATISFIED;
}
} else if (result.routed_interface_index != 0) {
// Clients without flows determine viability based on having some routable interface
flags |= NECP_CLIENT_RESULT_FLAG_SATISFIED;
}
bool updated = FALSE;
u_int8_t *cursor = client->result;
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_FLAGS, sizeof(flags), &flags, &updated, client->result, sizeof(client->result));
if (reason != 0) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_REASON, sizeof(reason), &reason, &updated, client->result, sizeof(client->result));
}
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_CLIENT_ID, sizeof(uuid_t), client->client_id, &updated,
client->result, sizeof(client->result));
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_POLICY_RESULT, sizeof(result.routing_result), &result.routing_result, &updated,
client->result, sizeof(client->result));
if (result.routing_result_parameter.tunnel_interface_index != 0) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_POLICY_RESULT_PARAMETER,
sizeof(result.routing_result_parameter), &result.routing_result_parameter, &updated,
client->result, sizeof(client->result));
}
if (result.filter_control_unit != 0) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_FILTER_CONTROL_UNIT,
sizeof(result.filter_control_unit), &result.filter_control_unit, &updated,
client->result, sizeof(client->result));
}
if (result.flow_divert_aggregate_unit != 0) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_FLOW_DIVERT_AGGREGATE_UNIT,
sizeof(result.flow_divert_aggregate_unit), &result.flow_divert_aggregate_unit, &updated,
client->result, sizeof(client->result));
}
if (result.routed_interface_index != 0) {
u_int routed_interface_index = result.routed_interface_index;
if (result.routing_result == NECP_KERNEL_POLICY_RESULT_IP_TUNNEL &&
(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_REQUIRED_FIELDS) &&
parsed_parameters->required_interface_index != IFSCOPE_NONE &&
parsed_parameters->required_interface_index != result.routed_interface_index) {
routed_interface_index = parsed_parameters->required_interface_index;
}
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_INTERFACE_INDEX,
sizeof(routed_interface_index), &routed_interface_index, &updated,
client->result, sizeof(client->result));
}
if (client_fd && client_fd->flags & NECP_OPEN_FLAG_BACKGROUND) {
u_int32_t effective_traffic_class = SO_TC_BK_SYS;
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_EFFECTIVE_TRAFFIC_CLASS,
sizeof(effective_traffic_class), &effective_traffic_class, &updated,
client->result, sizeof(client->result));
}
if (client_fd->background) {
bool has_assigned_flow = FALSE;
struct necp_client_flow_registration *flow_registration = NULL;
struct necp_client_flow *search_flow = NULL;
RB_FOREACH(flow_registration, _necp_client_flow_tree, &client->flow_registrations) {
LIST_FOREACH(search_flow, &flow_registration->flow_list, flow_chain) {
if (search_flow->assigned) {
has_assigned_flow = TRUE;
break;
}
}
}
if (has_assigned_flow) {
u_int32_t background = client_fd->background;
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_TRAFFIC_MGMT_BG,
sizeof(background), &background, &updated,
client->result, sizeof(client->result));
}
}
bool write_v4_gateway = !necp_client_endpoint_is_unspecified(&v4_gateway);
bool write_v6_gateway = !necp_client_endpoint_is_unspecified(&v6_gateway);
NECP_CLIENT_ROUTE_LOCK(client);
if (client->current_route != NULL) {
const u_int32_t route_mtu = get_maxmtu(client->current_route);
if (route_mtu != 0) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_EFFECTIVE_MTU,
sizeof(route_mtu), &route_mtu, &updated,
client->result, sizeof(client->result));
}
bool has_remote_addr = parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REMOTE_ADDR;
if (has_remote_addr && client->current_route->rt_gateway != NULL) {
if (client->current_route->rt_gateway->sa_family == AF_INET) {
write_v6_gateway = false;
} else if (client->current_route->rt_gateway->sa_family == AF_INET6) {
write_v4_gateway = false;
}
}
}
NECP_CLIENT_ROUTE_UNLOCK(client);
if (write_v4_gateway) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_GATEWAY,
sizeof(struct necp_client_endpoint), &v4_gateway, &updated,
client->result, sizeof(client->result));
}
if (write_v6_gateway) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_GATEWAY,
sizeof(struct necp_client_endpoint), &v6_gateway, &updated,
client->result, sizeof(client->result));
}
for (int i = 0; i < NAT64_MAX_NUM_PREFIXES; i++) {
if (result.nat64_prefixes[i].prefix_len != 0) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_NAT64,
sizeof(result.nat64_prefixes), result.nat64_prefixes, &updated,
client->result, sizeof(client->result));
break;
}
}
if (result.mss_recommended != 0) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_RECOMMENDED_MSS,
sizeof(result.mss_recommended), &result.mss_recommended, &updated,
client->result, sizeof(client->result));
}
for (int i = 0; i < NECP_MAX_NETAGENTS; i++) {
if (uuid_is_null(result.netagents[i])) {
break;
}
if (result.netagent_use_flags[i] & NECP_AGENT_USE_FLAG_REMOVE) {
// A removed agent, ignore
continue;
}
uuid_copy(netagent.netagent_uuid, result.netagents[i]);
netagent.generation = netagent_get_generation(netagent.netagent_uuid);
if (necp_netagent_applies_to_client(client, parsed_parameters, &netagent.netagent_uuid, TRUE, 0, 0)) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_NETAGENT, sizeof(netagent), &netagent, &updated,
client->result, sizeof(client->result));
}
}
ifnet_head_lock_shared();
ifnet_t direct_interface = NULL;
ifnet_t delegate_interface = NULL;
ifnet_t original_scoped_interface = NULL;
if (result.routed_interface_index != IFSCOPE_NONE && result.routed_interface_index <= (u_int32_t)if_index) {
direct_interface = ifindex2ifnet[result.routed_interface_index];
} else if (parsed_parameters->required_interface_index != IFSCOPE_NONE &&
parsed_parameters->required_interface_index <= (u_int32_t)if_index) {
// If the request was scoped, but the route didn't match, still grab the agents
direct_interface = ifindex2ifnet[parsed_parameters->required_interface_index];
} else if (result.routed_interface_index == IFSCOPE_NONE &&
result.routing_result == NECP_KERNEL_POLICY_RESULT_SOCKET_SCOPED &&
result.routing_result_parameter.scoped_interface_index != IFSCOPE_NONE) {
direct_interface = ifindex2ifnet[result.routing_result_parameter.scoped_interface_index];
}
if (direct_interface != NULL) {
delegate_interface = direct_interface->if_delegated.ifp;
}
if (result.routing_result == NECP_KERNEL_POLICY_RESULT_IP_TUNNEL &&
(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_REQUIRED_FIELDS) &&
parsed_parameters->required_interface_index != IFSCOPE_NONE &&
parsed_parameters->required_interface_index != result.routing_result_parameter.tunnel_interface_index &&
parsed_parameters->required_interface_index <= (u_int32_t)if_index) {
original_scoped_interface = ifindex2ifnet[parsed_parameters->required_interface_index];
}
// Add interfaces
if (original_scoped_interface != NULL) {
struct necp_client_result_interface interface_struct;
interface_struct.index = original_scoped_interface->if_index;
interface_struct.generation = ifnet_get_generation(original_scoped_interface);
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_INTERFACE, sizeof(interface_struct), &interface_struct, &updated,
client->result, sizeof(client->result));
}
if (direct_interface != NULL) {
struct necp_client_result_interface interface_struct;
interface_struct.index = direct_interface->if_index;
interface_struct.generation = ifnet_get_generation(direct_interface);
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_INTERFACE, sizeof(interface_struct), &interface_struct, &updated,
client->result, sizeof(client->result));
// Set the delta time since interface up/down
struct timeval updown_delta = {};
if (ifnet_updown_delta(direct_interface, &updown_delta) == 0) {
u_int32_t delta = updown_delta.tv_sec;
bool ignore_updated = FALSE;
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_INTERFACE_TIME_DELTA,
sizeof(delta), &delta, &ignore_updated,
client->result, sizeof(client->result));
}
}
if (delegate_interface != NULL) {
struct necp_client_result_interface interface_struct;
interface_struct.index = delegate_interface->if_index;
interface_struct.generation = ifnet_get_generation(delegate_interface);
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_INTERFACE, sizeof(interface_struct), &interface_struct, &updated,
client->result, sizeof(client->result));
}
// Update multipath/listener interface flows
if (parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_MULTIPATH) {
// Add the interface option for the routed interface first
if (direct_interface != NULL) {
// Add nexus agent
necp_client_add_agent_interface_options(client, parsed_parameters, direct_interface);
// Add interface option in case it is not a nexus
necp_client_add_interface_option_if_needed(client, direct_interface->if_index,
ifnet_get_generation(direct_interface), NULL, false);
}
if (parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_INBOUND) {
// For inbound multipath, add from the global list (like a listener)
struct ifnet *multi_interface = NULL;
TAILQ_FOREACH(multi_interface, &ifnet_head, if_link) {
if ((multi_interface->if_flags & (IFF_UP | IFF_RUNNING)) &&
necp_ifnet_matches_parameters(multi_interface, parsed_parameters, 0, NULL, true, false)) {
// Add nexus agents for inbound multipath
necp_client_add_agent_interface_options(client, parsed_parameters, multi_interface);
}
}
} else {
// Get other multipath interface options from ordered list
struct ifnet *multi_interface = NULL;
TAILQ_FOREACH(multi_interface, &ifnet_ordered_head, if_ordered_link) {
if (multi_interface != direct_interface &&
necp_ifnet_matches_parameters(multi_interface, parsed_parameters, 0, NULL, true, false)) {
// Add nexus agents for multipath
necp_client_add_agent_interface_options(client, parsed_parameters, multi_interface);
// Add multipath interface flows for kernel MPTCP
necp_client_add_interface_option_if_needed(client, multi_interface->if_index,
ifnet_get_generation(multi_interface), NULL, false);
}
}
}
} else if (parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_LISTENER) {
if (result.routing_result == NECP_KERNEL_POLICY_RESULT_SOCKET_SCOPED) {
if (direct_interface != NULL) {
// If scoped, only listen on that interface
// Add nexus agents for listeners
necp_client_add_agent_interface_options(client, parsed_parameters, direct_interface);
// Add interface option in case it is not a nexus
necp_client_add_interface_option_if_needed(client, direct_interface->if_index,
ifnet_get_generation(direct_interface), NULL, false);
}
} else {
// Get listener interface options from global list
struct ifnet *listen_interface = NULL;
TAILQ_FOREACH(listen_interface, &ifnet_head, if_link) {
if ((listen_interface->if_flags & (IFF_UP | IFF_RUNNING)) &&
necp_ifnet_matches_parameters(listen_interface, parsed_parameters, 0, NULL, true, false)) {
// Add nexus agents for listeners
necp_client_add_agent_interface_options(client, parsed_parameters, listen_interface);
}
}
}
} else if (parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_BROWSE) {
if (result.routing_result == NECP_KERNEL_POLICY_RESULT_SOCKET_SCOPED) {
if (direct_interface != NULL) {
// Add browse option if it has an agent
necp_client_add_browse_interface_options(client, parsed_parameters, direct_interface);
}
} else {
// Get browse interface options from global list
struct ifnet *browse_interface = NULL;
TAILQ_FOREACH(browse_interface, &ifnet_head, if_link) {
if (necp_ifnet_matches_parameters(browse_interface, parsed_parameters, 0, NULL, true, false)) {
necp_client_add_browse_interface_options(client, parsed_parameters, browse_interface);
}
}
}
}
struct necp_client_result_estimated_throughput throughput = {
.up = 0,
.down = 0,
};
// Add agents
if (original_scoped_interface != NULL) {
ifnet_lock_shared(original_scoped_interface);
if (original_scoped_interface->if_agentids != NULL) {
for (u_int32_t i = 0; i < original_scoped_interface->if_agentcount; i++) {
if (uuid_is_null(original_scoped_interface->if_agentids[i])) {
continue;
}
bool skip_agent = false;
for (int j = 0; j < NECP_MAX_NETAGENTS; j++) {
if (uuid_is_null(result.netagents[j])) {
break;
}
if ((result.netagent_use_flags[j] & NECP_AGENT_USE_FLAG_REMOVE) &&
uuid_compare(original_scoped_interface->if_agentids[i], result.netagents[j]) == 0) {
skip_agent = true;
break;
}
}
if (skip_agent) {
continue;
}
uuid_copy(netagent.netagent_uuid, original_scoped_interface->if_agentids[i]);
netagent.generation = netagent_get_generation(netagent.netagent_uuid);
if (necp_netagent_applies_to_client(client, parsed_parameters, &netagent.netagent_uuid, FALSE,
original_scoped_interface->if_index, ifnet_get_generation(original_scoped_interface))) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_NETAGENT, sizeof(netagent), &netagent, &updated,
client->result, sizeof(client->result));
}
}
}
ifnet_lock_done(original_scoped_interface);
}
if (direct_interface != NULL) {
ifnet_lock_shared(direct_interface);
throughput.up = direct_interface->if_estimated_up_bucket;
throughput.down = direct_interface->if_estimated_down_bucket;
if (direct_interface->if_agentids != NULL) {
for (u_int32_t i = 0; i < direct_interface->if_agentcount; i++) {
if (uuid_is_null(direct_interface->if_agentids[i])) {
continue;
}
bool skip_agent = false;
for (int j = 0; j < NECP_MAX_NETAGENTS; j++) {
if (uuid_is_null(result.netagents[j])) {
break;
}
if ((result.netagent_use_flags[j] & NECP_AGENT_USE_FLAG_REMOVE) &&
uuid_compare(direct_interface->if_agentids[i], result.netagents[j]) == 0) {
skip_agent = true;
break;
}
}
if (skip_agent) {
continue;
}
uuid_copy(netagent.netagent_uuid, direct_interface->if_agentids[i]);
netagent.generation = netagent_get_generation(netagent.netagent_uuid);
if (necp_netagent_applies_to_client(client, parsed_parameters, &netagent.netagent_uuid, TRUE,
direct_interface->if_index, ifnet_get_generation(direct_interface))) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_NETAGENT, sizeof(netagent), &netagent, &updated,
client->result, sizeof(client->result));
}
}
}
ifnet_lock_done(direct_interface);
}
if (delegate_interface != NULL) {
ifnet_lock_shared(delegate_interface);
if (throughput.up == 0 && throughput.down == 0) {
throughput.up = delegate_interface->if_estimated_up_bucket;
throughput.down = delegate_interface->if_estimated_down_bucket;
}
if (delegate_interface->if_agentids != NULL) {
for (u_int32_t i = 0; i < delegate_interface->if_agentcount; i++) {
if (uuid_is_null(delegate_interface->if_agentids[i])) {
continue;
}
bool skip_agent = false;
for (int j = 0; j < NECP_MAX_NETAGENTS; j++) {
if (uuid_is_null(result.netagents[j])) {
break;
}
if ((result.netagent_use_flags[j] & NECP_AGENT_USE_FLAG_REMOVE) &&
uuid_compare(delegate_interface->if_agentids[i], result.netagents[j]) == 0) {
skip_agent = true;
break;
}
}
if (skip_agent) {
continue;
}
uuid_copy(netagent.netagent_uuid, delegate_interface->if_agentids[i]);
netagent.generation = netagent_get_generation(netagent.netagent_uuid);
if (necp_netagent_applies_to_client(client, parsed_parameters, &netagent.netagent_uuid, FALSE,
delegate_interface->if_index, ifnet_get_generation(delegate_interface))) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_NETAGENT, sizeof(netagent), &netagent, &updated,
client->result, sizeof(client->result));
}
}
}
ifnet_lock_done(delegate_interface);
}
ifnet_head_done();
if (throughput.up != 0 || throughput.down != 0) {
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_ESTIMATED_THROUGHPUT,
sizeof(throughput), &throughput, &updated, client->result, sizeof(client->result));
}
// Add interface options
for (u_int32_t option_i = 0; option_i < client->interface_option_count; option_i++) {
if (option_i < NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT) {
struct necp_client_interface_option *option = &client->interface_options[option_i];
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_INTERFACE_OPTION, sizeof(*option), option, &updated,
client->result, sizeof(client->result));
} else {
struct necp_client_interface_option *option = &client->extra_interface_options[option_i - NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT];
cursor = necp_buffer_write_tlv_if_different(cursor, NECP_CLIENT_RESULT_INTERFACE_OPTION, sizeof(*option), option, &updated,
client->result, sizeof(client->result));
}
}
size_t new_result_length = (cursor - client->result);
if (new_result_length != client->result_length) {
client->result_length = new_result_length;
updated = TRUE;
}
// Update flow viability/flags
if (necp_client_update_flows(proc, client, defunct_list)) {
updated = TRUE;
}
if (updated) {
client->result_read = FALSE;
necp_client_update_observer_update(client);
}
kfree_type(struct necp_client_parsed_parameters, parsed_parameters);
return updated;
}
static bool
necp_defunct_client_fd_locked_inner(struct necp_fd_data *client_fd, struct _necp_flow_defunct_list *defunct_list, bool destroy_stats)
{
bool updated_result = FALSE;
struct necp_client *client = NULL;
NECP_FD_ASSERT_LOCKED(client_fd);
RB_FOREACH(client, _necp_client_tree, &client_fd->clients) {
struct necp_client_flow_registration *flow_registration = NULL;
NECP_CLIENT_LOCK(client);
// Prepare close events to be sent to the nexus to effectively remove the flows
struct necp_client_flow *search_flow = NULL;
RB_FOREACH(flow_registration, _necp_client_flow_tree, &client->flow_registrations) {
LIST_FOREACH(search_flow, &flow_registration->flow_list, flow_chain) {
if (search_flow->nexus &&
!uuid_is_null(search_flow->u.nexus_agent)) {
// Sleeping alloc won't fail; copy only what's necessary
struct necp_flow_defunct *flow_defunct = kalloc_type(struct necp_flow_defunct, Z_WAITOK | Z_ZERO);
uuid_copy(flow_defunct->nexus_agent, search_flow->u.nexus_agent);
uuid_copy(flow_defunct->flow_id, ((flow_registration->flags & NECP_CLIENT_FLOW_FLAGS_USE_CLIENT_ID) ?
client->client_id :
flow_registration->registration_id));
flow_defunct->proc_pid = client->proc_pid;
flow_defunct->agent_handle = client->agent_handle;
flow_defunct->flags = flow_registration->flags;
#if SKYWALK
if (flow_registration->kstats_kaddr != NULL) {
struct necp_all_stats *ustats_kaddr = ((struct necp_all_kstats *)flow_registration->kstats_kaddr)->necp_stats_ustats;
struct necp_quic_stats *quicstats = (struct necp_quic_stats *)ustats_kaddr;
if (quicstats != NULL &&
quicstats->necp_quic_udp_stats.necp_udp_hdr.necp_stats_type == NECP_CLIENT_STATISTICS_TYPE_QUIC) {
memcpy(flow_defunct->close_parameters.u.close_token, quicstats->necp_quic_extra.ssr_token, sizeof(flow_defunct->close_parameters.u.close_token));
flow_defunct->has_close_parameters = true;
}
}
#endif /* SKYWALK */
// Add to the list provided by caller
LIST_INSERT_HEAD(defunct_list, flow_defunct, chain);
flow_registration->defunct = true;
flow_registration->flow_result_read = false;
updated_result = true;
}
}
}
if (destroy_stats) {
#if SKYWALK
// Free any remaining stats objects back to the arena where they came from;
// do this independent of the above defunct check, as the client may have
// been marked as defunct separately via necp_defunct_client_for_policy().
RB_FOREACH(flow_registration, _necp_client_flow_tree, &client->flow_registrations) {
necp_destroy_flow_stats(client_fd, flow_registration, NULL, FALSE);
}
#endif /* SKYWALK */
}
NECP_CLIENT_UNLOCK(client);
}
return updated_result;
}
static inline void
necp_defunct_client_fd_locked(struct necp_fd_data *client_fd, struct _necp_flow_defunct_list *defunct_list, struct proc *proc)
{
#pragma unused(proc)
bool updated_result = FALSE;
NECP_FD_ASSERT_LOCKED(client_fd);
#if SKYWALK
// redirect regions of currently-active stats arena to zero-filled pages
struct necp_arena_info *nai = necp_fd_mredirect_stats_arena(client_fd, proc);
#endif /* SKYWALK */
updated_result = necp_defunct_client_fd_locked_inner(client_fd, defunct_list, true);
#if SKYWALK
// and tear down the currently-active arena's regions now that the redirection and freeing are done
if (nai != NULL) {
ASSERT((nai->nai_flags & (NAIF_REDIRECT | NAIF_DEFUNCT)) == NAIF_REDIRECT);
ASSERT(nai->nai_arena != NULL);
ASSERT(nai->nai_mmap.ami_mapref != NULL);
int err = skmem_arena_defunct(nai->nai_arena);
VERIFY(err == 0);
nai->nai_flags |= NAIF_DEFUNCT;
}
#endif /* SKYWALK */
if (updated_result) {
necp_fd_notify(client_fd, true);
}
}
static inline void
necp_update_client_fd_locked(struct necp_fd_data *client_fd,
proc_t proc,
struct _necp_flow_defunct_list *defunct_list)
{
struct necp_client *client = NULL;
bool updated_result = FALSE;
NECP_FD_ASSERT_LOCKED(client_fd);
RB_FOREACH(client, _necp_client_tree, &client_fd->clients) {
NECP_CLIENT_LOCK(client);
if (necp_update_client_result(proc, client_fd, client, defunct_list)) {
updated_result = TRUE;
}
NECP_CLIENT_UNLOCK(client);
}
// Check if this PID needs to request in-process flow divert
NECP_FD_LIST_ASSERT_LOCKED();
for (int i = 0; i < NECP_MAX_FLOW_DIVERT_NEEDED_PIDS; i++) {
if (necp_flow_divert_needed_pids[i] == 0) {
break;
}
if (necp_flow_divert_needed_pids[i] == client_fd->proc_pid) {
client_fd->request_in_process_flow_divert = true;
break;
}
}
if (updated_result || client_fd->request_in_process_flow_divert) {
necp_fd_notify(client_fd, true);
}
}
#if SKYWALK
static void
necp_close_empty_arenas_callout(__unused thread_call_param_t dummy,
__unused thread_call_param_t arg)
{
struct necp_fd_data *client_fd = NULL;
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
NECP_FD_LOCK(client_fd);
necp_stats_arenas_destroy(client_fd, FALSE);
NECP_FD_UNLOCK(client_fd);
}
NECP_FD_LIST_UNLOCK();
}
#endif /* SKYWALK */
static void
necp_update_all_clients_callout(__unused thread_call_param_t dummy,
__unused thread_call_param_t arg)
{
struct necp_fd_data *client_fd = NULL;
NECP_UPDATE_ALL_CLIENTS_LOCK_EXCLUSIVE();
uint32_t count = necp_update_all_clients_sched_cnt;
necp_update_all_clients_sched_cnt = 0;
necp_update_all_clients_sched_abstime = 0;
NECP_UPDATE_ALL_CLIENTS_UNLOCK();
if (necp_debug > 0) {
NECPLOG(LOG_DEBUG,
"necp_update_all_clients_callout running for coalesced %u updates",
count);
}
struct _necp_flow_defunct_list defunct_list;
LIST_INIT(&defunct_list);
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
proc_t proc = proc_find(client_fd->proc_pid);
if (proc == PROC_NULL) {
continue;
}
// Update all clients on one fd
NECP_FD_LOCK(client_fd);
necp_update_client_fd_locked(client_fd, proc, &defunct_list);
NECP_FD_UNLOCK(client_fd);
proc_rele(proc);
proc = PROC_NULL;
}
// Reset the necp_flow_divert_needed_pids list
for (int i = 0; i < NECP_MAX_FLOW_DIVERT_NEEDED_PIDS; i++) {
necp_flow_divert_needed_pids[i] = 0;
}
NECP_FD_LIST_UNLOCK();
// Handle the case in which some clients became newly defunct
necp_process_defunct_list(&defunct_list);
}
void
necp_update_all_clients(void)
{
necp_update_all_clients_immediately_if_needed(false);
}
void
necp_update_all_clients_immediately_if_needed(bool should_update_immediately)
{
if (necp_client_update_tcall == NULL) {
// Don't try to update clients if the module is not initialized
return;
}
uint64_t deadline = 0;
uint64_t leeway = 0;
uint32_t timeout_to_use = necp_timeout_microseconds;
uint32_t leeway_to_use = necp_timeout_leeway_microseconds;
if (should_update_immediately) {
timeout_to_use = 1000 * 10; // 10ms
leeway_to_use = 1000 * 10; // 10ms;
}
clock_interval_to_deadline(timeout_to_use, NSEC_PER_USEC, &deadline);
clock_interval_to_absolutetime_interval(leeway_to_use, NSEC_PER_USEC, &leeway);
NECP_UPDATE_ALL_CLIENTS_LOCK_EXCLUSIVE();
bool need_cancel = false;
bool need_schedule = true;
uint64_t sched_abstime;
clock_absolutetime_interval_to_deadline(deadline + leeway, &sched_abstime);
/*
* Do not push the timer if it is already scheduled
*/
if (necp_update_all_clients_sched_abstime != 0) {
need_schedule = false;
if (should_update_immediately) {
/*
* To update immediately we may have to cancel the current timer
* if it's scheduled too far out.
*/
if (necp_update_all_clients_sched_abstime > sched_abstime) {
need_cancel = true;
need_schedule = true;
}
}
}
/*
* Record the time of the deadline with leeway
*/
if (need_schedule) {
necp_update_all_clients_sched_abstime = sched_abstime;
}
necp_update_all_clients_sched_cnt += 1;
uint32_t count = necp_update_all_clients_sched_cnt;
NECP_UPDATE_ALL_CLIENTS_UNLOCK();
if (need_schedule) {
/*
* Wait if the thread call is currently executing to make sure the
* next update will be delivered to all clients
*/
if (need_cancel) {
(void) thread_call_cancel_wait(necp_client_update_tcall);
}
(void) thread_call_enter_delayed_with_leeway(necp_client_update_tcall, NULL,
deadline, leeway, THREAD_CALL_DELAY_LEEWAY);
}
if (necp_debug > 0) {
NECPLOG(LOG_DEBUG,
"necp_update_all_clients immediate %s update %u",
should_update_immediately ? "true" : "false", count);
}
}
bool
necp_set_client_as_background(proc_t proc,
struct fileproc *fp,
bool background)
{
if (proc == PROC_NULL) {
NECPLOG0(LOG_ERR, "NULL proc");
return FALSE;
}
if (fp == NULL) {
NECPLOG0(LOG_ERR, "NULL fp");
return FALSE;
}
struct necp_fd_data *client_fd = (struct necp_fd_data *)fp_get_data(fp);
if (client_fd == NULL) {
NECPLOG0(LOG_ERR, "Could not find client structure for backgrounded client");
return FALSE;
}
if (client_fd->necp_fd_type != necp_fd_type_client) {
// Not a client fd, ignore
NECPLOG0(LOG_ERR, "Not a client fd, ignore");
return FALSE;
}
client_fd->background = background;
return TRUE;
}
void
necp_fd_memstatus(proc_t proc, uint32_t status,
struct necp_fd_data *client_fd)
{
#pragma unused(proc, status, client_fd)
ASSERT(proc != PROC_NULL);
ASSERT(client_fd != NULL);
// Nothing to reap for the process or client for now,
// but this is where we would trigger that in future.
}
void
necp_fd_defunct(proc_t proc, struct necp_fd_data *client_fd)
{
struct _necp_flow_defunct_list defunct_list;
ASSERT(proc != PROC_NULL);
ASSERT(client_fd != NULL);
if (client_fd->necp_fd_type != necp_fd_type_client) {
// Not a client fd, ignore
return;
}
// Our local temporary list
LIST_INIT(&defunct_list);
// Need to hold lock so ntstats defunct the same set of clients
NECP_FD_LOCK(client_fd);
#if SKYWALK
// Shut down statistics
nstats_userland_stats_defunct_for_process(proc_getpid(proc));
#endif /* SKYWALK */
necp_defunct_client_fd_locked(client_fd, &defunct_list, proc);
NECP_FD_UNLOCK(client_fd);
necp_process_defunct_list(&defunct_list);
}
void
necp_client_request_in_process_flow_divert(pid_t pid)
{
if (pid == 0) {
return;
}
// Add to the list of pids that should get an update. These will
// get picked up on the next thread call to update client paths.
