gems-kernel/source/THIRDPARTY/xnu/bsd/netinet/in_arp.c
2024-06-03 11:29:39 -05:00

2287 lines
64 KiB
C

/*
* Copyright (c) 2004-2022 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1982, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <kern/debug.h>
#include <netinet/in_arp.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/kernel_types.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/sysctl.h>
#include <sys/mcache.h>
#include <sys/protosw.h>
#include <string.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/dlil.h>
#include <net/if_types.h>
#include <net/if_llreach.h>
#include <net/route.h>
#include <net/nwk_wq.h>
#include <netinet/if_ether.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <kern/zalloc.h>
#include <kern/thread.h>
#include <kern/sched_prim.h>
#include <net/sockaddr_utils.h>
#define CONST_LLADDR(s) ((const u_char*)((s)->sdl_data + (s)->sdl_nlen))
static const size_t MAX_HW_LEN = 10;
/*
* Synchronization notes:
*
* The global list of ARP entries are stored in llinfo_arp; an entry
* gets inserted into the list when the route is created and gets
* removed from the list when it is deleted; this is done as part
* of RTM_ADD/RTM_RESOLVE/RTM_DELETE in arp_rtrequest().
*
* Because rnh_lock and rt_lock for the entry are held during those
* operations, the same locks (and thus lock ordering) must be used
* elsewhere to access the relevant data structure fields:
*
* la_le.{le_next,le_prev}, la_rt
*
* - Routing lock (rnh_lock)
*
* la_holdq, la_asked, la_llreach, la_lastused, la_flags
*
* - Routing entry lock (rt_lock)
*
* Due to the dependency on rt_lock, llinfo_arp has the same lifetime
* as the route entry itself. When a route is deleted (RTM_DELETE),
* it is simply removed from the global list but the memory is not
* freed until the route itself is freed.
*/
struct llinfo_arp {
/*
* The following are protected by rnh_lock
*/
LIST_ENTRY(llinfo_arp) la_le;
struct rtentry *la_rt;
/*
* The following are protected by rt_lock
*/
class_queue_t la_holdq; /* packets awaiting resolution */
struct if_llreach *la_llreach; /* link-layer reachability record */
u_int64_t la_lastused; /* last used timestamp */
u_int32_t la_asked; /* # of requests sent */
u_int32_t la_maxtries; /* retry limit */
u_int64_t la_probeexp; /* probe deadline timestamp */
u_int32_t la_prbreq_cnt; /* probe request count */
u_int32_t la_flags;
#define LLINFO_RTRFAIL_EVTSENT 0x1 /* sent an ARP event */
#define LLINFO_PROBING 0x2 /* waiting for an ARP reply */
};
static LIST_HEAD(, llinfo_arp) llinfo_arp;
static thread_call_t arp_timeout_tcall;
static int arp_timeout_run; /* arp_timeout is scheduled to run */
static void arp_timeout(thread_call_param_t arg0, thread_call_param_t arg1);
static void arp_sched_timeout(struct timeval *);
static thread_call_t arp_probe_tcall;
static int arp_probe_run; /* arp_probe is scheduled to run */
static void arp_probe(thread_call_param_t arg0, thread_call_param_t arg1);
static void arp_sched_probe(struct timeval *);
static void arptfree(struct llinfo_arp *, void *);
static errno_t arp_lookup_route(const struct in_addr *, int,
int, route_t *, unsigned int);
static int arp_getstat SYSCTL_HANDLER_ARGS;
static struct llinfo_arp *arp_llinfo_alloc(zalloc_flags_t);
static void arp_llinfo_free(void *);
static uint32_t arp_llinfo_flushq(struct llinfo_arp *);
static void arp_llinfo_purge(struct rtentry *);
static void arp_llinfo_get_ri(struct rtentry *, struct rt_reach_info *);
static void arp_llinfo_get_iflri(struct rtentry *, struct ifnet_llreach_info *);
static void arp_llinfo_refresh(struct rtentry *);
static __inline void arp_llreach_use(struct llinfo_arp *);
static __inline int arp_llreach_reachable(struct llinfo_arp *);
static void arp_llreach_alloc(struct rtentry *, struct ifnet *, void *,
unsigned int, boolean_t, uint32_t *);
extern int tvtohz(struct timeval *);
static int arpinit_done;
SYSCTL_DECL(_net_link_ether);
SYSCTL_NODE(_net_link_ether, PF_INET, inet, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "");
static int arpt_prune = (5 * 60 * 1); /* walk list every 5 minutes */
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, prune_intvl,
CTLFLAG_RW | CTLFLAG_LOCKED, &arpt_prune, 0, "");
#define ARP_PROBE_TIME 7 /* seconds */
static u_int32_t arpt_probe = ARP_PROBE_TIME;
SYSCTL_UINT(_net_link_ether_inet, OID_AUTO, probe_intvl,
CTLFLAG_RW | CTLFLAG_LOCKED, &arpt_probe, 0, "");
static int arpt_keep = (20 * 60); /* once resolved, good for 20 more minutes */
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, max_age,
CTLFLAG_RW | CTLFLAG_LOCKED, &arpt_keep, 0, "");
static int arpt_down = 20; /* once declared down, don't send for 20 sec */
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, host_down_time,
CTLFLAG_RW | CTLFLAG_LOCKED, &arpt_down, 0, "");
static int arp_llreach_base = 120; /* seconds */
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, arp_llreach_base,
CTLFLAG_RW | CTLFLAG_LOCKED, &arp_llreach_base, 0,
"default ARP link-layer reachability max lifetime (in seconds)");
#define ARP_UNICAST_LIMIT 3 /* # of probes until ARP refresh broadcast */
static u_int32_t arp_unicast_lim = ARP_UNICAST_LIMIT;
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, arp_unicast_lim,
CTLFLAG_RW | CTLFLAG_LOCKED, &arp_unicast_lim, ARP_UNICAST_LIMIT,
"number of unicast ARP refresh probes before using broadcast");
static u_int32_t arp_maxtries = 5;
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, maxtries,
CTLFLAG_RW | CTLFLAG_LOCKED, &arp_maxtries, 0, "");
static u_int32_t arp_maxhold = 16;
SYSCTL_UINT(_net_link_ether_inet, OID_AUTO, maxhold,
CTLFLAG_RW | CTLFLAG_LOCKED, &arp_maxhold, 0, "");
static int useloopback = 1; /* use loopback interface for local traffic */
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, useloopback,
CTLFLAG_RW | CTLFLAG_LOCKED, &useloopback, 0, "");
static int arp_proxyall = 0;
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, proxyall,
CTLFLAG_RW | CTLFLAG_LOCKED, &arp_proxyall, 0, "");
static int arp_sendllconflict = 0;
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, sendllconflict,
CTLFLAG_RW | CTLFLAG_LOCKED, &arp_sendllconflict, 0, "");
static int log_arp_warnings = 0; /* Thread safe: no accumulated state */
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_warnings,
CTLFLAG_RW | CTLFLAG_LOCKED,
&log_arp_warnings, 0,
"log arp warning messages");
static int keep_announcements = 1; /* Thread safe: no aging of state */
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, keep_announcements,
CTLFLAG_RW | CTLFLAG_LOCKED,
&keep_announcements, 0,
"keep arp announcements");
static int send_conflicting_probes = 1; /* Thread safe: no accumulated state */
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, send_conflicting_probes,
CTLFLAG_RW | CTLFLAG_LOCKED,
&send_conflicting_probes, 0,
"send conflicting link-local arp probes");
static int arp_verbose;
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, verbose,
CTLFLAG_RW | CTLFLAG_LOCKED, &arp_verbose, 0, "");
static uint32_t arp_maxhold_total = 1024; /* max total packets in the holdq */
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, maxhold_total,
CTLFLAG_RW | CTLFLAG_LOCKED, &arp_maxhold_total, 0, "");
/*
* Generally protected by rnh_lock; use atomic operations on fields
* that are also modified outside of that lock (if needed).
*/
struct arpstat arpstat __attribute__((aligned(sizeof(uint64_t))));
SYSCTL_PROC(_net_link_ether_inet, OID_AUTO, stats,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, arp_getstat, "S,arpstat",
"ARP statistics (struct arpstat, net/if_arp.h)");
static KALLOC_TYPE_DEFINE(llinfo_arp_zone, struct llinfo_arp, NET_KT_DEFAULT);
void
arp_init(void)
{
VERIFY(!arpinit_done);
LIST_INIT(&llinfo_arp);
arpinit_done = 1;
}
static struct llinfo_arp *
arp_llinfo_alloc(zalloc_flags_t how)
{
struct llinfo_arp *la = zalloc_flags(llinfo_arp_zone, how | Z_ZERO);
if (la) {
/*
* The type of queue (Q_DROPHEAD) here is just a hint;
* the actual logic that works on this queue performs
* a head drop, details in arp_llinfo_addq().
*/
_qinit(&la->la_holdq, Q_DROPHEAD, (arp_maxhold == 0) ?
