gems-kernel/source/THIRDPARTY/xnu/bsd/netinet/mptcp.c
2024-06-03 11:29:39 -05:00

1545 lines
41 KiB
C

/*
* Copyright (c) 2012-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* A note on the MPTCP/NECP-interactions:
*
* MPTCP uses NECP-callbacks to get notified of interface/policy events.
* MPTCP registers to these events at the MPTCP-layer for interface-events
* through a call to necp_client_register_multipath_cb.
* To get per-flow events (aka per TCP-subflow), we register to it with
* necp_client_register_socket_flow. Both registrations happen by using the
* necp-client-uuid that comes from the app.
*
* The locking is rather tricky. In general, we expect the lock-ordering to
* happen from necp-fd -> necp->client -> mpp_lock.
*
* There are however some subtleties.
*
* 1. When registering the multipath_cb, we are holding the mpp_lock. This is
* safe, because it is the very first time this MPTCP-connection goes into NECP.
* As we go into NECP we take the NECP-locks and thus are guaranteed that no
* NECP-locks will deadlock us. Because these NECP-events will also first take
* the NECP-locks. Either they win the race and thus won't find our
* MPTCP-connection. Or, MPTCP wins the race and thus it will safely install
* the callbacks while holding the NECP lock.
*
* 2. When registering the subflow-callbacks we must unlock the mpp_lock. This,
* because we have already registered callbacks and we might race against an
* NECP-event that will match on our socket. So, we have to unlock to be safe.
*
* 3. When removing the multipath_cb, we do it in mp_pcbdispose(). The
* so_usecount has reached 0. We must be careful to not remove the mpp_socket
* pointers before we unregistered the callback. Because, again we might be
* racing against an NECP-event. Unregistering must happen with an unlocked
* mpp_lock, because of the lock-ordering constraint. It could be that
* before we had a chance to unregister an NECP-event triggers. That's why
* we need to check for the so_usecount in mptcp_session_necp_cb. If we get
* there while the socket is being garbage-collected, the use-count will go
* down to 0 and we exit. Removal of the multipath_cb again happens by taking
* the NECP-locks so any running NECP-events will finish first and exit cleanly.
*
* 4. When removing the subflow-callback, we do it in in_pcbdispose(). Again,
* the socket-lock must be unlocked for lock-ordering constraints. This gets a
* bit tricky here, as in tcp_garbage_collect we hold the mp_so and so lock.
* So, we drop the mp_so-lock as soon as the subflow is unlinked with
* mptcp_subflow_del. Then, in in_pcbdispose we drop the subflow-lock.
* If an NECP-event was waiting on the lock in mptcp_subflow_necp_cb, when it
* gets it, it will realize that the subflow became non-MPTCP and retry (see
* tcp_lock). Then it waits again on the subflow-lock. When we drop this lock
* in in_pcbdispose, and enter necp_inpcb_dispose, this one will have to wait
* for the NECP-lock (held by the other thread that is taking care of the NECP-
* event). So, the event now finally gets the subflow-lock and then hits an
* so_usecount that is 0 and exits. Eventually, we can remove the subflow from
* the NECP callback.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/mcache.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syslog.h>
#include <sys/protosw.h>
#include <kern/zalloc.h>
#include <kern/locks.h>
#include <mach/sdt.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_var.h>
#include <netinet/mptcp_var.h>
#include <netinet/mptcp.h>
#include <netinet/mptcp_seq.h>
#include <netinet/mptcp_opt.h>
#include <netinet/mptcp_timer.h>
int mptcp_enable = 1;
SYSCTL_INT(_net_inet_mptcp, OID_AUTO, enable, CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_enable, 0, "Enable Multipath TCP Support");
/*
* Number of times to try negotiating MPTCP on SYN retransmissions.
* We haven't seen any reports of a middlebox that is dropping all SYN-segments
* that have an MPTCP-option. Thus, let's be generous and retransmit it 4 times.
*/
int mptcp_mpcap_retries = 4;
SYSCTL_INT(_net_inet_mptcp, OID_AUTO, mptcp_cap_retr,
CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_mpcap_retries, 0, "Number of MP Capable SYN Retries");
/*
* By default, DSS checksum is turned off, revisit if we ever do
* MPTCP for non SSL Traffic.