NECP_FD_LIST_LOCK_SHARED();
for (int i = 0; i < NECP_MAX_FLOW_DIVERT_NEEDED_PIDS; i++) {
if (necp_flow_divert_needed_pids[i] == 0) {
necp_flow_divert_needed_pids[i] = pid;
break;
}
}
NECP_FD_LIST_UNLOCK();
}
static void
necp_client_remove_agent_from_result(struct necp_client *client, uuid_t netagent_uuid)
{
size_t offset = 0;
u_int8_t *result_buffer = client->result;
while ((offset + sizeof(struct necp_tlv_header)) <= client->result_length) {
u_int8_t type = necp_buffer_get_tlv_type(result_buffer, offset);
u_int32_t length = necp_buffer_get_tlv_length(result_buffer, offset);
size_t tlv_total_length = (sizeof(struct necp_tlv_header) + length);
if (type == NECP_CLIENT_RESULT_NETAGENT &&
length == sizeof(struct necp_client_result_netagent) &&
(offset + tlv_total_length) <= client->result_length) {
struct necp_client_result_netagent *value = ((struct necp_client_result_netagent *)(void *)
necp_buffer_get_tlv_value(result_buffer, offset, NULL));
if (uuid_compare(value->netagent_uuid, netagent_uuid) == 0) {
// Found a netagent to remove
// Shift bytes down to remove the tlv, and adjust total length
// Don't adjust the current offset
memmove(result_buffer + offset,
result_buffer + offset + tlv_total_length,
client->result_length - (offset + tlv_total_length));
client->result_length -= tlv_total_length;
memset(result_buffer + client->result_length, 0, sizeof(client->result) - client->result_length);
continue;
}
}
offset += tlv_total_length;
}
}
void
necp_force_update_client(uuid_t client_id, uuid_t remove_netagent_uuid, u_int32_t agent_generation)
{
struct necp_fd_data *client_fd = NULL;
NECP_FD_LIST_LOCK_SHARED();
LIST_FOREACH(client_fd, &necp_fd_list, chain) {
bool updated_result = FALSE;
NECP_FD_LOCK(client_fd);
struct necp_client *client = necp_client_fd_find_client_and_lock(client_fd, client_id);
if (client != NULL) {
client->failed_trigger_agent.generation = agent_generation;
uuid_copy(client->failed_trigger_agent.netagent_uuid, remove_netagent_uuid);
if (!uuid_is_null(remove_netagent_uuid)) {
necp_client_remove_agent_from_result(client, remove_netagent_uuid);
}
client->result_read = FALSE;
// Found the client, break
updated_result = TRUE;
NECP_CLIENT_UNLOCK(client);
}
if (updated_result) {
necp_fd_notify(client_fd, true);
}
NECP_FD_UNLOCK(client_fd);
if (updated_result) {
// Found the client, break
break;
}
}
NECP_FD_LIST_UNLOCK();
}
#if SKYWALK
void
necp_client_early_close(uuid_t client_id)
{
NECP_CLIENT_TREE_LOCK_SHARED();
struct necp_client *client = necp_find_client_and_lock(client_id);
if (client != NULL) {
struct necp_client_flow_registration *flow_registration = necp_client_find_flow(client, client_id);
if (flow_registration != NULL) {
// Found the right client and flow, mark the stats as over
if (flow_registration->stats_handler_context != NULL) {
ntstat_userland_stats_event(flow_registration->stats_handler_context,
NECP_CLIENT_STATISTICS_EVENT_TIME_WAIT);
}
}
NECP_CLIENT_UNLOCK(client);
}
NECP_CLIENT_TREE_UNLOCK();
}
#endif /* SKYWALK */
/// Interface matching
#define NECP_PARSED_PARAMETERS_INTERESTING_IFNET_FIELDS (NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR | \
NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_IF | \
NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IFTYPE | \
NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_IFTYPE | \
NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT | \
NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_AGENT | \
NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT | \
NECP_PARSED_PARAMETERS_FIELD_AVOIDED_AGENT | \
NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT_TYPE | \
NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_AGENT_TYPE | \
NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT_TYPE | \
NECP_PARSED_PARAMETERS_FIELD_AVOIDED_AGENT_TYPE)
#define NECP_PARSED_PARAMETERS_SCOPED_FIELDS (NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR | \
NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IFTYPE | \
NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT | \
NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT | \
NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT_TYPE | \
NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT_TYPE)
#define NECP_PARSED_PARAMETERS_SCOPED_IFNET_FIELDS (NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR | \
NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IFTYPE)
#define NECP_PARSED_PARAMETERS_PREFERRED_FIELDS (NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT | \
NECP_PARSED_PARAMETERS_FIELD_AVOIDED_AGENT | \
NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT_TYPE | \
NECP_PARSED_PARAMETERS_FIELD_AVOIDED_AGENT_TYPE)
static bool
necp_ifnet_matches_type(struct ifnet *ifp, u_int8_t interface_type, bool check_delegates)
{
struct ifnet *check_ifp = ifp;
while (check_ifp) {
if (if_functional_type(check_ifp, TRUE) == interface_type) {
return TRUE;
}
if (!check_delegates) {
break;
}
check_ifp = check_ifp->if_delegated.ifp;
}
return FALSE;
}
static bool
necp_ifnet_matches_name(struct ifnet *ifp, const char *interface_name, bool check_delegates)
{
struct ifnet *check_ifp = ifp;
while (check_ifp) {
if (strncmp(check_ifp->if_xname, interface_name, IFXNAMSIZ) == 0) {
return TRUE;
}
if (!check_delegates) {
break;
}
check_ifp = check_ifp->if_delegated.ifp;
}
return FALSE;
}
static bool
necp_ifnet_matches_agent(struct ifnet *ifp, uuid_t *agent_uuid, bool check_delegates)
{
struct ifnet *check_ifp = ifp;
while (check_ifp != NULL) {
ifnet_lock_shared(check_ifp);
if (check_ifp->if_agentids != NULL) {
for (u_int32_t index = 0; index < check_ifp->if_agentcount; index++) {
if (uuid_compare(check_ifp->if_agentids[index], *agent_uuid) == 0) {
ifnet_lock_done(check_ifp);
return TRUE;
}
}
}
ifnet_lock_done(check_ifp);
if (!check_delegates) {
break;
}
check_ifp = check_ifp->if_delegated.ifp;
}
return FALSE;
}
static bool
necp_ifnet_matches_agent_type(struct ifnet *ifp, const char *agent_domain, const char *agent_type, bool check_delegates)
{
struct ifnet *check_ifp = ifp;
while (check_ifp != NULL) {
ifnet_lock_shared(check_ifp);
if (check_ifp->if_agentids != NULL) {
for (u_int32_t index = 0; index < check_ifp->if_agentcount; index++) {
if (uuid_is_null(check_ifp->if_agentids[index])) {
continue;
}
char if_agent_domain[NETAGENT_DOMAINSIZE] = { 0 };
char if_agent_type[NETAGENT_TYPESIZE] = { 0 };
if (netagent_get_agent_domain_and_type(check_ifp->if_agentids[index], if_agent_domain, if_agent_type)) {
if (necp_agent_types_match(agent_domain, agent_type, if_agent_domain, if_agent_type)) {
ifnet_lock_done(check_ifp);
return TRUE;
}
}
}
}
ifnet_lock_done(check_ifp);
if (!check_delegates) {
break;
}
check_ifp = check_ifp->if_delegated.ifp;
}
return FALSE;
}
static bool
necp_ifnet_matches_local_address(struct ifnet *ifp, struct sockaddr *sa)
{
struct ifaddr *ifa = NULL;
bool matched_local_address = FALSE;
// Transform sa into the ifaddr form
// IPv6 Scope IDs are always embedded in the ifaddr list
struct sockaddr_storage address;
u_int ifscope = IFSCOPE_NONE;
(void)sa_copy(sa, &address, &ifscope);
SIN(&address)->sin_port = 0;
if (address.ss_family == AF_INET6) {
if (in6_embedded_scope ||
!IN6_IS_SCOPE_EMBED(&SIN6(&address)->sin6_addr)) {
SIN6(&address)->sin6_scope_id = 0;
}
}
ifa = ifa_ifwithaddr_scoped_locked((struct sockaddr *)&address, ifp->if_index);
matched_local_address = (ifa != NULL);
if (ifa) {
ifaddr_release(ifa);
}
return matched_local_address;
}
static bool
necp_interface_type_should_match_unranked_interfaces(u_int8_t interface_type)
{
switch (interface_type) {
// These are the interface types we allow a client to request even if the matching
// interface isn't currently eligible to be primary (has default route, dns, etc)
case IFRTYPE_FUNCTIONAL_WIFI_AWDL:
case IFRTYPE_FUNCTIONAL_INTCOPROC:
case IFRTYPE_FUNCTIONAL_COMPANIONLINK:
return true;
default:
break;
}
return false;
}
#define NECP_IFP_IS_ON_ORDERED_LIST(_ifp) ((_ifp)->if_ordered_link.tqe_next != NULL || (_ifp)->if_ordered_link.tqe_prev != NULL)
// Secondary interface flag indicates that the interface is being
// used for multipath or a listener as an extra path
static bool
necp_ifnet_matches_parameters(struct ifnet *ifp,
struct necp_client_parsed_parameters *parsed_parameters,
u_int32_t override_flags,
u_int32_t *preferred_count,
bool secondary_interface,
bool require_scoped_field)
{
bool matched_some_scoped_field = FALSE;
if (preferred_count) {
*preferred_count = 0;
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IF) {
if (parsed_parameters->required_interface_index != ifp->if_index) {
return FALSE;
}
}
#if SKYWALK
else {
if (ifnet_is_low_latency(ifp)) {
return FALSE;
}
}
#endif /* SKYWALK */
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR) {
if (!necp_ifnet_matches_local_address(ifp, SA(&parsed_parameters->local_addr.sa))) {
return FALSE;
}
if (require_scoped_field) {
matched_some_scoped_field = TRUE;
}
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_FLAGS) {
if (override_flags != 0) {
if ((override_flags & NECP_CLIENT_PARAMETER_FLAG_PROHIBIT_EXPENSIVE) &&
IFNET_IS_EXPENSIVE(ifp)) {
return FALSE;
}
if ((override_flags & NECP_CLIENT_PARAMETER_FLAG_PROHIBIT_CONSTRAINED) &&
IFNET_IS_CONSTRAINED(ifp)) {
return FALSE;
}
} else {
if ((parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_PROHIBIT_EXPENSIVE) &&
IFNET_IS_EXPENSIVE(ifp)) {
return FALSE;
}
if ((parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_PROHIBIT_CONSTRAINED) &&
IFNET_IS_CONSTRAINED(ifp)) {
return FALSE;
}
}
}
if ((!secondary_interface || // Enforce interface type if this is the primary interface
!(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_FLAGS) || // or if there are no flags
!(parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_ONLY_PRIMARY_REQUIRES_TYPE)) && // or if the flags don't give an exception
(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IFTYPE) &&
!necp_ifnet_matches_type(ifp, parsed_parameters->required_interface_type, FALSE)) {
return FALSE;
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IFTYPE) {
if (require_scoped_field) {
matched_some_scoped_field = TRUE;
}
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_IFTYPE) {
for (int i = 0; i < NECP_MAX_INTERFACE_PARAMETERS; i++) {
if (parsed_parameters->prohibited_interface_types[i] == 0) {
break;
}
if (necp_ifnet_matches_type(ifp, parsed_parameters->prohibited_interface_types[i], TRUE)) {
return FALSE;
}
}
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_IF) {
for (int i = 0; i < NECP_MAX_INTERFACE_PARAMETERS; i++) {
if (strlen(parsed_parameters->prohibited_interfaces[i]) == 0) {
break;
}
if (necp_ifnet_matches_name(ifp, parsed_parameters->prohibited_interfaces[i], TRUE)) {
return FALSE;
}
}
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT) {
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (uuid_is_null(parsed_parameters->required_netagents[i])) {
break;
}
if (!necp_ifnet_matches_agent(ifp, &parsed_parameters->required_netagents[i], FALSE)) {
return FALSE;
}
if (require_scoped_field) {
matched_some_scoped_field = TRUE;
}
}
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_AGENT) {
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (uuid_is_null(parsed_parameters->prohibited_netagents[i])) {
break;
}
if (necp_ifnet_matches_agent(ifp, &parsed_parameters->prohibited_netagents[i], TRUE)) {
return FALSE;
}
}
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_AGENT_TYPE) {
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (strlen(parsed_parameters->required_netagent_types[i].netagent_domain) == 0 &&
strlen(parsed_parameters->required_netagent_types[i].netagent_type) == 0) {
break;
}
if (!necp_ifnet_matches_agent_type(ifp, parsed_parameters->required_netagent_types[i].netagent_domain, parsed_parameters->required_netagent_types[i].netagent_type, FALSE)) {
return FALSE;
}
if (require_scoped_field) {
matched_some_scoped_field = TRUE;
}
}
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_PROHIBITED_AGENT_TYPE) {
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (strlen(parsed_parameters->prohibited_netagent_types[i].netagent_domain) == 0 &&
strlen(parsed_parameters->prohibited_netagent_types[i].netagent_type) == 0) {
break;
}
if (necp_ifnet_matches_agent_type(ifp, parsed_parameters->prohibited_netagent_types[i].netagent_domain, parsed_parameters->prohibited_netagent_types[i].netagent_type, TRUE)) {
return FALSE;
}
}
}
// Checked preferred properties
if (preferred_count) {
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT) {
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (uuid_is_null(parsed_parameters->preferred_netagents[i])) {
break;
}
if (necp_ifnet_matches_agent(ifp, &parsed_parameters->preferred_netagents[i], TRUE)) {
(*preferred_count)++;
if (require_scoped_field) {
matched_some_scoped_field = TRUE;
}
}
}
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_PREFERRED_AGENT_TYPE) {
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (strlen(parsed_parameters->preferred_netagent_types[i].netagent_domain) == 0 &&
strlen(parsed_parameters->preferred_netagent_types[i].netagent_type) == 0) {
break;
}
if (necp_ifnet_matches_agent_type(ifp, parsed_parameters->preferred_netagent_types[i].netagent_domain, parsed_parameters->preferred_netagent_types[i].netagent_type, TRUE)) {
(*preferred_count)++;
if (require_scoped_field) {
matched_some_scoped_field = TRUE;
}
}
}
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_AVOIDED_AGENT) {
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (uuid_is_null(parsed_parameters->avoided_netagents[i])) {
break;
}
if (!necp_ifnet_matches_agent(ifp, &parsed_parameters->avoided_netagents[i], TRUE)) {
(*preferred_count)++;
}
}
}
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_AVOIDED_AGENT_TYPE) {
for (int i = 0; i < NECP_MAX_AGENT_PARAMETERS; i++) {
if (strlen(parsed_parameters->avoided_netagent_types[i].netagent_domain) == 0 &&
strlen(parsed_parameters->avoided_netagent_types[i].netagent_type) == 0) {
break;
}
if (!necp_ifnet_matches_agent_type(ifp, parsed_parameters->avoided_netagent_types[i].netagent_domain,
parsed_parameters->avoided_netagent_types[i].netagent_type, TRUE)) {
(*preferred_count)++;
}
}
}
}
if (require_scoped_field) {
return matched_some_scoped_field;
}
return TRUE;
}
static bool
necp_find_matching_interface_index(struct necp_client_parsed_parameters *parsed_parameters,
u_int *return_ifindex, bool *validate_agents)
{
struct ifnet *ifp = NULL;
u_int32_t best_preferred_count = 0;
bool has_preferred_fields = FALSE;
*return_ifindex = 0;
if (parsed_parameters->required_interface_index != 0) {
*return_ifindex = parsed_parameters->required_interface_index;
return TRUE;
}
// Check and save off flags
u_int32_t flags = 0;
bool has_prohibit_flags = FALSE;
if (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_FLAGS) {
flags = parsed_parameters->flags;
has_prohibit_flags = (parsed_parameters->flags &
(NECP_CLIENT_PARAMETER_FLAG_PROHIBIT_EXPENSIVE |
NECP_CLIENT_PARAMETER_FLAG_PROHIBIT_CONSTRAINED));
}
if (!(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_INTERESTING_IFNET_FIELDS) &&
!has_prohibit_flags) {
return TRUE;
}
has_preferred_fields = (parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_PREFERRED_FIELDS);
// We have interesting parameters to parse and find a matching interface
ifnet_head_lock_shared();
if (!(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_SCOPED_FIELDS) &&
!has_preferred_fields) {
// We do have fields to match, but they are only prohibitory
// If the first interface in the list matches, or there are no ordered interfaces, we don't need to scope
ifp = TAILQ_FIRST(&ifnet_ordered_head);
if (ifp == NULL || necp_ifnet_matches_parameters(ifp, parsed_parameters, 0, NULL, false, false)) {
// Don't set return_ifindex, so the client doesn't need to scope
ifnet_head_done();
return TRUE;
}
}
// First check the ordered interface list
TAILQ_FOREACH(ifp, &ifnet_ordered_head, if_ordered_link) {
u_int32_t preferred_count = 0;
if (necp_ifnet_matches_parameters(ifp, parsed_parameters, flags, &preferred_count, false, false)) {
if (preferred_count > best_preferred_count ||
*return_ifindex == 0) {
// Everything matched, and is most preferred. Return this interface.
*return_ifindex = ifp->if_index;
best_preferred_count = preferred_count;
if (!has_preferred_fields) {
break;
}
}
}
if (has_prohibit_flags &&
ifp == TAILQ_FIRST(&ifnet_ordered_head)) {
// This was the first interface. From here on, if the
// client prohibited either expensive or constrained,
// don't allow either as a secondary interface option.
flags |= (NECP_CLIENT_PARAMETER_FLAG_PROHIBIT_EXPENSIVE |
NECP_CLIENT_PARAMETER_FLAG_PROHIBIT_CONSTRAINED);
}
}
bool is_listener = ((parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_FLAGS) &&
(parsed_parameters->flags & NECP_CLIENT_PARAMETER_FLAG_LISTENER));
// Then check the remaining interfaces
if ((parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_SCOPED_FIELDS) &&
((!(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_REQUIRED_IFTYPE)) ||
necp_interface_type_should_match_unranked_interfaces(parsed_parameters->required_interface_type) ||
(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR) ||
is_listener) &&
(*return_ifindex == 0 || has_preferred_fields)) {
TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
u_int32_t preferred_count = 0;
if (NECP_IFP_IS_ON_ORDERED_LIST(ifp)) {
// This interface was in the ordered list, skip
continue;
}
if (necp_ifnet_matches_parameters(ifp, parsed_parameters, flags, &preferred_count, false, true)) {
if (preferred_count > best_preferred_count ||
*return_ifindex == 0) {
// Everything matched, and is most preferred. Return this interface.
*return_ifindex = ifp->if_index;
best_preferred_count = preferred_count;
if (!has_preferred_fields) {
break;
}
}
}
}
}
ifnet_head_done();
if (has_preferred_fields && best_preferred_count == 0 &&
((parsed_parameters->valid_fields & (NECP_PARSED_PARAMETERS_SCOPED_FIELDS | NECP_PARSED_PARAMETERS_PREFERRED_FIELDS)) ==
(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_PREFERRED_FIELDS))) {
// If only has preferred ifnet fields, and nothing was found, clear the interface index and return TRUE
*return_ifindex = 0;
return TRUE;
}
if (*return_ifindex == 0 &&
!(parsed_parameters->valid_fields & NECP_PARSED_PARAMETERS_SCOPED_IFNET_FIELDS)) {
// Has required fields, but not including specific interface fields. Pass for now, and check
// to see if agents are satisfied by policy.
*validate_agents = TRUE;
return TRUE;
}
return *return_ifindex != 0;
}
void
necp_copy_inp_domain_info(struct inpcb *inp, struct socket *so, nstat_domain_info *domain_info)
{
if (inp == NULL || so == NULL || domain_info == NULL) {
return;
}
necp_lock_socket_attributes();
domain_info->is_tracker = !!(so->so_flags1 & SOF1_KNOWN_TRACKER);
domain_info->is_non_app_initiated = !!(so->so_flags1 & SOF1_TRACKER_NON_APP_INITIATED);
if (domain_info->is_tracker &&
inp->inp_necp_attributes.inp_tracker_domain != NULL) {
strlcpy(domain_info->domain_name, inp->inp_necp_attributes.inp_tracker_domain,
sizeof(domain_info->domain_name));
} else if (inp->inp_necp_attributes.inp_domain != NULL) {
strlcpy(domain_info->domain_name, inp->inp_necp_attributes.inp_domain,
sizeof(domain_info->domain_name));
}
if (inp->inp_necp_attributes.inp_domain_owner != NULL) {
strlcpy(domain_info->domain_owner, inp->inp_necp_attributes.inp_domain_owner,
sizeof(domain_info->domain_owner));
}
if (inp->inp_necp_attributes.inp_domain_context != NULL) {
strlcpy(domain_info->domain_tracker_ctxt, inp->inp_necp_attributes.inp_domain_context,
sizeof(domain_info->domain_tracker_ctxt));
}
necp_unlock_socket_attributes();
}
void
necp_with_inp_domain_name(struct socket *so, void *ctx, void (*with_func)(char *domain_name, void *ctx))
{
struct inpcb *inp = NULL;
if (so == NULL || with_func == NULL) {
return;
}
inp = (struct inpcb *)so->so_pcb;
if (inp == NULL) {
return;
}
necp_lock_socket_attributes();
with_func(inp->inp_necp_attributes.inp_domain, ctx);
necp_unlock_socket_attributes();
}
static size_t
necp_find_domain_info_common(struct necp_client *client,
u_int8_t *parameters,
size_t parameters_size,
struct necp_client_flow_registration *flow_registration, /* For logging purposes only */
nstat_domain_info *domain_info)
{
if (client == NULL) {
return 0;
}
if (domain_info == NULL) {
return sizeof(nstat_domain_info);
}
size_t offset = 0;
u_int32_t flags = 0;
u_int8_t *tracker_domain = NULL;
u_int8_t *domain = NULL;
size_t tracker_domain_length = 0;
size_t domain_length = 0;
NECP_CLIENT_FLOW_LOG(client, flow_registration, "Collecting stats");
while ((offset + sizeof(struct necp_tlv_header)) <= parameters_size) {
u_int8_t type = necp_buffer_get_tlv_type(parameters, offset);
u_int32_t length = necp_buffer_get_tlv_length(parameters, offset);
if (length > (parameters_size - (offset + sizeof(struct necp_tlv_header)))) {
// If the length is larger than what can fit in the remaining parameters size, bail
NECPLOG(LOG_ERR, "Invalid TLV length (%u)", length);
break;
}
if (length > 0) {
u_int8_t *value = necp_buffer_get_tlv_value(parameters, offset, NULL);
if (value != NULL) {
switch (type) {
case NECP_CLIENT_PARAMETER_FLAGS: {
if (length >= sizeof(u_int32_t)) {
memcpy(&flags, value, sizeof(u_int32_t));
}
domain_info->is_tracker =
!!(flags & NECP_CLIENT_PARAMETER_FLAG_KNOWN_TRACKER);
domain_info->is_non_app_initiated =
!!(flags & NECP_CLIENT_PARAMETER_FLAG_NON_APP_INITIATED);
domain_info->is_silent =
!!(flags & NECP_CLIENT_PARAMETER_FLAG_SILENT);
break;
}
case NECP_CLIENT_PARAMETER_TRACKER_DOMAIN: {
tracker_domain_length = length;
tracker_domain = value;
break;
}
case NECP_CLIENT_PARAMETER_DOMAIN: {
domain_length = length;
domain = value;
break;
}
case NECP_CLIENT_PARAMETER_DOMAIN_OWNER: {
size_t length_to_copy = MIN(length, sizeof(domain_info->domain_owner));
strlcpy(domain_info->domain_owner, (const char *)value, length_to_copy);
break;
}
case NECP_CLIENT_PARAMETER_DOMAIN_CONTEXT: {
size_t length_to_copy = MIN(length, sizeof(domain_info->domain_tracker_ctxt));
strlcpy(domain_info->domain_tracker_ctxt, (const char *)value, length_to_copy);
break;
}
case NECP_CLIENT_PARAMETER_ATTRIBUTED_BUNDLE_IDENTIFIER: {
size_t length_to_copy = MIN(length, sizeof(domain_info->domain_attributed_bundle_id));
strlcpy(domain_info->domain_attributed_bundle_id, (const char *)value, length_to_copy);
break;
}
case NECP_CLIENT_PARAMETER_REMOTE_ADDRESS: {
if (length >= sizeof(struct necp_policy_condition_addr)) {
struct necp_policy_condition_addr *address_struct = (struct necp_policy_condition_addr *)(void *)value;
if (necp_client_address_is_valid(&address_struct->address.sa)) {
memcpy(&domain_info->remote, &address_struct->address, sizeof(address_struct->address));
}
}
break;
}
default: {
break;
}
}
}
}
offset += sizeof(struct necp_tlv_header) + length;
}
if (domain_info->is_tracker && tracker_domain != NULL && tracker_domain_length > 0) {
size_t length_to_copy = MIN(tracker_domain_length, sizeof(domain_info->domain_name));
strlcpy(domain_info->domain_name, (const char *)tracker_domain, length_to_copy);
} else if (domain != NULL && domain_length > 0) {
size_t length_to_copy = MIN(domain_length, sizeof(domain_info->domain_name));
strlcpy(domain_info->domain_name, (const char *)domain, length_to_copy);
}
NECP_CLIENT_FLOW_LOG(client, flow_registration,
"Collected stats - domain <%s> owner <%s> ctxt <%s> bundle id <%s> "
"is_tracker %d is_non_app_initiated %d is_silent %d",
domain_info->domain_name,
domain_info->domain_owner,
domain_info->domain_tracker_ctxt,
domain_info->domain_attributed_bundle_id,
domain_info->is_tracker,
domain_info->is_non_app_initiated,
domain_info->is_silent);
return sizeof(nstat_domain_info);
}
static size_t
necp_find_conn_extension_info(nstat_provider_context ctx,
int requested_extension, /* The extension to be returned */
void *buf, /* If not NULL, the address for extensions to be returned in */
size_t buf_size) /* The size of the buffer space, typically matching the return from a previous call with a NULL buf pointer */
{
// Note, the caller has guaranteed that any buffer has been zeroed, there is no need to clear it again
if (ctx == NULL) {
return 0;
}
struct necp_client *client = (struct necp_client *)ctx;
switch (requested_extension) {
case NSTAT_EXTENDED_UPDATE_TYPE_DOMAIN:
// This is for completeness. The intent is that domain information can be extracted at user level from the TLV parameters
if (buf == NULL) {
return sizeof(nstat_domain_info);
}
if (buf_size < sizeof(nstat_domain_info)) {
return 0;
}
return necp_find_domain_info_common(client, client->parameters, client->parameters_length, NULL, (nstat_domain_info *)buf);
case NSTAT_EXTENDED_UPDATE_TYPE_NECP_TLV: {
size_t parameters_length = client->parameters_length;
if (buf == NULL) {
return parameters_length;
}
if (buf_size < parameters_length) {
return 0;
}
memcpy(buf, client->parameters, parameters_length);
return parameters_length;
}
case NSTAT_EXTENDED_UPDATE_TYPE_ORIGINAL_NECP_TLV:
if (buf == NULL) {
return (client->original_parameters_source != NULL) ? client->original_parameters_source->parameters_length : 0;
}
if ((client->original_parameters_source == NULL) || (buf_size < client->original_parameters_source->parameters_length)) {
return 0;
}
memcpy(buf, client->original_parameters_source->parameters, client->original_parameters_source->parameters_length);
return client->original_parameters_source->parameters_length;
case NSTAT_EXTENDED_UPDATE_TYPE_ORIGINAL_DOMAIN:
if (buf == NULL) {
return (client->original_parameters_source != NULL) ? sizeof(nstat_domain_info) : 0;
}
if ((buf_size < sizeof(nstat_domain_info)) || (client->original_parameters_source == NULL)) {
return 0;
}
return necp_find_domain_info_common(client, client->original_parameters_source->parameters, client->original_parameters_source->parameters_length,
NULL, (nstat_domain_info *)buf);
default:
return 0;
}
}
#if SKYWALK
static size_t
necp_find_extension_info(userland_stats_provider_context *ctx,
int requested_extension, /* The extension to be returned */
void *buf, /* If not NULL, the address for extensions to be returned in */
size_t buf_size) /* The size of the buffer space, typically matching the return from a previous call with a NULL buf pointer */
{
if (ctx == NULL) {
return 0;
}
struct necp_client_flow_registration *flow_registration = (struct necp_client_flow_registration *)(uintptr_t)ctx;
struct necp_client *client = flow_registration->client;
switch (requested_extension) {
case NSTAT_EXTENDED_UPDATE_TYPE_DOMAIN:
if (buf == NULL) {
return sizeof(nstat_domain_info);
}
if (buf_size < sizeof(nstat_domain_info)) {
return 0;
}
return necp_find_domain_info_common(client, client->parameters, client->parameters_length, flow_registration, (nstat_domain_info *)buf);
case NSTAT_EXTENDED_UPDATE_TYPE_NECP_TLV:
if (buf == NULL) {
return client->parameters_length;
}
if (buf_size < client->parameters_length) {
return 0;
}
memcpy(buf, client->parameters, client->parameters_length);
return client->parameters_length;
case NSTAT_EXTENDED_UPDATE_TYPE_FUUID:
if (buf == NULL) {
return sizeof(uuid_t);
}
if (buf_size < sizeof(uuid_t)) {
return 0;
}
uuid_copy(buf, flow_registration->registration_id);
return sizeof(uuid_t);
default:
return 0;
}
}
static void
necp_find_netstat_data(struct necp_client *client,
union necp_sockaddr_union *remote,
pid_t *effective_pid,
uid_t *uid,
uuid_t euuid,
uid_t *persona_id,
u_int32_t *traffic_class,
u_int8_t *fallback_mode)
{
bool have_set_euuid = false;
size_t offset = 0;
u_int8_t *parameters;
u_int32_t parameters_size;
parameters = client->parameters;
parameters_size = (u_int32_t)client->parameters_length;
while ((offset + sizeof(struct necp_tlv_header)) <= parameters_size) {
u_int8_t type = necp_buffer_get_tlv_type(parameters, offset);
u_int32_t length = necp_buffer_get_tlv_length(parameters, offset);
if (length > (parameters_size - (offset + sizeof(struct necp_tlv_header)))) {
// If the length is larger than what can fit in the remaining parameters size, bail
NECPLOG(LOG_ERR, "Invalid TLV length (%u)", length);
break;
}
if (length > 0) {
u_int8_t *value = necp_buffer_get_tlv_value(parameters, offset, NULL);
if (value != NULL) {
switch (type) {
case NECP_CLIENT_PARAMETER_APPLICATION: {
if (length >= sizeof(uuid_t)) {
uuid_copy(euuid, value);
}
break;
}
case NECP_CLIENT_PARAMETER_PID: {
if (length >= sizeof(pid_t)) {
memcpy(effective_pid, value, sizeof(pid_t));
}
break;
}
case NECP_CLIENT_PARAMETER_TRAFFIC_CLASS: {
if (length >= sizeof(u_int32_t)) {
memcpy(traffic_class, value, sizeof(u_int32_t));
}
break;
}
case NECP_CLIENT_PARAMETER_FALLBACK_MODE: {
if (length >= sizeof(u_int8_t)) {
memcpy(fallback_mode, value, sizeof(u_int8_t));
}
break;
}
// It is an implementation quirk that the remote address can be found in the necp parameters
// while the local address must be retrieved from the flowswitch
case NECP_CLIENT_PARAMETER_REMOTE_ADDRESS: {
if (length >= sizeof(struct necp_policy_condition_addr)) {
struct necp_policy_condition_addr *address_struct = (struct necp_policy_condition_addr *)(void *)value;
if (necp_client_address_is_valid(&address_struct->address.sa)) {
memcpy(remote, &address_struct->address, sizeof(address_struct->address));
}
}
break;
}
case NECP_CLIENT_PARAMETER_APPLICATION_ID: {
if (length >= sizeof(necp_application_id_t) && uid && persona_id) {
necp_application_id_t *application_id = (necp_application_id_t *)(void *)value;
memcpy(uid, &application_id->uid, sizeof(uid_t));
uuid_copy(euuid, application_id->effective_uuid);
memcpy(persona_id, &application_id->persona_id, sizeof(uid_t));
have_set_euuid = true;
}
break;
}
default: {
break;
}
}
}
}
offset += sizeof(struct necp_tlv_header) + length;
}
if (!have_set_euuid) {
proc_t proc = proc_find(client->proc_pid);
if (proc != PROC_NULL) {
uuid_t responsible_uuid = { 0 };
proc_getresponsibleuuid(proc, responsible_uuid, sizeof(responsible_uuid));
proc_rele(proc);
if (!uuid_is_null(responsible_uuid)) {
uuid_copy(euuid, responsible_uuid);
}
}
}
}
static u_int64_t
necp_find_netstat_initial_properties(struct necp_client *client)
{
size_t offset = 0;
u_int64_t retval = 0;
u_int8_t *parameters;
u_int32_t parameters_size;
parameters = client->parameters;
parameters_size = (u_int32_t)client->parameters_length;
while ((offset + sizeof(struct necp_tlv_header)) <= parameters_size) {
u_int8_t type = necp_buffer_get_tlv_type(parameters, offset);
u_int32_t length = necp_buffer_get_tlv_length(parameters, offset);
if (length > (parameters_size - (offset + sizeof(struct necp_tlv_header)))) {
// If the length is larger than what can fit in the remaining parameters size, bail
NECPLOG(LOG_ERR, "Invalid TLV length (%u)", length);
break;
}
if (type == NECP_CLIENT_PARAMETER_FLAGS) {
u_int32_t policy_condition_client_flags;
u_int8_t *value = necp_buffer_get_tlv_value(parameters, offset, NULL);
if ((value != NULL) && (length >= sizeof(policy_condition_client_flags))) {
memcpy(&policy_condition_client_flags, value, sizeof(policy_condition_client_flags));
if (policy_condition_client_flags & NECP_CLIENT_PARAMETER_FLAG_LISTENER) {
retval |= NSTAT_SOURCE_IS_LISTENER;
}
if (policy_condition_client_flags & NECP_CLIENT_PARAMETER_FLAG_INBOUND) {
retval |= NSTAT_SOURCE_IS_INBOUND;
}
}
break;
}
offset += sizeof(struct necp_tlv_header) + length;
}
if (retval == 0) {
retval = NSTAT_SOURCE_IS_OUTBOUND;
}
return retval;
}
// Called from NetworkStatistics when it wishes to collect latest information for a TCP flow.