(uint32_t)-1 : arp_maxhold, QP_MBUF);
}
return la;
}
static void
arp_llinfo_free(void *arg)
{
struct llinfo_arp *la = arg;
if (la->la_le.le_next != NULL || la->la_le.le_prev != NULL) {
panic("%s: trying to free %p when it is in use", __func__, la);
/* NOTREACHED */
}
/* Free any held packets */
(void) arp_llinfo_flushq(la);
/* Purge any link-layer info caching */
VERIFY(la->la_rt->rt_llinfo == la);
if (la->la_rt->rt_llinfo_purge != NULL) {
la->la_rt->rt_llinfo_purge(la->la_rt);
}
zfree(llinfo_arp_zone, la);
}
static bool
arp_llinfo_addq(struct llinfo_arp *la, struct mbuf *m)
{
classq_pkt_t pkt = CLASSQ_PKT_INITIALIZER(pkt);
if (arpstat.held >= arp_maxhold_total) {
if (arp_verbose) {
log(LOG_DEBUG,
"%s: dropping packet due to maxhold_total\n",
__func__);
}
os_atomic_inc(&arpstat.dropped, relaxed);
return false;
}
if (qlen(&la->la_holdq) >= qlimit(&la->la_holdq)) {
struct mbuf *_m;
/* prune less than CTL, else take what's at the head */
_getq_scidx_lt(&la->la_holdq, &pkt, SCIDX_CTL);
_m = pkt.cp_mbuf;
if (_m == NULL) {
_getq(&la->la_holdq, &pkt);
_m = pkt.cp_mbuf;
}
VERIFY(_m != NULL);
if (arp_verbose) {
log(LOG_DEBUG, "%s: dropping packet (scidx %u)\n",
__func__, MBUF_SCIDX(mbuf_get_service_class(_m)));
}
m_freem(_m);
os_atomic_inc(&arpstat.dropped, relaxed);
os_atomic_dec(&arpstat.held, relaxed);
}
CLASSQ_PKT_INIT_MBUF(&pkt, m);
_addq(&la->la_holdq, &pkt);
os_atomic_inc(&arpstat.held, relaxed);
if (arp_verbose) {
log(LOG_DEBUG, "%s: enqueued packet (scidx %u), qlen now %u\n",
__func__, MBUF_SCIDX(mbuf_get_service_class(m)),
qlen(&la->la_holdq));
}
return true;
}
static uint32_t
arp_llinfo_flushq(struct llinfo_arp *la)
{
uint32_t held = qlen(&la->la_holdq);
if (held != 0) {
os_atomic_add(&arpstat.purged, held, relaxed);
os_atomic_add(&arpstat.held, -held, relaxed);
_flushq(&la->la_holdq);
}
la->la_prbreq_cnt = 0;
VERIFY(qempty(&la->la_holdq));
return held;
}
static void
arp_llinfo_purge(struct rtentry *rt)
{
struct llinfo_arp *la = rt->rt_llinfo;
RT_LOCK_ASSERT_HELD(rt);
VERIFY(rt->rt_llinfo_purge == arp_llinfo_purge && la != NULL);
if (la->la_llreach != NULL) {
RT_CONVERT_LOCK(rt);
ifnet_llreach_free(la->la_llreach);
la->la_llreach = NULL;
}
la->la_lastused = 0;
}
static void
arp_llinfo_get_ri(struct rtentry *rt, struct rt_reach_info *ri)
{
struct llinfo_arp *la = rt->rt_llinfo;
struct if_llreach *lr = la->la_llreach;
if (lr == NULL) {
bzero(ri, sizeof(*ri));
ri->ri_rssi = IFNET_RSSI_UNKNOWN;
ri->ri_lqm = IFNET_LQM_THRESH_OFF;
ri->ri_npm = IFNET_NPM_THRESH_UNKNOWN;
} else {
IFLR_LOCK(lr);
/* Export to rt_reach_info structure */
ifnet_lr2ri(lr, ri);
/* Export ARP send expiration (calendar) time */
ri->ri_snd_expire =
ifnet_llreach_up2calexp(lr, la->la_lastused);
IFLR_UNLOCK(lr);
}
}
static void
arp_llinfo_get_iflri(struct rtentry *rt, struct ifnet_llreach_info *iflri)
{
struct llinfo_arp *la = rt->rt_llinfo;
struct if_llreach *lr = la->la_llreach;
if (lr == NULL) {
bzero(iflri, sizeof(*iflri));
iflri->iflri_rssi = IFNET_RSSI_UNKNOWN;
iflri->iflri_lqm = IFNET_LQM_THRESH_OFF;
iflri->iflri_npm = IFNET_NPM_THRESH_UNKNOWN;
} else {
IFLR_LOCK(lr);
/* Export to ifnet_llreach_info structure */
ifnet_lr2iflri(lr, iflri);
/* Export ARP send expiration (uptime) time */
iflri->iflri_snd_expire =
ifnet_llreach_up2upexp(lr, la->la_lastused);
IFLR_UNLOCK(lr);
}
}
static void
arp_llinfo_refresh(struct rtentry *rt)
{
uint64_t timenow = net_uptime();
/*
* If route entry is permanent or if expiry is less
* than timenow and extra time taken for unicast probe
* we can't expedite the refresh
*/
if ((rt->rt_expire == 0) ||
(rt->rt_flags & RTF_STATIC) ||
!(rt->rt_flags & RTF_LLINFO)) {
return;
}
if (rt->rt_expire > timenow) {
rt->rt_expire = timenow;
}
return;
}
void
arp_llreach_set_reachable(struct ifnet *ifp, void *addr, unsigned int alen)
{
/* Nothing more to do if it's disabled */
if (arp_llreach_base == 0) {
return;
}
ifnet_llreach_set_reachable(ifp, ETHERTYPE_IP, addr, alen);
}
static __inline void
arp_llreach_use(struct llinfo_arp *la)
{
if (la->la_llreach != NULL) {
la->la_lastused = net_uptime();
}
}
static __inline int
arp_llreach_reachable(struct llinfo_arp *la)
{
struct if_llreach *lr;
const char *why = NULL;
/* Nothing more to do if it's disabled; pretend it's reachable */
if (arp_llreach_base == 0) {
return 1;
}
if ((lr = la->la_llreach) == NULL) {
/*
* Link-layer reachability record isn't present for this
* ARP entry; pretend it's reachable and use it as is.
*/
return 1;
} else if (ifnet_llreach_reachable(lr)) {
/*
* Record is present, it's not shared with other ARP
* entries and a packet has recently been received
* from the remote host; consider it reachable.
*/
if (lr->lr_reqcnt == 1) {
return 1;
}
/* Prime it up, if this is the first time */
if (la->la_lastused == 0) {
VERIFY(la->la_llreach != NULL);
arp_llreach_use(la);
}
/*
* Record is present and shared with one or more ARP
* entries, and a packet has recently been received
* from the remote host. Since it's shared by more
* than one IP addresses, we can't rely on the link-
* layer reachability alone; consider it reachable if
* this ARP entry has been used "recently."
*/
if (ifnet_llreach_reachable_delta(lr, la->la_lastused)) {
return 1;
}
why = "has alias(es) and hasn't been used in a while";
} else {
why = "haven't heard from it in a while";
}
if (arp_verbose > 1) {
char tmp[MAX_IPv4_STR_LEN];
u_int64_t now = net_uptime();
log(LOG_DEBUG, "%s: ARP probe(s) needed for %s; "
"%s [lastused %lld, lastrcvd %lld] secs ago\n",
if_name(lr->lr_ifp), inet_ntop(AF_INET,
&SIN(rt_key(la->la_rt))->sin_addr, tmp, sizeof(tmp)), why,
(la->la_lastused ? (int64_t)(now - la->la_lastused) : -1),
(lr->lr_lastrcvd ? (int64_t)(now - lr->lr_lastrcvd) : -1));
}
return 0;
}
/*
* Obtain a link-layer source cache entry for the sender.
*
* NOTE: This is currently only for ARP/Ethernet.
*/
static void
arp_llreach_alloc(struct rtentry *rt, struct ifnet *ifp, void *addr,
unsigned int alen, boolean_t solicited, uint32_t *p_rt_event_code)
{
VERIFY(rt->rt_expire == 0 || rt->rt_rmx.rmx_expire != 0);
VERIFY(rt->rt_expire != 0 || rt->rt_rmx.rmx_expire == 0);
if (arp_llreach_base != 0 && rt->rt_expire != 0 &&
!(rt->rt_ifp->if_flags & IFF_LOOPBACK) &&
ifp->if_addrlen == IF_LLREACH_MAXLEN && /* Ethernet */
alen == ifp->if_addrlen) {
struct llinfo_arp *la = rt->rt_llinfo;
struct if_llreach *lr;
const char *why = NULL, *type = "";
/* Become a regular mutex, just in case */
RT_CONVERT_LOCK(rt);
if ((lr = la->la_llreach) != NULL) {
type = (solicited ? "ARP reply" : "ARP announcement");
/*
* If target has changed, create a new record;
* otherwise keep existing record.