*/
int mptcp_dss_csum = 0;
SYSCTL_INT(_net_inet_mptcp, OID_AUTO, dss_csum, CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_dss_csum, 0, "Enable DSS checksum");
/*
* When mptcp_fail_thresh number of retransmissions are sent, subflow failover
* is attempted on a different path.
*/
int mptcp_fail_thresh = 1;
SYSCTL_INT(_net_inet_mptcp, OID_AUTO, fail, CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_fail_thresh, 0, "Failover threshold");
/*
* MPTCP subflows have TCP keepalives set to ON. Set a conservative keeptime
* as carrier networks mostly have a 30 minute to 60 minute NAT Timeout.
* Some carrier networks have a timeout of 10 or 15 minutes.
*/
int mptcp_subflow_keeptime = 60 * 14;
SYSCTL_INT(_net_inet_mptcp, OID_AUTO, keepalive, CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_subflow_keeptime, 0, "Keepalive in seconds");
int mptcp_rtthist_rtthresh = 600;
SYSCTL_INT(_net_inet_mptcp, OID_AUTO, rtthist_thresh, CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_rtthist_rtthresh, 0, "Rtt threshold");
int mptcp_rtothresh = 1500;
SYSCTL_INT(_net_inet_mptcp, OID_AUTO, rto_thresh, CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_rtothresh, 0, "RTO threshold");
/*
* Probe the preferred path, when it is not in use
*/
uint32_t mptcp_probeto = 1000;
SYSCTL_UINT(_net_inet_mptcp, OID_AUTO, probeto, CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_probeto, 0, "Disable probing by setting to 0");
uint32_t mptcp_probecnt = 5;
SYSCTL_UINT(_net_inet_mptcp, OID_AUTO, probecnt, CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_probecnt, 0, "Number of probe writes");
uint32_t mptcp_enable_v1 = 1;
SYSCTL_UINT(_net_inet_mptcp, OID_AUTO, enable_v1, CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_enable_v1, 0, "Enable or disable v1");
static int
sysctl_mptcp_version_check SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error;
int new_value = *(int *)oidp->oid_arg1;
int old_value = *(int *)oidp->oid_arg1;
error = sysctl_handle_int(oidp, &new_value, 0, req);
if (!error) {
if (new_value != MPTCP_VERSION_0 && new_value != MPTCP_VERSION_1) {
return EINVAL;
}
*(int *)oidp->oid_arg1 = new_value;
}
os_log(OS_LOG_DEFAULT,
"%s:%u sysctl net.inet.tcp.mptcp_preferred_version: %d -> %d)",
proc_best_name(current_proc()), proc_selfpid(),
old_value, *(int *)oidp->oid_arg1);
return error;
}
int mptcp_preferred_version = MPTCP_VERSION_1;
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, mptcp_preferred_version,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
&mptcp_preferred_version, 0, &sysctl_mptcp_version_check, "I", "");
int mptcp_reass_total_qlen = 0;
SYSCTL_INT(_net_inet_mptcp, OID_AUTO, reass_qlen,
CTLFLAG_RD | CTLFLAG_LOCKED, &mptcp_reass_total_qlen, 0,
"Total number of MPTCP segments in reassembly queues");
static int
mptcp_reass_present(struct socket *mp_so)
{
struct mptses *mpte = mpsotompte(mp_so);
struct mptcb *mp_tp = mpte->mpte_mptcb;
struct tseg_qent *q;
int dowakeup = 0;
int flags = 0;
int count = 0;
/*
* Present data to user, advancing rcv_nxt through
* completed sequence space.