// It is a responsibility of NetworkStatistics to have previously zeroed any supplied memory.
static bool
necp_request_tcp_netstats(userland_stats_provider_context *ctx,
u_int32_t *ifflagsp,
nstat_progress_digest *digestp,
nstat_counts *countsp,
void *metadatap)
{
if (ctx == NULL) {
return false;
}
struct necp_client_flow_registration *flow_registration = (struct necp_client_flow_registration *)(uintptr_t)ctx;
struct necp_client *client = flow_registration->client;
struct necp_all_stats *ustats_kaddr = ((struct necp_all_kstats *)flow_registration->kstats_kaddr)->necp_stats_ustats;
struct necp_tcp_stats *tcpstats = (struct necp_tcp_stats *)ustats_kaddr;
ASSERT(tcpstats != NULL);
u_int32_t nstat_diagnostic_flags = 0;
// Retrieve details from the last time the assigned flows were updated
u_int32_t route_ifindex = IFSCOPE_NONE;
u_int32_t route_ifflags = NSTAT_IFNET_IS_UNKNOWN_TYPE;
u_int64_t combined_interface_details = 0;
combined_interface_details = os_atomic_load(&flow_registration->last_interface_details, relaxed);
split_interface_details(combined_interface_details, &route_ifindex, &route_ifflags);
if (route_ifindex == IFSCOPE_NONE) {
// Mark no interface
nstat_diagnostic_flags |= NSTAT_IFNET_ROUTE_VALUE_UNOBTAINABLE;
route_ifflags = NSTAT_IFNET_IS_UNKNOWN_TYPE;
NECPLOG(LOG_INFO, "req tcp stats, failed to get route details for pid %d curproc %d %s\n",
client->proc_pid, proc_pid(current_proc()), proc_best_name(current_proc()));
}
if (ifflagsp) {
*ifflagsp = route_ifflags | nstat_diagnostic_flags;
if (tcpstats->necp_tcp_extra.flags1 & SOF1_CELLFALLBACK) {
*ifflagsp |= NSTAT_IFNET_VIA_CELLFALLBACK;
}
if ((digestp == NULL) && (countsp == NULL) && (metadatap == NULL)) {
return true;
}
}
if (digestp) {
// The digest is intended to give information that may help give insight into the state of the link
// while avoiding the need to do the relatively expensive flowswitch lookup
digestp->rxbytes = tcpstats->necp_tcp_counts.necp_stat_rxbytes;
digestp->txbytes = tcpstats->necp_tcp_counts.necp_stat_txbytes;
digestp->rxduplicatebytes = tcpstats->necp_tcp_counts.necp_stat_rxduplicatebytes;
digestp->rxoutoforderbytes = tcpstats->necp_tcp_counts.necp_stat_rxoutoforderbytes;
digestp->txretransmit = tcpstats->necp_tcp_counts.necp_stat_txretransmit;
digestp->ifindex = route_ifindex;
digestp->state = tcpstats->necp_tcp_extra.state;
digestp->txunacked = tcpstats->necp_tcp_extra.txunacked;
digestp->txwindow = tcpstats->necp_tcp_extra.txwindow;
digestp->connstatus.probe_activated = tcpstats->necp_tcp_extra.probestatus.probe_activated;
digestp->connstatus.write_probe_failed = tcpstats->necp_tcp_extra.probestatus.write_probe_failed;
digestp->connstatus.read_probe_failed = tcpstats->necp_tcp_extra.probestatus.read_probe_failed;
digestp->connstatus.conn_probe_failed = tcpstats->necp_tcp_extra.probestatus.conn_probe_failed;
if ((countsp == NULL) && (metadatap == NULL)) {
return true;
}
}
const struct sk_stats_flow *sf = &flow_registration->nexus_stats->fs_stats;
if (sf == NULL) {
nstat_diagnostic_flags |= NSTAT_IFNET_FLOWSWITCH_VALUE_UNOBTAINABLE;
char namebuf[MAXCOMLEN + 1];
(void) strlcpy(namebuf, "unknown", sizeof(namebuf));
proc_name(client->proc_pid, namebuf, sizeof(namebuf));
NECPLOG(LOG_ERR, "req tcp stats, necp_client flow_registration flow_stats missing for pid %d %s curproc %d %s\n",
client->proc_pid, namebuf, proc_pid(current_proc()), proc_best_name(current_proc()));
sf = &ntstat_sk_stats_zero;
}
if (countsp) {
countsp->nstat_rxbytes = tcpstats->necp_tcp_counts.necp_stat_rxbytes;
countsp->nstat_txbytes = tcpstats->necp_tcp_counts.necp_stat_txbytes;
countsp->nstat_rxduplicatebytes = tcpstats->necp_tcp_counts.necp_stat_rxduplicatebytes;
countsp->nstat_rxoutoforderbytes = tcpstats->necp_tcp_counts.necp_stat_rxoutoforderbytes;
countsp->nstat_txretransmit = tcpstats->necp_tcp_counts.necp_stat_txretransmit;
countsp->nstat_min_rtt = tcpstats->necp_tcp_counts.necp_stat_min_rtt;
countsp->nstat_avg_rtt = tcpstats->necp_tcp_counts.necp_stat_avg_rtt;
countsp->nstat_var_rtt = tcpstats->necp_tcp_counts.necp_stat_var_rtt;
countsp->nstat_connectattempts = tcpstats->necp_tcp_extra.state >= TCPS_SYN_SENT ? 1 : 0;
countsp->nstat_connectsuccesses = tcpstats->necp_tcp_extra.state >= TCPS_ESTABLISHED ? 1 : 0;
// Supplement what the user level has told us with what we know from the flowswitch
countsp->nstat_rxpackets = sf->sf_ipackets;
countsp->nstat_txpackets = sf->sf_opackets;
if (route_ifflags & NSTAT_IFNET_IS_CELLULAR) {
countsp->nstat_cell_rxbytes = sf->sf_ibytes;
countsp->nstat_cell_txbytes = sf->sf_obytes;
} else if (route_ifflags & NSTAT_IFNET_IS_WIFI) {
countsp->nstat_wifi_rxbytes = sf->sf_ibytes;
countsp->nstat_wifi_txbytes = sf->sf_obytes;
} else if (route_ifflags & NSTAT_IFNET_IS_WIRED) {
countsp->nstat_wired_rxbytes = sf->sf_ibytes;
countsp->nstat_wired_txbytes = sf->sf_obytes;
}
}
if (metadatap) {
nstat_tcp_descriptor *desc = (nstat_tcp_descriptor *)metadatap;
memset(desc, 0, sizeof(*desc));
// Metadata from the flow registration
uuid_copy(desc->fuuid, flow_registration->registration_id);
// Metadata that the necp client should have in TLV format.
pid_t effective_pid = client->proc_pid;
necp_find_netstat_data(client, (union necp_sockaddr_union *)&desc->remote, &effective_pid, &desc->uid, desc->euuid, &desc->persona_id, &desc->traffic_class, &desc->fallback_mode);
desc->epid = (u_int32_t)effective_pid;
// Metadata from the flow registration
// This needs to revisited if multiple flows are created from one flow registration
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
memcpy(&desc->local, &flow->local_addr, sizeof(desc->local));
break;
}
// Metadata from the route
desc->ifindex = route_ifindex;
desc->ifnet_properties = route_ifflags | nstat_diagnostic_flags;
desc->ifnet_properties |= (sf->sf_flags & SFLOWF_ONLINK) ? NSTAT_IFNET_IS_LOCAL : NSTAT_IFNET_IS_NON_LOCAL;
if (tcpstats->necp_tcp_extra.flags1 & SOF1_CELLFALLBACK) {
desc->ifnet_properties |= NSTAT_IFNET_VIA_CELLFALLBACK;
}
// Basic metadata from userland
desc->rcvbufsize = tcpstats->necp_tcp_basic.rcvbufsize;
desc->rcvbufused = tcpstats->necp_tcp_basic.rcvbufused;
// Additional TCP specific data
desc->sndbufsize = tcpstats->necp_tcp_extra.sndbufsize;
desc->sndbufused = tcpstats->necp_tcp_extra.sndbufused;
desc->txunacked = tcpstats->necp_tcp_extra.txunacked;
desc->txwindow = tcpstats->necp_tcp_extra.txwindow;
desc->txcwindow = tcpstats->necp_tcp_extra.txcwindow;
desc->traffic_mgt_flags = tcpstats->necp_tcp_extra.traffic_mgt_flags;
desc->state = tcpstats->necp_tcp_extra.state;
u_int32_t cc_alg_index = tcpstats->necp_tcp_extra.cc_alg_index;
if (cc_alg_index < TCP_CC_ALGO_COUNT) {
strlcpy(desc->cc_algo, tcp_cc_algo_list[cc_alg_index]->name, sizeof(desc->cc_algo));
} else {
strlcpy(desc->cc_algo, "unknown", sizeof(desc->cc_algo));
}
desc->connstatus.probe_activated = tcpstats->necp_tcp_extra.probestatus.probe_activated;
desc->connstatus.write_probe_failed = tcpstats->necp_tcp_extra.probestatus.write_probe_failed;
desc->connstatus.read_probe_failed = tcpstats->necp_tcp_extra.probestatus.read_probe_failed;
desc->connstatus.conn_probe_failed = tcpstats->necp_tcp_extra.probestatus.conn_probe_failed;
memcpy(&desc->activity_bitmap, &sf->sf_activity, sizeof(sf->sf_activity));
if (NECP_ENABLE_CLIENT_TRACE(NECP_CLIENT_TRACE_LEVEL_FLOW)) {
uuid_string_t euuid_str = { 0 };
uuid_unparse(desc->euuid, euuid_str);
NECPLOG(LOG_NOTICE, "Collected stats - TCP - epid %d uid %d euuid %s persona id %d", desc->epid, desc->uid, euuid_str, desc->persona_id);
}
}
return true;
}
// Called from NetworkStatistics when it wishes to collect latest information for a UDP flow.
static bool
necp_request_udp_netstats(userland_stats_provider_context *ctx,
u_int32_t *ifflagsp,
nstat_progress_digest *digestp,
nstat_counts *countsp,
void *metadatap)
{
#pragma unused(digestp)
if (ctx == NULL) {
return false;
}
struct necp_client_flow_registration *flow_registration = (struct necp_client_flow_registration *)(uintptr_t)ctx;
struct necp_client *client = flow_registration->client;
struct necp_all_stats *ustats_kaddr = ((struct necp_all_kstats *)flow_registration->kstats_kaddr)->necp_stats_ustats;
struct necp_udp_stats *udpstats = (struct necp_udp_stats *)ustats_kaddr;
ASSERT(udpstats != NULL);
u_int32_t nstat_diagnostic_flags = 0;
// Retrieve details from the last time the assigned flows were updated
u_int32_t route_ifindex = IFSCOPE_NONE;
u_int32_t route_ifflags = NSTAT_IFNET_IS_UNKNOWN_TYPE;
u_int64_t combined_interface_details = 0;
combined_interface_details = os_atomic_load(&flow_registration->last_interface_details, relaxed);
split_interface_details(combined_interface_details, &route_ifindex, &route_ifflags);
if (route_ifindex == IFSCOPE_NONE) {
// Mark no interface
nstat_diagnostic_flags |= NSTAT_IFNET_ROUTE_VALUE_UNOBTAINABLE;
route_ifflags = NSTAT_IFNET_IS_UNKNOWN_TYPE;
NECPLOG(LOG_INFO, "req udp stats, failed to get route details for pid %d curproc %d %s\n",
client->proc_pid, proc_pid(current_proc()), proc_best_name(current_proc()));
}
if (ifflagsp) {
*ifflagsp = route_ifflags | nstat_diagnostic_flags;
if ((countsp == NULL) && (metadatap == NULL)) {
return true;
}
}
const struct sk_stats_flow *sf = &flow_registration->nexus_stats->fs_stats;
if (sf == NULL) {
nstat_diagnostic_flags |= NSTAT_IFNET_FLOWSWITCH_VALUE_UNOBTAINABLE;
char namebuf[MAXCOMLEN + 1];
(void) strlcpy(namebuf, "unknown", sizeof(namebuf));
proc_name(client->proc_pid, namebuf, sizeof(namebuf));
NECPLOG(LOG_ERR, "req udp stats, necp_client flow_registration flow_stats missing for pid %d %s curproc %d %s\n",
client->proc_pid, namebuf, proc_pid(current_proc()), proc_best_name(current_proc()));
sf = &ntstat_sk_stats_zero;
}
if (countsp) {
countsp->nstat_rxbytes = udpstats->necp_udp_counts.necp_stat_rxbytes;
countsp->nstat_txbytes = udpstats->necp_udp_counts.necp_stat_txbytes;
countsp->nstat_rxduplicatebytes = udpstats->necp_udp_counts.necp_stat_rxduplicatebytes;
countsp->nstat_rxoutoforderbytes = udpstats->necp_udp_counts.necp_stat_rxoutoforderbytes;
countsp->nstat_txretransmit = udpstats->necp_udp_counts.necp_stat_txretransmit;
countsp->nstat_min_rtt = udpstats->necp_udp_counts.necp_stat_min_rtt;
countsp->nstat_avg_rtt = udpstats->necp_udp_counts.necp_stat_avg_rtt;
countsp->nstat_var_rtt = udpstats->necp_udp_counts.necp_stat_var_rtt;
// Supplement what the user level has told us with what we know from the flowswitch
countsp->nstat_rxpackets = sf->sf_ipackets;
countsp->nstat_txpackets = sf->sf_opackets;
if (route_ifflags & NSTAT_IFNET_IS_CELLULAR) {
countsp->nstat_cell_rxbytes = sf->sf_ibytes;
countsp->nstat_cell_txbytes = sf->sf_obytes;
} else if (route_ifflags & NSTAT_IFNET_IS_WIFI) {
countsp->nstat_wifi_rxbytes = sf->sf_ibytes;
countsp->nstat_wifi_txbytes = sf->sf_obytes;
} else if (route_ifflags & NSTAT_IFNET_IS_WIRED) {
countsp->nstat_wired_rxbytes = sf->sf_ibytes;
countsp->nstat_wired_txbytes = sf->sf_obytes;
}
}
if (metadatap) {
nstat_udp_descriptor *desc = (nstat_udp_descriptor *)metadatap;
memset(desc, 0, sizeof(*desc));
// Metadata from the flow registration
uuid_copy(desc->fuuid, flow_registration->registration_id);
// Metadata that the necp client should have in TLV format.
pid_t effective_pid = client->proc_pid;
necp_find_netstat_data(client, (union necp_sockaddr_union *)&desc->remote, &effective_pid, &desc->uid, desc->euuid, &desc->persona_id, &desc->traffic_class, &desc->fallback_mode);
desc->epid = (u_int32_t)effective_pid;
// Metadata from the flow registration
// This needs to revisited if multiple flows are created from one flow registration
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
memcpy(&desc->local, &flow->local_addr, sizeof(desc->local));
break;
}
// Metadata from the route
desc->ifindex = route_ifindex;
desc->ifnet_properties = route_ifflags | nstat_diagnostic_flags;
desc->ifnet_properties |= (sf->sf_flags & SFLOWF_ONLINK) ? NSTAT_IFNET_IS_LOCAL : NSTAT_IFNET_IS_NON_LOCAL;
// Basic metadata is all that is required for UDP
desc->rcvbufsize = udpstats->necp_udp_basic.rcvbufsize;
desc->rcvbufused = udpstats->necp_udp_basic.rcvbufused;
memcpy(&desc->activity_bitmap, &sf->sf_activity, sizeof(sf->sf_activity));
if (NECP_ENABLE_CLIENT_TRACE(NECP_CLIENT_TRACE_LEVEL_FLOW)) {
uuid_string_t euuid_str = { 0 };
uuid_unparse(desc->euuid, euuid_str);
NECPLOG(LOG_NOTICE, "Collected stats - UDP - epid %d uid %d euuid %s persona id %d", desc->epid, desc->uid, euuid_str, desc->persona_id);
}
}
return true;
}
// Called from NetworkStatistics when it wishes to collect latest information for a QUIC flow.
//
// TODO: For now it is an exact implementation as that of TCP.
// Still to keep the logic separate for future divergence, keeping the routines separate.
// It also seems there are lots of common code between existing implementations and
// it would be good to refactor this logic at some point.
static bool
necp_request_quic_netstats(userland_stats_provider_context *ctx,
u_int32_t *ifflagsp,
nstat_progress_digest *digestp,
nstat_counts *countsp,
void *metadatap)
{
if (ctx == NULL) {
return false;
}
struct necp_client_flow_registration *flow_registration = (struct necp_client_flow_registration *)(uintptr_t)ctx;
struct necp_client *client = flow_registration->client;
struct necp_all_stats *ustats_kaddr = ((struct necp_all_kstats *)flow_registration->kstats_kaddr)->necp_stats_ustats;
struct necp_quic_stats *quicstats = (struct necp_quic_stats *)ustats_kaddr;
ASSERT(quicstats != NULL);
u_int32_t nstat_diagnostic_flags = 0;
// Retrieve details from the last time the assigned flows were updated
u_int32_t route_ifindex = IFSCOPE_NONE;
u_int32_t route_ifflags = NSTAT_IFNET_IS_UNKNOWN_TYPE;
u_int64_t combined_interface_details = 0;
combined_interface_details = os_atomic_load(&flow_registration->last_interface_details, relaxed);
split_interface_details(combined_interface_details, &route_ifindex, &route_ifflags);
if (route_ifindex == IFSCOPE_NONE) {
// Mark no interface
nstat_diagnostic_flags |= NSTAT_IFNET_ROUTE_VALUE_UNOBTAINABLE;
route_ifflags = NSTAT_IFNET_IS_UNKNOWN_TYPE;
NECPLOG(LOG_INFO, "req quic stats, failed to get route details for pid %d curproc %d %s\n",
client->proc_pid, proc_pid(current_proc()), proc_best_name(current_proc()));
}
if (ifflagsp) {
*ifflagsp = route_ifflags | nstat_diagnostic_flags;
if ((digestp == NULL) && (countsp == NULL) && (metadatap == NULL)) {
return true;
}
}
if (digestp) {
// The digest is intended to give information that may help give insight into the state of the link
// while avoiding the need to do the relatively expensive flowswitch lookup
digestp->rxbytes = quicstats->necp_quic_counts.necp_stat_rxbytes;
digestp->txbytes = quicstats->necp_quic_counts.necp_stat_txbytes;
digestp->rxduplicatebytes = quicstats->necp_quic_counts.necp_stat_rxduplicatebytes;
digestp->rxoutoforderbytes = quicstats->necp_quic_counts.necp_stat_rxoutoforderbytes;
digestp->txretransmit = quicstats->necp_quic_counts.necp_stat_txretransmit;
digestp->ifindex = route_ifindex;
digestp->state = quicstats->necp_quic_extra.state;
digestp->txunacked = quicstats->necp_quic_extra.txunacked;
digestp->txwindow = quicstats->necp_quic_extra.txwindow;
digestp->connstatus.probe_activated = quicstats->necp_quic_extra.probestatus.probe_activated;
digestp->connstatus.write_probe_failed = quicstats->necp_quic_extra.probestatus.write_probe_failed;
digestp->connstatus.read_probe_failed = quicstats->necp_quic_extra.probestatus.read_probe_failed;
digestp->connstatus.conn_probe_failed = quicstats->necp_quic_extra.probestatus.conn_probe_failed;
if ((countsp == NULL) && (metadatap == NULL)) {
return true;
}
}
const struct sk_stats_flow *sf = &flow_registration->nexus_stats->fs_stats;
if (sf == NULL) {
nstat_diagnostic_flags |= NSTAT_IFNET_FLOWSWITCH_VALUE_UNOBTAINABLE;
char namebuf[MAXCOMLEN + 1];
(void) strlcpy(namebuf, "unknown", sizeof(namebuf));
proc_name(client->proc_pid, namebuf, sizeof(namebuf));
NECPLOG(LOG_ERR, "req quic stats, necp_client flow_registration flow_stats missing for pid %d %s curproc %d %s\n",
client->proc_pid, namebuf, proc_pid(current_proc()), proc_best_name(current_proc()));
sf = &ntstat_sk_stats_zero;
}
if (countsp) {
countsp->nstat_rxbytes = quicstats->necp_quic_counts.necp_stat_rxbytes;
countsp->nstat_txbytes = quicstats->necp_quic_counts.necp_stat_txbytes;
countsp->nstat_rxduplicatebytes = quicstats->necp_quic_counts.necp_stat_rxduplicatebytes;
countsp->nstat_rxoutoforderbytes = quicstats->necp_quic_counts.necp_stat_rxoutoforderbytes;
countsp->nstat_txretransmit = quicstats->necp_quic_counts.necp_stat_txretransmit;
countsp->nstat_min_rtt = quicstats->necp_quic_counts.necp_stat_min_rtt;
countsp->nstat_avg_rtt = quicstats->necp_quic_counts.necp_stat_avg_rtt;
countsp->nstat_var_rtt = quicstats->necp_quic_counts.necp_stat_var_rtt;
// TODO: It would be good to expose QUIC stats for CH/SH retransmission and connection state
// Supplement what the user level has told us with what we know from the flowswitch
countsp->nstat_rxpackets = sf->sf_ipackets;
countsp->nstat_txpackets = sf->sf_opackets;
if (route_ifflags & NSTAT_IFNET_IS_CELLULAR) {
countsp->nstat_cell_rxbytes = sf->sf_ibytes;
countsp->nstat_cell_txbytes = sf->sf_obytes;
} else if (route_ifflags & NSTAT_IFNET_IS_WIFI) {
countsp->nstat_wifi_rxbytes = sf->sf_ibytes;
countsp->nstat_wifi_txbytes = sf->sf_obytes;
} else if (route_ifflags & NSTAT_IFNET_IS_WIRED) {
countsp->nstat_wired_rxbytes = sf->sf_ibytes;
countsp->nstat_wired_txbytes = sf->sf_obytes;
}
}
if (metadatap) {
nstat_quic_descriptor *desc = (nstat_quic_descriptor *)metadatap;
memset(desc, 0, sizeof(*desc));
// Metadata from the flow registration
uuid_copy(desc->fuuid, flow_registration->registration_id);
// Metadata, that the necp client should have, in TLV format.
pid_t effective_pid = client->proc_pid;
necp_find_netstat_data(client, (union necp_sockaddr_union *)&desc->remote, &effective_pid, &desc->uid, desc->euuid, &desc->persona_id, &desc->traffic_class, &desc->fallback_mode);
desc->epid = (u_int32_t)effective_pid;
// Metadata from the flow registration
// This needs to revisited if multiple flows are created from one flow registration
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
memcpy(&desc->local, &flow->local_addr, sizeof(desc->local));
break;
}
// Metadata from the route
desc->ifindex = route_ifindex;
desc->ifnet_properties = route_ifflags | nstat_diagnostic_flags;
desc->ifnet_properties |= (sf->sf_flags & SFLOWF_ONLINK) ? NSTAT_IFNET_IS_LOCAL : NSTAT_IFNET_IS_NON_LOCAL;
// Basic metadata from userland
desc->rcvbufsize = quicstats->necp_quic_basic.rcvbufsize;
desc->rcvbufused = quicstats->necp_quic_basic.rcvbufused;
// Additional QUIC specific data
desc->sndbufsize = quicstats->necp_quic_extra.sndbufsize;
desc->sndbufused = quicstats->necp_quic_extra.sndbufused;
desc->txunacked = quicstats->necp_quic_extra.txunacked;
desc->txwindow = quicstats->necp_quic_extra.txwindow;
desc->txcwindow = quicstats->necp_quic_extra.txcwindow;
desc->traffic_mgt_flags = quicstats->necp_quic_extra.traffic_mgt_flags;
desc->state = quicstats->necp_quic_extra.state;
// TODO: CC algo defines should be named agnostic of the protocol
u_int32_t cc_alg_index = quicstats->necp_quic_extra.cc_alg_index;
if (cc_alg_index < TCP_CC_ALGO_COUNT) {
strlcpy(desc->cc_algo, tcp_cc_algo_list[cc_alg_index]->name, sizeof(desc->cc_algo));
} else {
strlcpy(desc->cc_algo, "unknown", sizeof(desc->cc_algo));
}
memcpy(&desc->activity_bitmap, &sf->sf_activity, sizeof(sf->sf_activity));
desc->connstatus.probe_activated = quicstats->necp_quic_extra.probestatus.probe_activated;
desc->connstatus.write_probe_failed = quicstats->necp_quic_extra.probestatus.write_probe_failed;
desc->connstatus.read_probe_failed = quicstats->necp_quic_extra.probestatus.read_probe_failed;
desc->connstatus.conn_probe_failed = quicstats->necp_quic_extra.probestatus.conn_probe_failed;
if (NECP_ENABLE_CLIENT_TRACE(NECP_CLIENT_TRACE_LEVEL_FLOW)) {
uuid_string_t euuid_str = { 0 };
uuid_unparse(desc->euuid, euuid_str);
NECPLOG(LOG_NOTICE, "Collected stats - QUIC - epid %d uid %d euuid %s persona id %d", desc->epid, desc->uid, euuid_str, desc->persona_id);
}
}
return true;
}
#endif /* SKYWALK */
// Support functions for NetworkStatistics support for necp_client connections
static void
necp_client_inherit_from_parent(
struct necp_client *client,
struct necp_client *parent)
{
assert(client->original_parameters_source == NULL);
if (parent->original_parameters_source != NULL) {
client->original_parameters_source = parent->original_parameters_source;
} else {
client->original_parameters_source = parent;
}
necp_client_retain(client->original_parameters_source);
}
static void
necp_find_conn_netstat_data(struct necp_client *client,
u_int32_t *ntstat_flags,
pid_t *effective_pid,
uuid_t puuid,
uid_t *uid,
uuid_t euuid,
uid_t *persona_id)
{
bool has_remote_address = false;
bool has_ip_protocol = false;
bool has_transport_protocol = false;
size_t offset = 0;
u_int8_t *parameters;
u_int32_t parameters_size;
parameters = client->parameters;
parameters_size = (u_int32_t)client->parameters_length;
while ((offset + sizeof(struct necp_tlv_header)) <= parameters_size) {
u_int8_t type = necp_buffer_get_tlv_type(parameters, offset);
u_int32_t length = necp_buffer_get_tlv_length(parameters, offset);
if (length > (parameters_size - (offset + sizeof(struct necp_tlv_header)))) {
// If the length is larger than what can fit in the remaining parameters size, bail
NECPLOG(LOG_ERR, "Invalid TLV length (%u)", length);
break;
}
if (length > 0) {
u_int8_t *value = necp_buffer_get_tlv_value(parameters, offset, NULL);
if (value != NULL) {
switch (type) {
case NECP_CLIENT_PARAMETER_APPLICATION: {
if ((euuid) && (length >= sizeof(uuid_t))) {
uuid_copy(euuid, value);
}
break;
}
case NECP_CLIENT_PARAMETER_IP_PROTOCOL: {
if (length >= 1) {
has_ip_protocol = true;
}
break;
}
case NECP_CLIENT_PARAMETER_PID: {
if ((effective_pid) && length >= sizeof(pid_t)) {
memcpy(effective_pid, value, sizeof(pid_t));
}
break;
}
case NECP_CLIENT_PARAMETER_PARENT_ID: {
if ((puuid) && (length == sizeof(uuid_t))) {
uuid_copy(puuid, value);
}
break;
}
// It is an implementation quirk that the remote address can be found in the necp parameters
case NECP_CLIENT_PARAMETER_REMOTE_ADDRESS: {
if (length >= sizeof(struct necp_policy_condition_addr)) {
struct necp_policy_condition_addr *address_struct = (struct necp_policy_condition_addr *)(void *)value;
if (necp_client_address_is_valid(&address_struct->address.sa)) {
has_remote_address = true;
}
}
break;
}
case NECP_CLIENT_PARAMETER_TRANSPORT_PROTOCOL: {
if (length >= 1) {
has_transport_protocol = true;
}
break;
}
case NECP_CLIENT_PARAMETER_APPLICATION_ID: {
if (length >= sizeof(necp_application_id_t) && uid && persona_id) {
necp_application_id_t *application_id = (necp_application_id_t *)(void *)value;
memcpy(uid, &application_id->uid, sizeof(uid_t));
uuid_copy(euuid, application_id->effective_uuid);
memcpy(persona_id, &application_id->persona_id, sizeof(uid_t));
}
break;
}
default: {
break;
}
}
}
}
offset += sizeof(struct necp_tlv_header) + length;
}
if (ntstat_flags) {
*ntstat_flags = (has_remote_address && has_ip_protocol && has_transport_protocol)? NSTAT_NECP_CONN_HAS_NET_ACCESS: 0;
}
}
static bool
necp_request_conn_netstats(nstat_provider_context ctx,
u_int32_t *ifflagsp,
nstat_counts *countsp,
void *metadatap)
{
if (ctx == NULL) {
return false;
}
struct necp_client *client = (struct necp_client *)(uintptr_t)ctx;
nstat_connection_descriptor *desc = (nstat_connection_descriptor *)metadatap;
if (ifflagsp) {
necp_find_conn_netstat_data(client, ifflagsp, NULL, NULL, NULL, NULL, NULL);
}
if (countsp) {
memset(countsp, 0, sizeof(*countsp));
}
if (desc) {
memset(desc, 0, sizeof(*desc));
// Metadata, that the necp client should have, in TLV format.
pid_t effective_pid = client->proc_pid;
necp_find_conn_netstat_data(client, &desc->ifnet_properties, &effective_pid, desc->puuid, &desc->uid, desc->euuid, &desc->persona_id);
desc->epid = (u_int32_t)effective_pid;
// User level should obtain almost all connection information from an extension
// leaving little to do here
uuid_copy(desc->fuuid, client->latest_flow_registration_id);
uuid_copy(desc->cuuid, client->client_id);
}
return true;
}
static int
necp_skywalk_priv_check_cred(proc_t p, kauth_cred_t cred)
{
#pragma unused(p, cred)
#if SKYWALK
/* This includes Nexus controller and Skywalk observer privs */
return skywalk_nxctl_check_privileges(p, cred);
#else /* !SKYWALK */
return 0;
#endif /* !SKYWALK */
}
/// System calls
int
necp_open(struct proc *p, struct necp_open_args *uap, int *retval)
{
#pragma unused(retval)
int error = 0;
struct necp_fd_data *fd_data = NULL;
struct fileproc *fp = NULL;
int fd = -1;
if (uap->flags & NECP_OPEN_FLAG_OBSERVER ||
uap->flags & NECP_OPEN_FLAG_PUSH_OBSERVER) {
if (necp_skywalk_priv_check_cred(p, kauth_cred_get()) != 0 &&
priv_check_cred(kauth_cred_get(), PRIV_NET_PRIVILEGED_NETWORK_STATISTICS, 0) != 0) {
NECPLOG0(LOG_ERR, "Client does not hold necessary entitlement to observe other NECP clients");
error = EACCES;
goto done;
}
}
#if CONFIG_MACF
error = mac_necp_check_open(p, uap->flags);
if (error) {
goto done;
}
#endif /* MACF */
error = falloc(p, &fp, &fd);
if (error != 0) {
goto done;
}
fd_data = kalloc_type(struct necp_fd_data, Z_WAITOK | Z_ZERO | Z_NOFAIL);
fd_data->necp_fd_type = necp_fd_type_client;
fd_data->flags = uap->flags;
RB_INIT(&fd_data->clients);
RB_INIT(&fd_data->flows);
TAILQ_INIT(&fd_data->update_list);
lck_mtx_init(&fd_data->fd_lock, &necp_fd_mtx_grp, &necp_fd_mtx_attr);
klist_init(&fd_data->si.si_note);
fd_data->proc_pid = proc_pid(p);
#if SKYWALK
LIST_INIT(&fd_data->stats_arena_list);
#endif /* !SKYWALK */
fp->fp_flags |= FP_CLOEXEC | FP_CLOFORK;
fp->fp_glob->fg_flag = FREAD;
fp->fp_glob->fg_ops = &necp_fd_ops;
fp_set_data(fp, fd_data);
proc_fdlock(p);
procfdtbl_releasefd(p, fd, NULL);
fp_drop(p, fd, fp, 1);
*retval = fd;
if (fd_data->flags & NECP_OPEN_FLAG_PUSH_OBSERVER) {
NECP_OBSERVER_LIST_LOCK_EXCLUSIVE();
LIST_INSERT_HEAD(&necp_fd_observer_list, fd_data, chain);
OSIncrementAtomic(&necp_observer_fd_count);
NECP_OBSERVER_LIST_UNLOCK();
// Walk all existing clients and add them
NECP_CLIENT_TREE_LOCK_SHARED();
struct necp_client *existing_client = NULL;
RB_FOREACH(existing_client, _necp_client_global_tree, &necp_client_global_tree) {
NECP_CLIENT_LOCK(existing_client);
necp_client_update_observer_add_internal(fd_data, existing_client);
necp_client_update_observer_update_internal(fd_data, existing_client);
NECP_CLIENT_UNLOCK(existing_client);
}
NECP_CLIENT_TREE_UNLOCK();
} else {
NECP_FD_LIST_LOCK_EXCLUSIVE();
LIST_INSERT_HEAD(&necp_fd_list, fd_data, chain);
OSIncrementAtomic(&necp_client_fd_count);
NECP_FD_LIST_UNLOCK();
}
proc_fdunlock(p);
done:
if (error != 0) {
if (fp != NULL) {
fp_free(p, fd, fp);
fp = NULL;
}
if (fd_data != NULL) {
kfree_type(struct necp_fd_data, fd_data);
}
}
return error;
}
// All functions called directly from necp_client_action() to handle one of the
// types should be marked with NECP_CLIENT_ACTION_FUNCTION. This ensures that
// necp_client_action() does not inline all the actions into a single function.