*/
IFLR_LOCK(lr);
if (bcmp(addr, lr->lr_key.addr, alen) != 0) {
IFLR_UNLOCK(lr);
/* Purge any link-layer info caching */
VERIFY(rt->rt_llinfo_purge != NULL);
rt->rt_llinfo_purge(rt);
lr = NULL;
why = " for different target HW address; "
"using new llreach record";
*p_rt_event_code = ROUTE_LLENTRY_CHANGED;
} else {
/*
* If we were doing unicast probing, we need to
* deliver an event for neighbor cache resolution
*/
if (lr->lr_probes != 0) {
*p_rt_event_code = ROUTE_LLENTRY_RESOLVED;
}
lr->lr_probes = 0; /* reset probe count */
IFLR_UNLOCK(lr);
if (solicited) {
why = " for same target HW address; "
"keeping existing llreach record";
}
}
}
if (lr == NULL) {
lr = la->la_llreach = ifnet_llreach_alloc(ifp,
ETHERTYPE_IP, addr, alen, arp_llreach_base);
if (lr != NULL) {
lr->lr_probes = 0; /* reset probe count */
if (why == NULL) {
why = "creating new llreach record";
}
}
*p_rt_event_code = ROUTE_LLENTRY_RESOLVED;
}
if (arp_verbose > 1 && lr != NULL && why != NULL) {
char tmp[MAX_IPv4_STR_LEN];
log(LOG_DEBUG, "%s: %s%s for %s\n", if_name(ifp),
type, why, inet_ntop(AF_INET,
&SIN(rt_key(rt))->sin_addr, tmp, sizeof(tmp)));
}
}
}
struct arptf_arg {
boolean_t draining;
boolean_t probing;
uint32_t killed;
uint32_t aging;
uint32_t sticky;
uint32_t found;
uint32_t qlen;
uint32_t qsize;
};
/*
* Free an arp entry.
*/
static void
arptfree(struct llinfo_arp *la, void *arg)
{
struct arptf_arg *ap = arg;
struct rtentry *rt = la->la_rt;
uint64_t timenow;
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
/* rnh_lock acquired by caller protects rt from going away */
RT_LOCK(rt);
VERIFY(rt->rt_expire == 0 || rt->rt_rmx.rmx_expire != 0);
VERIFY(rt->rt_expire != 0 || rt->rt_rmx.rmx_expire == 0);
ap->found++;
timenow = net_uptime();
/* If we're probing, flush out held packets upon probe expiration */
if (ap->probing && (la->la_flags & LLINFO_PROBING) &&
la->la_probeexp <= timenow) {
struct sockaddr_dl *sdl = SDL(rt->rt_gateway);
if (sdl != NULL) {
sdl->sdl_alen = 0;
}
(void) arp_llinfo_flushq(la);
/*
* Enqueue work item to invoke callback for this route entry
*/
route_event_enqueue_nwk_wq_entry(rt, NULL,
ROUTE_LLENTRY_UNREACH, NULL, TRUE);
}
/*
* The following is mostly being used to arm the timer
* again and for logging.
* qlen is used to re-arm the timer. Therefore, pure probe
* requests can be considered as 0 length packets
* contributing only to length but not to the size.
*/
ap->qlen += qlen(&la->la_holdq);
ap->qlen += la->la_prbreq_cnt;
ap->qsize += qsize(&la->la_holdq);
if (rt->rt_expire == 0 || (rt->rt_flags & RTF_STATIC)) {
ap->sticky++;
/* ARP entry is permanent? */
if (rt->rt_expire == 0) {
RT_UNLOCK(rt);
return;
}
}
/* ARP entry hasn't expired and we're not draining? */
if (!ap->draining && rt->rt_expire > timenow) {
RT_UNLOCK(rt);
ap->aging++;
return;
}
if (rt->rt_refcnt > 0) {
/*
* ARP entry has expired, with outstanding refcnt.
* If we're not draining, force ARP query to be
* generated next time this entry is used.
*/
if (!ap->draining && !ap->probing) {
struct sockaddr_dl *sdl = SDL(rt->rt_gateway);
if (sdl != NULL) {
sdl->sdl_alen = 0;
}
la->la_asked = 0;
rt->rt_flags &= ~RTF_REJECT;
}
RT_UNLOCK(rt);
} else if (!(rt->rt_flags & RTF_STATIC) && !ap->probing) {
/*
* ARP entry has no outstanding refcnt, and we're either
* draining or it has expired; delete it from the routing
* table. Safe to drop rt_lock and use rt_key, since holding
* rnh_lock here prevents another thread from calling
* rt_setgate() on this route.
*/
RT_UNLOCK(rt);
rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
rt_mask(rt), 0, NULL);
arpstat.timeouts++;
ap->killed++;
} else {
/* ARP entry is static; let it linger */
RT_UNLOCK(rt);
}
}
void
in_arpdrain(void *arg)
{
#pragma unused(arg)
struct llinfo_arp *la, *ola;
struct arptf_arg farg;
if (arp_verbose) {
log(LOG_DEBUG, "%s: draining ARP entries\n", __func__);
}
lck_mtx_lock(rnh_lock);
la = llinfo_arp.lh_first;
bzero(&farg, sizeof(farg));
farg.draining = TRUE;
while ((ola = la) != NULL) {
la = la->la_le.le_next;
arptfree(ola, &farg);
}
if (arp_verbose) {
log(LOG_DEBUG, "%s: found %u, aging %u, sticky %u, killed %u; "
"%u pkts held (%u bytes)\n", __func__, farg.found,
farg.aging, farg.sticky, farg.killed, farg.qlen,
farg.qsize);
}
lck_mtx_unlock(rnh_lock);
}
/*
* Timeout routine. Age arp_tab entries periodically.
*/
static void
arp_timeout(thread_call_param_t arg0, thread_call_param_t arg1)
{
#pragma unused(arg0, arg1)
struct llinfo_arp *la, *ola;
struct timeval atv;
struct arptf_arg farg;
lck_mtx_lock(rnh_lock);
la = llinfo_arp.lh_first;
bzero(&farg, sizeof(farg));
while ((ola = la) != NULL) {
la = la->la_le.le_next;
arptfree(ola, &farg);
}
if (arp_verbose) {
log(LOG_DEBUG, "%s: found %u, aging %u, sticky %u, killed %u; "
"%u pkts held (%u bytes)\n", __func__, farg.found,
farg.aging, farg.sticky, farg.killed, farg.qlen,
farg.qsize);
}
atv.tv_usec = 0;
atv.tv_sec = MAX(arpt_prune, 5);
/* re-arm the timer if there's work to do */
arp_timeout_run = 0;
if (farg.aging > 0) {
arp_sched_timeout(&atv);
} else if (arp_verbose) {
log(LOG_DEBUG, "%s: not rescheduling timer\n", __func__);
}
lck_mtx_unlock(rnh_lock);
}
static void
arp_sched_timeout(struct timeval *atv)
{
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
if (!arp_timeout_run) {
struct timeval tv;
uint64_t deadline = 0;
if (arp_timeout_tcall == NULL) {
arp_timeout_tcall =
thread_call_allocate(arp_timeout, NULL);
VERIFY(arp_timeout_tcall != NULL);
}
if (atv == NULL) {
tv.tv_usec = 0;
tv.tv_sec = MAX(arpt_prune / 5, 1);
atv = &tv;
}
if (arp_verbose) {
log(LOG_DEBUG, "%s: timer scheduled in "
"T+%llus.%lluu\n", __func__,
(uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec);
}
arp_timeout_run = 1;
clock_deadline_for_periodic_event(atv->tv_sec * NSEC_PER_SEC,
mach_absolute_time(), &deadline);
(void) thread_call_enter_delayed(arp_timeout_tcall, deadline);
}
}
/*
* Probe routine.
*/
static void
arp_probe(thread_call_param_t arg0, thread_call_param_t arg1)
{
#pragma unused(arg0, arg1)
struct llinfo_arp *la, *ola;
struct timeval atv;
struct arptf_arg farg;
lck_mtx_lock(rnh_lock);
la = llinfo_arp.lh_first;
bzero(&farg, sizeof(farg));
farg.probing = TRUE;
while ((ola = la) != NULL) {
la = la->la_le.le_next;
arptfree(ola, &farg);
}
if (arp_verbose) {
log(LOG_DEBUG, "%s: found %u, aging %u, sticky %u, killed %u; "
"%u pkts held (%u bytes)\n", __func__, farg.found,
farg.aging, farg.sticky, farg.killed, farg.qlen,
farg.qsize);
}
atv.tv_usec = 0;
atv.tv_sec = MAX(arpt_probe, ARP_PROBE_TIME);
/* re-arm the probe if there's work to do */
arp_probe_run = 0;
if (farg.qlen > 0) {
arp_sched_probe(&atv);
} else if (arp_verbose) {
log(LOG_DEBUG, "%s: not rescheduling probe\n", __func__);
}
lck_mtx_unlock(rnh_lock);
}
static void
arp_sched_probe(struct timeval *atv)
{
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
if (!arp_probe_run) {
struct timeval tv;
uint64_t deadline = 0;
if (arp_probe_tcall == NULL) {
arp_probe_tcall =
thread_call_allocate(arp_probe, NULL);
VERIFY(arp_probe_tcall != NULL);
}
if (atv == NULL) {
tv.tv_usec = 0;
tv.tv_sec = MAX(arpt_probe, ARP_PROBE_TIME);
atv = &tv;
}
if (arp_verbose) {
log(LOG_DEBUG, "%s: probe scheduled in "
"T+%llus.%lluu\n", __func__,
(uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec);
}
arp_probe_run = 1;
clock_deadline_for_periodic_event(atv->tv_sec * NSEC_PER_SEC,
mach_absolute_time(), &deadline);
(void) thread_call_enter_delayed(arp_probe_tcall, deadline);
}
}
/*
* ifa_rtrequest() callback
*/
static void
arp_rtrequest(int req, struct rtentry *rt, struct sockaddr *sa)
{
#pragma unused(sa)
struct sockaddr *gate = rt->rt_gateway;
struct llinfo_arp *la = rt->rt_llinfo;
static struct sockaddr_dl null_sdl =
{ .sdl_len = sizeof(null_sdl), .sdl_family = AF_LINK };
uint64_t timenow;
char buf[MAX_IPv4_STR_LEN];
VERIFY(arpinit_done);
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
RT_LOCK_ASSERT_HELD(rt);
if (rt->rt_flags & RTF_GATEWAY) {
return;
}
timenow = net_uptime();
switch (req) {
case RTM_ADD:
/*
* XXX: If this is a manually added route to interface
* such as older version of routed or gated might provide,
* restore cloning bit.