*/
if (mp_tp->mpt_state < MPTCPS_ESTABLISHED) {
return flags;
}
q = LIST_FIRST(&mp_tp->mpt_segq);
if (!q || q->tqe_m->m_pkthdr.mp_dsn != mp_tp->mpt_rcvnxt) {
return flags;
}
/*
* If there is already another thread doing reassembly for this
* connection, it is better to let it finish the job --
* (radar 16316196)
*/
if (mp_tp->mpt_flags & MPTCPF_REASS_INPROG) {
return flags;
}
mp_tp->mpt_flags |= MPTCPF_REASS_INPROG;
do {
mp_tp->mpt_rcvnxt += q->tqe_len;
LIST_REMOVE(q, tqe_q);
if (mp_so->so_state & SS_CANTRCVMORE) {
m_freem(q->tqe_m);
} else {
flags = !!(q->tqe_m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN);
if (sbappendstream_rcvdemux(mp_so, q->tqe_m)) {
dowakeup = 1;
}
}
zfree(tcp_reass_zone, q);
mp_tp->mpt_reassqlen--;
count++;
q = LIST_FIRST(&mp_tp->mpt_segq);
} while (q && q->tqe_m->m_pkthdr.mp_dsn == mp_tp->mpt_rcvnxt);
mp_tp->mpt_flags &= ~MPTCPF_REASS_INPROG;
if (count > 0) {
OSAddAtomic(-count, &mptcp_reass_total_qlen);
}
if (dowakeup) {
sorwakeup(mp_so); /* done with socket lock held */
}
return flags;
}
static int
mptcp_reass(struct socket *mp_so, struct pkthdr *phdr, int *tlenp, struct mbuf *m)
{
struct mptcb *mp_tp = mpsotomppcb(mp_so)->mpp_pcbe->mpte_mptcb;
u_int64_t mb_dsn = phdr->mp_dsn;
struct tseg_qent *q;
struct tseg_qent *p = NULL;
struct tseg_qent *nq;
struct tseg_qent *te = NULL;
uint32_t qlimit;
/*
* Limit the number of segments in the reassembly queue to prevent
* holding on to too many segments (and thus running out of mbufs).
* Make sure to let the missing segment through which caused this
* queue. Always keep one global queue entry spare to be able to
* process the missing segment.
*/
qlimit = MIN(MAX(100, mp_so->so_rcv.sb_hiwat >> 10),
(tcp_autorcvbuf_max >> 10));
if (mb_dsn != mp_tp->mpt_rcvnxt &&
(mp_tp->mpt_reassqlen + 1) >= qlimit) {
tcpstat.tcps_mptcp_rcvmemdrop++;
m_freem(m);
*tlenp = 0;
return 0;
}
/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
te = zalloc_flags(tcp_reass_zone, Z_WAITOK | Z_NOFAIL);
mp_tp->mpt_reassqlen++;
OSIncrementAtomic(&mptcp_reass_total_qlen);
/*
* Find a segment which begins after this one does.
*/
LIST_FOREACH(q, &mp_tp->mpt_segq, tqe_q) {
if (MPTCP_SEQ_GT(q->tqe_m->m_pkthdr.mp_dsn, mb_dsn)) {
break;
}
p = q;
}
/*
* If there is a preceding segment, it may provide some of
* our data already. If so, drop the data from the incoming
* segment. If it provides all of our data, drop us.
*/
if (p != NULL) {
int64_t i;
/* conversion to int (in i) handles seq wraparound */
i = p->tqe_m->m_pkthdr.mp_dsn + p->tqe_len - mb_dsn;
if (i > 0) {
if (i >= *tlenp) {
tcpstat.tcps_mptcp_rcvduppack++;
m_freem(m);
zfree(tcp_reass_zone, te);
te = NULL;
mp_tp->mpt_reassqlen--;
OSDecrementAtomic(&mptcp_reass_total_qlen);
/*
* Try to present any queued data
* at the left window edge to the user.
* This is needed after the 3-WHS
* completes.
*/
goto out;
}
VERIFY(i <= INT_MAX);
m_adj(m, (int)i);
*tlenp -= i;
phdr->mp_dsn += i;
}
}
tcpstat.tcps_mp_oodata++;
/*
* While we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/
while (q) {
int64_t i = (mb_dsn + *tlenp) - q->tqe_m->m_pkthdr.mp_dsn;
if (i <= 0) {
break;
}
if (i < q->tqe_len) {
q->tqe_m->m_pkthdr.mp_dsn += i;
q->tqe_len -= i;
VERIFY(i <= INT_MAX);
m_adj(q->tqe_m, (int)i);
break;
}
nq = LIST_NEXT(q, tqe_q);
LIST_REMOVE(q, tqe_q);
m_freem(q->tqe_m);
zfree(tcp_reass_zone, q);
mp_tp->mpt_reassqlen--;
OSDecrementAtomic(&mptcp_reass_total_qlen);
q = nq;
}
/* Insert the new segment queue entry into place. */
te->tqe_m = m;
te->tqe_th = NULL;
te->tqe_len = *tlenp;
if (p == NULL) {
LIST_INSERT_HEAD(&mp_tp->mpt_segq, te, tqe_q);
} else {
LIST_INSERT_AFTER(p, te, tqe_q);
}
out:
return mptcp_reass_present(mp_so);
}
/*
* MPTCP input, called when data has been read from a subflow socket.