#define NECP_CLIENT_ACTION_FUNCTION __attribute__((noinline))
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_add(struct proc *p, struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
struct necp_client *client = NULL;
const size_t buffer_size = uap->buffer_size;
if (fd_data->flags & NECP_OPEN_FLAG_PUSH_OBSERVER) {
NECPLOG0(LOG_ERR, "NECP client observers with push enabled may not add their own clients");
return EINVAL;
}
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t) ||
buffer_size == 0 || buffer_size > NECP_MAX_CLIENT_PARAMETERS_SIZE || uap->buffer == 0) {
return EINVAL;
}
client = kalloc_type(struct necp_client, Z_WAITOK | Z_ZERO | Z_NOFAIL);
client->parameters = kalloc_data(buffer_size, Z_WAITOK | Z_NOFAIL);
client->parameters_length = buffer_size;
lck_mtx_init(&client->lock, &necp_fd_mtx_grp, &necp_fd_mtx_attr);
lck_mtx_init(&client->route_lock, &necp_fd_mtx_grp, &necp_fd_mtx_attr);
error = copyin(uap->buffer, client->parameters, buffer_size);
if (error) {
NECPLOG(LOG_ERR, "necp_client_add parameters copyin error (%d)", error);
goto done;
}
os_ref_init(&client->reference_count, &necp_client_refgrp); // Hold our reference until close
client->proc_pid = fd_data->proc_pid; // Save off proc pid in case the client will persist past fd
client->agent_handle = (void *)fd_data;
client->platform_binary = ((csproc_get_platform_binary(p) == 0) ? 0 : 1);
necp_generate_client_id(client->client_id, false);
LIST_INIT(&client->assertion_list);
RB_INIT(&client->flow_registrations);
NECP_CLIENT_LOG(client, "Adding client");
error = copyout(client->client_id, uap->client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_add client_id copyout error (%d)", error);
goto done;
}
#if SKYWALK
struct necp_client_parsed_parameters parsed_parameters = {};
int parse_error = necp_client_parse_parameters(client, client->parameters, (u_int32_t)client->parameters_length, &parsed_parameters);
if (parse_error == 0 &&
((parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_DELEGATED_UPID) ||
(parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_ATTRIBUTED_BUNDLE_IDENTIFIER))) {
bool has_delegation_entitlement = (priv_check_cred(kauth_cred_get(), PRIV_NET_PRIVILEGED_SOCKET_DELEGATE, 0) == 0);
if (!has_delegation_entitlement) {
if (parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_DELEGATED_UPID) {
NECPLOG(LOG_ERR, "%s(%d) does not hold the necessary entitlement to delegate network traffic for other processes by upid",
proc_name_address(p), proc_pid(p));
}
if (parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_ATTRIBUTED_BUNDLE_IDENTIFIER) {
NECPLOG(LOG_ERR, "%s(%d) does not hold the necessary entitlement to set attributed bundle identifier",
proc_name_address(p), proc_pid(p));
}
error = EPERM;
goto done;
}
if (parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_DELEGATED_UPID) {
// Save off delegated unique PID
client->delegated_upid = parsed_parameters.delegated_upid;
}
}
if (parse_error == 0 && parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_INTERPOSE) {
bool has_nexus_entitlement = (necp_skywalk_priv_check_cred(p, kauth_cred_get()) == 0);
if (!has_nexus_entitlement) {
NECPLOG(LOG_ERR, "%s(%d) does not hold the necessary entitlement to open a custom nexus client",
proc_name_address(p), proc_pid(p));
error = EPERM;
goto done;
}
}
if (parse_error == 0 && (parsed_parameters.flags &
(NECP_CLIENT_PARAMETER_FLAG_CUSTOM_ETHER | NECP_CLIENT_PARAMETER_FLAG_CUSTOM_IP))) {
bool has_custom_protocol_entitlement = (priv_check_cred(kauth_cred_get(), PRIV_NET_CUSTOM_PROTOCOL, 0) == 0);
if (!has_custom_protocol_entitlement) {
NECPLOG(LOG_ERR, "%s(%d) does not hold the necessary entitlement for custom protocol APIs",
proc_name_address(p), proc_pid(p));
error = EPERM;
goto done;
}
}
if (parse_error == 0 && parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_LISTENER &&
(parsed_parameters.ip_protocol == IPPROTO_TCP || parsed_parameters.ip_protocol == IPPROTO_UDP)) {
uint32_t *netns_addr = NULL;
uint8_t netns_addr_len = 0;
struct ns_flow_info flow_info = {};
uint32_t netns_flags = NETNS_LISTENER;
uuid_copy(flow_info.nfi_flow_uuid, client->client_id);
flow_info.nfi_protocol = parsed_parameters.ip_protocol;
flow_info.nfi_owner_pid = client->proc_pid;
if (parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_EFFECTIVE_PID) {
flow_info.nfi_effective_pid = parsed_parameters.effective_pid;
} else {
flow_info.nfi_effective_pid = flow_info.nfi_owner_pid;
}
proc_name(flow_info.nfi_owner_pid, flow_info.nfi_owner_name, MAXCOMLEN);
proc_name(flow_info.nfi_effective_pid, flow_info.nfi_effective_name, MAXCOMLEN);
if (parsed_parameters.local_addr.sa.sa_family == AF_UNSPEC) {
// Treat no local address as a wildcard IPv6
// parsed_parameters is already initialized to all zeros
parsed_parameters.local_addr.sin6.sin6_family = AF_INET6;
parsed_parameters.local_addr.sin6.sin6_len = sizeof(struct sockaddr_in6);
}
switch (parsed_parameters.local_addr.sa.sa_family) {
case AF_INET: {
memcpy(&flow_info.nfi_laddr, &parsed_parameters.local_addr.sa, parsed_parameters.local_addr.sa.sa_len);
netns_addr = (uint32_t *)&parsed_parameters.local_addr.sin.sin_addr;
netns_addr_len = 4;
break;
}
case AF_INET6: {
memcpy(&flow_info.nfi_laddr, &parsed_parameters.local_addr.sa, parsed_parameters.local_addr.sa.sa_len);
netns_addr = (uint32_t *)&parsed_parameters.local_addr.sin6.sin6_addr;
netns_addr_len = 16;
break;
}
default: {
NECPLOG(LOG_ERR, "necp_client_add listener invalid address family (%d)", parsed_parameters.local_addr.sa.sa_family);
error = EINVAL;
goto done;
}
}
if ((parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_FLAGS) &&
(parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_REUSE_LOCAL)) {
netns_flags |= NETNS_REUSEPORT;
}
if (parsed_parameters.local_addr.sin.sin_port == 0) {
error = netns_reserve_ephemeral(&client->port_reservation, netns_addr, netns_addr_len, parsed_parameters.ip_protocol,
&parsed_parameters.local_addr.sin.sin_port, netns_flags, &flow_info);
if (error) {
NECPLOG(LOG_ERR, "necp_client_add netns_reserve_ephemeral error (%d)", error);
goto done;
}
// Update the parameter TLVs with the assigned port
necp_client_update_local_port_parameters(client->parameters, (u_int32_t)client->parameters_length, parsed_parameters.local_addr.sin.sin_port);
} else {
error = netns_reserve(&client->port_reservation, netns_addr, netns_addr_len, parsed_parameters.ip_protocol,
parsed_parameters.local_addr.sin.sin_port, netns_flags, &flow_info);
if (error) {
NECPLOG(LOG_ERR, "necp_client_add netns_reserve error (%d)", error);
goto done;
}
}
}
struct necp_client *parent = NULL;
uuid_t parent_client_id;
uuid_clear(parent_client_id);
struct necp_client_nexus_parameters parent_parameters = {};
uint16_t num_flow_regs = 0;
if (parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_PARENT_UUID) {
// The parent "should" be found on fd_data without having to search across the whole necp_fd_list
// It would be nice to do this a little further down where there's another instance of NECP_FD_LOCK
// but the logic here depends on the parse paramters
NECP_FD_LOCK(fd_data);
parent = necp_client_fd_find_client_unlocked(fd_data, parsed_parameters.parent_uuid);
if (parent != NULL) {
necp_client_inherit_from_parent(client, parent);
necp_client_copy_parameters_locked(client, &parent_parameters);
uuid_copy(parent_client_id, parsed_parameters.parent_uuid);
struct necp_client_flow_registration *flow_registration = NULL;
RB_FOREACH(flow_registration, _necp_client_flow_tree, &parent->flow_registrations) {
num_flow_regs++;
}
}
NECP_FD_UNLOCK(fd_data);
if (parent == NULL) {
NECPLOG0(LOG_ERR, "necp_client_add, no necp_client_inherit_from_parent as can't find parent on fd_data");
}
}
if (parse_error == 0 && parent != NULL && parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_FLOW_DEMUX_PATTERN) {
do {
if (parsed_parameters.demux_patterns[0].len == 0) {
NECPLOG0(LOG_INFO, "necp_client_add, child does not have a demux pattern");
break;
}
if (uuid_is_null(parent_client_id)) {
NECPLOG0(LOG_INFO, "necp_client_add, parent ID is null");
break;
}
if (num_flow_regs > 1) {
NECPLOG0(LOG_INFO, "necp_client_add, multiple parent flows not supported");
break;
}
if (parsed_parameters.ip_protocol != IPPROTO_UDP) {
NECPLOG(LOG_INFO, "necp_client_add, flow demux pattern not supported for %d protocol",
parsed_parameters.ip_protocol);
break;
}
if (parsed_parameters.ip_protocol != parent_parameters.ip_protocol) {
NECPLOG0(LOG_INFO, "necp_client_add, parent/child ip protocol mismatch");
break;
}
if (parsed_parameters.local_addr.sa.sa_family != AF_INET && parsed_parameters.local_addr.sa.sa_family != AF_INET6) {
NECPLOG(LOG_INFO, "necp_client_add, flow demux pattern not supported for %d family",
parsed_parameters.local_addr.sa.sa_family);
break;
}
if (parsed_parameters.local_addr.sa.sa_family != parsed_parameters.remote_addr.sa.sa_family) {
NECPLOG0(LOG_INFO, "necp_client_add, local/remote address family mismatch");
break;
}
if (parsed_parameters.local_addr.sa.sa_family != parent_parameters.local_addr.sa.sa_family) {
NECPLOG0(LOG_INFO, "necp_client_add, parent/child address family mismatch");
break;
}
if (memcmp(&parsed_parameters.local_addr.sa, &parent_parameters.local_addr.sa, parsed_parameters.local_addr.sa.sa_len)) {
NECPLOG0(LOG_INFO, "necp_client_add, parent/child local address mismatch");
break;
}
if (memcmp(&parsed_parameters.remote_addr.sa, &parent_parameters.remote_addr.sa, parsed_parameters.remote_addr.sa.sa_len)) {
NECPLOG0(LOG_INFO, "necp_client_add, parent/child remote address mismatch");
break;
}
if (parsed_parameters.local_addr.sin.sin_port != parent_parameters.local_addr.sin.sin_port) {
NECPLOG0(LOG_INFO, "necp_client_add, parent/child local port mismatch");
break;
}
if (parsed_parameters.remote_addr.sin.sin_port != parent_parameters.remote_addr.sin.sin_port) {
NECPLOG0(LOG_INFO, "necp_client_add, parent/child remote port mismatch");
break;
}
client->validated_parent = 1;
uuid_copy(client->parent_client_id, parent_client_id);
} while (false);
}
#endif /* !SKYWALK */
necp_client_update_observer_add(client);
NECP_FD_LOCK(fd_data);
RB_INSERT(_necp_client_tree, &fd_data->clients, client);
OSIncrementAtomic(&necp_client_count);
NECP_CLIENT_TREE_LOCK_EXCLUSIVE();
RB_INSERT(_necp_client_global_tree, &necp_client_global_tree, client);
NECP_CLIENT_TREE_UNLOCK();
// Prime the client result
NECP_CLIENT_LOCK(client);
(void)necp_update_client_result(current_proc(), fd_data, client, NULL);
necp_client_retain_locked(client);
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
// Now everything is set, it's safe to plumb this in to NetworkStatistics
uint32_t ntstat_properties = 0;
necp_find_conn_netstat_data(client, &ntstat_properties, NULL, NULL, NULL, NULL, NULL);
client->nstat_context = nstat_provider_stats_open((nstat_provider_context)client,
NSTAT_PROVIDER_CONN_USERLAND, (u_int64_t)ntstat_properties, necp_request_conn_netstats, necp_find_conn_extension_info);
necp_client_release(client);
done:
if (error != 0 && client != NULL) {
necp_client_free(client);
client = NULL;
}
*retval = error;
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_claim(struct proc *p, struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
uuid_t client_id = {};
struct necp_client *client = NULL;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t)) {
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_claim copyin client_id error (%d)", error);
goto done;
}
if (necp_client_id_is_flow(client_id)) {
NECPLOG0(LOG_ERR, "necp_client_claim cannot claim from flow UUID");
error = EINVAL;
goto done;
}
u_int64_t upid = proc_uniqueid(p);
NECP_FD_LIST_LOCK_SHARED();
struct necp_fd_data *find_fd = NULL;
LIST_FOREACH(find_fd, &necp_fd_list, chain) {
NECP_FD_LOCK(find_fd);
struct necp_client *find_client = necp_client_fd_find_client_and_lock(find_fd, client_id);
if (find_client != NULL) {
if (find_client->delegated_upid == upid &&
RB_EMPTY(&find_client->flow_registrations)) {
// Matched the client to claim; remove from the old fd
client = find_client;
RB_REMOVE(_necp_client_tree, &find_fd->clients, client);
necp_client_retain_locked(client);
}
NECP_CLIENT_UNLOCK(find_client);
}
NECP_FD_UNLOCK(find_fd);
if (client != NULL) {
break;
}
}
NECP_FD_LIST_UNLOCK();
if (client == NULL) {
error = ENOENT;
goto done;
}
client->proc_pid = fd_data->proc_pid; // Transfer client to claiming pid
client->agent_handle = (void *)fd_data;
client->platform_binary = ((csproc_get_platform_binary(p) == 0) ? 0 : 1);
NECP_CLIENT_LOG(client, "Claiming client");
// Add matched client to our fd and re-run result
NECP_FD_LOCK(fd_data);
RB_INSERT(_necp_client_tree, &fd_data->clients, client);
NECP_CLIENT_LOCK(client);
(void)necp_update_client_result(current_proc(), fd_data, client, NULL);
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
necp_client_release(client);
done:
*retval = error;
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_remove(struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
uuid_t client_id = {};
struct ifnet_stats_per_flow flow_ifnet_stats = {};
const size_t buffer_size = uap->buffer_size;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t)) {
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_remove copyin client_id error (%d)", error);
goto done;
}
if (uap->buffer != 0 && buffer_size == sizeof(flow_ifnet_stats)) {
error = copyin(uap->buffer, &flow_ifnet_stats, buffer_size);
if (error) {
NECPLOG(LOG_ERR, "necp_client_remove flow_ifnet_stats copyin error (%d)", error);
// Not fatal; make sure to zero-out stats in case of partial copy
memset(&flow_ifnet_stats, 0, sizeof(flow_ifnet_stats));
error = 0;
}
} else if (uap->buffer != 0) {
NECPLOG(LOG_ERR, "necp_client_remove unexpected parameters length (%zu)", buffer_size);
}
NECP_FD_LOCK(fd_data);
pid_t pid = fd_data->proc_pid;
struct necp_client *client = necp_client_fd_find_client_unlocked(fd_data, client_id);
NECP_CLIENT_LOG(client, "Removing client");
if (client != NULL) {
// Remove any flow registrations that match
struct necp_client_flow_registration *flow_registration = NULL;
struct necp_client_flow_registration *temp_flow_registration = NULL;
RB_FOREACH_SAFE(flow_registration, _necp_fd_flow_tree, &fd_data->flows, temp_flow_registration) {
if (flow_registration->client == client) {
#if SKYWALK
necp_destroy_flow_stats(fd_data, flow_registration, NULL, TRUE);
#endif /* SKYWALK */
NECP_FLOW_TREE_LOCK_EXCLUSIVE();
RB_REMOVE(_necp_client_flow_global_tree, &necp_client_flow_global_tree, flow_registration);
NECP_FLOW_TREE_UNLOCK();
RB_REMOVE(_necp_fd_flow_tree, &fd_data->flows, flow_registration);
}
}
#if SKYWALK
if (client->nstat_context != NULL) {
// Main path, we expect stats to be in existance at this point
nstat_provider_stats_close(client->nstat_context);
client->nstat_context = NULL;
} else {
NECPLOG0(LOG_ERR, "necp_client_remove ntstat shutdown finds nstat_context NULL");
}
#endif /* SKYWALK */
// Remove client from lists
NECP_CLIENT_TREE_LOCK_EXCLUSIVE();
RB_REMOVE(_necp_client_global_tree, &necp_client_global_tree, client);
NECP_CLIENT_TREE_UNLOCK();
RB_REMOVE(_necp_client_tree, &fd_data->clients, client);
}
#if SKYWALK
// If the currently-active arena is idle (has no more flows referring to it), or if there are defunct
// arenas lingering in the list, schedule a threadcall to do the clean up. The idle check is done
// by checking if the reference count is 3: one held by this client (will be released below when we
// destroy it) when it's non-NULL; the rest held by stats_arena_{active,list}.
if ((fd_data->stats_arena_active != NULL && fd_data->stats_arena_active->nai_use_count == 3) ||
(fd_data->stats_arena_active == NULL && !LIST_EMPTY(&fd_data->stats_arena_list))) {
uint64_t deadline = 0;
uint64_t leeway = 0;
clock_interval_to_deadline(necp_close_arenas_timeout_microseconds, NSEC_PER_USEC, &deadline);
clock_interval_to_absolutetime_interval(necp_close_arenas_timeout_leeway_microseconds, NSEC_PER_USEC, &leeway);
thread_call_enter_delayed_with_leeway(necp_close_empty_arenas_tcall, NULL,
deadline, leeway, THREAD_CALL_DELAY_LEEWAY);
}
#endif /* SKYWALK */
NECP_FD_UNLOCK(fd_data);
if (client != NULL) {
ASSERT(error == 0);
necp_destroy_client(client, pid, true);
} else {
error = ENOENT;
NECPLOG(LOG_ERR, "necp_client_remove invalid client_id (%d)", error);
}
done:
*retval = error;
return error;
}
static struct necp_client_flow_registration *
necp_client_fd_find_flow(struct necp_fd_data *client_fd, uuid_t flow_id)
{
NECP_FD_ASSERT_LOCKED(client_fd);
struct necp_client_flow_registration *flow = NULL;
if (necp_client_id_is_flow(flow_id)) {
struct necp_client_flow_registration find;
uuid_copy(find.registration_id, flow_id);
flow = RB_FIND(_necp_fd_flow_tree, &client_fd->flows, &find);
}
return flow;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_remove_flow(struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
uuid_t flow_id = {};
struct ifnet_stats_per_flow flow_ifnet_stats = {};
const size_t buffer_size = uap->buffer_size;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t)) {
error = EINVAL;
NECPLOG(LOG_ERR, "necp_client_remove_flow invalid client_id (length %zu)", (size_t)uap->client_id_len);
goto done;
}
error = copyin(uap->client_id, flow_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_remove_flow copyin client_id error (%d)", error);
goto done;
}
if (uap->buffer != 0 && buffer_size == sizeof(flow_ifnet_stats)) {
error = copyin(uap->buffer, &flow_ifnet_stats, buffer_size);
if (error) {
NECPLOG(LOG_ERR, "necp_client_remove flow_ifnet_stats copyin error (%d)", error);
// Not fatal
}
} else if (uap->buffer != 0) {
NECPLOG(LOG_ERR, "necp_client_remove unexpected parameters length (%zu)", buffer_size);
}
NECP_FD_LOCK(fd_data);
struct necp_client *client = NULL;
struct necp_client_flow_registration *flow_registration = necp_client_fd_find_flow(fd_data, flow_id);
if (flow_registration != NULL) {
#if SKYWALK
// Cleanup stats per flow
necp_destroy_flow_stats(fd_data, flow_registration, &flow_ifnet_stats, TRUE);
#endif /* SKYWALK */
NECP_FLOW_TREE_LOCK_EXCLUSIVE();
RB_REMOVE(_necp_client_flow_global_tree, &necp_client_flow_global_tree, flow_registration);
NECP_FLOW_TREE_UNLOCK();
RB_REMOVE(_necp_fd_flow_tree, &fd_data->flows, flow_registration);
client = flow_registration->client;
if (client != NULL) {
necp_client_retain(client);
}
}
NECP_FD_UNLOCK(fd_data);
NECP_CLIENT_FLOW_LOG(client, flow_registration, "removing flow");
if (flow_registration != NULL && client != NULL) {
NECP_CLIENT_LOCK(client);
if (flow_registration->client == client) {
necp_destroy_client_flow_registration(client, flow_registration, fd_data->proc_pid, false);
}
necp_client_release_locked(client);
NECP_CLIENT_UNLOCK(client);
}
done:
*retval = error;
if (error != 0) {
NECPLOG(LOG_ERR, "Remove flow error (%d)", error);
}
return error;
}
// Don't inline the function since it includes necp_client_parsed_parameters on the stack
static __attribute__((noinline)) int
necp_client_check_tcp_heuristics(struct necp_client *client, struct necp_client_flow *flow, u_int32_t *flags, u_int8_t *tfo_cookie, u_int8_t *tfo_cookie_len)
{
struct necp_client_parsed_parameters parsed_parameters;
int error = 0;
error = necp_client_parse_parameters(client, client->parameters,
(u_int32_t)client->parameters_length,
&parsed_parameters);
if (error) {
NECPLOG(LOG_ERR, "necp_client_parse_parameters error (%d)", error);
return error;
}
if ((flow->remote_addr.sa.sa_family != AF_INET &&
flow->remote_addr.sa.sa_family != AF_INET6) ||
(flow->local_addr.sa.sa_family != AF_INET &&
flow->local_addr.sa.sa_family != AF_INET6)) {
return EINVAL;
}
NECP_CLIENT_ROUTE_LOCK(client);
if (client->current_route == NULL) {
error = ENOENT;
goto do_unlock;
}
bool check_ecn = false;
do {
if ((parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_ECN_ENABLE) ==
NECP_CLIENT_PARAMETER_FLAG_ECN_ENABLE) {
check_ecn = true;
break;
}
if ((parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_ECN_DISABLE) ==
NECP_CLIENT_PARAMETER_FLAG_ECN_DISABLE) {
break;
}
if (client->current_route != NULL) {
if (client->current_route->rt_ifp->if_eflags & IFEF_ECN_ENABLE) {
check_ecn = true;
break;
}
if (client->current_route->rt_ifp->if_eflags & IFEF_ECN_DISABLE) {
break;
}
}
bool inbound = ((parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_LISTENER) == 0);
if ((inbound && tcp_ecn_inbound == 1) ||
(!inbound && tcp_ecn_outbound == 1)) {
check_ecn = true;
}
} while (false);
if (check_ecn) {
if (tcp_heuristic_do_ecn_with_address(client->current_route->rt_ifp,
(union sockaddr_in_4_6 *)&flow->local_addr)) {
*flags |= NECP_CLIENT_RESULT_FLAG_ECN_ENABLED;
}
}
if ((parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_TFO_ENABLE) ==
NECP_CLIENT_PARAMETER_FLAG_TFO_ENABLE) {
if (!tcp_heuristic_do_tfo_with_address(client->current_route->rt_ifp,
(union sockaddr_in_4_6 *)&flow->local_addr,
(union sockaddr_in_4_6 *)&flow->remote_addr,
tfo_cookie, tfo_cookie_len)) {
*flags |= NECP_CLIENT_RESULT_FLAG_FAST_OPEN_BLOCKED;
*tfo_cookie_len = 0;
}
} else {
*flags |= NECP_CLIENT_RESULT_FLAG_FAST_OPEN_BLOCKED;
*tfo_cookie_len = 0;
}
do_unlock:
NECP_CLIENT_ROUTE_UNLOCK(client);
return error;
}
static size_t
necp_client_calculate_flow_tlv_size(struct necp_client_flow_registration *flow_registration)
{
size_t assigned_results_size = 0;
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
if (flow->assigned || !necp_client_endpoint_is_unspecified((struct necp_client_endpoint *)&flow->remote_addr)) {
size_t header_length = 0;
if (flow->nexus) {
header_length = sizeof(struct necp_client_nexus_flow_header);
} else {
header_length = sizeof(struct necp_client_flow_header);
}
assigned_results_size += (header_length + flow->assigned_results_length);
if (flow->has_protoctl_event) {
assigned_results_size += sizeof(struct necp_client_flow_protoctl_event_header);
}
}
}
return assigned_results_size;
}
static int
necp_client_fillout_flow_tlvs(struct necp_client *client,
bool client_is_observed,
struct necp_client_flow_registration *flow_registration,
struct necp_client_action_args *uap,
size_t *assigned_results_cursor)
{
int error = 0;
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &flow_registration->flow_list, flow_chain) {
if (flow->assigned || !necp_client_endpoint_is_unspecified((struct necp_client_endpoint *)&flow->remote_addr)) {
// Write TLV headers
struct necp_client_nexus_flow_header header = {};
u_int32_t length = 0;
u_int32_t flags = 0;
u_int8_t tfo_cookie_len = 0;
u_int8_t type = 0;
type = NECP_CLIENT_RESULT_FLOW_ID;
length = sizeof(header.flow_header.flow_id);
memcpy(&header.flow_header.flow_id_tlv_header.type, &type, sizeof(type));
memcpy(&header.flow_header.flow_id_tlv_header.length, &length, sizeof(length));
uuid_copy(header.flow_header.flow_id, flow_registration->registration_id);
if (flow->nexus) {
if (flow->check_tcp_heuristics) {
u_int8_t tfo_cookie[NECP_TFO_COOKIE_LEN_MAX];
tfo_cookie_len = NECP_TFO_COOKIE_LEN_MAX;
if (necp_client_check_tcp_heuristics(client, flow, &flags,
tfo_cookie, &tfo_cookie_len) != 0) {
tfo_cookie_len = 0;
} else {
flow->check_tcp_heuristics = FALSE;
if (tfo_cookie_len != 0) {
type = NECP_CLIENT_RESULT_TFO_COOKIE;
length = tfo_cookie_len;
memcpy(&header.tfo_cookie_tlv_header.type, &type, sizeof(type));
memcpy(&header.tfo_cookie_tlv_header.length, &length, sizeof(length));
memcpy(&header.tfo_cookie_value, tfo_cookie, tfo_cookie_len);
}
}
}
}
size_t header_length = 0;
if (flow->nexus) {
if (tfo_cookie_len != 0) {
header_length = sizeof(struct necp_client_nexus_flow_header) - (NECP_TFO_COOKIE_LEN_MAX - tfo_cookie_len);
} else {
header_length = sizeof(struct necp_client_nexus_flow_header) - sizeof(struct necp_tlv_header) - NECP_TFO_COOKIE_LEN_MAX;
}
} else {
header_length = sizeof(struct necp_client_flow_header);
}
type = NECP_CLIENT_RESULT_FLAGS;
length = sizeof(header.flow_header.flags_value);
memcpy(&header.flow_header.flags_tlv_header.type, &type, sizeof(type));
memcpy(&header.flow_header.flags_tlv_header.length, &length, sizeof(length));
if (flow->assigned) {
flags |= NECP_CLIENT_RESULT_FLAG_FLOW_ASSIGNED;
}
if (flow->viable) {
flags |= NECP_CLIENT_RESULT_FLAG_FLOW_VIABLE;
}
if (flow_registration->defunct) {
flags |= NECP_CLIENT_RESULT_FLAG_DEFUNCT;
}
flags |= flow->necp_flow_flags;
memcpy(&header.flow_header.flags_value, &flags, sizeof(flags));
type = NECP_CLIENT_RESULT_INTERFACE;
length = sizeof(header.flow_header.interface_value);
memcpy(&header.flow_header.interface_tlv_header.type, &type, sizeof(type));
memcpy(&header.flow_header.interface_tlv_header.length, &length, sizeof(length));
struct necp_client_result_interface interface_struct;
interface_struct.generation = 0;
interface_struct.index = flow->interface_index;
memcpy(&header.flow_header.interface_value, &interface_struct, sizeof(interface_struct));
if (flow->nexus) {
type = NECP_CLIENT_RESULT_NETAGENT;
length = sizeof(header.agent_value);
memcpy(&header.agent_tlv_header.type, &type, sizeof(type));
memcpy(&header.agent_tlv_header.length, &length, sizeof(length));
struct necp_client_result_netagent agent_struct;
uuid_copy(agent_struct.netagent_uuid, flow->u.nexus_agent);
agent_struct.generation = netagent_get_generation(agent_struct.netagent_uuid);
memcpy(&header.agent_value, &agent_struct, sizeof(agent_struct));
}
// Don't include outer TLV header in length field
type = NECP_CLIENT_RESULT_FLOW;
length = (header_length - sizeof(struct necp_tlv_header) + flow->assigned_results_length);
if (flow->has_protoctl_event) {
length += sizeof(struct necp_client_flow_protoctl_event_header);
}
memcpy(&header.flow_header.outer_header.type, &type, sizeof(type));
memcpy(&header.flow_header.outer_header.length, &length, sizeof(length));
error = copyout(&header, uap->buffer + client->result_length + *assigned_results_cursor, header_length);
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy assigned results tlv_header copyout error (%d)", error);
return error;
}
*assigned_results_cursor += header_length;
if (flow->assigned_results && flow->assigned_results_length) {
// Write inner TLVs
error = copyout(flow->assigned_results, uap->buffer + client->result_length + *assigned_results_cursor,
flow->assigned_results_length);
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy assigned results copyout error (%d)", error);
return error;
}
}
*assigned_results_cursor += flow->assigned_results_length;
/* Read the protocol event and reset it */
if (flow->has_protoctl_event) {
struct necp_client_flow_protoctl_event_header protoctl_event_header = {};
type = NECP_CLIENT_RESULT_PROTO_CTL_EVENT;
length = sizeof(protoctl_event_header.protoctl_event);
memcpy(&protoctl_event_header.protoctl_tlv_header.type, &type, sizeof(type));
memcpy(&protoctl_event_header.protoctl_tlv_header.length, &length, sizeof(length));
memcpy(&protoctl_event_header.protoctl_event, &flow->protoctl_event,
sizeof(flow->protoctl_event));
error = copyout(&protoctl_event_header, uap->buffer + client->result_length + *assigned_results_cursor,
sizeof(protoctl_event_header));
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy protocol control event results"
" tlv_header copyout error (%d)", error);
return error;
}
*assigned_results_cursor += sizeof(protoctl_event_header);
flow->has_protoctl_event = FALSE;
flow->protoctl_event.protoctl_event_code = 0;
flow->protoctl_event.protoctl_event_val = 0;
flow->protoctl_event.protoctl_event_tcp_seq_num = 0;
}
}
}
if (!client_is_observed) {
flow_registration->flow_result_read = TRUE;
}
return 0;
}
static int
necp_client_copy_internal(struct necp_client *client, uuid_t client_id, bool client_is_observed, struct necp_client_action_args *uap, int *retval)
{
NECP_CLIENT_ASSERT_LOCKED(client);
int error = 0;
// Copy results out
if (uap->action == NECP_CLIENT_ACTION_COPY_PARAMETERS) {
if (uap->buffer_size < client->parameters_length) {
return EINVAL;
}
error = copyout(client->parameters, uap->buffer, client->parameters_length);
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy parameters copyout error (%d)", error);
return error;
}
*retval = client->parameters_length;
} else if (uap->action == NECP_CLIENT_ACTION_COPY_UPDATED_RESULT &&
client->result_read && client->group_members_read && !necp_client_has_unread_flows(client)) {
// Copy updates only, but nothing to read
// Just return 0 for bytes read
*retval = 0;
} else if (uap->action == NECP_CLIENT_ACTION_COPY_RESULT ||
uap->action == NECP_CLIENT_ACTION_COPY_UPDATED_RESULT) {
size_t assigned_results_size = client->assigned_group_members_length;
bool some_flow_is_defunct = false;
struct necp_client_flow_registration *single_flow_registration = NULL;
if (necp_client_id_is_flow(client_id)) {
single_flow_registration = necp_client_find_flow(client, client_id);
if (single_flow_registration != NULL) {
assigned_results_size += necp_client_calculate_flow_tlv_size(single_flow_registration);
}
} else {
// This request is for the client, so copy everything
struct necp_client_flow_registration *flow_registration = NULL;
RB_FOREACH(flow_registration, _necp_client_flow_tree, &client->flow_registrations) {
if (flow_registration->defunct) {
some_flow_is_defunct = true;
}
assigned_results_size += necp_client_calculate_flow_tlv_size(flow_registration);
}
}
if (uap->buffer_size < (client->result_length + assigned_results_size)) {
return EINVAL;
}
u_int32_t original_flags = 0;
bool flags_updated = false;
if (some_flow_is_defunct && client->legacy_client_is_flow) {
// If our client expects the defunct flag in the client, add it now
u_int32_t client_flags = 0;
u_int32_t value_size = 0;
u_int8_t *flags_pointer = necp_buffer_get_tlv_value(client->result, 0, &value_size);
if (flags_pointer != NULL && value_size == sizeof(client_flags)) {
memcpy(&client_flags, flags_pointer, value_size);
original_flags = client_flags;
client_flags |= NECP_CLIENT_RESULT_FLAG_DEFUNCT;
(void)necp_buffer_write_tlv_if_different(client->result, NECP_CLIENT_RESULT_FLAGS,
sizeof(client_flags), &client_flags, &flags_updated,
client->result, sizeof(client->result));
}
}
error = copyout(client->result, uap->buffer, client->result_length);
if (flags_updated) {
// Revert stored flags
(void)necp_buffer_write_tlv_if_different(client->result, NECP_CLIENT_RESULT_FLAGS,
sizeof(original_flags), &original_flags, &flags_updated,
client->result, sizeof(client->result));
}
if (error != 0) {
NECPLOG(LOG_ERR, "necp_client_copy result copyout error (%d)", error);
return error;
}
if (client->assigned_group_members != NULL && client->assigned_group_members_length > 0) {
error = copyout(client->assigned_group_members, uap->buffer + client->result_length, client->assigned_group_members_length);
if (error != 0) {
NECPLOG(LOG_ERR, "necp_client_copy group members copyout error (%d)", error);
return error;
}
}
size_t assigned_results_cursor = client->assigned_group_members_length; // Start with an offset based on the group members
if (necp_client_id_is_flow(client_id)) {
if (single_flow_registration != NULL) {
error = necp_client_fillout_flow_tlvs(client, client_is_observed, single_flow_registration, uap, &assigned_results_cursor);
if (error != 0) {
return error;
}
}
} else {
// This request is for the client, so copy everything
struct necp_client_flow_registration *flow_registration = NULL;
RB_FOREACH(flow_registration, _necp_client_flow_tree, &client->flow_registrations) {
error = necp_client_fillout_flow_tlvs(client, client_is_observed, flow_registration, uap, &assigned_results_cursor);
if (error != 0) {
return error;
}
}
}
*retval = client->result_length + assigned_results_cursor;
if (!client_is_observed) {
client->result_read = TRUE;
client->group_members_read = TRUE;
}
}
return 0;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_copy(struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
struct necp_client *client = NULL;
uuid_t client_id;
uuid_clear(client_id);
*retval = 0;
if (uap->buffer_size == 0 || uap->buffer == 0) {
return EINVAL;
}
if (uap->action != NECP_CLIENT_ACTION_COPY_PARAMETERS &&
uap->action != NECP_CLIENT_ACTION_COPY_RESULT &&
uap->action != NECP_CLIENT_ACTION_COPY_UPDATED_RESULT) {
return EINVAL;
}
if (uap->client_id) {
if (uap->client_id_len != sizeof(uuid_t)) {
NECPLOG(LOG_ERR, "Incorrect length (got %zu, expected %zu)", (size_t)uap->client_id_len, sizeof(uuid_t));
return ERANGE;
}
error = copyin(uap->client_id, client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy client_id copyin error (%d)", error);
return error;
}
}
const bool is_wildcard = (bool)uuid_is_null(client_id);
NECP_FD_LOCK(fd_data);
bool send_in_process_flow_divert_message = false;
if (is_wildcard) {
if (uap->action == NECP_CLIENT_ACTION_COPY_RESULT || uap->action == NECP_CLIENT_ACTION_COPY_UPDATED_RESULT) {
struct necp_client *find_client = NULL;
RB_FOREACH(find_client, _necp_client_tree, &fd_data->clients) {
NECP_CLIENT_LOCK(find_client);
if (!find_client->result_read || !find_client->group_members_read || necp_client_has_unread_flows(find_client)) {
client = find_client;
// Leave the client locked, and break
break;
}
NECP_CLIENT_UNLOCK(find_client);
}
if (client == NULL && fd_data->request_in_process_flow_divert) {
// No client found that needs update. Check for an event requesting in-process flow divert.