*/
if (!(rt->rt_flags & RTF_HOST) && rt_mask(rt) != NULL &&
SIN(rt_mask(rt))->sin_addr.s_addr != INADDR_BROADCAST) {
rt->rt_flags |= RTF_CLONING;
}
if (rt->rt_flags & RTF_CLONING) {
/*
* Case 1: This route should come from a route to iface.
*/
if (rt_setgate(rt, rt_key(rt), SA(&null_sdl)) == 0) {
gate = rt->rt_gateway;
SDL(gate)->sdl_type = rt->rt_ifp->if_type;
SDL(gate)->sdl_index = rt->rt_ifp->if_index;
/*
* In case we're called before 1.0 sec.
* has elapsed.
*/
rt_setexpire(rt, MAX(timenow, 1));
}
break;
}
/* Announce a new entry if requested. */
if (rt->rt_flags & RTF_ANNOUNCE) {
if (la != NULL) {
arp_llreach_use(la); /* Mark use timestamp */
}
if ((rt->rt_ifp->if_flags & IFF_NOARP) == 0) {
RT_UNLOCK(rt);
dlil_send_arp(rt->rt_ifp, ARPOP_REQUEST,
SDL(gate), rt_key(rt), NULL, rt_key(rt), 0);
RT_LOCK(rt);
arpstat.txannounces++;
}
}
OS_FALLTHROUGH;
case RTM_RESOLVE:
if (gate->sa_family != AF_LINK ||
gate->sa_len < sizeof(null_sdl)) {
arpstat.invalidreqs++;
log(LOG_ERR, "%s: route to %s has bad gateway address "
"(sa_family %u sa_len %u) on %s\n",
__func__, inet_ntop(AF_INET,
&SIN(rt_key(rt))->sin_addr.s_addr, buf,
sizeof(buf)), gate->sa_family, gate->sa_len,
if_name(rt->rt_ifp));
break;
}
SDL(gate)->sdl_type = rt->rt_ifp->if_type;
SDL(gate)->sdl_index = rt->rt_ifp->if_index;
if (la != NULL) {
break; /* This happens on a route change */
}
/*
* Case 2: This route may come from cloning, or a manual route
* add with a LL address.
*/
rt->rt_llinfo = la = arp_llinfo_alloc(Z_WAITOK);
rt->rt_llinfo_get_ri = arp_llinfo_get_ri;
rt->rt_llinfo_get_iflri = arp_llinfo_get_iflri;
rt->rt_llinfo_purge = arp_llinfo_purge;
rt->rt_llinfo_free = arp_llinfo_free;
rt->rt_llinfo_refresh = arp_llinfo_refresh;
rt->rt_flags |= RTF_LLINFO;
la->la_rt = rt;
LIST_INSERT_HEAD(&llinfo_arp, la, la_le);
arpstat.inuse++;
/* We have at least one entry; arm the timer if not already */
arp_sched_timeout(NULL);
/*
* This keeps the multicast addresses from showing up
* in `arp -a' listings as unresolved. It's not actually
* functional. Then the same for broadcast. For IPv4
* link-local address, keep the entry around even after
* it has expired.
*/
if (IN_MULTICAST(ntohl(SIN(rt_key(rt))->sin_addr.s_addr))) {
RT_UNLOCK(rt);
dlil_resolve_multi(rt->rt_ifp, rt_key(rt), gate,
sizeof(struct sockaddr_dl));
RT_LOCK(rt);
rt_setexpire(rt, 0);
} else if (in_broadcast(SIN(rt_key(rt))->sin_addr,
rt->rt_ifp)) {
struct sockaddr_dl *gate_ll = SDL(gate);
size_t broadcast_len;
int ret = ifnet_llbroadcast_copy_bytes(rt->rt_ifp,
LLADDR(gate_ll), sizeof(gate_ll->sdl_data),
&broadcast_len);
if (ret == 0 && broadcast_len <= UINT8_MAX) {
gate_ll->sdl_alen = (u_char)broadcast_len;
gate_ll->sdl_family = AF_LINK;
gate_ll->sdl_len = sizeof(struct sockaddr_dl);
}
/* In case we're called before 1.0 sec. has elapsed */
rt_setexpire(rt, MAX(timenow, 1));
} else if (IN_LINKLOCAL(ntohl(SIN(rt_key(rt))->
sin_addr.s_addr))) {
rt->rt_flags |= RTF_STATIC;
}
/* Set default maximum number of retries */
la->la_maxtries = arp_maxtries;
/* Become a regular mutex, just in case */
RT_CONVERT_LOCK(rt);
IFA_LOCK_SPIN(rt->rt_ifa);
if (SIN(rt_key(rt))->sin_addr.s_addr ==
(IA_SIN(rt->rt_ifa))->sin_addr.s_addr) {
IFA_UNLOCK(rt->rt_ifa);
/*
* This test used to be
* if (loif.if_flags & IFF_UP)
* It allowed local traffic to be forced through the
* hardware by configuring the loopback down. However,
* it causes problems during network configuration
* for boards that can't receive packets they send.
* It is now necessary to clear "useloopback" and
* remove the route to force traffic out to the
* hardware.
*/
rt_setexpire(rt, 0);
ifnet_lladdr_copy_bytes(rt->rt_ifp, LLADDR(SDL(gate)),
SDL(gate)->sdl_alen = rt->rt_ifp->if_addrlen);
if (useloopback) {
if (rt->rt_ifp != lo_ifp) {
/*
* Purge any link-layer info caching.
*/
if (rt->rt_llinfo_purge != NULL) {
rt->rt_llinfo_purge(rt);
}
/*
* Adjust route ref count for the
* interfaces.
*/
if (rt->rt_if_ref_fn != NULL) {
rt->rt_if_ref_fn(lo_ifp, 1);
rt->rt_if_ref_fn(rt->rt_ifp, -1);
}
}
rt->rt_ifp = lo_ifp;
/*
* If rmx_mtu is not locked, update it
* to the MTU used by the new interface.
*/
if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) {
rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
}
}
} else {
IFA_UNLOCK(rt->rt_ifa);
}
break;
case RTM_DELETE:
if (la == NULL) {
break;
}
/*
* Unchain it but defer the actual freeing until the route
* itself is to be freed. rt->rt_llinfo still points to
* llinfo_arp, and likewise, la->la_rt still points to this
* route entry, except that RTF_LLINFO is now cleared.
*/
LIST_REMOVE(la, la_le);
la->la_le.le_next = NULL;
la->la_le.le_prev = NULL;
arpstat.inuse--;
/*
* Purge any link-layer info caching.
*/
if (rt->rt_llinfo_purge != NULL) {
rt->rt_llinfo_purge(rt);
}
rt->rt_flags &= ~RTF_LLINFO;
(void) arp_llinfo_flushq(la);
}
}
/*
* convert hardware address to hex string for logging errors.
*/
static const char *
sdl_addr_to_hex(const struct sockaddr_dl *sdl, char *orig_buf, int buflen)
{
char *buf = orig_buf;
int i;
const u_char *lladdr = (u_char *)(size_t)sdl->sdl_data;
int maxbytes = buflen / 3;
if (maxbytes > sdl->sdl_alen) {
maxbytes = sdl->sdl_alen;
}
*buf = '\0';
for (i = 0; i < maxbytes; i++) {
snprintf(buf, 3, "%02x", lladdr[i]);
buf += 2;
*buf = (i == maxbytes - 1) ? '\0' : ':';
buf++;
}
return orig_buf;
}
/*
* arp_lookup_route will lookup the route for a given address.
*
* The address must be for a host on a local network on this interface.
* If the returned route is non-NULL, the route is locked and the caller
* is responsible for unlocking it and releasing its reference.
*/
static errno_t
arp_lookup_route(const struct in_addr *addr, int create, int proxy,
route_t *route, unsigned int ifscope)
{
struct sockaddr_inarp sin =
{ sizeof(sin), AF_INET, 0, { 0 }, { 0 }, 0, 0 };
const char *why = NULL;
errno_t error = 0;
route_t rt;
*route = NULL;
sin.sin_addr.s_addr = addr->s_addr;
sin.sin_other = proxy ? SIN_PROXY : 0;
/*
* If the destination is a link-local address, don't
* constrain the lookup (don't scope it).
*/
if (IN_LINKLOCAL(ntohl(addr->s_addr))) {
ifscope = IFSCOPE_NONE;
}
rt = rtalloc1_scoped(SA(&sin), create, 0, ifscope);
if (rt == NULL) {
return ENETUNREACH;
}
RT_LOCK(rt);
if (rt->rt_flags & RTF_GATEWAY) {
why = "host is not on local network";
error = ENETUNREACH;
} else if (!(rt->rt_flags & RTF_LLINFO)) {
why = "could not allocate llinfo";
error = ENOMEM;
} else if (rt->rt_gateway->sa_family != AF_LINK) {
why = "gateway route is not ours";
error = EPROTONOSUPPORT;
}
if (error != 0) {
if (create && (arp_verbose || log_arp_warnings)) {
char tmp[MAX_IPv4_STR_LEN];
log(LOG_DEBUG, "%s: link#%d %s failed: %s\n",
__func__, ifscope, inet_ntop(AF_INET, addr, tmp,
sizeof(tmp)), why);
}
/*
* If there are no references to this route, and it is
* a cloned route, and not static, and ARP had created
* the route, then purge it from the routing table as
* it is probably bogus.