*/
void
mptcp_input(struct mptses *mpte, struct mbuf *m)
{
struct socket *mp_so;
struct mptcb *mp_tp = NULL;
int count = 0, wakeup = 0;
struct mbuf *save = NULL, *prev = NULL;
struct mbuf *freelist = NULL, *tail = NULL;
if (__improbable((m->m_flags & M_PKTHDR) == 0)) {
panic("mbuf invalid: %p", m);
}
mp_so = mptetoso(mpte);
mp_tp = mpte->mpte_mptcb;
socket_lock_assert_owned(mp_so);
DTRACE_MPTCP(input);
mp_tp->mpt_rcvwnd = mptcp_sbspace(mp_tp);
/*
* Each mbuf contains MPTCP Data Sequence Map
* Process the data for reassembly, delivery to MPTCP socket
* client, etc.
*
*/
count = mp_so->so_rcv.sb_cc;
/*
* In the degraded fallback case, data is accepted without DSS map
*/
if (mp_tp->mpt_flags & MPTCPF_FALLBACK_TO_TCP) {
struct mbuf *iter;
int mb_dfin;
fallback:
mb_dfin = 0;
mptcp_sbrcv_grow(mp_tp);
iter = m;
while (iter) {
if ((iter->m_flags & M_PKTHDR) &&
(iter->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN)) {
mb_dfin = 1;
}
if ((iter->m_flags & M_PKTHDR) && m_pktlen(iter) == 0) {
/* Don't add zero-length packets, so jump it! */
if (prev == NULL) {
m = iter->m_next;
m_free(iter);
iter = m;
} else {
prev->m_next = iter->m_next;
m_free(iter);
iter = prev->m_next;
}
/* It was a zero-length packet so next one must be a pkthdr */
VERIFY(iter == NULL || iter->m_flags & M_PKTHDR);
} else {
prev = iter;
iter = iter->m_next;
}
}
/*
* assume degraded flow as this may be the first packet
* without DSS, and the subflow state is not updated yet.
*/
if (sbappendstream_rcvdemux(mp_so, m)) {
sorwakeup(mp_so);
}
DTRACE_MPTCP5(receive__degraded, struct mbuf *, m,
struct socket *, mp_so,
struct sockbuf *, &mp_so->so_rcv,
struct sockbuf *, &mp_so->so_snd,
struct mptses *, mpte);
count = mp_so->so_rcv.sb_cc - count;
mp_tp->mpt_rcvnxt += count;
if (mb_dfin) {
mptcp_close_fsm(mp_tp, MPCE_RECV_DATA_FIN);
socantrcvmore(mp_so);
}
return;
}
do {
u_int64_t mb_dsn;
int32_t mb_datalen;
int64_t todrop;
int mb_dfin = 0;
VERIFY(m->m_flags & M_PKTHDR);
/* If fallback occurs, mbufs will not have PKTF_MPTCP set */
if (!(m->m_pkthdr.pkt_flags & PKTF_MPTCP)) {
goto fallback;
}
save = m->m_next;
/*
* A single TCP packet formed of multiple mbufs
* holds DSS mapping in the first mbuf of the chain.
* Other mbufs in the chain may have M_PKTHDR set
* even though they belong to the same TCP packet
* and therefore use the DSS mapping stored in the
* first mbuf of the mbuf chain. mptcp_input() can
* get an mbuf chain with multiple TCP packets.