send_in_process_flow_divert_message = true;
}
}
} else {
client = necp_client_fd_find_client_and_lock(fd_data, client_id);
}
if (client != NULL) {
if (!send_in_process_flow_divert_message) {
// If client is set, it is locked
error = necp_client_copy_internal(client, client_id, FALSE, uap, retval);
}
NECP_CLIENT_UNLOCK(client);
}
if (send_in_process_flow_divert_message) {
fd_data->request_in_process_flow_divert = false;
struct necp_tlv_header request_tlv = {
.type = NECP_CLIENT_RESULT_REQUEST_IN_PROCESS_FLOW_DIVERT,
.length = 0,
};
if (uap->buffer_size < sizeof(request_tlv)) {
error = EINVAL;
} else {
error = copyout(&request_tlv, uap->buffer, sizeof(request_tlv));
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy request flow divert TLV copyout error (%d)", error);
} else {
*retval = sizeof(request_tlv);
}
}
}
// Unlock our own fd before moving on or returning
NECP_FD_UNLOCK(fd_data);
if (client == NULL && !send_in_process_flow_divert_message) {
if (fd_data->flags & NECP_OPEN_FLAG_OBSERVER) {
// Observers are allowed to lookup clients on other fds
// Lock tree
NECP_CLIENT_TREE_LOCK_SHARED();
bool found_client = FALSE;
client = necp_find_client_and_lock(client_id);
if (client != NULL) {
// Matched, copy out data
found_client = TRUE;
error = necp_client_copy_internal(client, client_id, TRUE, uap, retval);
NECP_CLIENT_UNLOCK(client);
}
// Unlock tree
NECP_CLIENT_TREE_UNLOCK();
// No client found, fail
if (!found_client) {
return ENOENT;
}
} else {
// No client found, and not allowed to search other fds, fail
return ENOENT;
}
}
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_copy_client_update(struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
*retval = 0;
if (!(fd_data->flags & NECP_OPEN_FLAG_PUSH_OBSERVER)) {
NECPLOG0(LOG_ERR, "NECP fd is not observer, cannot copy client update");
return EINVAL;
}
if (uap->client_id_len != sizeof(uuid_t) || uap->client_id == 0) {
NECPLOG0(LOG_ERR, "Client id invalid, cannot copy client update");
return EINVAL;
}
if (uap->buffer_size == 0 || uap->buffer == 0) {
NECPLOG0(LOG_ERR, "Buffer invalid, cannot copy client update");
return EINVAL;
}
NECP_FD_LOCK(fd_data);
struct necp_client_update *client_update = TAILQ_FIRST(&fd_data->update_list);
if (client_update != NULL) {
TAILQ_REMOVE(&fd_data->update_list, client_update, chain);
VERIFY(fd_data->update_count > 0);
fd_data->update_count--;
}
NECP_FD_UNLOCK(fd_data);
if (client_update != NULL) {
error = copyout(client_update->client_id, uap->client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "Copy client update copyout client id error (%d)", error);
} else {
if (uap->buffer_size < client_update->update_length) {
NECPLOG(LOG_ERR, "Buffer size cannot hold update (%zu < %zu)", (size_t)uap->buffer_size, client_update->update_length);
error = EINVAL;
} else {
error = copyout(client_update->update, uap->buffer, client_update->update_length);
if (error) {
NECPLOG(LOG_ERR, "Copy client update copyout error (%d)", error);
} else {
*retval = client_update->update_length;
}
}
}
necp_client_update_free(client_update);
client_update = NULL;
} else {
error = ENOENT;
}
return error;
}
static int
necp_client_copy_parameters_locked(struct necp_client *client,
struct necp_client_nexus_parameters *parameters)
{
VERIFY(parameters != NULL);
struct necp_client_parsed_parameters parsed_parameters = {};
int error = necp_client_parse_parameters(client, client->parameters, (u_int32_t)client->parameters_length, &parsed_parameters);
parameters->pid = client->proc_pid;
if (parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_EFFECTIVE_PID) {
parameters->epid = parsed_parameters.effective_pid;
} else {
parameters->epid = parameters->pid;
}
#if SKYWALK
parameters->port_reservation = client->port_reservation;
#endif /* !SKYWALK */
memcpy(&parameters->local_addr, &parsed_parameters.local_addr, sizeof(parameters->local_addr));
memcpy(&parameters->remote_addr, &parsed_parameters.remote_addr, sizeof(parameters->remote_addr));
parameters->ip_protocol = parsed_parameters.ip_protocol;
if (parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_TRANSPORT_PROTOCOL) {
parameters->transport_protocol = parsed_parameters.transport_protocol;
} else {
parameters->transport_protocol = parsed_parameters.ip_protocol;
}
parameters->ethertype = parsed_parameters.ethertype;
parameters->traffic_class = parsed_parameters.traffic_class;
if (uuid_is_null(client->override_euuid)) {
uuid_copy(parameters->euuid, parsed_parameters.effective_uuid);
} else {
uuid_copy(parameters->euuid, client->override_euuid);
}
parameters->is_listener = (parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_LISTENER) ? 1 : 0;
parameters->is_interpose = (parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_INTERPOSE) ? 1 : 0;
parameters->is_custom_ether = (parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_CUSTOM_ETHER) ? 1 : 0;
parameters->policy_id = client->policy_id;
parameters->skip_policy_id = client->skip_policy_id;
// parse client result flag
u_int32_t client_result_flags = 0;
u_int32_t value_size = 0;
u_int8_t *flags_pointer = NULL;
flags_pointer = necp_buffer_get_tlv_value(client->result, 0, &value_size);
if (flags_pointer && value_size == sizeof(client_result_flags)) {
memcpy(&client_result_flags, flags_pointer, value_size);
}
parameters->allow_qos_marking = (client_result_flags & NECP_CLIENT_RESULT_FLAG_ALLOW_QOS_MARKING) ? 1 : 0;
if (parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_LOCAL_ADDR_PREFERENCE) {
if (parsed_parameters.local_address_preference == NECP_CLIENT_PARAMETER_LOCAL_ADDRESS_PREFERENCE_DEFAULT) {
parameters->override_address_selection = false;
} else if (parsed_parameters.local_address_preference == NECP_CLIENT_PARAMETER_LOCAL_ADDRESS_PREFERENCE_TEMPORARY) {
parameters->override_address_selection = true;
parameters->use_stable_address = false;
} else if (parsed_parameters.local_address_preference == NECP_CLIENT_PARAMETER_LOCAL_ADDRESS_PREFERENCE_STABLE) {
parameters->override_address_selection = true;
parameters->use_stable_address = true;
}
} else {
parameters->override_address_selection = false;
}
if ((parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_FLAGS) &&
(parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_NO_WAKE_FROM_SLEEP)) {
parameters->no_wake_from_sleep = true;
}
if ((parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_FLAGS) &&
(parsed_parameters.flags & NECP_CLIENT_PARAMETER_FLAG_REUSE_LOCAL)) {
parameters->reuse_port = true;
}
#if SKYWALK
if (!parameters->is_listener) {
if (parsed_parameters.valid_fields & NECP_PARSED_PARAMETERS_FIELD_FLOW_DEMUX_PATTERN) {
if (parsed_parameters.demux_patterns[0].len == 0) {
parameters->is_demuxable_parent = 1;
} else {
if (client->validated_parent) {
ASSERT(!uuid_is_null(client->parent_client_id));
NECP_CLIENT_TREE_LOCK_SHARED();
struct necp_client *parent = necp_find_client_and_lock(client->parent_client_id);
if (parent != NULL) {
struct necp_client_flow_registration *parent_flow_registration = NULL;
RB_FOREACH(parent_flow_registration, _necp_client_flow_tree, &parent->flow_registrations) {
uuid_copy(parameters->parent_flow_uuid, parent_flow_registration->registration_id);
break;
}
NECP_CLIENT_UNLOCK(parent);
}
NECP_CLIENT_TREE_UNLOCK();
if (parsed_parameters.demux_pattern_count > 0) {
for (int i = 0; i < parsed_parameters.demux_pattern_count; i++) {
memcpy(&parameters->demux_patterns[i], &parsed_parameters.demux_patterns[i], sizeof(struct necp_demux_pattern));
}
parameters->demux_pattern_count = parsed_parameters.demux_pattern_count;
}
}
}
}
}
#endif // SKYWALK
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_list(struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
struct necp_client *find_client = NULL;
uuid_t *list = NULL;
u_int32_t requested_client_count = 0;
u_int32_t client_count = 0;
size_t copy_buffer_size = 0;
if (uap->buffer_size < sizeof(requested_client_count) || uap->buffer == 0) {
error = EINVAL;
goto done;
}
if (!(fd_data->flags & NECP_OPEN_FLAG_OBSERVER)) {
NECPLOG0(LOG_ERR, "Client does not hold necessary entitlement to list other NECP clients");
error = EACCES;
goto done;
}
error = copyin(uap->buffer, &requested_client_count, sizeof(requested_client_count));
if (error) {
goto done;
}
if (os_mul_overflow(sizeof(uuid_t), requested_client_count, &copy_buffer_size)) {
error = ERANGE;
goto done;
}
if (uap->buffer_size - sizeof(requested_client_count) != copy_buffer_size) {
error = EINVAL;
goto done;
}
if (copy_buffer_size > NECP_MAX_CLIENT_LIST_SIZE) {
error = EINVAL;
goto done;
}
if (requested_client_count > 0) {
if ((list = (uuid_t*)kalloc_data(copy_buffer_size, Z_WAITOK | Z_ZERO)) == NULL) {
error = ENOMEM;
goto done;
}
}
// Lock tree
NECP_CLIENT_TREE_LOCK_SHARED();
find_client = NULL;
RB_FOREACH(find_client, _necp_client_global_tree, &necp_client_global_tree) {
NECP_CLIENT_LOCK(find_client);
if (!uuid_is_null(find_client->client_id)) {
if (client_count < requested_client_count) {
uuid_copy(list[client_count], find_client->client_id);
}
client_count++;
}
NECP_CLIENT_UNLOCK(find_client);
}
// Unlock tree
NECP_CLIENT_TREE_UNLOCK();
error = copyout(&client_count, uap->buffer, sizeof(client_count));
if (error) {
NECPLOG(LOG_ERR, "necp_client_list buffer copyout error (%d)", error);
goto done;
}
if (requested_client_count > 0 &&
client_count > 0 &&
list != NULL) {
error = copyout(list, uap->buffer + sizeof(client_count), copy_buffer_size);
if (error) {
NECPLOG(LOG_ERR, "necp_client_list client count copyout error (%d)", error);
goto done;
}
}
done:
if (list != NULL) {
kfree_data(list, copy_buffer_size);
}
*retval = error;
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_add_flow(struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
struct necp_client *client = NULL;
uuid_t client_id;
struct necp_client_nexus_parameters parameters = {};
struct proc *proc = PROC_NULL;
struct necp_client_add_flow *add_request = NULL;
struct necp_client_add_flow *allocated_add_request = NULL;
struct necp_client_add_flow_default default_add_request = {};
const size_t buffer_size = uap->buffer_size;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t)) {
error = EINVAL;
NECPLOG(LOG_ERR, "necp_client_add_flow invalid client_id (length %zu)", (size_t)uap->client_id_len);
goto done;
}
if (uap->buffer == 0 || buffer_size < sizeof(struct necp_client_add_flow) ||
buffer_size > sizeof(struct necp_client_add_flow_default) * 4) {
error = EINVAL;
NECPLOG(LOG_ERR, "necp_client_add_flow invalid buffer (length %zu)", buffer_size);
goto done;
}
error = copyin(uap->client_id, client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_add_flow copyin client_id error (%d)", error);
goto done;
}
if (buffer_size <= sizeof(struct necp_client_add_flow_default)) {
// Fits in default size
error = copyin(uap->buffer, &default_add_request, buffer_size);
if (error) {
NECPLOG(LOG_ERR, "necp_client_add_flow copyin default_add_request error (%d)", error);
goto done;
}
add_request = (struct necp_client_add_flow *)&default_add_request;
} else {
allocated_add_request = (struct necp_client_add_flow *)kalloc_data(buffer_size, Z_WAITOK | Z_ZERO);
if (allocated_add_request == NULL) {
error = ENOMEM;
goto done;
}
error = copyin(uap->buffer, allocated_add_request, buffer_size);
if (error) {
NECPLOG(LOG_ERR, "necp_client_add_flow copyin default_add_request error (%d)", error);
goto done;
}
add_request = allocated_add_request;
}
NECP_FD_LOCK(fd_data);
pid_t pid = fd_data->proc_pid;
proc = proc_find(pid);
if (proc == PROC_NULL) {
NECP_FD_UNLOCK(fd_data);
NECPLOG(LOG_ERR, "necp_client_add_flow process not found for pid %d error (%d)", pid, error);
error = ESRCH;
goto done;
}
client = necp_client_fd_find_client_and_lock(fd_data, client_id);
if (client == NULL) {
error = ENOENT;
NECP_FD_UNLOCK(fd_data);
goto done;
}
// Using ADD_FLOW indicates that the client supports multiple flows per client
client->legacy_client_is_flow = false;
necp_client_retain_locked(client);
necp_client_copy_parameters_locked(client, &parameters);
struct necp_client_flow_registration *new_registration = necp_client_create_flow_registration(fd_data, client);
if (new_registration == NULL) {
error = ENOMEM;
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
NECPLOG0(LOG_ERR, "Failed to allocate flow registration");
goto done;
}
new_registration->flags = add_request->flags;
// Copy new ID out to caller
uuid_copy(add_request->registration_id, new_registration->registration_id);
NECP_CLIENT_FLOW_LOG(client, new_registration, "adding flow");
size_t trailer_offset = (sizeof(struct necp_client_add_flow) +
add_request->stats_request_count * sizeof(struct necp_client_flow_stats));
// Copy override address
struct sockaddr *override_address = NULL;
if (add_request->flags & NECP_CLIENT_FLOW_FLAGS_OVERRIDE_ADDRESS) {
size_t offset_of_address = trailer_offset;
if (buffer_size >= offset_of_address + sizeof(struct sockaddr_in)) {
override_address = (struct sockaddr *)(((uint8_t *)add_request) + offset_of_address);
if (buffer_size >= offset_of_address + override_address->sa_len &&
override_address->sa_len <= sizeof(parameters.remote_addr)) {
memcpy(&parameters.remote_addr, override_address, override_address->sa_len);
trailer_offset += override_address->sa_len;
} else {
override_address = NULL;
}
}
}
// Copy override IP protocol
if (add_request->flags & NECP_CLIENT_FLOW_FLAGS_OVERRIDE_IP_PROTOCOL) {
size_t offset_of_ip_protocol = trailer_offset;
if (buffer_size >= offset_of_ip_protocol + sizeof(uint8_t)) {
uint8_t *ip_protocol_p = (uint8_t *)(((uint8_t *)add_request) + offset_of_ip_protocol);
memcpy(&parameters.ip_protocol, ip_protocol_p, sizeof(uint8_t));
}
}
#if SKYWALK
if (add_request->flags & NECP_CLIENT_FLOW_FLAGS_ALLOW_NEXUS) {
void *assigned_results = NULL;
size_t assigned_results_length = 0;
uint32_t interface_index = 0;
// Validate that the nexus UUID is assigned
bool found_nexus = false;
for (u_int32_t option_i = 0; option_i < client->interface_option_count; option_i++) {
if (option_i < NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT) {
struct necp_client_interface_option *option = &client->interface_options[option_i];
if (uuid_compare(option->nexus_agent, add_request->agent_uuid) == 0) {
interface_index = option->interface_index;
found_nexus = true;
break;
}
} else {
struct necp_client_interface_option *option = &client->extra_interface_options[option_i - NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT];
if (uuid_compare(option->nexus_agent, add_request->agent_uuid) == 0) {
interface_index = option->interface_index;
found_nexus = true;
break;
}
}
}
if (!found_nexus) {
NECPLOG0(LOG_ERR, "Requested nexus not found");
} else {
necp_client_add_nexus_flow_if_needed(new_registration, add_request->agent_uuid, interface_index);
error = netagent_client_message_with_params(add_request->agent_uuid,
((new_registration->flags & NECP_CLIENT_FLOW_FLAGS_USE_CLIENT_ID) ?
client->client_id :
new_registration->registration_id),
pid, client->agent_handle,
NETAGENT_MESSAGE_TYPE_REQUEST_NEXUS,
(struct necp_client_agent_parameters *)&parameters,
&assigned_results, &assigned_results_length);
if (error != 0) {
VERIFY(assigned_results == NULL);
VERIFY(assigned_results_length == 0);
NECPLOG(LOG_ERR, "netagent_client_message error (%d)", error);
} else if (assigned_results != NULL) {
if (!necp_assign_client_result_locked(proc, fd_data, client, new_registration, add_request->agent_uuid,
assigned_results, assigned_results_length, false, false)) {
kfree_data(assigned_results, assigned_results_length);
}
} else if (override_address != NULL) {
// Save the overridden address in the flow. Find the correct flow,
// and assign just the address TLV. Don't set the assigned flag.
struct necp_client_flow *flow = NULL;
LIST_FOREACH(flow, &new_registration->flow_list, flow_chain) {
if (flow->nexus &&
uuid_compare(flow->u.nexus_agent, add_request->agent_uuid) == 0) {
if (flow->assigned_results == NULL) {
memcpy(&flow->remote_addr, override_address, override_address->sa_len);
uuid_t empty_uuid;
uuid_clear(empty_uuid);
flow->assigned_results = necp_create_nexus_assign_message(empty_uuid, 0, NULL, 0,
(struct necp_client_endpoint *)&flow->local_addr,
(struct necp_client_endpoint *)&flow->remote_addr,
NULL, 0, NULL, &flow->assigned_results_length);
}
break;
}
}
}
}
}
// Don't request stats if nexus creation fails
if (error == 0 && add_request->stats_request_count > 0 && necp_arena_initialize(fd_data, true) == 0) {
struct necp_client_flow_stats *stats_request = (struct necp_client_flow_stats *)&add_request->stats_requests[0];
struct necp_stats_bufreq bufreq = {};
NECP_CLIENT_FLOW_LOG(client, new_registration, "Initializing stats");
bufreq.necp_stats_bufreq_id = NECP_CLIENT_STATISTICS_BUFREQ_ID;
bufreq.necp_stats_bufreq_type = stats_request->stats_type;
bufreq.necp_stats_bufreq_ver = stats_request->stats_version;
bufreq.necp_stats_bufreq_size = stats_request->stats_size;
bufreq.necp_stats_bufreq_uaddr = stats_request->stats_addr;
(void)necp_stats_initialize(fd_data, client, new_registration, &bufreq);
stats_request->stats_type = bufreq.necp_stats_bufreq_type;
stats_request->stats_version = bufreq.necp_stats_bufreq_ver;
stats_request->stats_size = bufreq.necp_stats_bufreq_size;
stats_request->stats_addr = bufreq.necp_stats_bufreq_uaddr;
}
#endif /* !SKYWALK */
if (error == 0 &&
(add_request->flags & NECP_CLIENT_FLOW_FLAGS_BROWSE ||
add_request->flags & NECP_CLIENT_FLOW_FLAGS_RESOLVE)) {
uint32_t interface_index = IFSCOPE_NONE;
ifnet_head_lock_shared();
struct ifnet *interface = NULL;
TAILQ_FOREACH(interface, &ifnet_head, if_link) {
ifnet_lock_shared(interface);
if (interface->if_agentids != NULL) {
for (u_int32_t i = 0; i < interface->if_agentcount; i++) {
if (uuid_compare(interface->if_agentids[i], add_request->agent_uuid) == 0) {
interface_index = interface->if_index;
break;
}
}
}
ifnet_lock_done(interface);
if (interface_index != IFSCOPE_NONE) {
break;
}
}
ifnet_head_done();
necp_client_add_nexus_flow_if_needed(new_registration, add_request->agent_uuid, interface_index);
error = netagent_client_message_with_params(add_request->agent_uuid,
((new_registration->flags & NECP_CLIENT_FLOW_FLAGS_USE_CLIENT_ID) ?
client->client_id :
new_registration->registration_id),
pid, client->agent_handle,
NETAGENT_MESSAGE_TYPE_CLIENT_ASSERT,
(struct necp_client_agent_parameters *)&parameters,
NULL, NULL);
if (error != 0) {
NECPLOG(LOG_ERR, "netagent_client_message error (%d)", error);
}
}
if (error != 0) {
// Encountered an error in adding the flow, destroy the flow registration
#if SKYWALK
necp_destroy_flow_stats(fd_data, new_registration, NULL, false);
#endif /* SKYWALK */
NECP_FLOW_TREE_LOCK_EXCLUSIVE();
RB_REMOVE(_necp_client_flow_global_tree, &necp_client_flow_global_tree, new_registration);
NECP_FLOW_TREE_UNLOCK();
RB_REMOVE(_necp_fd_flow_tree, &fd_data->flows, new_registration);
necp_destroy_client_flow_registration(client, new_registration, fd_data->proc_pid, true);
new_registration = NULL;
}
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
necp_client_release(client);
if (error != 0) {
goto done;
}
// Copy the request back out to the caller with assigned fields
error = copyout(add_request, uap->buffer, buffer_size);
if (error != 0) {
NECPLOG(LOG_ERR, "necp_client_add_flow copyout add_request error (%d)", error);
}
done:
*retval = error;
if (error != 0) {
NECPLOG(LOG_ERR, "Add flow error (%d)", error);
}
if (allocated_add_request != NULL) {
kfree_data(allocated_add_request, buffer_size);
}
if (proc != PROC_NULL) {
proc_rele(proc);
}
return error;
}
#if SKYWALK
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_request_nexus(struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
struct necp_client *client = NULL;
uuid_t client_id;
struct necp_client_nexus_parameters parameters = {};
struct proc *proc = PROC_NULL;
const size_t buffer_size = uap->buffer_size;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t)) {
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_request_nexus copyin client_id error (%d)", error);
goto done;
}
NECP_FD_LOCK(fd_data);
pid_t pid = fd_data->proc_pid;
proc = proc_find(pid);
if (proc == PROC_NULL) {
NECP_FD_UNLOCK(fd_data);
NECPLOG(LOG_ERR, "necp_client_request_nexus process not found for pid %d error (%d)", pid, error);
error = ESRCH;
goto done;
}
client = necp_client_fd_find_client_and_lock(fd_data, client_id);
if (client == NULL) {
NECP_FD_UNLOCK(fd_data);
error = ENOENT;
goto done;
}
// Using REQUEST_NEXUS indicates that the client only supports one flow per client
client->legacy_client_is_flow = true;
necp_client_retain_locked(client);
necp_client_copy_parameters_locked(client, &parameters);
do {
void *assigned_results = NULL;
size_t assigned_results_length = 0;
uuid_t nexus_uuid;
uint32_t interface_index = 0;
// Validate that the nexus UUID is assigned
bool found_nexus = false;
for (u_int32_t option_i = 0; option_i < client->interface_option_count; option_i++) {
if (option_i < NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT) {
struct necp_client_interface_option *option = &client->interface_options[option_i];
if (!uuid_is_null(option->nexus_agent)) {
uuid_copy(nexus_uuid, option->nexus_agent);
interface_index = option->interface_index;
found_nexus = true;
break;
}
} else {
struct necp_client_interface_option *option = &client->extra_interface_options[option_i - NECP_CLIENT_INTERFACE_OPTION_STATIC_COUNT];
if (!uuid_is_null(option->nexus_agent)) {
uuid_copy(nexus_uuid, option->nexus_agent);
interface_index = option->interface_index;
found_nexus = true;
break;
}
}
}
if (!found_nexus) {
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
necp_client_release(client);
// Break the loop
error = ENETDOWN;
goto done;
}
struct necp_client_flow_registration *new_registration = necp_client_create_flow_registration(fd_data, client);
if (new_registration == NULL) {
error = ENOMEM;
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
necp_client_release(client);
NECPLOG0(LOG_ERR, "Failed to allocate flow registration");
goto done;
}
new_registration->flags = (NECP_CLIENT_FLOW_FLAGS_ALLOW_NEXUS | NECP_CLIENT_FLOW_FLAGS_USE_CLIENT_ID);
necp_client_add_nexus_flow_if_needed(new_registration, nexus_uuid, interface_index);
// Note: Any clients using "request_nexus" are not flow-registration aware.