*/
if (rt->rt_refcnt == 1 &&
(rt->rt_flags & (RTF_WASCLONED | RTF_STATIC)) ==
RTF_WASCLONED) {
/*
* Prevent another thread from modiying rt_key,
* rt_gateway via rt_setgate() after rt_lock is
* dropped by marking the route as defunct.
*/
rt->rt_flags |= RTF_CONDEMNED;
RT_UNLOCK(rt);
rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
rt_mask(rt), rt->rt_flags, NULL);
rtfree(rt);
} else {
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
}
return error;
}
/*
* Caller releases reference and does RT_UNLOCK(rt).
*/
*route = rt;
return 0;
}
boolean_t
arp_is_entry_probing(route_t p_route)
{
struct llinfo_arp *llinfo = p_route->rt_llinfo;
if (llinfo != NULL &&
llinfo->la_llreach != NULL &&
llinfo->la_llreach->lr_probes != 0) {
return TRUE;
}
return FALSE;
}
__attribute__((noinline))
static void
post_kev_in_arpfailure(struct ifnet *ifp)
{
struct kev_msg ev_msg = {};
struct kev_in_arpfailure in_arpfailure = {};
in_arpfailure.link_data.if_family = ifp->if_family;
in_arpfailure.link_data.if_unit = ifp->if_unit;
strlcpy(in_arpfailure.link_data.if_name, ifp->if_name, IFNAMSIZ);
ev_msg.vendor_code = KEV_VENDOR_APPLE;
ev_msg.kev_class = KEV_NETWORK_CLASS;
ev_msg.kev_subclass = KEV_INET_SUBCLASS;
ev_msg.event_code = KEV_INET_ARPRTRFAILURE;
ev_msg.dv[0].data_ptr = &in_arpfailure;
ev_msg.dv[0].data_length = sizeof(struct kev_in_arpfailure);
dlil_post_complete_msg(NULL, &ev_msg);
}
__attribute__((noinline))
static void
arp_send_probe_notification(route_t route)
{
route_event_enqueue_nwk_wq_entry(route, NULL,
ROUTE_LLENTRY_PROBED, NULL, TRUE);
if (route->rt_flags & RTF_ROUTER) {
struct radix_node_head *rnh = NULL;
struct route_event rt_ev;
route_event_init(&rt_ev, route, NULL, ROUTE_LLENTRY_PROBED);
/*
* We already have a reference on rt. The function
* frees it before returning.
*/
RT_UNLOCK(route);
lck_mtx_lock(rnh_lock);
rnh = rt_tables[AF_INET];
if (rnh != NULL) {
(void) rnh->rnh_walktree(rnh,
route_event_walktree, (void *)&rt_ev);
}
lck_mtx_unlock(rnh_lock);
RT_LOCK(route);
}
}
/*
* This is the ARP pre-output routine; care must be taken to ensure that
* the "hint" route never gets freed via rtfree(), since the caller may
* have stored it inside a struct route with a reference held for that
* placeholder.
*/
errno_t
arp_lookup_ip(ifnet_t ifp, const struct sockaddr_in *net_dest,
struct sockaddr_dl *ll_dest, size_t ll_dest_len, route_t hint,
mbuf_t packet)
{
route_t route __single = NULL; /* output route */
errno_t result = 0;
struct sockaddr_dl *gateway;
struct llinfo_arp *llinfo = NULL;
boolean_t usable, probing = FALSE;
uint64_t timenow;
struct if_llreach *lr;
struct ifaddr *rt_ifa;
struct sockaddr *sa;
uint32_t rtflags;
struct sockaddr_dl sdl = {};
boolean_t send_probe_notif = FALSE;
boolean_t enqueued = FALSE;
if (ifp == NULL || net_dest == NULL) {
return EINVAL;
}
if (net_dest->sin_family != AF_INET) {
return EAFNOSUPPORT;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) {
return ENETDOWN;
}
/*
* If we were given a route, verify the route and grab the gateway
*/
if (hint != NULL) {
/*
* Callee holds a reference on the route and returns
* with the route entry locked, upon success.
*/
result = route_to_gwroute(SA(net_dest), hint, &route);
if (result != 0) {
return result;
}
if (route != NULL) {
RT_LOCK_ASSERT_HELD(route);
}
}
if ((packet != NULL && (packet->m_flags & M_BCAST)) ||
in_broadcast(net_dest->sin_addr, ifp)) {
size_t broadcast_len;
SOCKADDR_ZERO(ll_dest, ll_dest_len);
result = ifnet_llbroadcast_copy_bytes(ifp, LLADDR(ll_dest),
ll_dest_len - offsetof(struct sockaddr_dl, sdl_data),
&broadcast_len);
if (result == 0 && broadcast_len <= UINT8_MAX) {
ll_dest->sdl_alen = (u_char)broadcast_len;
ll_dest->sdl_family = AF_LINK;
ll_dest->sdl_len = sizeof(struct sockaddr_dl);
}
goto release;
}
if ((packet != NULL && (packet->m_flags & M_MCAST)) ||
((ifp->if_flags & IFF_MULTICAST) &&
IN_MULTICAST(ntohl(net_dest->sin_addr.s_addr)))) {
if (route != NULL) {
RT_UNLOCK(route);
}
result = dlil_resolve_multi(ifp,
SA(net_dest),
SA(ll_dest), ll_dest_len);
if (route != NULL) {
RT_LOCK(route);
}
goto release;
}
/*
* If we didn't find a route, or the route doesn't have
* link layer information, trigger the creation of the
* route and link layer information.
*/
if (route == NULL || route->rt_llinfo == NULL) {
/* Clean up now while we can */
if (route != NULL) {
if (route == hint) {
RT_REMREF_LOCKED(route);
RT_UNLOCK(route);
} else {
RT_UNLOCK(route);
rtfree(route);
}
}
/*
* Callee holds a reference on the route and returns
* with the route entry locked, upon success.
*/
result = arp_lookup_route(&net_dest->sin_addr, 1, 0, &route,
ifp->if_index);
if (result == 0) {
RT_LOCK_ASSERT_HELD(route);
}
}
if (result || route == NULL || (llinfo = route->rt_llinfo) == NULL) {
/* In case result is 0 but no route, return an error */
if (result == 0) {
result = EHOSTUNREACH;
}
if (route != NULL && route->rt_llinfo == NULL) {
char tmp[MAX_IPv4_STR_LEN];
log(LOG_ERR, "%s: can't allocate llinfo for %s\n",
__func__, inet_ntop(AF_INET, &net_dest->sin_addr,
tmp, sizeof(tmp)));
}
goto release;
}
if ((ifp->if_flags & IFF_NOARP) != 0) {
result = ENOTSUP;
goto release;
}
/*
* Now that we have the right route, is it filled in?
*/
gateway = SDL(route->rt_gateway);
timenow = net_uptime();
VERIFY(route->rt_expire == 0 || route->rt_rmx.rmx_expire != 0);
VERIFY(route->rt_expire != 0 || route->rt_rmx.rmx_expire == 0);
usable = ((route->rt_expire == 0 || route->rt_expire > timenow) &&
gateway != NULL && gateway->sdl_family == AF_LINK &&
gateway->sdl_alen != 0);
if (usable) {
boolean_t unreachable = !arp_llreach_reachable(llinfo);
/* Entry is usable, so fill in info for caller */
SOCKADDR_COPY(gateway, ll_dest, MIN(gateway->sdl_len, ll_dest_len));
result = 0;
arp_llreach_use(llinfo); /* Mark use timestamp */
lr = llinfo->la_llreach;
if (lr == NULL) {
goto release;
}
rt_ifa = route->rt_ifa;
/* Become a regular mutex, just in case */
RT_CONVERT_LOCK(route);
IFLR_LOCK_SPIN(lr);
if ((unreachable || (llinfo->la_flags & LLINFO_PROBING)) &&
lr->lr_probes < arp_unicast_lim) {
/*
* Thus mark the entry with la_probeexp deadline to
* trigger the probe timer to be scheduled (if not
* already). This gets cleared the moment we get
* an ARP reply.
*/
probing = TRUE;
if (lr->lr_probes == 0) {
llinfo->la_probeexp = (timenow + arpt_probe);
llinfo->la_flags |= LLINFO_PROBING;
/*
* Provide notification that ARP unicast
* probing has started.
* We only do it for the first unicast probe
* attempt.
*/
send_probe_notif = TRUE;
}
/*
* Start the unicast probe and anticipate a reply;
* afterwards, return existing entry to caller and
* let it be used anyway. If peer is non-existent
* we'll broadcast ARP next time around.