*/
while (save && (!(save->m_flags & M_PKTHDR) ||
!(save->m_pkthdr.pkt_flags & PKTF_MPTCP))) {
prev = save;
save = save->m_next;
}
if (prev) {
prev->m_next = NULL;
} else {
m->m_next = NULL;
}
mb_dsn = m->m_pkthdr.mp_dsn;
mb_datalen = m->m_pkthdr.mp_rlen;
todrop = (mb_dsn + mb_datalen) - (mp_tp->mpt_rcvnxt + mp_tp->mpt_rcvwnd);
if (todrop > 0) {
tcpstat.tcps_mptcp_rcvpackafterwin++;
os_log_info(mptcp_log_handle, "%s - %lx: dropping dsn %u dlen %u rcvnxt %u rcvwnd %u todrop %lld\n",
__func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte),
(uint32_t)mb_dsn, mb_datalen, (uint32_t)mp_tp->mpt_rcvnxt,
mp_tp->mpt_rcvwnd, todrop);
if (todrop >= mb_datalen) {
if (freelist == NULL) {
freelist = m;
} else {
tail->m_next = m;
}
if (prev != NULL) {
tail = prev;
} else {
tail = m;
}
m = save;
prev = save = NULL;
continue;
} else {
VERIFY(todrop <= INT_MAX);
m_adj(m, (int)-todrop);
mb_datalen -= todrop;
m->m_pkthdr.mp_rlen -= todrop;
}
/*
* We drop from the right edge of the mbuf, thus the
* DATA_FIN is dropped as well
*/
m->m_pkthdr.pkt_flags &= ~PKTF_MPTCP_DFIN;
}
if (MPTCP_SEQ_LT(mb_dsn, mp_tp->mpt_rcvnxt)) {
if (MPTCP_SEQ_LEQ((mb_dsn + mb_datalen),
mp_tp->mpt_rcvnxt)) {
if (freelist == NULL) {
freelist = m;
} else {
tail->m_next = m;
}
if (prev != NULL) {
tail = prev;
} else {
tail = m;
}
m = save;
prev = save = NULL;
continue;
} else {
VERIFY((mp_tp->mpt_rcvnxt - mb_dsn) <= INT_MAX);
m_adj(m, (int)(mp_tp->mpt_rcvnxt - mb_dsn));
mb_datalen -= (mp_tp->mpt_rcvnxt - mb_dsn);
mb_dsn = mp_tp->mpt_rcvnxt;
VERIFY(mb_datalen >= 0 && mb_datalen <= USHRT_MAX);
m->m_pkthdr.mp_rlen = (uint16_t)mb_datalen;
m->m_pkthdr.mp_dsn = mb_dsn;
}
}
if (MPTCP_SEQ_GT(mb_dsn, mp_tp->mpt_rcvnxt) ||
!LIST_EMPTY(&mp_tp->mpt_segq)) {
mb_dfin = mptcp_reass(mp_so, &m->m_pkthdr, &mb_datalen, m);
goto next;
}
mb_dfin = !!(m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN);
mptcp_sbrcv_grow(mp_tp);
if (sbappendstream_rcvdemux(mp_so, m)) {
wakeup = 1;
}
DTRACE_MPTCP6(receive, struct mbuf *, m, struct socket *, mp_so,
struct sockbuf *, &mp_so->so_rcv,
struct sockbuf *, &mp_so->so_snd,
struct mptses *, mpte,
struct mptcb *, mp_tp);
count = mp_so->so_rcv.sb_cc - count;
tcpstat.tcps_mp_rcvtotal++;
tcpstat.tcps_mp_rcvbytes += count;
mp_tp->mpt_rcvnxt += count;
next:
if (mb_dfin) {
mptcp_close_fsm(mp_tp, MPCE_RECV_DATA_FIN);
socantrcvmore(mp_so);
}
m = save;
prev = save = NULL;
count = mp_so->so_rcv.sb_cc;
} while (m);
if (freelist) {
m_freem(freelist);
}
if (wakeup) {
sorwakeup(mp_so);
}
}
boolean_t
mptcp_can_send_more(struct mptcb *mp_tp, boolean_t ignore_reinject)
{
struct socket *mp_so = mptetoso(mp_tp->mpt_mpte);
/*
* Always send if there is data in the reinject-queue.
*/
if (!ignore_reinject && mp_tp->mpt_mpte->mpte_reinjectq) {
return TRUE;
}
/*
* Don't send, if:
*
* 1. snd_nxt >= snd_max : Means, basically everything has been sent.
* Except when using TFO, we might be doing a 0-byte write.
* 2. snd_una + snd_wnd <= snd_nxt: No space in the receiver's window
* 3. snd_nxt + 1 == snd_max and we are closing: A DATA_FIN is scheduled.
*/
if (!(mp_so->so_flags1 & SOF1_PRECONNECT_DATA) && MPTCP_SEQ_GEQ(mp_tp->mpt_sndnxt, mp_tp->mpt_sndmax)) {
return FALSE;
}
if (MPTCP_SEQ_LEQ(mp_tp->mpt_snduna + mp_tp->mpt_sndwnd, mp_tp->mpt_sndnxt)) {
return FALSE;
}
if (mp_tp->mpt_sndnxt + 1 == mp_tp->mpt_sndmax && mp_tp->mpt_state > MPTCPS_CLOSE_WAIT) {
return FALSE;
}
if (mp_tp->mpt_state >= MPTCPS_FIN_WAIT_2) {
return FALSE;
}
return TRUE;
}
/*
* MPTCP output.