// Register the Client ID rather than the Registration ID with the nexus, since
// the client will send traffic based on the client ID.
error = netagent_client_message_with_params(nexus_uuid,
((new_registration->flags & NECP_CLIENT_FLOW_FLAGS_USE_CLIENT_ID) ?
client->client_id :
new_registration->registration_id),
pid, client->agent_handle,
NETAGENT_MESSAGE_TYPE_REQUEST_NEXUS,
(struct necp_client_agent_parameters *)&parameters,
&assigned_results, &assigned_results_length);
if (error) {
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
necp_client_release(client);
VERIFY(assigned_results == NULL);
VERIFY(assigned_results_length == 0);
NECPLOG(LOG_ERR, "netagent_client_message error (%d)", error);
goto done;
}
if (assigned_results != NULL) {
if (!necp_assign_client_result_locked(proc, fd_data, client, new_registration, nexus_uuid,
assigned_results, assigned_results_length, false, false)) {
kfree_data(assigned_results, assigned_results_length);
}
}
if (uap->buffer != 0 && buffer_size == sizeof(struct necp_stats_bufreq) &&
necp_arena_initialize(fd_data, true) == 0) {
struct necp_stats_bufreq bufreq = {};
int copy_error = copyin(uap->buffer, &bufreq, buffer_size);
if (copy_error) {
NECPLOG(LOG_ERR, "necp_client_request_nexus copyin bufreq error (%d)", copy_error);
} else {
(void)necp_stats_initialize(fd_data, client, new_registration, &bufreq);
copy_error = copyout(&bufreq, uap->buffer, buffer_size);
if (copy_error != 0) {
NECPLOG(LOG_ERR, "necp_client_request_nexus copyout bufreq error (%d)", copy_error);
}
}
}
} while (false);
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
necp_client_release(client);
done:
*retval = error;
if (error != 0) {
NECPLOG(LOG_ERR, "Request nexus error (%d)", error);
}
if (proc != PROC_NULL) {
proc_rele(proc);
}
return error;
}
#endif /* !SKYWALK */
static void
necp_client_add_assertion(struct necp_client *client, uuid_t netagent_uuid)
{
struct necp_client_assertion *new_assertion = NULL;
new_assertion = kalloc_type(struct necp_client_assertion,
Z_WAITOK | Z_NOFAIL);
uuid_copy(new_assertion->asserted_netagent, netagent_uuid);
LIST_INSERT_HEAD(&client->assertion_list, new_assertion, assertion_chain);
}
static bool
necp_client_remove_assertion(struct necp_client *client, uuid_t netagent_uuid)
{
struct necp_client_assertion *found_assertion = NULL;
struct necp_client_assertion *search_assertion = NULL;
LIST_FOREACH(search_assertion, &client->assertion_list, assertion_chain) {
if (uuid_compare(search_assertion->asserted_netagent, netagent_uuid) == 0) {
found_assertion = search_assertion;
break;
}
}
if (found_assertion == NULL) {
NECPLOG0(LOG_ERR, "Netagent uuid not previously asserted");
return false;
}
LIST_REMOVE(found_assertion, assertion_chain);
kfree_type(struct necp_client_assertion, found_assertion);
return true;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_agent_action(struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
struct necp_client *client = NULL;
uuid_t client_id;
bool acted_on_agent = FALSE;
u_int8_t *parameters = NULL;
const size_t buffer_size = uap->buffer_size;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t) ||
buffer_size == 0 || uap->buffer == 0) {
NECPLOG0(LOG_ERR, "necp_client_agent_action invalid parameters");
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_agent_action copyin client_id error (%d)", error);
goto done;
}
if (buffer_size > NECP_MAX_AGENT_ACTION_SIZE) {
NECPLOG(LOG_ERR, "necp_client_agent_action invalid buffer size (>%u)", NECP_MAX_AGENT_ACTION_SIZE);
error = EINVAL;
goto done;
}
if ((parameters = (u_int8_t *)kalloc_data(buffer_size, Z_WAITOK | Z_ZERO)) == NULL) {
NECPLOG0(LOG_ERR, "necp_client_agent_action malloc failed");
error = ENOMEM;
goto done;
}
error = copyin(uap->buffer, parameters, buffer_size);
if (error) {
NECPLOG(LOG_ERR, "necp_client_agent_action parameters copyin error (%d)", error);
goto done;
}
NECP_FD_LOCK(fd_data);
client = necp_client_fd_find_client_and_lock(fd_data, client_id);
if (client != NULL) {
size_t offset = 0;
while ((offset + sizeof(struct necp_tlv_header)) <= buffer_size) {
u_int8_t type = necp_buffer_get_tlv_type(parameters, offset);
u_int32_t length = necp_buffer_get_tlv_length(parameters, offset);
if (length > (buffer_size - (offset + sizeof(struct necp_tlv_header)))) {
// If the length is larger than what can fit in the remaining parameters size, bail
NECPLOG(LOG_ERR, "Invalid TLV length (%u)", length);
break;
}
if (length >= sizeof(uuid_t)) {
u_int8_t *value = necp_buffer_get_tlv_value(parameters, offset, NULL);
if (value == NULL) {
NECPLOG0(LOG_ERR, "Invalid TLV value");
break;
}
if (type == NECP_CLIENT_PARAMETER_TRIGGER_AGENT ||
type == NECP_CLIENT_PARAMETER_ASSERT_AGENT ||
type == NECP_CLIENT_PARAMETER_UNASSERT_AGENT) {
uuid_t agent_uuid;
uuid_copy(agent_uuid, value);
u_int8_t netagent_message_type = 0;
if (type == NECP_CLIENT_PARAMETER_TRIGGER_AGENT) {
netagent_message_type = NETAGENT_MESSAGE_TYPE_CLIENT_TRIGGER;
} else if (type == NECP_CLIENT_PARAMETER_ASSERT_AGENT) {
netagent_message_type = NETAGENT_MESSAGE_TYPE_CLIENT_ASSERT;
} else if (type == NECP_CLIENT_PARAMETER_UNASSERT_AGENT) {
netagent_message_type = NETAGENT_MESSAGE_TYPE_CLIENT_UNASSERT;
}
// Before unasserting, verify that the assertion was already taken
if (type == NECP_CLIENT_PARAMETER_UNASSERT_AGENT) {
if (!necp_client_remove_assertion(client, agent_uuid)) {
error = ENOENT;
break;
}
}
struct necp_client_nexus_parameters parsed_parameters = {};
necp_client_copy_parameters_locked(client, &parsed_parameters);
error = netagent_client_message_with_params(agent_uuid,
client_id,
fd_data->proc_pid,
client->agent_handle,
netagent_message_type,
(struct necp_client_agent_parameters *)&parsed_parameters,
NULL, NULL);
if (error == 0) {
acted_on_agent = TRUE;
} else {
break;
}
// Only save the assertion if the action succeeded
if (type == NECP_CLIENT_PARAMETER_ASSERT_AGENT) {
necp_client_add_assertion(client, agent_uuid);
}
} else if (type == NECP_CLIENT_PARAMETER_AGENT_ADD_GROUP_MEMBERS ||
type == NECP_CLIENT_PARAMETER_AGENT_REMOVE_GROUP_MEMBERS) {
uuid_t agent_uuid;
uuid_copy(agent_uuid, value);
u_int8_t netagent_message_type = 0;
if (type == NECP_CLIENT_PARAMETER_AGENT_ADD_GROUP_MEMBERS) {
netagent_message_type = NETAGENT_MESSAGE_TYPE_ADD_GROUP_MEMBERS;
} else if (type == NECP_CLIENT_PARAMETER_AGENT_REMOVE_GROUP_MEMBERS) {
netagent_message_type = NETAGENT_MESSAGE_TYPE_REMOVE_GROUP_MEMBERS;
}
struct necp_client_group_members group_members = {};
group_members.group_members_length = (length - sizeof(uuid_t));
group_members.group_members = (value + sizeof(uuid_t));
error = netagent_client_message_with_params(agent_uuid,
client_id,
fd_data->proc_pid,
client->agent_handle,
netagent_message_type,
(struct necp_client_agent_parameters *)&group_members,
NULL, NULL);
if (error == 0) {
acted_on_agent = TRUE;
} else {
break;
}
} else if (type == NECP_CLIENT_PARAMETER_REPORT_AGENT_ERROR) {
uuid_t agent_uuid;
uuid_copy(agent_uuid, value);
struct necp_client_agent_parameters agent_params = {};
if ((length - sizeof(uuid_t)) >= sizeof(agent_params.u.error.error)) {
memcpy(&agent_params.u.error.error,
(value + sizeof(uuid_t)),
sizeof(agent_params.u.error.error));
}
bool agent_reported = false;
for (int agent_i = 0; agent_i < NECP_FD_REPORTED_AGENT_COUNT; agent_i++) {
if (uuid_compare(agent_uuid, fd_data->reported_agents.agent_uuid[agent_i]) == 0) {
// Found a match, already reported
agent_reported = true;
break;
}
}
agent_params.u.error.force_report = !agent_reported;
if (!agent_reported) {
// Save this agent as having been reported
bool saved_agent_uuid = false;
for (int agent_i = 0; agent_i < NECP_FD_REPORTED_AGENT_COUNT; agent_i++) {
if (uuid_is_null(fd_data->reported_agents.agent_uuid[agent_i])) {
uuid_copy(fd_data->reported_agents.agent_uuid[agent_i], agent_uuid);
saved_agent_uuid = true;
break;
}
}
if (!saved_agent_uuid) {
// Reported agent UUIDs full, move over and insert at the end
for (int agent_i = 0; agent_i < NECP_FD_REPORTED_AGENT_COUNT; agent_i++) {
if (agent_i + 1 < NECP_FD_REPORTED_AGENT_COUNT) {
uuid_copy(fd_data->reported_agents.agent_uuid[agent_i], fd_data->reported_agents.agent_uuid[agent_i + 1]);
} else {
uuid_copy(fd_data->reported_agents.agent_uuid[agent_i], agent_uuid);
}
}
}
}
error = netagent_client_message_with_params(agent_uuid,
client_id,
fd_data->proc_pid,
client->agent_handle,
NETAGENT_MESSAGE_TYPE_CLIENT_ERROR,
&agent_params,
NULL, NULL);
if (error == 0) {
acted_on_agent = TRUE;
} else {
break;
}
}
}
offset += sizeof(struct necp_tlv_header) + length;
}
NECP_CLIENT_UNLOCK(client);
}
NECP_FD_UNLOCK(fd_data);
if (!acted_on_agent &&
error == 0) {
error = ENOENT;
}
done:
*retval = error;
if (parameters != NULL) {
kfree_data(parameters, buffer_size);
parameters = NULL;
}
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_copy_agent(__unused struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
uuid_t agent_uuid;
const size_t buffer_size = uap->buffer_size;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t) ||
buffer_size == 0 || uap->buffer == 0) {
NECPLOG0(LOG_ERR, "necp_client_copy_agent bad input");
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, agent_uuid, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy_agent copyin agent_uuid error (%d)", error);
goto done;
}
error = netagent_copyout(agent_uuid, uap->buffer, buffer_size);
if (error) {
// netagent_copyout already logs appropriate errors
goto done;
}
done:
*retval = error;
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_agent_use(struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
struct necp_client *client = NULL;
uuid_t client_id;
struct necp_agent_use_parameters parameters = {};
const size_t buffer_size = uap->buffer_size;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t) ||
buffer_size != sizeof(parameters) || uap->buffer == 0) {
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "Copyin client_id error (%d)", error);
goto done;
}
error = copyin(uap->buffer, &parameters, buffer_size);
if (error) {
NECPLOG(LOG_ERR, "Parameters copyin error (%d)", error);
goto done;
}
NECP_FD_LOCK(fd_data);
client = necp_client_fd_find_client_and_lock(fd_data, client_id);
if (client != NULL) {
error = netagent_use(parameters.agent_uuid, &parameters.out_use_count);
NECP_CLIENT_UNLOCK(client);
} else {
error = ENOENT;
}
NECP_FD_UNLOCK(fd_data);
if (error == 0) {
error = copyout(&parameters, uap->buffer, buffer_size);
if (error) {
NECPLOG(LOG_ERR, "Parameters copyout error (%d)", error);
goto done;
}
}
done:
*retval = error;
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_acquire_agent_token(__unused struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
uuid_t agent_uuid = {};
const size_t buffer_size = uap->buffer_size;
*retval = 0;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t) ||
buffer_size == 0 || uap->buffer == 0) {
NECPLOG0(LOG_ERR, "necp_client_copy_agent bad input");
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, agent_uuid, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy_agent copyin agent_uuid error (%d)", error);
goto done;
}
error = netagent_acquire_token(agent_uuid, uap->buffer, buffer_size, retval);
done:
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_copy_interface(__unused struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
u_int32_t interface_index = 0;
struct necp_interface_details interface_details = {};
if (uap->client_id == 0 || uap->client_id_len != sizeof(u_int32_t) ||
uap->buffer_size < sizeof(interface_details) ||
uap->buffer == 0) {
NECPLOG0(LOG_ERR, "necp_client_copy_interface bad input");
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, &interface_index, sizeof(u_int32_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy_interface copyin interface_index error (%d)", error);
goto done;
}
if (interface_index == 0) {
error = ENOENT;
NECPLOG(LOG_ERR, "necp_client_copy_interface bad interface_index (%d)", interface_index);
goto done;
}
lck_mtx_lock(rnh_lock);
ifnet_head_lock_shared();
ifnet_t interface = NULL;
if (interface_index != IFSCOPE_NONE && interface_index <= (u_int32_t)if_index) {
interface = ifindex2ifnet[interface_index];
}
if (interface != NULL) {
if (interface->if_xname != NULL) {
strlcpy((char *)&interface_details.name, interface->if_xname, sizeof(interface_details.name));
}
interface_details.index = interface->if_index;
interface_details.generation = ifnet_get_generation(interface);
if (interface->if_delegated.ifp != NULL) {
interface_details.delegate_index = interface->if_delegated.ifp->if_index;
}
interface_details.functional_type = if_functional_type(interface, TRUE);
if (IFNET_IS_EXPENSIVE(interface)) {
interface_details.flags |= NECP_INTERFACE_FLAG_EXPENSIVE;
}
if (IFNET_IS_CONSTRAINED(interface)) {
interface_details.flags |= NECP_INTERFACE_FLAG_CONSTRAINED;
}
if ((interface->if_eflags & IFEF_TXSTART) == IFEF_TXSTART) {
interface_details.flags |= NECP_INTERFACE_FLAG_TXSTART;
}
if ((interface->if_eflags & IFEF_NOACKPRI) == IFEF_NOACKPRI) {
interface_details.flags |= NECP_INTERFACE_FLAG_NOACKPRI;
}
if ((interface->if_eflags & IFEF_3CA) == IFEF_3CA) {
interface_details.flags |= NECP_INTERFACE_FLAG_3CARRIERAGG;
}
if (IFNET_IS_LOW_POWER(interface)) {
interface_details.flags |= NECP_INTERFACE_FLAG_IS_LOW_POWER;
}
if (interface->if_xflags & IFXF_MPK_LOG) {
interface_details.flags |= NECP_INTERFACE_FLAG_MPK_LOG;
}
if (interface->if_flags & IFF_MULTICAST) {
interface_details.flags |= NECP_INTERFACE_FLAG_SUPPORTS_MULTICAST;
}
if (IS_INTF_CLAT46(interface)) {
interface_details.flags |= NECP_INTERFACE_FLAG_HAS_NAT64;
}
interface_details.mtu = interface->if_mtu;
#if SKYWALK
fsw_get_tso_capabilities(interface, &interface_details.tso_max_segment_size_v4,
&interface_details.tso_max_segment_size_v6);
interface_details.hwcsum_flags = interface->if_hwassist & IFNET_CHECKSUMF;
#endif /* SKYWALK */
u_int8_t ipv4_signature_len = sizeof(interface_details.ipv4_signature.signature);
u_int16_t ipv4_signature_flags;
if (ifnet_get_netsignature(interface, AF_INET, &ipv4_signature_len, &ipv4_signature_flags,
(u_int8_t *)&interface_details.ipv4_signature) != 0) {
ipv4_signature_len = 0;
}
interface_details.ipv4_signature.signature_len = ipv4_signature_len;
// Check for default scoped routes for IPv4 and IPv6
union necp_sockaddr_union default_address;
struct rtentry *v4Route = NULL;
memset(&default_address, 0, sizeof(default_address));
default_address.sa.sa_family = AF_INET;
default_address.sa.sa_len = sizeof(struct sockaddr_in);
v4Route = rtalloc1_scoped_locked((struct sockaddr *)&default_address, 0, 0,
interface->if_index);
if (v4Route != NULL) {
if (v4Route->rt_ifp != NULL && !IS_INTF_CLAT46(v4Route->rt_ifp)) {
interface_details.flags |= NECP_INTERFACE_FLAG_IPV4_ROUTABLE;
}
rtfree_locked(v4Route);
v4Route = NULL;
}
struct rtentry *v6Route = NULL;
memset(&default_address, 0, sizeof(default_address));
default_address.sa.sa_family = AF_INET6;
default_address.sa.sa_len = sizeof(struct sockaddr_in6);
v6Route = rtalloc1_scoped_locked((struct sockaddr *)&default_address, 0, 0,
interface->if_index);
if (v6Route != NULL) {
if (v6Route->rt_ifp != NULL) {
interface_details.flags |= NECP_INTERFACE_FLAG_IPV6_ROUTABLE;
}
rtfree_locked(v6Route);
v6Route = NULL;
}
u_int8_t ipv6_signature_len = sizeof(interface_details.ipv6_signature.signature);
u_int16_t ipv6_signature_flags;
if (ifnet_get_netsignature(interface, AF_INET6, &ipv6_signature_len, &ipv6_signature_flags,
(u_int8_t *)&interface_details.ipv6_signature) != 0) {
ipv6_signature_len = 0;
}
interface_details.ipv6_signature.signature_len = ipv6_signature_len;
ifnet_lock_shared(interface);
struct ifaddr *ifa = NULL;
TAILQ_FOREACH(ifa, &interface->if_addrhead, ifa_link) {
IFA_LOCK(ifa);
if (ifa->ifa_addr->sa_family == AF_INET) {
interface_details.flags |= NECP_INTERFACE_FLAG_HAS_NETMASK;
interface_details.ipv4_netmask = ((struct in_ifaddr *)ifa)->ia_sockmask.sin_addr.s_addr;
if (interface->if_flags & IFF_BROADCAST) {
interface_details.flags |= NECP_INTERFACE_FLAG_HAS_BROADCAST;
interface_details.ipv4_broadcast = ((struct in_ifaddr *)ifa)->ia_broadaddr.sin_addr.s_addr;
}
}
IFA_UNLOCK(ifa);
}
interface_details.radio_type = interface->if_radio_type;
if (interface_details.radio_type == 0 && interface->if_delegated.ifp) {
interface_details.radio_type = interface->if_delegated.ifp->if_radio_type;
}
ifnet_lock_done(interface);
}
ifnet_head_done();
lck_mtx_unlock(rnh_lock);
// If the client is using an older version of the struct, copy that length
error = copyout(&interface_details, uap->buffer, sizeof(interface_details));
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy_interface copyout error (%d)", error);
goto done;
}
done:
*retval = error;
return error;
}
#if SKYWALK
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_get_interface_address(__unused struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
u_int32_t interface_index = IFSCOPE_NONE;
struct sockaddr_storage address = {};
const size_t buffer_size = uap->buffer_size;
if (uap->client_id == 0 || uap->client_id_len != sizeof(u_int32_t) ||
buffer_size < sizeof(struct sockaddr_in) ||
buffer_size > sizeof(struct sockaddr_storage) ||
uap->buffer == 0) {
NECPLOG0(LOG_ERR, "necp_client_get_interface_address bad input");
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, &interface_index, sizeof(u_int32_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_get_interface_address copyin interface_index error (%d)", error);
goto done;
}
if (interface_index == IFSCOPE_NONE) {
error = ENOENT;
NECPLOG(LOG_ERR, "necp_client_get_interface_address bad interface_index (%d)", interface_index);
goto done;
}
error = copyin(uap->buffer, &address, buffer_size);
if (error) {
NECPLOG(LOG_ERR, "necp_client_get_interface_address copyin address error (%d)", error);
goto done;
}
if (address.ss_family != AF_INET && address.ss_family != AF_INET6) {
error = EINVAL;
NECPLOG(LOG_ERR, "necp_client_get_interface_address invalid address family (%u)", address.ss_family);
goto done;
}
if (address.ss_len != buffer_size) {
error = EINVAL;
NECPLOG(LOG_ERR, "necp_client_get_interface_address invalid address length (%u)", address.ss_len);
goto done;
}
ifnet_head_lock_shared();
ifnet_t ifp = NULL;
if (interface_index != IFSCOPE_NONE && interface_index <= (u_int32_t)if_index) {
ifp = ifindex2ifnet[interface_index];
}
ifnet_head_done();
if (ifp == NULL) {
error = ENOENT;
NECPLOG0(LOG_ERR, "necp_client_get_interface_address no matching interface found");
goto done;
}
struct rtentry *rt = rtalloc1_scoped((struct sockaddr *)&address, 0, 0, interface_index);
if (rt == NULL) {
error = EINVAL;
NECPLOG0(LOG_ERR, "necp_client_get_interface_address route lookup failed");
goto done;
}
uint32_t gencount = 0;
struct sockaddr_storage local_address = {};
error = flow_route_select_laddr((union sockaddr_in_4_6 *)&local_address,
(union sockaddr_in_4_6 *)&address, ifp, rt, &gencount, 1);
rtfree(rt);
rt = NULL;
if (error) {
NECPLOG(LOG_ERR, "necp_client_get_interface_address local address selection failed (%d)", error);
goto done;
}
if (local_address.ss_len > buffer_size) {
error = EMSGSIZE;
NECPLOG(LOG_ERR, "necp_client_get_interface_address local address too long for buffer (%u)",
local_address.ss_len);
goto done;
}
error = copyout(&local_address, uap->buffer, local_address.ss_len);
if (error) {
NECPLOG(LOG_ERR, "necp_client_get_interface_address copyout error (%d)", error);
goto done;
}
done:
*retval = error;
return error;
}
extern char *proc_name_address(void *p);
int
necp_stats_ctor(struct skmem_obj_info *oi, struct skmem_obj_info *oim,
void *arg, uint32_t skmflag)
{
#pragma unused(arg, skmflag)
struct necp_all_kstats *kstats = SKMEM_OBJ_ADDR(oi);
ASSERT(oim != NULL && SKMEM_OBJ_ADDR(oim) != NULL);
ASSERT(SKMEM_OBJ_SIZE(oi) == SKMEM_OBJ_SIZE(oim));
kstats->necp_stats_ustats = SKMEM_OBJ_ADDR(oim);
return 0;
}
int
necp_stats_dtor(void *addr, void *arg)
{
#pragma unused(addr, arg)
struct necp_all_kstats *kstats = addr;
kstats->necp_stats_ustats = NULL;
return 0;
}
static void
necp_fd_insert_stats_arena(struct necp_fd_data *fd_data, struct necp_arena_info *nai)
{
NECP_FD_ASSERT_LOCKED(fd_data);
VERIFY(!(nai->nai_flags & NAIF_ATTACHED));
VERIFY(nai->nai_chain.le_next == NULL && nai->nai_chain.le_prev == NULL);
LIST_INSERT_HEAD(&fd_data->stats_arena_list, nai, nai_chain);
nai->nai_flags |= NAIF_ATTACHED;
necp_arena_info_retain(nai); // for the list
}
static void
necp_fd_remove_stats_arena(struct necp_fd_data *fd_data, struct necp_arena_info *nai)
{
#pragma unused(fd_data)
NECP_FD_ASSERT_LOCKED(fd_data);
VERIFY(nai->nai_flags & NAIF_ATTACHED);
VERIFY(nai->nai_use_count >= 1);
LIST_REMOVE(nai, nai_chain);
nai->nai_flags &= ~NAIF_ATTACHED;
nai->nai_chain.le_next = NULL;
nai->nai_chain.le_prev = NULL;
necp_arena_info_release(nai); // for the list
}
static struct necp_arena_info *
necp_fd_mredirect_stats_arena(struct necp_fd_data *fd_data, struct proc *proc)
{
struct necp_arena_info *nai, *nai_ret = NULL;
NECP_FD_ASSERT_LOCKED(fd_data);
// Redirect currently-active stats arena and remove it from the active state;
// upon process resumption, new flow request would trigger the creation of
// another active arena.
if ((nai = fd_data->stats_arena_active) != NULL) {
boolean_t need_defunct = FALSE;
ASSERT(!(nai->nai_flags & (NAIF_REDIRECT | NAIF_DEFUNCT)));
VERIFY(nai->nai_use_count >= 2);
ASSERT(nai->nai_arena != NULL);
ASSERT(nai->nai_mmap.ami_mapref != NULL);
int err = skmem_arena_mredirect(nai->nai_arena, &nai->nai_mmap, proc, &need_defunct);
VERIFY(err == 0);
// must be TRUE since we don't mmap the arena more than once
VERIFY(need_defunct == TRUE);
nai->nai_flags |= NAIF_REDIRECT;
nai_ret = nai; // return to caller
necp_arena_info_release(nai); // for fd_data
fd_data->stats_arena_active = nai = NULL;
}
#if (DEVELOPMENT || DEBUG)
// make sure this list now contains nothing but redirected/defunct arenas
LIST_FOREACH(nai, &fd_data->stats_arena_list, nai_chain) {
ASSERT(nai->nai_use_count >= 1);
ASSERT(nai->nai_flags & (NAIF_REDIRECT | NAIF_DEFUNCT));
}
#endif /* (DEVELOPMENT || DEBUG) */
return nai_ret;
}
static void
necp_arena_info_retain(struct necp_arena_info *nai)
{
nai->nai_use_count++;
VERIFY(nai->nai_use_count != 0);
}
static void
necp_arena_info_release(struct necp_arena_info *nai)
{
VERIFY(nai->nai_use_count > 0);
if (--nai->nai_use_count == 0) {
necp_arena_info_free(nai);
}
}
static struct necp_arena_info *
necp_arena_info_alloc(void)
{
return zalloc_flags(necp_arena_info_zone, Z_WAITOK | Z_ZERO);
}
static void
necp_arena_info_free(struct necp_arena_info *nai)
{
VERIFY(nai->nai_chain.le_next == NULL && nai->nai_chain.le_prev == NULL);
VERIFY(nai->nai_use_count == 0);
// NOTE: destroying the arena requires that all outstanding objects
// that were allocated have been freed, else it will assert.
if (nai->nai_arena != NULL) {
skmem_arena_munmap(nai->nai_arena, &nai->nai_mmap);
skmem_arena_release(nai->nai_arena);
OSDecrementAtomic(&necp_arena_count);
nai->nai_arena = NULL;
nai->nai_roff = 0;
}
ASSERT(nai->nai_arena == NULL);
ASSERT(nai->nai_mmap.ami_mapref == NULL);
ASSERT(nai->nai_mmap.ami_arena == NULL);
ASSERT(nai->nai_mmap.ami_maptask == TASK_NULL);
zfree(necp_arena_info_zone, nai);
}
static int
necp_arena_create(struct necp_fd_data *fd_data, size_t obj_size, size_t obj_cnt, struct proc *p)
{
struct skmem_region_params srp_ustats = {};
struct skmem_region_params srp_kstats = {};
struct necp_arena_info *nai;
char name[32];
int error = 0;
NECP_FD_ASSERT_LOCKED(fd_data);
ASSERT(fd_data->stats_arena_active == NULL);
ASSERT(p != PROC_NULL);
ASSERT(proc_pid(p) == fd_data->proc_pid);
// inherit the default parameters for the stats region
srp_ustats = *skmem_get_default(SKMEM_REGION_USTATS);
srp_kstats = *skmem_get_default(SKMEM_REGION_KSTATS);
// enable multi-segment mode
srp_ustats.srp_cflags &= ~SKMEM_REGION_CR_MONOLITHIC;
srp_kstats.srp_cflags &= ~SKMEM_REGION_CR_MONOLITHIC;
// configure and adjust the region parameters
srp_ustats.srp_r_obj_cnt = srp_kstats.srp_r_obj_cnt = obj_cnt;
srp_ustats.srp_r_obj_size = srp_kstats.srp_r_obj_size = obj_size;
skmem_region_params_config(&srp_ustats);
skmem_region_params_config(&srp_kstats);
nai = necp_arena_info_alloc();
nai->nai_proc_pid = fd_data->proc_pid;
(void) snprintf(name, sizeof(name), "stats-%u.%s.%d", fd_data->stats_arena_gencnt, proc_name_address(p), fd_data->proc_pid);
nai->nai_arena = skmem_arena_create_for_necp(name, &srp_ustats, &srp_kstats, &error);
ASSERT(nai->nai_arena != NULL || error != 0);
if (error != 0) {
NECPLOG(LOG_ERR, "failed to create stats arena for pid %d\n", fd_data->proc_pid);
} else {
OSIncrementAtomic(&necp_arena_count);
// Get region offsets from base of mmap span; the arena
// doesn't need to be mmap'd at this point, since we simply
// compute the relative offset.
nai->nai_roff = skmem_arena_get_region_offset(nai->nai_arena, SKMEM_REGION_USTATS);
// map to the task/process; upon success, the base address of the region
// will be returned in nai_mmap.ami_mapaddr; this can be communicated to
// the process.
error = skmem_arena_mmap(nai->nai_arena, p, &nai->nai_mmap);
if (error != 0) {
NECPLOG(LOG_ERR, "failed to map stats arena for pid %d\n", fd_data->proc_pid);
}
}
if (error == 0) {
fd_data->stats_arena_active = nai;
necp_arena_info_retain(nai); // for fd_data
necp_fd_insert_stats_arena(fd_data, nai);
++fd_data->stats_arena_gencnt;
} else {
necp_arena_info_free(nai);
}
return error;
}
static int
necp_arena_stats_obj_alloc(struct necp_fd_data *fd_data,
mach_vm_offset_t *off,
struct necp_arena_info **stats_arena,
void **kstats_kaddr,
boolean_t cansleep)
{
struct skmem_cache *kstats_cp = NULL;
void *ustats_obj = NULL;
void *kstats_obj = NULL;
struct necp_all_kstats *kstats = NULL;
struct skmem_obj_info kstats_oi = {};
ASSERT(off != NULL);
ASSERT(stats_arena != NULL && *stats_arena == NULL);
ASSERT(kstats_kaddr != NULL && *kstats_kaddr == NULL);
NECP_FD_ASSERT_LOCKED(fd_data);
ASSERT(fd_data->stats_arena_active != NULL);
ASSERT(fd_data->stats_arena_active->nai_arena != NULL);
kstats_cp = skmem_arena_necp(fd_data->stats_arena_active->nai_arena)->arc_kstats_cache;
if ((kstats_obj = skmem_cache_alloc(kstats_cp, (cansleep ? SKMEM_SLEEP : SKMEM_NOSLEEP))) == NULL) {
return ENOMEM;
}
kstats = (struct necp_all_kstats*)kstats_obj;
ustats_obj = kstats->necp_stats_ustats;
skmem_cache_get_obj_info(kstats_cp, kstats_obj, &kstats_oi, NULL);
ASSERT(SKMEM_OBJ_SIZE(&kstats_oi) >= sizeof(struct necp_all_stats));
// reset all stats counters
bzero(ustats_obj, SKMEM_OBJ_SIZE(&kstats_oi));
bzero(&kstats->necp_stats_comm, sizeof(struct necp_all_stats));
*stats_arena = fd_data->stats_arena_active;
*kstats_kaddr = kstats_obj;
// kstats and ustats are mirrored and have the same offset
*off = fd_data->stats_arena_active->nai_roff + SKMEM_OBJ_ROFF(&kstats_oi);
return 0;
}
static void
necp_arena_stats_obj_free(struct necp_fd_data *fd_data, struct necp_arena_info *stats_arena, void **kstats_kaddr, mach_vm_address_t *ustats_uaddr)
{
#pragma unused(fd_data)
NECP_FD_ASSERT_LOCKED(fd_data);
ASSERT(stats_arena != NULL);
ASSERT(stats_arena->nai_arena != NULL);
ASSERT(kstats_kaddr != NULL && *kstats_kaddr != NULL);
ASSERT(ustats_uaddr != NULL);
skmem_cache_free(skmem_arena_necp(stats_arena->nai_arena)->arc_kstats_cache, *kstats_kaddr);
*kstats_kaddr = NULL;
*ustats_uaddr = 0;
}
// This routine returns the KVA of the sysctls object, as well as the
// offset of that object relative to the mmap base address for the
// task/process.
static void *
necp_arena_sysctls_obj(struct necp_fd_data *fd_data, mach_vm_offset_t *off, size_t *size)
{
void *objaddr;
NECP_FD_ASSERT_LOCKED(fd_data);
ASSERT(fd_data->sysctl_arena != NULL);
// kernel virtual address of the sysctls object
objaddr = skmem_arena_system_sysctls_obj_addr(fd_data->sysctl_arena);
ASSERT(objaddr != NULL);
// Return the relative offset of the sysctls object; there is
// only 1 object in the entire sysctls region, and therefore the
// object's offset is simply the region's offset in the arena.