*/
lr->lr_probes++;
SOCKADDR_ZERO(&sdl, sizeof(sdl));
sdl.sdl_alen = ifp->if_addrlen;
bcopy(&lr->lr_key.addr, LLADDR(&sdl),
ifp->if_addrlen);
IFLR_UNLOCK(lr);
IFA_LOCK_SPIN(rt_ifa);
ifa_addref(rt_ifa);
sa = rt_ifa->ifa_addr;
IFA_UNLOCK(rt_ifa);
rtflags = route->rt_flags;
RT_UNLOCK(route);
dlil_send_arp(ifp, ARPOP_REQUEST, NULL, sa,
SDL(&sdl),
SA(net_dest), rtflags);
ifa_remref(rt_ifa);
RT_LOCK(route);
goto release;
} else {
IFLR_UNLOCK(lr);
if (!unreachable &&
!(llinfo->la_flags & LLINFO_PROBING)) {
/*
* Normal case where peer is still reachable,
* we're not probing and if_addrlen is anything
* but IF_LLREACH_MAXLEN.
*/
goto release;
}
}
}
/*
* Route wasn't complete/valid; we need to send out ARP request.
* If we've exceeded the limit of la_holdq, drop from the head
* of queue and add this packet to the tail. If we end up with
* RTF_REJECT below, we'll dequeue this from tail and have the
* caller free the packet instead. It's safe to do that since
* we still hold the route's rt_lock.
*/
if (packet != NULL) {
enqueued = arp_llinfo_addq(llinfo, packet);
} else {
llinfo->la_prbreq_cnt++;
}
/*
* Regardless of permanent vs. expirable entry, we need to
* avoid having packets sit in la_holdq forever; thus mark the
* entry with la_probeexp deadline to trigger the probe timer
* to be scheduled (if not already). This gets cleared the
* moment we get an ARP reply.
*/
probing = TRUE;
if ((qlen(&llinfo->la_holdq) + llinfo->la_prbreq_cnt) == 1) {
llinfo->la_probeexp = (timenow + arpt_probe);
llinfo->la_flags |= LLINFO_PROBING;
}
if (route->rt_expire) {
route->rt_flags &= ~RTF_REJECT;
if (llinfo->la_asked == 0 || route->rt_expire != timenow) {
rt_setexpire(route, timenow);
if (llinfo->la_asked++ < llinfo->la_maxtries) {
boolean_t sendkev = FALSE;
rt_ifa = route->rt_ifa;
lr = llinfo->la_llreach;
/* Become a regular mutex, just in case */
RT_CONVERT_LOCK(route);
/* Update probe count, if applicable */
if (lr != NULL) {
IFLR_LOCK_SPIN(lr);
lr->lr_probes++;
IFLR_UNLOCK(lr);
}
if (ifp->if_addrlen == IF_LLREACH_MAXLEN &&
route->rt_flags & RTF_ROUTER &&
llinfo->la_asked > 1) {
sendkev = TRUE;
llinfo->la_flags |= LLINFO_RTRFAIL_EVTSENT;
}
IFA_LOCK_SPIN(rt_ifa);
ifa_addref(rt_ifa);
sa = rt_ifa->ifa_addr;
IFA_UNLOCK(rt_ifa);
arp_llreach_use(llinfo); /* Mark use tstamp */
rtflags = route->rt_flags;
RT_UNLOCK(route);
dlil_send_arp(ifp, ARPOP_REQUEST, NULL, sa,
NULL, SA(net_dest),
rtflags);
ifa_remref(rt_ifa);
if (sendkev) {
post_kev_in_arpfailure(ifp);
}
RT_LOCK(route);
goto release_just_return;
} else {
route->rt_flags |= RTF_REJECT;
rt_setexpire(route,
route->rt_expire + arpt_down);
llinfo->la_asked = 0;
/*
* Remove the packet that was just added above;
* don't free it since we're not returning
* EJUSTRETURN. The caller will handle the
* freeing. Since we haven't dropped rt_lock
* from the time of _addq() above, this packet
* must be at the tail.
*/
if (packet != NULL && enqueued) {
classq_pkt_t pkt =
CLASSQ_PKT_INITIALIZER(pkt);
_getq_tail(&llinfo->la_holdq, &pkt);
os_atomic_dec(&arpstat.held, relaxed);
VERIFY(pkt.cp_mbuf == packet);
}
result = EHOSTUNREACH;
/*
* Enqueue work item to invoke callback for this route entry
*/
route_event_enqueue_nwk_wq_entry(route, NULL,
ROUTE_LLENTRY_UNREACH, NULL, TRUE);
goto release;
}
}
}
release_just_return:
/* The packet is now held inside la_holdq or dropped */
result = EJUSTRETURN;
if (packet != NULL && !enqueued) {
m_freem(packet);
packet = NULL;
}
release:
if (result == EHOSTUNREACH) {
os_atomic_inc(&arpstat.dropped, relaxed);
}
if (route != NULL) {
if (send_probe_notif) {
arp_send_probe_notification(route);
}
if (route == hint) {
RT_REMREF_LOCKED(route);
RT_UNLOCK(route);
} else {
RT_UNLOCK(route);
rtfree(route);
}
}
if (probing) {
/* Do this after we drop rt_lock to preserve ordering */
lck_mtx_lock(rnh_lock);
arp_sched_probe(NULL);
lck_mtx_unlock(rnh_lock);
}
return result;
}
errno_t
arp_ip_handle_input(ifnet_t ifp, u_short arpop,
const struct sockaddr_dl *sender_hw, const struct sockaddr_in *sender_ip,
const struct sockaddr_in *target_ip)
{
char ipv4str[MAX_IPv4_STR_LEN];
struct sockaddr_dl proxied = {};
struct sockaddr_dl *gateway, *target_hw = NULL;
struct ifaddr *ifa;
struct in_ifaddr *ia;
struct in_ifaddr *best_ia = NULL;
struct sockaddr_in best_ia_sin;
route_t route = NULL;
char buf[3 * MAX_HW_LEN]; /* enough for MAX_HW_LEN byte hw address */
struct llinfo_arp *llinfo;
errno_t error;
int created_announcement = 0;
int bridged = 0, is_bridge = 0;
uint32_t rt_evcode = 0;
/*
* Here and other places within this routine where we don't hold
* rnh_lock, trade accuracy for speed for the common scenarios
* and avoid the use of atomic updates.
*/
arpstat.received++;
/* Do not respond to requests for 0.0.0.0 */
if (target_ip->sin_addr.s_addr == INADDR_ANY && arpop == ARPOP_REQUEST) {
goto done;
}
if (ifp->if_bridge) {
bridged = 1;
}
if (ifp->if_type == IFT_BRIDGE) {
is_bridge = 1;
}
if (arpop == ARPOP_REPLY) {
arpstat.rxreplies++;
}
/*
* Determine if this ARP is for us
*/
lck_rw_lock_shared(&in_ifaddr_rwlock);
TAILQ_FOREACH(ia, INADDR_HASH(target_ip->sin_addr.s_addr), ia_hash) {
IFA_LOCK_SPIN(&ia->ia_ifa);
if (ia->ia_ifp == ifp &&
ia->ia_addr.sin_addr.s_addr == target_ip->sin_addr.s_addr) {
best_ia = ia;
best_ia_sin = best_ia->ia_addr;
ifa_addref(&ia->ia_ifa);
IFA_UNLOCK(&ia->ia_ifa);
lck_rw_done(&in_ifaddr_rwlock);
goto match;
}
IFA_UNLOCK(&ia->ia_ifa);
}
TAILQ_FOREACH(ia, INADDR_HASH(sender_ip->sin_addr.s_addr), ia_hash) {
IFA_LOCK_SPIN(&ia->ia_ifa);
if (ia->ia_ifp == ifp &&
ia->ia_addr.sin_addr.s_addr == sender_ip->sin_addr.s_addr) {
best_ia = ia;
best_ia_sin = best_ia->ia_addr;
ifa_addref(&ia->ia_ifa);
IFA_UNLOCK(&ia->ia_ifa);
lck_rw_done(&in_ifaddr_rwlock);
goto match;
}
IFA_UNLOCK(&ia->ia_ifa);
}
#define BDG_MEMBER_MATCHES_ARP(addr, ifp, ia) \
(ia->ia_ifp->if_bridge == ifp->if_softc && \
bcmp(IF_LLADDR(ia->ia_ifp), IF_LLADDR(ifp), ifp->if_addrlen) == 0 && \
addr == ia->ia_addr.sin_addr.s_addr)
/*
* Check the case when bridge shares its MAC address with
* some of its children, so packets are claimed by bridge
* itself (bridge_input() does it first), but they are really
* meant to be destined to the bridge member.
*/
if (is_bridge) {
TAILQ_FOREACH(ia, INADDR_HASH(target_ip->sin_addr.s_addr),
ia_hash) {
IFA_LOCK_SPIN(&ia->ia_ifa);
if (BDG_MEMBER_MATCHES_ARP(target_ip->sin_addr.s_addr,
ifp, ia)) {
ifp = ia->ia_ifp;
best_ia = ia;
best_ia_sin = best_ia->ia_addr;
ifa_addref(&ia->ia_ifa);
IFA_UNLOCK(&ia->ia_ifa);
lck_rw_done(&in_ifaddr_rwlock);
goto match;
}
IFA_UNLOCK(&ia->ia_ifa);
}
}
#undef BDG_MEMBER_MATCHES_ARP
lck_rw_done(&in_ifaddr_rwlock);
/*
* No match, use the first inet address on the receive interface
* as a dummy address for the rest of the function; we may be
* proxying for another address.