*/
int
mptcp_output(struct mptses *mpte)
{
struct mptcb *mp_tp;
struct mptsub *mpts;
struct mptsub *mpts_tried = NULL;
struct socket *mp_so;
struct mptsub *preferred_mpts = NULL;
uint64_t old_snd_nxt;
int error = 0;
mp_so = mptetoso(mpte);
mp_tp = mpte->mpte_mptcb;
socket_lock_assert_owned(mp_so);
if (mp_so->so_flags & SOF_DEFUNCT) {
return 0;
}
VERIFY(!(mpte->mpte_mppcb->mpp_flags & MPP_WUPCALL));
mpte->mpte_mppcb->mpp_flags |= MPP_WUPCALL;
old_snd_nxt = mp_tp->mpt_sndnxt;
while (mptcp_can_send_more(mp_tp, FALSE)) {
/* get the "best" subflow to be used for transmission */
mpts = mptcp_get_subflow(mpte, &preferred_mpts);
if (mpts == NULL) {
break;
}
/* In case there's just one flow, we reattempt later */
if (mpts_tried != NULL &&
(mpts == mpts_tried || (mpts->mpts_flags & MPTSF_FAILINGOVER))) {
mpts_tried->mpts_flags &= ~MPTSF_FAILINGOVER;
mpts_tried->mpts_flags |= MPTSF_ACTIVE;
mptcp_start_timer(mpte, MPTT_REXMT);
break;
}
/*
* Automatic sizing of send socket buffer. Increase the send
* socket buffer size if all of the following criteria are met
* 1. the receiver has enough buffer space for this data
* 2. send buffer is filled to 7/8th with data (so we actually
* have data to make use of it);
*/
if ((mp_so->so_snd.sb_flags & (SB_AUTOSIZE | SB_TRIM)) == SB_AUTOSIZE) {
if ((mp_tp->mpt_sndwnd / 4 * 5) >= mp_so->so_snd.sb_hiwat &&
mp_so->so_snd.sb_cc >= (mp_so->so_snd.sb_hiwat / 8 * 7)) {
if (sbreserve(&mp_so->so_snd,
min(mp_so->so_snd.sb_hiwat + tcp_autosndbuf_inc,
tcp_autosndbuf_max)) == 1) {
mp_so->so_snd.sb_idealsize = mp_so->so_snd.sb_hiwat;
}
}
}
DTRACE_MPTCP3(output, struct mptses *, mpte, struct mptsub *, mpts,
struct socket *, mp_so);
error = mptcp_subflow_output(mpte, mpts, 0);
if (error) {
/* can be a temporary loss of source address or other error */
mpts->mpts_flags |= MPTSF_FAILINGOVER;
mpts->mpts_flags &= ~MPTSF_ACTIVE;
mpts_tried = mpts;
if (error != ECANCELED) {
os_log_error(mptcp_log_handle, "%s - %lx: Error = %d mpts_flags %#x\n",
__func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte),
error, mpts->mpts_flags);
}
break;
}
/* The model is to have only one active flow at a time */
mpts->mpts_flags |= MPTSF_ACTIVE;
mpts->mpts_probesoon = mpts->mpts_probecnt = 0;
/* Allows us to update the smoothed rtt */
if (mptcp_probeto && mpts != preferred_mpts && preferred_mpts != NULL) {
if (preferred_mpts->mpts_probesoon) {
if ((tcp_now - preferred_mpts->mpts_probesoon) > mptcp_probeto) {
mptcp_subflow_output(mpte, preferred_mpts, MPTCP_SUBOUT_PROBING);
if (preferred_mpts->mpts_probecnt >= mptcp_probecnt) {
preferred_mpts->mpts_probesoon = 0;
preferred_mpts->mpts_probecnt = 0;
}
}
} else {
preferred_mpts->mpts_probesoon = tcp_now;
preferred_mpts->mpts_probecnt = 0;
}
}
if (mpte->mpte_active_sub == NULL) {
mpte->mpte_active_sub = mpts;
} else if (mpte->mpte_active_sub != mpts) {
mpte->mpte_active_sub->mpts_flags &= ~MPTSF_ACTIVE;
mpte->mpte_active_sub = mpts;
mptcpstats_inc_switch(mpte, mpts);
}
}
if (mp_tp->mpt_state > MPTCPS_CLOSE_WAIT) {
if (mp_tp->mpt_sndnxt + 1 == mp_tp->mpt_sndmax &&
mp_tp->mpt_snduna == mp_tp->mpt_sndnxt) {
mptcp_finish_usrclosed(mpte);
}
}
mptcp_handle_deferred_upcalls(mpte->mpte_mppcb, MPP_WUPCALL);
/* subflow errors should not be percolated back up */
return 0;
}
static struct mptsub *
mptcp_choose_subflow(struct mptsub *mpts, struct mptsub *curbest, int *currtt)
{
struct tcpcb *tp = sototcpcb(mpts->mpts_socket);
/*
* Lower RTT? Take it, if it's our first one, or
* it doesn't has any loss, or the current one has
* loss as well.