// (sysctl_mmap.ami_mapaddr + offset) is the address of this object
// in the task/process.
if (off != NULL) {
*off = fd_data->system_sysctls_roff;
}
if (size != NULL) {
*size = skmem_arena_system_sysctls_obj_size(fd_data->sysctl_arena);
ASSERT(*size != 0);
}
return objaddr;
}
static void
necp_stats_arenas_destroy(struct necp_fd_data *fd_data, boolean_t closing)
{
struct necp_arena_info *nai, *nai_tmp;
NECP_FD_ASSERT_LOCKED(fd_data);
// If reaping (not closing), release reference only for idle active arena; the reference
// count must be 2 by now, when it's not being referred to by any clients/flows.
if ((nai = fd_data->stats_arena_active) != NULL && (closing || nai->nai_use_count == 2)) {
VERIFY(nai->nai_use_count >= 2);
necp_arena_info_release(nai); // for fd_data
fd_data->stats_arena_active = NULL;
}
// clean up any defunct arenas left in the list
LIST_FOREACH_SAFE(nai, &fd_data->stats_arena_list, nai_chain, nai_tmp) {
// If reaping, release reference if the list holds the last one
if (closing || nai->nai_use_count == 1) {
VERIFY(nai->nai_use_count >= 1);
// callee unchains nai (and may free it)
necp_fd_remove_stats_arena(fd_data, nai);
}
}
}
static void
necp_sysctl_arena_destroy(struct necp_fd_data *fd_data)
{
NECP_FD_ASSERT_LOCKED(fd_data);
// NOTE: destroying the arena requires that all outstanding objects
// that were allocated have been freed, else it will assert.
if (fd_data->sysctl_arena != NULL) {
skmem_arena_munmap(fd_data->sysctl_arena, &fd_data->sysctl_mmap);
skmem_arena_release(fd_data->sysctl_arena);
OSDecrementAtomic(&necp_sysctl_arena_count);
fd_data->sysctl_arena = NULL;
fd_data->system_sysctls_roff = 0;
}
}
static int
necp_arena_initialize(struct necp_fd_data *fd_data, bool locked)
{
int error = 0;
size_t stats_obj_size = MAX(sizeof(struct necp_all_stats), sizeof(struct necp_all_kstats));
if (!locked) {
NECP_FD_LOCK(fd_data);
}
if (fd_data->stats_arena_active == NULL) {
error = necp_arena_create(fd_data, stats_obj_size,
NECP_MAX_PER_PROCESS_CLIENT_STATISTICS_STRUCTS,
current_proc());
}
if (!locked) {
NECP_FD_UNLOCK(fd_data);
}
return error;
}
static int
necp_sysctl_arena_initialize(struct necp_fd_data *fd_data, bool locked)
{
int error = 0;
if (!locked) {
NECP_FD_LOCK(fd_data);
}
NECP_FD_ASSERT_LOCKED(fd_data);
if (fd_data->sysctl_arena == NULL) {
char name[32];
struct proc *p = current_proc();
ASSERT(p != PROC_NULL);
ASSERT(proc_pid(p) == fd_data->proc_pid);
(void) snprintf(name, sizeof(name), "sysctl.%s.%d", proc_name_address(p), fd_data->proc_pid);
fd_data->sysctl_arena = skmem_arena_create_for_system(name, &error);
ASSERT(fd_data->sysctl_arena != NULL || error != 0);
if (error != 0) {
NECPLOG(LOG_ERR, "failed to create arena for pid %d\n", fd_data->proc_pid);
} else {
OSIncrementAtomic(&necp_sysctl_arena_count);
// Get region offsets from base of mmap span; the arena
// doesn't need to be mmap'd at this point, since we simply
// compute the relative offset.
fd_data->system_sysctls_roff = skmem_arena_get_region_offset(fd_data->sysctl_arena, SKMEM_REGION_SYSCTLS);
// map to the task/process; upon success, the base address of the region
// will be returned in nai_mmap.ami_mapaddr; this can be communicated to
// the process.
error = skmem_arena_mmap(fd_data->sysctl_arena, p, &fd_data->sysctl_mmap);
if (error != 0) {
NECPLOG(LOG_ERR, "failed to map sysctl arena for pid %d\n", fd_data->proc_pid);
necp_sysctl_arena_destroy(fd_data);
}
}
}
if (!locked) {
NECP_FD_UNLOCK(fd_data);
}
return error;
}
static int
necp_client_stats_bufreq(struct necp_fd_data *fd_data,
struct necp_client *client,
struct necp_client_flow_registration *flow_registration,
struct necp_stats_bufreq *bufreq,
struct necp_stats_hdr *out_header)
{
int error = 0;
NECP_CLIENT_ASSERT_LOCKED(client);
NECP_FD_ASSERT_LOCKED(fd_data);
if ((bufreq->necp_stats_bufreq_id == NECP_CLIENT_STATISTICS_BUFREQ_ID) &&
((bufreq->necp_stats_bufreq_type == NECP_CLIENT_STATISTICS_TYPE_TCP &&
bufreq->necp_stats_bufreq_ver == NECP_CLIENT_STATISTICS_TYPE_TCP_CURRENT_VER) ||
(bufreq->necp_stats_bufreq_type == NECP_CLIENT_STATISTICS_TYPE_UDP &&
bufreq->necp_stats_bufreq_ver == NECP_CLIENT_STATISTICS_TYPE_UDP_CURRENT_VER) ||
(bufreq->necp_stats_bufreq_type == NECP_CLIENT_STATISTICS_TYPE_QUIC &&
bufreq->necp_stats_bufreq_ver == NECP_CLIENT_STATISTICS_TYPE_QUIC_CURRENT_VER)) &&
(bufreq->necp_stats_bufreq_size == sizeof(struct necp_all_stats))) {
// There should be one and only one stats allocation per client.
// If asked more than once, we just repeat ourselves.
if (flow_registration->ustats_uaddr == 0) {
mach_vm_offset_t off;
ASSERT(flow_registration->stats_arena == NULL);
ASSERT(flow_registration->kstats_kaddr == NULL);
ASSERT(flow_registration->ustats_uaddr == 0);
error = necp_arena_stats_obj_alloc(fd_data, &off, &flow_registration->stats_arena, &flow_registration->kstats_kaddr, FALSE);
if (error == 0) {
// upon success, hold a reference for the client; this is released when the client is removed/closed
ASSERT(flow_registration->stats_arena != NULL);
necp_arena_info_retain(flow_registration->stats_arena);
// compute user address based on mapping info and object offset
flow_registration->ustats_uaddr = flow_registration->stats_arena->nai_mmap.ami_mapaddr + off;
// add to collect_stats list
NECP_STATS_LIST_LOCK_EXCLUSIVE();
necp_client_retain_locked(client); // Add a reference to the client
LIST_INSERT_HEAD(&necp_collect_stats_flow_list, flow_registration, collect_stats_chain);
NECP_STATS_LIST_UNLOCK();
necp_schedule_collect_stats_clients(FALSE);
} else {
ASSERT(flow_registration->stats_arena == NULL);
ASSERT(flow_registration->kstats_kaddr == NULL);
}
}
if (flow_registration->ustats_uaddr != 0) {
ASSERT(error == 0);
ASSERT(flow_registration->stats_arena != NULL);
ASSERT(flow_registration->kstats_kaddr != NULL);
struct necp_all_kstats *kstats = (struct necp_all_kstats *)flow_registration->kstats_kaddr;
kstats->necp_stats_ustats->all_stats_u.tcp_stats.necp_tcp_hdr.necp_stats_type = bufreq->necp_stats_bufreq_type;
kstats->necp_stats_ustats->all_stats_u.tcp_stats.necp_tcp_hdr.necp_stats_ver = bufreq->necp_stats_bufreq_ver;
if (out_header) {
out_header->necp_stats_type = bufreq->necp_stats_bufreq_type;
out_header->necp_stats_ver = bufreq->necp_stats_bufreq_ver;
}
bufreq->necp_stats_bufreq_uaddr = flow_registration->ustats_uaddr;
}
} else {
error = EINVAL;
}
return error;
}
static int
necp_client_stats_initial(struct necp_client_flow_registration *flow_registration, uint32_t stats_type, uint32_t stats_ver)
{
// An attempted create
assert(flow_registration->stats_handler_context == NULL);
assert(flow_registration->stats_arena);
assert(flow_registration->ustats_uaddr);
assert(flow_registration->kstats_kaddr);
int error = 0;
uint64_t ntstat_properties = necp_find_netstat_initial_properties(flow_registration->client);
switch (stats_type) {
case NECP_CLIENT_STATISTICS_TYPE_TCP: {
if (stats_ver == NECP_CLIENT_STATISTICS_TYPE_TCP_VER_1) {
flow_registration->stats_handler_context = ntstat_userland_stats_open((userland_stats_provider_context *)flow_registration,
NSTAT_PROVIDER_TCP_USERLAND, ntstat_properties, necp_request_tcp_netstats, necp_find_extension_info);
if (flow_registration->stats_handler_context == NULL) {
error = EIO;
}
} else {
error = ENOTSUP;
}
break;
}
case NECP_CLIENT_STATISTICS_TYPE_UDP: {
if (stats_ver == NECP_CLIENT_STATISTICS_TYPE_UDP_VER_1) {
flow_registration->stats_handler_context = ntstat_userland_stats_open((userland_stats_provider_context *)flow_registration,
NSTAT_PROVIDER_UDP_USERLAND, ntstat_properties, necp_request_udp_netstats, necp_find_extension_info);
if (flow_registration->stats_handler_context == NULL) {
error = EIO;
}
} else {
error = ENOTSUP;
}
break;
}
case NECP_CLIENT_STATISTICS_TYPE_QUIC: {
if (stats_ver == NECP_CLIENT_STATISTICS_TYPE_QUIC_VER_1 && flow_registration->flags & NECP_CLIENT_FLOW_FLAGS_ALLOW_NEXUS) {
flow_registration->stats_handler_context = ntstat_userland_stats_open((userland_stats_provider_context *)flow_registration,
NSTAT_PROVIDER_QUIC_USERLAND, ntstat_properties, necp_request_quic_netstats, necp_find_extension_info);
if (flow_registration->stats_handler_context == NULL) {
error = EIO;
}
} else {
error = ENOTSUP;
}
break;
}
default: {
error = ENOTSUP;
break;
}
}
return error;
}
static int
necp_stats_initialize(struct necp_fd_data *fd_data,
struct necp_client *client,
struct necp_client_flow_registration *flow_registration,
struct necp_stats_bufreq *bufreq)
{
int error = 0;
struct necp_stats_hdr stats_hdr = {};
NECP_CLIENT_ASSERT_LOCKED(client);
NECP_FD_ASSERT_LOCKED(fd_data);
VERIFY(fd_data->stats_arena_active != NULL);
VERIFY(fd_data->stats_arena_active->nai_arena != NULL);
VERIFY(!(fd_data->stats_arena_active->nai_flags & (NAIF_REDIRECT | NAIF_DEFUNCT)));
if (bufreq == NULL) {
return EINVAL;
}
// Setup stats region
error = necp_client_stats_bufreq(fd_data, client, flow_registration, bufreq, &stats_hdr);
if (error) {
return error;
}
// Notify ntstat about new flow
if (flow_registration->stats_handler_context == NULL) {
error = necp_client_stats_initial(flow_registration, stats_hdr.necp_stats_type, stats_hdr.necp_stats_ver);
if (flow_registration->stats_handler_context != NULL) {
ntstat_userland_stats_event(flow_registration->stats_handler_context, NECP_CLIENT_STATISTICS_EVENT_INIT);
}
NECP_CLIENT_FLOW_LOG(client, flow_registration, "Initialized stats <error %d>", error);
}
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_map_sysctls(__unused struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int result = 0;
if (!retval) {
retval = &result;
}
do {
mach_vm_address_t uaddr = 0;
if (uap->buffer_size != sizeof(uaddr)) {
*retval = EINVAL;
break;
}
*retval = necp_sysctl_arena_initialize(fd_data, false);
if (*retval != 0) {
break;
}
mach_vm_offset_t off = 0;
void *location = NULL;
NECP_FD_LOCK(fd_data);
location = necp_arena_sysctls_obj(fd_data, &off, NULL);
NECP_FD_UNLOCK(fd_data);
if (location == NULL) {
*retval = ENOENT;
break;
}
uaddr = fd_data->sysctl_mmap.ami_mapaddr + off;
*retval = copyout(&uaddr, uap->buffer, sizeof(uaddr));
} while (false);
return *retval;
}
#endif /* !SKYWALK */
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_copy_route_statistics(__unused struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
struct necp_client *client = NULL;
uuid_t client_id;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t) ||
uap->buffer_size < sizeof(struct necp_stat_counts) || uap->buffer == 0) {
NECPLOG0(LOG_ERR, "necp_client_copy_route_statistics bad input");
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy_route_statistics copyin client_id error (%d)", error);
goto done;
}
// Lock
NECP_FD_LOCK(fd_data);
client = necp_client_fd_find_client_and_lock(fd_data, client_id);
if (client != NULL) {
NECP_CLIENT_ROUTE_LOCK(client);
struct necp_stat_counts route_stats = {};
if (client->current_route != NULL && client->current_route->rt_stats != NULL) {
struct nstat_counts *rt_stats = client->current_route->rt_stats;
route_stats.necp_stat_rxpackets = os_atomic_load(&rt_stats->nstat_rxpackets, relaxed);
route_stats.necp_stat_rxbytes = os_atomic_load(&rt_stats->nstat_rxbytes, relaxed);
route_stats.necp_stat_txpackets = os_atomic_load(&rt_stats->nstat_txpackets, relaxed);
route_stats.necp_stat_txbytes = os_atomic_load(&rt_stats->nstat_txbytes, relaxed);
route_stats.necp_stat_rxduplicatebytes = rt_stats->nstat_rxduplicatebytes;
route_stats.necp_stat_rxoutoforderbytes = rt_stats->nstat_rxoutoforderbytes;
route_stats.necp_stat_txretransmit = rt_stats->nstat_txretransmit;
route_stats.necp_stat_connectattempts = rt_stats->nstat_connectattempts;
route_stats.necp_stat_connectsuccesses = rt_stats->nstat_connectsuccesses;
route_stats.necp_stat_min_rtt = rt_stats->nstat_min_rtt;
route_stats.necp_stat_avg_rtt = rt_stats->nstat_avg_rtt;
route_stats.necp_stat_var_rtt = rt_stats->nstat_var_rtt;
route_stats.necp_stat_route_flags = client->current_route->rt_flags;
}
// Unlock before copying out
NECP_CLIENT_ROUTE_UNLOCK(client);
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
error = copyout(&route_stats, uap->buffer, sizeof(route_stats));
if (error) {
NECPLOG(LOG_ERR, "necp_client_copy_route_statistics copyout error (%d)", error);
}
} else {
// Unlock
NECP_FD_UNLOCK(fd_data);
error = ENOENT;
}
done:
*retval = error;
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_update_cache(struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
struct necp_client *client = NULL;
uuid_t client_id;
if (uap->client_id == 0 || uap->client_id_len != sizeof(uuid_t)) {
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, client_id, sizeof(uuid_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_update_cache copyin client_id error (%d)", error);
goto done;
}
NECP_FD_LOCK(fd_data);
client = necp_client_fd_find_client_and_lock(fd_data, client_id);
if (client == NULL) {
NECP_FD_UNLOCK(fd_data);
error = ENOENT;
goto done;
}
struct necp_client_flow_registration *flow_registration = necp_client_find_flow(client, client_id);
if (flow_registration == NULL) {
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
error = ENOENT;
goto done;
}
NECP_CLIENT_ROUTE_LOCK(client);
// This needs to be changed when TFO/ECN is supported by multiple flows
struct necp_client_flow *flow = LIST_FIRST(&flow_registration->flow_list);
if (flow == NULL ||
(flow->remote_addr.sa.sa_family != AF_INET &&
flow->remote_addr.sa.sa_family != AF_INET6) ||
(flow->local_addr.sa.sa_family != AF_INET &&
flow->local_addr.sa.sa_family != AF_INET6)) {
error = EINVAL;
NECPLOG(LOG_ERR, "necp_client_update_cache no flow error (%d)", error);
goto done_unlock;
}
necp_cache_buffer cache_buffer;
memset(&cache_buffer, 0, sizeof(cache_buffer));
if (uap->buffer_size != sizeof(necp_cache_buffer) ||
uap->buffer == USER_ADDR_NULL) {
error = EINVAL;
goto done_unlock;
}
error = copyin(uap->buffer, &cache_buffer, sizeof(cache_buffer));
if (error) {
NECPLOG(LOG_ERR, "necp_client_update_cache copyin cache buffer error (%d)", error);
goto done_unlock;
}
if (cache_buffer.necp_cache_buf_type == NECP_CLIENT_CACHE_TYPE_ECN &&
cache_buffer.necp_cache_buf_ver == NECP_CLIENT_CACHE_TYPE_ECN_VER_1) {
if (cache_buffer.necp_cache_buf_size != sizeof(necp_tcp_ecn_cache) ||
cache_buffer.necp_cache_buf_addr == USER_ADDR_NULL) {
error = EINVAL;
goto done_unlock;
}
necp_tcp_ecn_cache ecn_cache_buffer;
memset(&ecn_cache_buffer, 0, sizeof(ecn_cache_buffer));
error = copyin(cache_buffer.necp_cache_buf_addr, &ecn_cache_buffer, sizeof(necp_tcp_ecn_cache));
if (error) {
NECPLOG(LOG_ERR, "necp_client_update_cache copyin ecn cache buffer error (%d)", error);
goto done_unlock;
}
if (client->current_route != NULL && client->current_route->rt_ifp != NULL) {
if (!client->platform_binary) {
ecn_cache_buffer.necp_tcp_ecn_heuristics_success = 0;
}
tcp_heuristics_ecn_update(&ecn_cache_buffer, client->current_route->rt_ifp,
(union sockaddr_in_4_6 *)&flow->local_addr);
}
} else if (cache_buffer.necp_cache_buf_type == NECP_CLIENT_CACHE_TYPE_TFO &&
cache_buffer.necp_cache_buf_ver == NECP_CLIENT_CACHE_TYPE_TFO_VER_1) {
if (cache_buffer.necp_cache_buf_size != sizeof(necp_tcp_tfo_cache) ||
cache_buffer.necp_cache_buf_addr == USER_ADDR_NULL) {
error = EINVAL;
goto done_unlock;
}
necp_tcp_tfo_cache tfo_cache_buffer;
memset(&tfo_cache_buffer, 0, sizeof(tfo_cache_buffer));
error = copyin(cache_buffer.necp_cache_buf_addr, &tfo_cache_buffer, sizeof(necp_tcp_tfo_cache));
if (error) {
NECPLOG(LOG_ERR, "necp_client_update_cache copyin tfo cache buffer error (%d)", error);
goto done_unlock;
}
if (client->current_route != NULL && client->current_route->rt_ifp != NULL) {
if (!client->platform_binary) {
tfo_cache_buffer.necp_tcp_tfo_heuristics_success = 0;
}
tcp_heuristics_tfo_update(&tfo_cache_buffer, client->current_route->rt_ifp,
(union sockaddr_in_4_6 *)&flow->local_addr,
(union sockaddr_in_4_6 *)&flow->remote_addr);
}
} else {
error = EINVAL;
}
done_unlock:
NECP_CLIENT_ROUTE_UNLOCK(client);
NECP_CLIENT_UNLOCK(client);
NECP_FD_UNLOCK(fd_data);
done:
*retval = error;
return error;
}
// Most results will fit into this size
struct necp_client_signable_default {
uuid_t client_id;
u_int32_t sign_type;
u_int8_t signable_data[NECP_CLIENT_ACTION_SIGN_DEFAULT_DATA_LENGTH];
} __attribute__((__packed__));
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_sign(__unused struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
u_int8_t tag[NECP_CLIENT_ACTION_SIGN_TAG_LENGTH] = {};
struct necp_client_signable *signable = NULL;
struct necp_client_signable *allocated_signable = NULL;
struct necp_client_signable_default default_signable = {};
size_t tag_size = sizeof(tag);
const size_t signable_length = uap->client_id_len;
const size_t return_tag_length = uap->buffer_size;
*retval = 0;
const bool has_resolver_entitlement = (priv_check_cred(kauth_cred_get(), PRIV_NET_VALIDATED_RESOLVER, 0) == 0);
if (!has_resolver_entitlement) {
NECPLOG0(LOG_ERR, "Process does not hold the necessary entitlement to sign resolver answers");
error = EPERM;
goto done;
}
if (uap->client_id == 0 || signable_length < sizeof(*signable) || signable_length > NECP_CLIENT_ACTION_SIGN_MAX_TOTAL_LENGTH) {
error = EINVAL;
goto done;
}
if (uap->buffer == 0 || return_tag_length != NECP_CLIENT_ACTION_SIGN_TAG_LENGTH) {
error = EINVAL;
goto done;
}
if (signable_length <= sizeof(default_signable)) {
signable = (struct necp_client_signable *)&default_signable;
} else {
if ((allocated_signable = (struct necp_client_signable *)kalloc_data(signable_length, Z_WAITOK | Z_ZERO)) == NULL) {
NECPLOG(LOG_ERR, "necp_client_sign allocate signable %zu failed", signable_length);
error = ENOMEM;
goto done;
}
signable = allocated_signable;
}
error = copyin(uap->client_id, signable, signable_length);
if (error) {
NECPLOG(LOG_ERR, "necp_client_sign copyin signable error (%d)", error);
goto done;
}
size_t data_length = 0;
switch (signable->sign_type) {
case NECP_CLIENT_SIGN_TYPE_RESOLVER_ANSWER:
case NECP_CLIENT_SIGN_TYPE_SYSTEM_RESOLVER_ANSWER: {
data_length = (sizeof(struct necp_client_host_resolver_answer) - sizeof(struct necp_client_signable));
if (signable_length < (sizeof(struct necp_client_signable) + data_length)) {
error = EINVAL;
goto done;
}
struct necp_client_host_resolver_answer *signable_struct = (struct necp_client_host_resolver_answer *)signable;
if (signable_struct->hostname_length > NECP_CLIENT_ACTION_SIGN_MAX_STRING_LENGTH ||
signable_length != (sizeof(struct necp_client_signable) + data_length + signable_struct->hostname_length)) {
error = EINVAL;
goto done;
}
data_length += signable_struct->hostname_length;
break;
}
case NECP_CLIENT_SIGN_TYPE_BROWSE_RESULT:
case NECP_CLIENT_SIGN_TYPE_SYSTEM_BROWSE_RESULT: {
data_length = (sizeof(struct necp_client_browse_result) - sizeof(struct necp_client_signable));
if (signable_length < (sizeof(struct necp_client_signable) + data_length)) {
error = EINVAL;
goto done;
}
struct necp_client_browse_result *signable_struct = (struct necp_client_browse_result *)signable;
if (signable_struct->service_length > NECP_CLIENT_ACTION_SIGN_MAX_STRING_LENGTH ||
signable_length != (sizeof(struct necp_client_signable) + data_length + signable_struct->service_length)) {
error = EINVAL;
goto done;
}
data_length += signable_struct->service_length;
break;
}
case NECP_CLIENT_SIGN_TYPE_SERVICE_RESOLVER_ANSWER:
case NECP_CLIENT_SIGN_TYPE_SYSTEM_SERVICE_RESOLVER_ANSWER: {
data_length = (sizeof(struct necp_client_service_resolver_answer) - sizeof(struct necp_client_signable));
if (signable_length < (sizeof(struct necp_client_signable) + data_length)) {
error = EINVAL;
goto done;
}
struct necp_client_service_resolver_answer *signable_struct = (struct necp_client_service_resolver_answer *)signable;
if (signable_struct->service_length > NECP_CLIENT_ACTION_SIGN_MAX_STRING_LENGTH ||
signable_struct->hostname_length > NECP_CLIENT_ACTION_SIGN_MAX_STRING_LENGTH ||
signable_length != (sizeof(struct necp_client_signable) + data_length + signable_struct->service_length + signable_struct->hostname_length)) {
error = EINVAL;
goto done;
}
data_length += signable_struct->service_length;
data_length += signable_struct->hostname_length;
break;
}
default: {
NECPLOG(LOG_ERR, "necp_client_sign unknown signable type (%u)", signable->sign_type);
error = EINVAL;
goto done;
}
}
error = necp_sign_resolver_answer(signable->client_id, signable->sign_type,
signable->signable_data, data_length,
tag, &tag_size);
if (tag_size != sizeof(tag)) {
NECPLOG(LOG_ERR, "necp_client_sign unexpected tag size %zu", tag_size);
error = EINVAL;
goto done;
}
error = copyout(tag, uap->buffer, tag_size);
if (error) {
NECPLOG(LOG_ERR, "necp_client_sign copyout error (%d)", error);
goto done;
}
done:
if (allocated_signable != NULL) {
kfree_data(allocated_signable, signable_length);
allocated_signable = NULL;
}
*retval = error;
return error;
}
// Most results will fit into this size
struct necp_client_validatable_default {
struct necp_client_signature signature;
struct necp_client_signable_default signable;
} __attribute__((__packed__));
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_validate(__unused struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
struct necp_client_validatable *validatable = NULL;
struct necp_client_validatable *allocated_validatable = NULL;
struct necp_client_validatable_default default_validatable = {};
const size_t validatable_length = uap->client_id_len;
*retval = 0;
const bool has_resolver_entitlement = (priv_check_cred(kauth_cred_get(), PRIV_NET_VALIDATED_RESOLVER, 0) == 0);
if (!has_resolver_entitlement) {
NECPLOG0(LOG_ERR, "Process does not hold the necessary entitlement to directly validate resolver answers");
error = EPERM;
goto done;
}
if (uap->client_id == 0 || validatable_length < sizeof(*validatable) ||
validatable_length > (NECP_CLIENT_ACTION_SIGN_MAX_TOTAL_LENGTH + NECP_CLIENT_ACTION_SIGN_TAG_LENGTH)) {
error = EINVAL;
goto done;
}
if (validatable_length <= sizeof(default_validatable)) {
validatable = (struct necp_client_validatable *)&default_validatable;
} else {
if ((allocated_validatable = (struct necp_client_validatable *)kalloc_data(validatable_length, Z_WAITOK | Z_ZERO)) == NULL) {
NECPLOG(LOG_ERR, "necp_client_validate allocate struct %zu failed", validatable_length);
error = ENOMEM;
goto done;
}
validatable = allocated_validatable;
}
error = copyin(uap->client_id, validatable, validatable_length);
if (error) {
NECPLOG(LOG_ERR, "necp_client_validate copyin error (%d)", error);
goto done;
}
const bool validated = necp_validate_resolver_answer(validatable->signable.client_id, validatable->signable.sign_type,
validatable->signable.signable_data, validatable_length - sizeof(struct necp_client_validatable),
validatable->signature.signed_tag, sizeof(validatable->signature.signed_tag));
if (!validated) {
// Return EAUTH to indicate that the signature failed
error = EAUTH;
}
done:
if (allocated_validatable != NULL) {
kfree_data(allocated_validatable, validatable_length);
allocated_validatable = NULL;
}
*retval = error;
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_get_signed_client_id(__unused struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
*retval = 0;
u_int32_t request_type = 0;
struct necp_client_signed_client_id_uuid client_id = { 0 };
const size_t buffer_size = uap->buffer_size;
u_int8_t tag[NECP_CLIENT_ACTION_SIGN_TAG_LENGTH] = {};
size_t tag_size = sizeof(tag);
// Only allow entitled processes to get the client ID.
proc_t proc = current_proc();
task_t __single task = proc_task(proc);
bool has_delegation_entitlement = task != NULL && IOTaskHasEntitlement(task, kCSWebBrowserNetworkEntitlement);
if (!has_delegation_entitlement) {
has_delegation_entitlement = (priv_check_cred(kauth_cred_get(), PRIV_NET_PRIVILEGED_SOCKET_DELEGATE, 0) == 0);
}
if (!has_delegation_entitlement) {
NECPLOG0(LOG_ERR, "necp_client_get_signed_client_id client lacks the necessary entitlement");
error = EAUTH;
goto done;
}
if (uap->client_id == 0 || uap->client_id_len != sizeof(u_int32_t) ||
buffer_size < sizeof(struct necp_client_signed_client_id_uuid) ||
uap->buffer == 0) {
NECPLOG0(LOG_ERR, "necp_client_get_signed_client_id bad input");
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, &request_type, sizeof(u_int32_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_get_signed_client_id copyin request_type error (%d)", error);
goto done;
}
if (request_type != NECP_CLIENT_SIGNED_CLIENT_ID_TYPE_UUID) {
error = ENOENT;
NECPLOG(LOG_ERR, "necp_client_get_signed_client_id bad request_type (%d)", request_type);
goto done;
}
uuid_t application_uuid;
uuid_clear(application_uuid);
proc_getexecutableuuid(proc, application_uuid, sizeof(application_uuid));
error = necp_sign_application_id(application_uuid,
NECP_CLIENT_SIGNED_CLIENT_ID_TYPE_UUID,
tag, &tag_size);
if (tag_size != sizeof(tag)) {
NECPLOG(LOG_ERR, "necp_client_get_signed_client_id unexpected tag size %zu", tag_size);
error = EINVAL;
goto done;
}
uuid_copy(client_id.client_id, application_uuid);
client_id.signature_length = tag_size;
memcpy(client_id.signature_data, tag, tag_size);
error = copyout(&client_id, uap->buffer, sizeof(client_id));
if (error != 0) {
NECPLOG(LOG_ERR, "necp_client_get_signed_client_id copyout error (%d)", error);
goto done;
}
done:
*retval = error;
return error;
}
static NECP_CLIENT_ACTION_FUNCTION int
necp_client_set_signed_client_id(__unused struct necp_fd_data *fd_data, struct necp_client_action_args *uap, int *retval)
{
int error = 0;
*retval = 0;
u_int32_t request_type = 0;
struct necp_client_signed_client_id_uuid client_id = { 0 };
const size_t buffer_size = uap->buffer_size;
// Only allow entitled processes to set the client ID.