*/
ifnet_lock_shared(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
IFA_LOCK_SPIN(ifa);
if (ifa->ifa_addr->sa_family != AF_INET) {
IFA_UNLOCK(ifa);
continue;
}
best_ia = (struct in_ifaddr *)ifa;
best_ia_sin = best_ia->ia_addr;
ifa_addref(ifa);
IFA_UNLOCK(ifa);
ifnet_lock_done(ifp);
goto match;
}
ifnet_lock_done(ifp);
/*
* If we're not a bridge member, or if we are but there's no
* IPv4 address to use for the interface, drop the packet.
*/
if (!bridged || best_ia == NULL) {
goto done;
}
match:
/* If the packet is from this interface, ignore the packet */
if (bcmp(CONST_LLADDR(sender_hw), IF_LLADDR(ifp),
sender_hw->sdl_alen) == 0) {
goto done;
}
/* Check for a conflict */
if (!bridged &&
sender_ip->sin_addr.s_addr == best_ia_sin.sin_addr.s_addr) {
struct kev_msg ev_msg;
struct kev_in_collision *in_collision;
u_char storage[sizeof(struct kev_in_collision) + MAX_HW_LEN];
bzero(&ev_msg, sizeof(struct kev_msg));
bzero(storage, (sizeof(struct kev_in_collision) + MAX_HW_LEN));
in_collision = (struct kev_in_collision *)(void *)storage;
log(LOG_ERR, "%s duplicate IP address %s sent from "
"address %s\n", if_name(ifp),
inet_ntop(AF_INET, &sender_ip->sin_addr, ipv4str,
sizeof(ipv4str)), sdl_addr_to_hex(sender_hw, buf,
(int)sizeof(buf)));
/* Send a kernel event so anyone can learn of the conflict */
in_collision->link_data.if_family = ifp->if_family;
in_collision->link_data.if_unit = ifp->if_unit;
strlcpy(&in_collision->link_data.if_name[0],
ifp->if_name, IFNAMSIZ);
in_collision->ia_ipaddr = sender_ip->sin_addr;
in_collision->hw_len = (sender_hw->sdl_alen < MAX_HW_LEN) ?
sender_hw->sdl_alen : MAX_HW_LEN;
bcopy(CONST_LLADDR(sender_hw), (caddr_t)in_collision->hw_addr,
in_collision->hw_len);
ev_msg.vendor_code = KEV_VENDOR_APPLE;
ev_msg.kev_class = KEV_NETWORK_CLASS;
ev_msg.kev_subclass = KEV_INET_SUBCLASS;
ev_msg.event_code = KEV_INET_ARPCOLLISION;
ev_msg.dv[0].data_ptr = in_collision;
ev_msg.dv[0].data_length =
sizeof(struct kev_in_collision) + in_collision->hw_len;
ev_msg.dv[1].data_length = 0;
dlil_post_complete_msg(NULL, &ev_msg);
os_atomic_inc(&arpstat.dupips, relaxed);
goto respond;
}
/*
* Look up the routing entry. If it doesn't exist and we are the
* target, and the sender isn't 0.0.0.0, go ahead and create one.
* Callee holds a reference on the route and returns with the route
* entry locked, upon success.
*/
error = arp_lookup_route(&sender_ip->sin_addr,
(target_ip->sin_addr.s_addr == best_ia_sin.sin_addr.s_addr &&
sender_ip->sin_addr.s_addr != 0), 0, &route, ifp->if_index);
if (error == 0) {
RT_LOCK_ASSERT_HELD(route);
}
if (error || route == NULL || route->rt_gateway == NULL) {
if (arpop != ARPOP_REQUEST) {
goto respond;
}
if (arp_sendllconflict && send_conflicting_probes != 0 &&
(ifp->if_eflags & IFEF_ARPLL) &&
IN_LINKLOCAL(ntohl(target_ip->sin_addr.s_addr)) &&
sender_ip->sin_addr.s_addr == INADDR_ANY) {
/*
* Verify this ARP probe doesn't conflict with
* an IPv4LL we know of on another interface.
*/
if (route != NULL) {
RT_REMREF_LOCKED(route);
RT_UNLOCK(route);
route = NULL;
}
/*
* Callee holds a reference on the route and returns
* with the route entry locked, upon success.
*/
error = arp_lookup_route(&target_ip->sin_addr, 0, 0,
&route, ifp->if_index);
if (error != 0 || route == NULL ||
route->rt_gateway == NULL) {
goto respond;
}
RT_LOCK_ASSERT_HELD(route);
gateway = SDL(route->rt_gateway);
if (route->rt_ifp != ifp && gateway->sdl_alen != 0 &&
(gateway->sdl_alen != sender_hw->sdl_alen ||
bcmp(CONST_LLADDR(gateway), CONST_LLADDR(sender_hw),
gateway->sdl_alen) != 0)) {
/*
* A node is probing for an IPv4LL we know
* exists on a different interface. We respond
* with a conflicting probe to force the new
* device to pick a different IPv4LL address.
*/
if (arp_verbose || log_arp_warnings) {
log(LOG_INFO, "arp: %s on %s sent "
"probe for %s, already on %s\n",
sdl_addr_to_hex(sender_hw, buf,
(int)sizeof(buf)), if_name(ifp),
inet_ntop(AF_INET,
&target_ip->sin_addr, ipv4str,
sizeof(ipv4str)),
if_name(route->rt_ifp));
log(LOG_INFO, "arp: sending "
"conflicting probe to %s on %s\n",
sdl_addr_to_hex(sender_hw, buf,
(int)sizeof(buf)), if_name(ifp));
}
/* Mark use timestamp */
if (route->rt_llinfo != NULL) {
arp_llreach_use(route->rt_llinfo);
}
/* We're done with the route */
RT_REMREF_LOCKED(route);
RT_UNLOCK(route);
route = NULL;
/*
* Send a conservative unicast "ARP probe".
* This should force the other device to pick
* a new number. This will not force the
* device to pick a new number if the device
* has already assigned that number. This will
* not imply to the device that we own that
* address. The link address is always
* present; it's never freed.
*/
ifnet_lock_shared(ifp);
ifa = ifp->if_lladdr;
ifa_addref(ifa);
ifnet_lock_done(ifp);
dlil_send_arp_internal(ifp, ARPOP_REQUEST,
SDL(ifa->ifa_addr),
SA(sender_ip),
sender_hw,
SA(target_ip));
ifa_remref(ifa);
ifa = NULL;
os_atomic_inc(&arpstat.txconflicts, relaxed);
}
goto respond;
} else if (keep_announcements != 0 &&
target_ip->sin_addr.s_addr == sender_ip->sin_addr.s_addr) {
/*
* Don't create entry if link-local address and
* link-local is disabled
*/
if (!IN_LINKLOCAL(ntohl(sender_ip->sin_addr.s_addr)) ||
(ifp->if_eflags & IFEF_ARPLL)) {
if (route != NULL) {
RT_REMREF_LOCKED(route);
RT_UNLOCK(route);
route = NULL;
}
/*
* Callee holds a reference on the route and
* returns with the route entry locked, upon
* success.
*/
error = arp_lookup_route(&sender_ip->sin_addr,
1, 0, &route, ifp->if_index);
if (error == 0) {
RT_LOCK_ASSERT_HELD(route);
}
if (error == 0 && route != NULL &&
route->rt_gateway != NULL) {
created_announcement = 1;
}
}
if (created_announcement == 0) {
goto respond;
}
} else {
goto respond;
}
}
RT_LOCK_ASSERT_HELD(route);
VERIFY(route->rt_expire == 0 || route->rt_rmx.rmx_expire != 0);
VERIFY(route->rt_expire != 0 || route->rt_rmx.rmx_expire == 0);
gateway = SDL(route->rt_gateway);
if (!bridged && route->rt_ifp != ifp) {
if (!IN_LINKLOCAL(ntohl(sender_ip->sin_addr.s_addr)) ||
!(ifp->if_eflags & IFEF_ARPLL)) {
if (arp_verbose || log_arp_warnings) {
log(LOG_ERR, "arp: %s is on %s but got "
"reply from %s on %s\n",
inet_ntop(AF_INET, &sender_ip->sin_addr,
ipv4str, sizeof(ipv4str)),
if_name(route->rt_ifp),
sdl_addr_to_hex(sender_hw, buf,
(int)sizeof(buf)), if_name(ifp));
}
goto respond;
} else {
/* Don't change a permanent address */
if (route->rt_expire == 0) {
goto respond;
}
/*
* We're about to check and/or change the route's ifp
* and ifa, so do the lock dance: drop rt_lock, hold
* rnh_lock and re-hold rt_lock to avoid violating the
* lock ordering. We have an extra reference on the
* route, so it won't go away while we do this.
*/
RT_UNLOCK(route);
lck_mtx_lock(rnh_lock);
RT_LOCK(route);
/*
* Don't change the cloned route away from the
* parent's interface if the address did resolve
* or if the route is defunct. rt_ifp on both
* the parent and the clone can now be freely
* accessed now that we have acquired rnh_lock.
*/
gateway = SDL(route->rt_gateway);
if ((gateway->sdl_alen != 0 &&
route->rt_parent != NULL &&
route->rt_parent->rt_ifp == route->rt_ifp) ||
(route->rt_flags & RTF_CONDEMNED)) {
RT_REMREF_LOCKED(route);
RT_UNLOCK(route);
route = NULL;
lck_mtx_unlock(rnh_lock);
goto respond;
}
if (route->rt_ifp != ifp) {
/*
* Purge any link-layer info caching.