*/
if (tp->t_srtt && *currtt > tp->t_srtt &&
(curbest == NULL || tp->t_rxtshift == 0 ||
sototcpcb(curbest->mpts_socket)->t_rxtshift)) {
*currtt = tp->t_srtt;
return mpts;
}
/*
* If we find a subflow without loss, take it always!
*/
if (curbest &&
sototcpcb(curbest->mpts_socket)->t_rxtshift &&
tp->t_rxtshift == 0) {
*currtt = tp->t_srtt;
return mpts;
}
return curbest != NULL ? curbest : mpts;
}
static struct mptsub *
mptcp_return_subflow(struct mptsub *mpts)
{
if (mpts && mptcp_subflow_cwnd_space(mpts->mpts_socket) <= 0) {
return NULL;
}
return mpts;
}
static boolean_t
mptcp_subflow_is_slow(struct mptses *mpte, struct mptsub *mpts)
{
struct tcpcb *tp = sototcpcb(mpts->mpts_socket);
int fail_thresh = mptcp_fail_thresh;
if (mpte->mpte_svctype == MPTCP_SVCTYPE_HANDOVER || mpte->mpte_svctype == MPTCP_SVCTYPE_PURE_HANDOVER) {
fail_thresh *= 2;
}
return tp->t_rxtshift >= fail_thresh &&
(mptetoso(mpte)->so_snd.sb_cc || mpte->mpte_reinjectq);
}
/*
* Return the most eligible subflow to be used for sending data.
*/
struct mptsub *
mptcp_get_subflow(struct mptses *mpte, struct mptsub **preferred)
{
struct tcpcb *besttp, *secondtp;
struct inpcb *bestinp, *secondinp;
struct mptsub *mpts;
struct mptsub *best = NULL;
struct mptsub *second_best = NULL;
int exp_rtt = INT_MAX, cheap_rtt = INT_MAX;
/*
* First Step:
* Choose the best subflow for cellular and non-cellular interfaces.
*/
TAILQ_FOREACH(mpts, &mpte->mpte_subflows, mpts_entry) {
struct socket *so = mpts->mpts_socket;
struct tcpcb *tp = sototcpcb(so);
struct inpcb *inp = sotoinpcb(so);
/*
* First, the hard conditions to reject subflows
* (e.g., not connected,...)
*/
if (inp->inp_last_outifp == NULL) {
continue;
}
if (INP_WAIT_FOR_IF_FEEDBACK(inp)) {
continue;
}
/* There can only be one subflow in degraded state */
if (mpts->mpts_flags & MPTSF_MP_DEGRADED) {
best = mpts;
break;
}
/*
* If this subflow is waiting to finally send, do it!
*/
if (so->so_flags1 & SOF1_PRECONNECT_DATA) {
return mptcp_return_subflow(mpts);
}
/*
* Only send if the subflow is MP_CAPABLE. The exceptions to
* this rule (degraded or TFO) have been taken care of above.
*/
if (!(mpts->mpts_flags & MPTSF_MP_CAPABLE)) {
continue;
}
if ((so->so_state & SS_ISDISCONNECTED) ||
!(so->so_state & SS_ISCONNECTED) ||
!TCPS_HAVEESTABLISHED(tp->t_state) ||
tp->t_state > TCPS_CLOSE_WAIT) {
continue;
}
/*
* Second, the soft conditions to find the subflow with best
* conditions for each set (aka cellular vs non-cellular)
*/
if (IFNET_IS_CELLULAR(inp->inp_last_outifp)) {
second_best = mptcp_choose_subflow(mpts, second_best,
&exp_rtt);
} else {
best = mptcp_choose_subflow(mpts, best, &cheap_rtt);
}
}
/*
* If there is no preferred or backup subflow, and there is no active
* subflow use the last usable subflow.