proc_t proc = current_proc();
task_t __single task = proc_task(proc);
bool has_delegation_entitlement = task != NULL && IOTaskHasEntitlement(task, kCSWebBrowserNetworkEntitlement);
if (!has_delegation_entitlement) {
has_delegation_entitlement = (priv_check_cred(kauth_cred_get(), PRIV_NET_PRIVILEGED_SOCKET_DELEGATE, 0) == 0);
}
if (!has_delegation_entitlement) {
NECPLOG0(LOG_ERR, "necp_client_set_signed_client_id client lacks the necessary entitlement");
error = EAUTH;
goto done;
}
if (uap->client_id == 0 || uap->client_id_len != sizeof(u_int32_t) ||
buffer_size < sizeof(struct necp_client_signed_client_id_uuid) ||
uap->buffer == 0) {
NECPLOG0(LOG_ERR, "necp_client_set_signed_client_id bad input");
error = EINVAL;
goto done;
}
error = copyin(uap->client_id, &request_type, sizeof(u_int32_t));
if (error) {
NECPLOG(LOG_ERR, "necp_client_set_signed_client_id copyin request_type error (%d)", error);
goto done;
}
if (request_type != NECP_CLIENT_SIGNED_CLIENT_ID_TYPE_UUID) {
error = ENOENT;
NECPLOG(LOG_ERR, "necp_client_set_signed_client_id bad request_type (%d)", request_type);
goto done;
}
error = copyin(uap->buffer, &client_id, sizeof(struct necp_client_signed_client_id_uuid));
if (error) {
NECPLOG(LOG_ERR, "necp_client_set_signed_client_id copyin request error (%d)", error);
goto done;
}
const bool validated = necp_validate_application_id(client_id.client_id,
NECP_CLIENT_SIGNED_CLIENT_ID_TYPE_UUID,
client_id.signature_data, sizeof(client_id.signature_data));
if (!validated) {
// Return EAUTH to indicate that the signature failed
error = EAUTH;
NECPLOG(LOG_ERR, "necp_client_set_signed_client_id signature validation failed (%d)", error);
goto done;
}
proc_setresponsibleuuid(proc, client_id.client_id, sizeof(client_id.client_id));
done:
*retval = error;
return error;
}
int
necp_client_action(struct proc *p, struct necp_client_action_args *uap, int *retval)
{
struct fileproc *fp;
int error = 0;
int return_value = 0;
struct necp_fd_data *fd_data = NULL;
error = necp_find_fd_data(p, uap->necp_fd, &fp, &fd_data);
if (error != 0) {
NECPLOG(LOG_ERR, "necp_client_action find fd error (%d)", error);
return error;
}
u_int32_t action = uap->action;
#if CONFIG_MACF
error = mac_necp_check_client_action(p, fp->fp_glob, action);
if (error) {
return_value = error;
goto done;
}
#endif /* MACF */
switch (action) {
case NECP_CLIENT_ACTION_ADD: {
return_value = necp_client_add(p, fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_CLAIM: {
return_value = necp_client_claim(p, fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_REMOVE: {
return_value = necp_client_remove(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_COPY_PARAMETERS:
case NECP_CLIENT_ACTION_COPY_RESULT:
case NECP_CLIENT_ACTION_COPY_UPDATED_RESULT: {
return_value = necp_client_copy(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_COPY_LIST: {
return_value = necp_client_list(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_ADD_FLOW: {
return_value = necp_client_add_flow(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_REMOVE_FLOW: {
return_value = necp_client_remove_flow(fd_data, uap, retval);
break;
}
#if SKYWALK
case NECP_CLIENT_ACTION_REQUEST_NEXUS_INSTANCE: {
return_value = necp_client_request_nexus(fd_data, uap, retval);
break;
}
#endif /* !SKYWALK */
case NECP_CLIENT_ACTION_AGENT: {
return_value = necp_client_agent_action(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_COPY_AGENT: {
return_value = necp_client_copy_agent(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_AGENT_USE: {
return_value = necp_client_agent_use(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_ACQUIRE_AGENT_TOKEN: {
return_value = necp_client_acquire_agent_token(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_COPY_INTERFACE: {
return_value = necp_client_copy_interface(fd_data, uap, retval);
break;
}
#if SKYWALK
case NECP_CLIENT_ACTION_GET_INTERFACE_ADDRESS: {
return_value = necp_client_get_interface_address(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_SET_STATISTICS: {
return_value = ENOTSUP;
break;
}
case NECP_CLIENT_ACTION_MAP_SYSCTLS: {
return_value = necp_client_map_sysctls(fd_data, uap, retval);
break;
}
#endif /* !SKYWALK */
case NECP_CLIENT_ACTION_COPY_ROUTE_STATISTICS: {
return_value = necp_client_copy_route_statistics(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_UPDATE_CACHE: {
return_value = necp_client_update_cache(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_COPY_CLIENT_UPDATE: {
return_value = necp_client_copy_client_update(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_SIGN: {
return_value = necp_client_sign(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_VALIDATE: {
return_value = necp_client_validate(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_GET_SIGNED_CLIENT_ID: {
return_value = necp_client_get_signed_client_id(fd_data, uap, retval);
break;
}
case NECP_CLIENT_ACTION_SET_SIGNED_CLIENT_ID: {
return_value = necp_client_set_signed_client_id(fd_data, uap, retval);
break;
}
default: {
NECPLOG(LOG_ERR, "necp_client_action unknown action (%u)", action);
return_value = EINVAL;
break;
}
}
done:
fp_drop(p, uap->necp_fd, fp, 0);
return return_value;
}
#define NECP_MAX_MATCH_POLICY_PARAMETER_SIZE 1024
int
necp_match_policy(struct proc *p, struct necp_match_policy_args *uap, int32_t *retval)
{
#pragma unused(retval)
u_int8_t *parameters = NULL;
struct necp_aggregate_result returned_result;
int error = 0;
if (uap == NULL) {
error = EINVAL;
goto done;
}
if (uap->parameters == 0 || uap->parameters_size == 0 || uap->parameters_size > NECP_MAX_MATCH_POLICY_PARAMETER_SIZE || uap->returned_result == 0) {
error = EINVAL;
goto done;
}
parameters = (u_int8_t *)kalloc_data(uap->parameters_size, Z_WAITOK | Z_ZERO);
if (parameters == NULL) {
error = ENOMEM;
goto done;
}
// Copy parameters in
error = copyin(uap->parameters, parameters, uap->parameters_size);
if (error) {
goto done;
}
error = necp_application_find_policy_match_internal(p, parameters, uap->parameters_size,
&returned_result, NULL, NULL, 0, NULL, NULL, NULL, NULL, NULL, false, false, NULL);
if (error) {
goto done;
}
// Copy return value back
error = copyout(&returned_result, uap->returned_result, sizeof(struct necp_aggregate_result));
if (error) {
goto done;
}
done:
if (parameters != NULL) {
kfree_data(parameters, uap->parameters_size);
}
return error;
}
/// Socket operations
static errno_t
necp_set_socket_attribute(u_int8_t *buffer, size_t buffer_length, u_int8_t type, char **buffer_p, bool *single_tlv)
{
int error = 0;
int cursor = 0;
size_t string_size = 0;
char *local_string = NULL;
u_int8_t *value = NULL;
char *buffer_to_free = NULL;
cursor = necp_buffer_find_tlv(buffer, buffer_length, 0, type, NULL, 0);
if (cursor < 0) {
// This will clear out the parameter
goto done;
}
string_size = necp_buffer_get_tlv_length(buffer, cursor);
if (single_tlv != NULL && (buffer_length == sizeof(struct necp_tlv_header) + string_size)) {
*single_tlv = true;
}
if (string_size == 0 || string_size > NECP_MAX_SOCKET_ATTRIBUTE_STRING_LENGTH) {
// This will clear out the parameter
goto done;
}
local_string = (char *)kalloc_data(string_size + 1, Z_WAITOK | Z_ZERO);
if (local_string == NULL) {
NECPLOG(LOG_ERR, "Failed to allocate a socket attribute buffer (size %zu)", string_size);
goto fail;
}
value = necp_buffer_get_tlv_value(buffer, cursor, NULL);
if (value == NULL) {
NECPLOG0(LOG_ERR, "Failed to get socket attribute");
goto fail;
}
memcpy(local_string, value, string_size);
local_string[string_size] = 0;
done:
buffer_to_free = *buffer_p;
// Protect switching of buffer pointer
necp_lock_socket_attributes();
*buffer_p = local_string;
necp_unlock_socket_attributes();
if (buffer_to_free != NULL) {
kfree_data_addr(buffer_to_free);
}
return 0;
fail:
if (local_string != NULL) {
kfree_data(local_string, string_size + 1);
}
return error;
}
errno_t
necp_set_socket_attributes(struct inp_necp_attributes *attributes, struct sockopt *sopt)
{
int error = 0;
u_int8_t *buffer = NULL;
bool single_tlv = false;
size_t valsize = sopt->sopt_valsize;
if (valsize == 0 ||
valsize > ((sizeof(struct necp_tlv_header) + NECP_MAX_SOCKET_ATTRIBUTE_STRING_LENGTH) * 4)) {
goto done;
}
buffer = (u_int8_t *)kalloc_data(valsize, Z_WAITOK | Z_ZERO);
if (buffer == NULL) {
goto done;
}
error = sooptcopyin(sopt, buffer, valsize, 0);
if (error) {
goto done;
}
// If NECP_TLV_ATTRIBUTE_DOMAIN_CONTEXT is being set/cleared separately from the other attributes,
// do not clear other attributes.
error = necp_set_socket_attribute(buffer, valsize, NECP_TLV_ATTRIBUTE_DOMAIN_CONTEXT, &attributes->inp_domain_context, &single_tlv);
if (error) {
NECPLOG0(LOG_ERR, "Could not set domain context TLV for socket attributes");
goto done;
}
if (single_tlv == true) {
goto done;
}
error = necp_set_socket_attribute(buffer, valsize, NECP_TLV_ATTRIBUTE_DOMAIN, &attributes->inp_domain, NULL);
if (error) {
NECPLOG0(LOG_ERR, "Could not set domain TLV for socket attributes");
goto done;
}
error = necp_set_socket_attribute(buffer, valsize, NECP_TLV_ATTRIBUTE_DOMAIN_OWNER, &attributes->inp_domain_owner, NULL);
if (error) {
NECPLOG0(LOG_ERR, "Could not set domain owner TLV for socket attributes");
goto done;
}
error = necp_set_socket_attribute(buffer, valsize, NECP_TLV_ATTRIBUTE_TRACKER_DOMAIN, &attributes->inp_tracker_domain, NULL);
if (error) {
NECPLOG0(LOG_ERR, "Could not set tracker domain TLV for socket attributes");
goto done;
}
error = necp_set_socket_attribute(buffer, valsize, NECP_TLV_ATTRIBUTE_ACCOUNT, &attributes->inp_account, NULL);
if (error) {
NECPLOG0(LOG_ERR, "Could not set account TLV for socket attributes");
goto done;
}
done:
NECP_SOCKET_ATTRIBUTE_LOG("NECP ATTRIBUTES SOCKET - domain <%s> owner <%s> context <%s> tracker domain <%s> account <%s>",
attributes->inp_domain,
attributes->inp_domain_owner,
attributes->inp_domain_context,
attributes->inp_tracker_domain,
attributes->inp_account);
if (necp_debug) {
NECPLOG(LOG_DEBUG, "Set on socket: Domain %s, Domain owner %s, Domain context %s, Tracker domain %s, Account %s",
attributes->inp_domain,
attributes->inp_domain_owner,
attributes->inp_domain_context,
attributes->inp_tracker_domain,
attributes->inp_account);
}
if (buffer != NULL) {
kfree_data(buffer, valsize);
}
return error;
}
errno_t
necp_get_socket_attributes(struct inp_necp_attributes *attributes, struct sockopt *sopt)
{
int error = 0;
u_int8_t *buffer = NULL;
u_int8_t *cursor = NULL;
size_t valsize = 0;
if (attributes->inp_domain != NULL) {
valsize += sizeof(struct necp_tlv_header) + strlen(attributes->inp_domain);
}
if (attributes->inp_domain_owner != NULL) {
valsize += sizeof(struct necp_tlv_header) + strlen(attributes->inp_domain_owner);
}
if (attributes->inp_domain_context != NULL) {
valsize += sizeof(struct necp_tlv_header) + strlen(attributes->inp_domain_context);
}
if (attributes->inp_tracker_domain != NULL) {
valsize += sizeof(struct necp_tlv_header) + strlen(attributes->inp_tracker_domain);
}
if (attributes->inp_account != NULL) {
valsize += sizeof(struct necp_tlv_header) + strlen(attributes->inp_account);
}
if (valsize == 0) {
goto done;
}
buffer = (u_int8_t *)kalloc_data(valsize, Z_WAITOK | Z_ZERO);
if (buffer == NULL) {
goto done;
}
cursor = buffer;
if (attributes->inp_domain != NULL) {
cursor = necp_buffer_write_tlv(cursor, NECP_TLV_ATTRIBUTE_DOMAIN, strlen(attributes->inp_domain), attributes->inp_domain,
buffer, valsize);
}
if (attributes->inp_domain_owner != NULL) {
cursor = necp_buffer_write_tlv(cursor, NECP_TLV_ATTRIBUTE_DOMAIN_OWNER, strlen(attributes->inp_domain_owner), attributes->inp_domain_owner,
buffer, valsize);
}
if (attributes->inp_domain_context != NULL) {
cursor = necp_buffer_write_tlv(cursor, NECP_TLV_ATTRIBUTE_DOMAIN_CONTEXT, strlen(attributes->inp_domain_context), attributes->inp_domain_context,
buffer, valsize);
}
if (attributes->inp_tracker_domain != NULL) {
cursor = necp_buffer_write_tlv(cursor, NECP_TLV_ATTRIBUTE_TRACKER_DOMAIN, strlen(attributes->inp_tracker_domain), attributes->inp_tracker_domain,
buffer, valsize);
}
if (attributes->inp_account != NULL) {
cursor = necp_buffer_write_tlv(cursor, NECP_TLV_ATTRIBUTE_ACCOUNT, strlen(attributes->inp_account), attributes->inp_account,
buffer, valsize);
}
error = sooptcopyout(sopt, buffer, valsize);
if (error) {
goto done;
}
done:
if (buffer != NULL) {
kfree_data(buffer, valsize);
}
return error;
}
int
necp_set_socket_resolver_signature(struct inpcb *inp, struct sockopt *sopt)
{
const size_t valsize = sopt->sopt_valsize;
if (valsize > NECP_CLIENT_ACTION_SIGN_MAX_TOTAL_LENGTH + NECP_CLIENT_ACTION_SIGN_TAG_LENGTH) {
return EINVAL;
}
necp_lock_socket_attributes();
if (inp->inp_resolver_signature != NULL) {
kfree_data(inp->inp_resolver_signature, inp->inp_resolver_signature_length);
}
inp->inp_resolver_signature_length = 0;
int error = 0;
if (valsize > 0) {
inp->inp_resolver_signature = kalloc_data(valsize, Z_WAITOK | Z_ZERO);
if ((error = sooptcopyin(sopt, inp->inp_resolver_signature, valsize,
valsize)) != 0) {
// Free the signature buffer if the copyin failed
kfree_data(inp->inp_resolver_signature, valsize);
} else {
inp->inp_resolver_signature_length = valsize;
}
}
necp_unlock_socket_attributes();
return error;
}
int
necp_get_socket_resolver_signature(struct inpcb *inp, struct sockopt *sopt)
{
int error = 0;
necp_lock_socket_attributes();
if (inp->inp_resolver_signature == NULL ||
inp->inp_resolver_signature_length == 0) {
error = ENOENT;
} else {
error = sooptcopyout(sopt, inp->inp_resolver_signature,
inp->inp_resolver_signature_length);
}
necp_unlock_socket_attributes();
return error;
}
bool
necp_socket_has_resolver_signature(struct inpcb *inp)
{
necp_lock_socket_attributes();
bool has_signature = (inp->inp_resolver_signature != NULL && inp->inp_resolver_signature_length != 0);
necp_unlock_socket_attributes();
return has_signature;
}
bool
necp_socket_resolver_signature_matches_address(struct inpcb *inp, union necp_sockaddr_union *address)
{
bool matches_address = false;
necp_lock_socket_attributes();
if (inp->inp_resolver_signature != NULL && inp->inp_resolver_signature_length > 0 && address->sa.sa_len > 0) {
struct necp_client_validatable *validatable = (struct necp_client_validatable *)inp->inp_resolver_signature;
if (inp->inp_resolver_signature_length > sizeof(struct necp_client_validatable) &&
validatable->signable.sign_type == NECP_CLIENT_SIGN_TYPE_SYSTEM_RESOLVER_ANSWER) {
size_t data_length = inp->inp_resolver_signature_length - sizeof(struct necp_client_validatable);
if (data_length >= (sizeof(struct necp_client_host_resolver_answer) - sizeof(struct necp_client_signable))) {
struct necp_client_host_resolver_answer *answer_struct = (struct necp_client_host_resolver_answer *)&validatable->signable;
if (data_length == (sizeof(struct necp_client_host_resolver_answer) + answer_struct->hostname_length - sizeof(struct necp_client_signable)) &&
answer_struct->address_answer.sa.sa_family == address->sa.sa_family &&
answer_struct->address_answer.sa.sa_len == address->sa.sa_len &&
(answer_struct->address_answer.sin.sin_port == 0 ||
answer_struct->address_answer.sin.sin_port == address->sin.sin_port) &&
((answer_struct->address_answer.sa.sa_family == AF_INET &&
answer_struct->address_answer.sin.sin_addr.s_addr == address->sin.sin_addr.s_addr) ||
(answer_struct->address_answer.sa.sa_family == AF_INET6 &&
memcmp(&answer_struct->address_answer.sin6.sin6_addr, &address->sin6.sin6_addr, sizeof(struct in6_addr)) == 0))) {
// Address matches
const bool validated = necp_validate_resolver_answer(validatable->signable.client_id,
validatable->signable.sign_type,
validatable->signable.signable_data, data_length,
validatable->signature.signed_tag, sizeof(validatable->signature.signed_tag));
if (validated) {
// Answer is validated
matches_address = true;
}
}
}
}
}
necp_unlock_socket_attributes();
return matches_address;
}
/*
* necp_set_socket_domain_attributes
* Called from soconnectlock/soconnectxlock to directly set the tracker domain and owner for
* a newly marked tracker socket.
*/
errno_t
necp_set_socket_domain_attributes(struct socket *so, const char *domain, const char *domain_owner)
{
int error = 0;
struct inpcb *inp = NULL;
u_int8_t *buffer = NULL;
size_t valsize = 0;
char *buffer_to_free = NULL;
if (SOCK_DOM(so) != PF_INET && SOCK_DOM(so) != PF_INET6) {
error = EINVAL;
goto fail;
}
// Set domain (required)
valsize = strlen(domain);
if (valsize == 0 || valsize > NECP_MAX_SOCKET_ATTRIBUTE_STRING_LENGTH) {
error = EINVAL;
goto fail;
}
buffer = (u_int8_t *)kalloc_data(valsize + 1, Z_WAITOK | Z_ZERO);
if (buffer == NULL) {
error = ENOMEM;
goto fail;
}
bcopy(domain, buffer, valsize);
buffer[valsize] = 0;
inp = sotoinpcb(so);
// Do not overwrite a previously set domain if tracker domain is different.
if (inp->inp_necp_attributes.inp_domain != NULL) {
if (strlen(inp->inp_necp_attributes.inp_domain) != strlen(domain) ||
strncmp(inp->inp_necp_attributes.inp_domain, domain, strlen(domain)) != 0) {
buffer_to_free = inp->inp_necp_attributes.inp_tracker_domain;
// Protect switching of buffer pointer
necp_lock_socket_attributes();
inp->inp_necp_attributes.inp_tracker_domain = (char *)buffer;
necp_unlock_socket_attributes();
if (buffer_to_free != NULL) {
kfree_data_addr(buffer_to_free);
}
} else {
kfree_data_addr(buffer);
}
} else {
// Protect switching of buffer pointer
necp_lock_socket_attributes();
inp->inp_necp_attributes.inp_domain = (char *)buffer;
necp_unlock_socket_attributes();
}
buffer = NULL;
// set domain_owner (required only for tracker)
if (!(so->so_flags1 & SOF1_KNOWN_TRACKER)) {
goto done;
}
valsize = strlen(domain_owner);
if (valsize == 0 || valsize > NECP_MAX_SOCKET_ATTRIBUTE_STRING_LENGTH) {
error = EINVAL;
goto fail;
}
buffer = (u_int8_t *)kalloc_data(valsize + 1, Z_WAITOK | Z_ZERO);
if (buffer == NULL) {
error = ENOMEM;
goto fail;
}
bcopy(domain_owner, buffer, valsize);
buffer[valsize] = 0;
inp = sotoinpcb(so);
buffer_to_free = inp->inp_necp_attributes.inp_domain_owner;
// Protect switching of buffer pointer
necp_lock_socket_attributes();
inp->inp_necp_attributes.inp_domain_owner = (char *)buffer;
necp_unlock_socket_attributes();
buffer = NULL;
if (buffer_to_free != NULL) {
kfree_data_addr(buffer_to_free);
}
done:
NECP_SOCKET_PARAMS_LOG(so, "NECP ATTRIBUTES SOCKET - domain <%s> owner <%s> context <%s> tracker domain <%s> account <%s> "
"<so flags - is_tracker %X non-app-initiated %X app-approved-domain %X",
inp->inp_necp_attributes.inp_domain,
inp->inp_necp_attributes.inp_domain_owner,
inp->inp_necp_attributes.inp_domain_context,
inp->inp_necp_attributes.inp_tracker_domain,
inp->inp_necp_attributes.inp_account,
so->so_flags1 & SOF1_KNOWN_TRACKER,
so->so_flags1 & SOF1_TRACKER_NON_APP_INITIATED,
so->so_flags1 & SOF1_APPROVED_APP_DOMAIN);
if (necp_debug) {
NECPLOG(LOG_DEBUG, "Set on socket: Domain <%s> Domain owner <%s> Domain context <%s> Tracker domain <%s> Account <%s> ",
inp->inp_necp_attributes.inp_domain,
inp->inp_necp_attributes.inp_domain_owner,
inp->inp_necp_attributes.inp_domain_context,
inp->inp_necp_attributes.inp_tracker_domain,
inp->inp_necp_attributes.inp_account);
}
fail:
if (buffer != NULL) {
kfree_data(buffer, valsize + 1);
}
return error;
}
void *
necp_create_nexus_assign_message(uuid_t nexus_instance, nexus_port_t nexus_port, void *key, uint32_t key_length,
struct necp_client_endpoint *local_endpoint, struct necp_client_endpoint *remote_endpoint, struct ether_addr *local_ether_addr,
u_int32_t flow_adv_index, void *flow_stats, size_t *message_length)
{
u_int8_t *buffer = NULL;
u_int8_t *cursor = NULL;
size_t valsize = 0;
bool has_nexus_assignment = FALSE;
if (!uuid_is_null(nexus_instance)) {
has_nexus_assignment = TRUE;
valsize += sizeof(struct necp_tlv_header) + sizeof(uuid_t);
valsize += sizeof(struct necp_tlv_header) + sizeof(nexus_port_t);
}
if (flow_adv_index != NECP_FLOWADV_IDX_INVALID) {
valsize += sizeof(struct necp_tlv_header) + sizeof(u_int32_t);
}
if (key != NULL && key_length > 0) {
valsize += sizeof(struct necp_tlv_header) + key_length;
}
if (local_endpoint != NULL) {
valsize += sizeof(struct necp_tlv_header) + sizeof(struct necp_client_endpoint);
}
if (remote_endpoint != NULL) {
valsize += sizeof(struct necp_tlv_header) + sizeof(struct necp_client_endpoint);
}
if (local_ether_addr != NULL) {
valsize += sizeof(struct necp_tlv_header) + sizeof(struct ether_addr);
}
if (flow_stats != NULL) {
valsize += sizeof(struct necp_tlv_header) + sizeof(void *);
}
if (valsize == 0) {
return NULL;
}
buffer = kalloc_data(valsize, Z_WAITOK | Z_ZERO);
if (buffer == NULL) {
return NULL;
}
cursor = buffer;
if (has_nexus_assignment) {
cursor = necp_buffer_write_tlv(cursor, NECP_CLIENT_RESULT_NEXUS_INSTANCE, sizeof(uuid_t), nexus_instance, buffer, valsize);
cursor = necp_buffer_write_tlv(cursor, NECP_CLIENT_RESULT_NEXUS_PORT, sizeof(nexus_port_t), &nexus_port, buffer, valsize);
}
if (flow_adv_index != NECP_FLOWADV_IDX_INVALID) {
cursor = necp_buffer_write_tlv(cursor, NECP_CLIENT_RESULT_NEXUS_PORT_FLOW_INDEX, sizeof(u_int32_t), &flow_adv_index, buffer, valsize);
}
if (key != NULL && key_length > 0) {
cursor = necp_buffer_write_tlv(cursor, NECP_CLIENT_PARAMETER_NEXUS_KEY, key_length, key, buffer, valsize);
}
if (local_endpoint != NULL) {
cursor = necp_buffer_write_tlv(cursor, NECP_CLIENT_RESULT_LOCAL_ENDPOINT, sizeof(struct necp_client_endpoint), local_endpoint, buffer, valsize);
}
if (remote_endpoint != NULL) {
cursor = necp_buffer_write_tlv(cursor, NECP_CLIENT_RESULT_REMOTE_ENDPOINT, sizeof(struct necp_client_endpoint), remote_endpoint, buffer, valsize);
}
if (local_ether_addr != NULL) {
cursor = necp_buffer_write_tlv(cursor, NECP_CLIENT_RESULT_LOCAL_ETHER_ADDR, sizeof(struct ether_addr), local_ether_addr, buffer, valsize);
}
if (flow_stats != NULL) {
cursor = necp_buffer_write_tlv(cursor, NECP_CLIENT_RESULT_NEXUS_FLOW_STATS, sizeof(void *), &flow_stats, buffer, valsize);
}
*message_length = valsize;
return buffer;
}
void
necp_inpcb_remove_cb(struct inpcb *inp)
{
if (!uuid_is_null(inp->necp_client_uuid)) {
necp_client_unregister_socket_flow(inp->necp_client_uuid, inp);
uuid_clear(inp->necp_client_uuid);
}
}
void
necp_inpcb_dispose(struct inpcb *inp)
{
necp_inpcb_remove_cb(inp); // Clear out socket registrations if not yet done
if (inp->inp_necp_attributes.inp_domain != NULL) {
kfree_data_addr(inp->inp_necp_attributes.inp_domain);
inp->inp_necp_attributes.inp_domain = NULL;
}
if (inp->inp_necp_attributes.inp_account != NULL) {
kfree_data_addr(inp->inp_necp_attributes.inp_account);
inp->inp_necp_attributes.inp_account = NULL;
}
if (inp->inp_necp_attributes.inp_domain_owner != NULL) {
kfree_data_addr(inp->inp_necp_attributes.inp_domain_owner);
inp->inp_necp_attributes.inp_domain_owner = NULL;
}
if (inp->inp_necp_attributes.inp_domain_context != NULL) {
kfree_data_addr(inp->inp_necp_attributes.inp_domain_context);
inp->inp_necp_attributes.inp_domain_context = NULL;
}
if (inp->inp_necp_attributes.inp_tracker_domain != NULL) {
kfree_data_addr(inp->inp_necp_attributes.inp_tracker_domain);
inp->inp_necp_attributes.inp_tracker_domain = NULL;
}
if (inp->inp_resolver_signature != NULL) {
kfree_data(inp->inp_resolver_signature, inp->inp_resolver_signature_length);
}
inp->inp_resolver_signature_length = 0;
}
void
necp_mppcb_dispose(struct mppcb *mpp)
{
if (!uuid_is_null(mpp->necp_client_uuid)) {
necp_client_unregister_multipath_cb(mpp->necp_client_uuid, mpp);
uuid_clear(mpp->necp_client_uuid);
}
if (mpp->inp_necp_attributes.inp_domain != NULL) {
kfree_data_addr(mpp->inp_necp_attributes.inp_domain);
mpp->inp_necp_attributes.inp_domain = NULL;
}
if (mpp->inp_necp_attributes.inp_account != NULL) {
kfree_data_addr(mpp->inp_necp_attributes.inp_account);
mpp->inp_necp_attributes.inp_account = NULL;
}
if (mpp->inp_necp_attributes.inp_domain_owner != NULL) {
kfree_data_addr(mpp->inp_necp_attributes.inp_domain_owner);
mpp->inp_necp_attributes.inp_domain_owner = NULL;
}
if (mpp->inp_necp_attributes.inp_tracker_domain != NULL) {
kfree_data_addr(mpp->inp_necp_attributes.inp_tracker_domain);
mpp->inp_necp_attributes.inp_tracker_domain = NULL;
}
}
/// Module init
void
necp_client_init(void)
{
necp_client_update_tcall = thread_call_allocate_with_options(necp_update_all_clients_callout, NULL,
THREAD_CALL_PRIORITY_KERNEL, THREAD_CALL_OPTIONS_ONCE);
VERIFY(necp_client_update_tcall != NULL);
#if SKYWALK
necp_client_collect_stats_tcall = thread_call_allocate_with_options(necp_collect_stats_client_callout, NULL,
THREAD_CALL_PRIORITY_KERNEL, THREAD_CALL_OPTIONS_ONCE);
VERIFY(necp_client_collect_stats_tcall != NULL);
necp_close_empty_arenas_tcall = thread_call_allocate_with_options(necp_close_empty_arenas_callout, NULL,
THREAD_CALL_PRIORITY_KERNEL, THREAD_CALL_OPTIONS_ONCE);
VERIFY(necp_close_empty_arenas_tcall != NULL);
#endif /* SKYWALK */
LIST_INIT(&necp_fd_list);
LIST_INIT(&necp_fd_observer_list);
LIST_INIT(&necp_collect_stats_flow_list);
RB_INIT(&necp_client_global_tree);
RB_INIT(&necp_client_flow_global_tree);
}
#if SKYWALK
pid_t
necp_client_get_proc_pid_from_arena_info(struct skmem_arena_mmap_info *arena_info)
{
ASSERT((arena_info->ami_arena->ar_type == SKMEM_ARENA_TYPE_NECP) || (arena_info->ami_arena->ar_type == SKMEM_ARENA_TYPE_SYSTEM));
if (arena_info->ami_arena->ar_type == SKMEM_ARENA_TYPE_NECP) {
struct necp_arena_info *nai = container_of(arena_info, struct necp_arena_info, nai_mmap);
return nai->nai_proc_pid;
} else {
struct necp_fd_data *fd_data = container_of(arena_info, struct necp_fd_data, sysctl_mmap);
return fd_data->proc_pid;
}
}
#endif /* !SKYWALK */