*/
if (route->rt_llinfo_purge != NULL) {
route->rt_llinfo_purge(route);
}
/* Adjust route ref count for the interfaces */
if (route->rt_if_ref_fn != NULL) {
route->rt_if_ref_fn(ifp, 1);
route->rt_if_ref_fn(route->rt_ifp, -1);
}
}
/* Change the interface when the existing route is on */
route->rt_ifp = ifp;
/*
* If rmx_mtu is not locked, update it
* to the MTU used by the new interface.
*/
if (!(route->rt_rmx.rmx_locks & RTV_MTU)) {
route->rt_rmx.rmx_mtu = route->rt_ifp->if_mtu;
if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) {
route->rt_rmx.rmx_mtu = IN6_LINKMTU(route->rt_ifp);
/* Further adjust the size for CLAT46 expansion */
route->rt_rmx.rmx_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
}
}
rtsetifa(route, &best_ia->ia_ifa);
gateway->sdl_index = ifp->if_index;
RT_UNLOCK(route);
lck_mtx_unlock(rnh_lock);
RT_LOCK(route);
/* Don't bother if the route is down */
if (!(route->rt_flags & RTF_UP)) {
goto respond;
}
/* Refresh gateway pointer */
gateway = SDL(route->rt_gateway);
}
RT_LOCK_ASSERT_HELD(route);
}
if (gateway->sdl_alen != 0 && bcmp(LLADDR(gateway),
CONST_LLADDR(sender_hw), gateway->sdl_alen) != 0) {
if (route->rt_expire != 0 &&
(arp_verbose || log_arp_warnings)) {
char buf2[3 * MAX_HW_LEN];
log(LOG_INFO, "arp: %s moved from %s to %s on %s\n",
inet_ntop(AF_INET, &sender_ip->sin_addr, ipv4str,
sizeof(ipv4str)),
sdl_addr_to_hex(gateway, buf, (int)sizeof(buf)),
sdl_addr_to_hex(sender_hw, buf2, (int)sizeof(buf2)),
if_name(ifp));
} else if (route->rt_expire == 0) {
if (arp_verbose || log_arp_warnings) {
log(LOG_ERR, "arp: %s attempts to modify "
"permanent entry for %s on %s\n",
sdl_addr_to_hex(sender_hw, buf,
(int)sizeof(buf)),
inet_ntop(AF_INET, &sender_ip->sin_addr,
ipv4str, sizeof(ipv4str)),
if_name(ifp));
}
goto respond;
}
}
/* Copy the sender hardware address in to the route's gateway address */
gateway->sdl_alen = sender_hw->sdl_alen;
bcopy(CONST_LLADDR(sender_hw), LLADDR(gateway), gateway->sdl_alen);
/* Update the expire time for the route and clear the reject flag */
if (route->rt_expire != 0) {
rt_setexpire(route, net_uptime() + arpt_keep);
}
route->rt_flags &= ~RTF_REJECT;
/* cache the gateway (sender HW) address */
arp_llreach_alloc(route, ifp, LLADDR(gateway), gateway->sdl_alen,
(arpop == ARPOP_REPLY), &rt_evcode);
llinfo = route->rt_llinfo;
/* send a notification that the route is back up */
if (ifp->if_addrlen == IF_LLREACH_MAXLEN &&
route->rt_flags & RTF_ROUTER &&
llinfo->la_flags & LLINFO_RTRFAIL_EVTSENT) {
struct kev_msg ev_msg;
struct kev_in_arpalive in_arpalive;
llinfo->la_flags &= ~LLINFO_RTRFAIL_EVTSENT;
RT_UNLOCK(route);
bzero(&ev_msg, sizeof(ev_msg));
bzero(&in_arpalive, sizeof(in_arpalive));
in_arpalive.link_data.if_family = ifp->if_family;
in_arpalive.link_data.if_unit = ifp->if_unit;
strlcpy(in_arpalive.link_data.if_name, ifp->if_name, IFNAMSIZ);
ev_msg.vendor_code = KEV_VENDOR_APPLE;
ev_msg.kev_class = KEV_NETWORK_CLASS;
ev_msg.kev_subclass = KEV_INET_SUBCLASS;
ev_msg.event_code = KEV_INET_ARPRTRALIVE;
ev_msg.dv[0].data_ptr = &in_arpalive;
ev_msg.dv[0].data_length = sizeof(struct kev_in_arpalive);
dlil_post_complete_msg(NULL, &ev_msg);
RT_LOCK(route);
}
/* Update the llinfo, send out all queued packets at once */
llinfo->la_asked = 0;
llinfo->la_flags &= ~LLINFO_PROBING;
llinfo->la_prbreq_cnt = 0;
if (rt_evcode) {
/*
* Enqueue work item to invoke callback for this route entry
*/
route_event_enqueue_nwk_wq_entry(route, NULL, rt_evcode, NULL, TRUE);
if (route->rt_flags & RTF_ROUTER) {
struct radix_node_head *rnh = NULL;
struct route_event rt_ev;
route_event_init(&rt_ev, route, NULL, rt_evcode);
/*
* We already have a reference on rt. The function
* frees it before returning.
*/
RT_UNLOCK(route);
lck_mtx_lock(rnh_lock);
rnh = rt_tables[AF_INET];
if (rnh != NULL) {
(void) rnh->rnh_walktree(rnh, route_event_walktree,
(void *)&rt_ev);
}
lck_mtx_unlock(rnh_lock);
RT_LOCK(route);
}
}
if (!qempty(&llinfo->la_holdq)) {
uint32_t held;
struct mbuf *m0;
classq_pkt_t pkt = CLASSQ_PKT_INITIALIZER(pkt);
_getq_all(&llinfo->la_holdq, &pkt, NULL, &held, NULL);
m0 = pkt.cp_mbuf;
if (arp_verbose) {
log(LOG_DEBUG, "%s: sending %u held packets\n",
__func__, held);
}
os_atomic_add(&arpstat.held, -held, relaxed);
VERIFY(qempty(&llinfo->la_holdq));
RT_UNLOCK(route);
dlil_output(ifp, PF_INET, m0, (caddr_t)route,
rt_key(route), 0, NULL);
RT_REMREF(route);
route = NULL;
}
respond:
if (route != NULL) {
/* Mark use timestamp if we're going to send a reply */
if (arpop == ARPOP_REQUEST && route->rt_llinfo != NULL) {
arp_llreach_use(route->rt_llinfo);
}
RT_REMREF_LOCKED(route);
RT_UNLOCK(route);
route = NULL;
}
if (arpop != ARPOP_REQUEST) {
goto done;
}
/* See comments at the beginning of this routine */
arpstat.rxrequests++;
/* If we are not the target, check if we should proxy */
if (target_ip->sin_addr.s_addr != best_ia_sin.sin_addr.s_addr) {
/*
* Find a proxy route; callee holds a reference on the
* route and returns with the route entry locked, upon
* success.
*/
error = arp_lookup_route(&target_ip->sin_addr, 0, SIN_PROXY,
&route, ifp->if_index);
if (error == 0) {
RT_LOCK_ASSERT_HELD(route);
/*
* Return proxied ARP replies only on the interface
* or bridge cluster where this network resides.
* Otherwise we may conflict with the host we are
* proxying for.
*/
if (route->rt_ifp != ifp &&
(route->rt_ifp->if_bridge != ifp->if_bridge ||
ifp->if_bridge == NULL)) {
RT_REMREF_LOCKED(route);
RT_UNLOCK(route);
goto done;
}
proxied = *SDL(route->rt_gateway);
target_hw = &proxied;
} else {
/*
* We don't have a route entry indicating we should
* use proxy. If we aren't supposed to proxy all,
* we are done.
*/
if (!arp_proxyall) {
goto done;
}
/*
* See if we have a route to the target ip before
* we proxy it.
*/
route = rtalloc1_scoped(__DECONST_SA(target_ip), 0, 0, ifp->if_index);
if (!route) {
goto done;
}
/*
* Don't proxy for hosts already on the same interface.
*/
RT_LOCK(route);
if (route->rt_ifp == ifp) {
RT_UNLOCK(route);
rtfree(route);
goto done;
}
}
/* Mark use timestamp */
if (route->rt_llinfo != NULL) {
arp_llreach_use(route->rt_llinfo);
}
RT_REMREF_LOCKED(route);
RT_UNLOCK(route);
}
dlil_send_arp(ifp, ARPOP_REPLY,
target_hw, SA(target_ip),
sender_hw, SA(sender_ip), 0);
done:
if (best_ia != NULL) {
ifa_remref(&best_ia->ia_ifa);
}
return 0;
}
void
arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa)
{
struct sockaddr *sa;
IFA_LOCK(ifa);
ifa->ifa_rtrequest = arp_rtrequest;
ifa->ifa_flags |= RTF_CLONING;
sa = ifa->ifa_addr;
IFA_UNLOCK(ifa);
if ((ifp->if_flags & IFF_NOARP) == 0) {
dlil_send_arp(ifp, ARPOP_REQUEST, NULL, sa, NULL, sa, 0);
}
}
static int
arp_getstat SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
if (req->oldptr == USER_ADDR_NULL) {
req->oldlen = (size_t)sizeof(struct arpstat);
}
return SYSCTL_OUT(req, &arpstat, MIN(sizeof(arpstat), req->oldlen));
}