*/
if (best == NULL) {
return mptcp_return_subflow(second_best);
}
if (second_best == NULL) {
return mptcp_return_subflow(best);
}
besttp = sototcpcb(best->mpts_socket);
bestinp = sotoinpcb(best->mpts_socket);
secondtp = sototcpcb(second_best->mpts_socket);
secondinp = sotoinpcb(second_best->mpts_socket);
if (preferred != NULL) {
*preferred = mptcp_return_subflow(best);
}
/*
* Second Step: Among best and second_best. Choose the one that is
* most appropriate for this particular service-type.
*/
if (mpte->mpte_svctype == MPTCP_SVCTYPE_PURE_HANDOVER) {
return mptcp_return_subflow(best);
} else if (mpte->mpte_svctype == MPTCP_SVCTYPE_HANDOVER) {
/*
* Only handover if Symptoms tells us to do so.
*/
if (!IFNET_IS_CELLULAR(bestinp->inp_last_outifp) &&
mptcp_wifi_quality_for_session(mpte) != MPTCP_WIFI_QUALITY_GOOD &&
mptcp_subflow_is_slow(mpte, best)) {
return mptcp_return_subflow(second_best);
}
return mptcp_return_subflow(best);
} else if (mpte->mpte_svctype == MPTCP_SVCTYPE_INTERACTIVE) {
int rtt_thresh = mptcp_rtthist_rtthresh << TCP_RTT_SHIFT;
int rto_thresh = mptcp_rtothresh;
/* Adjust with symptoms information */
if (!IFNET_IS_CELLULAR(bestinp->inp_last_outifp) &&
mptcp_wifi_quality_for_session(mpte) != MPTCP_WIFI_QUALITY_GOOD) {
rtt_thresh /= 2;
rto_thresh /= 2;
}
if (besttp->t_srtt && secondtp->t_srtt &&
besttp->t_srtt >= rtt_thresh &&
secondtp->t_srtt < rtt_thresh) {
tcpstat.tcps_mp_sel_rtt++;
return mptcp_return_subflow(second_best);
}
if (mptcp_subflow_is_slow(mpte, best) &&
secondtp->t_rxtshift == 0) {
return mptcp_return_subflow(second_best);
}
/* Compare RTOs, select second_best if best's rto exceeds rtothresh */
if (besttp->t_rxtcur && secondtp->t_rxtcur &&
besttp->t_rxtcur >= rto_thresh &&
secondtp->t_rxtcur < rto_thresh) {
tcpstat.tcps_mp_sel_rto++;
return mptcp_return_subflow(second_best);
}
/*
* None of the above conditions for sending on the secondary
* were true. So, let's schedule on the best one, if he still
* has some space in the congestion-window.
*/
return mptcp_return_subflow(best);
} else if (mpte->mpte_svctype >= MPTCP_SVCTYPE_AGGREGATE) {
struct mptsub *tmp;
/*
* We only care about RTT when aggregating
*/
if (besttp->t_srtt > secondtp->t_srtt) {
tmp = best;
best = second_best;
besttp = secondtp;
bestinp = secondinp;
second_best = tmp;
secondtp = sototcpcb(second_best->mpts_socket);
secondinp = sotoinpcb(second_best->mpts_socket);
}
/* Is there still space in the congestion window? */
if (mptcp_subflow_cwnd_space(bestinp->inp_socket) <= 0) {
return mptcp_return_subflow(second_best);
}
return mptcp_return_subflow(best);
} else {
panic("Unknown service-type configured for MPTCP");
}
return NULL;
}
void
mptcp_close_fsm(struct mptcb *mp_tp, uint32_t event)
{
struct socket *mp_so = mptetoso(mp_tp->mpt_mpte);
socket_lock_assert_owned(mp_so);
DTRACE_MPTCP2(state__change, struct mptcb *, mp_tp,
uint32_t, event);
switch (mp_tp->mpt_state) {
case MPTCPS_CLOSED:
case MPTCPS_LISTEN:
mp_tp->mpt_state = MPTCPS_TERMINATE;
break;
case MPTCPS_ESTABLISHED:
if (event == MPCE_CLOSE) {
mp_tp->mpt_state = MPTCPS_FIN_WAIT_1;
mp_tp->mpt_sndmax += 1; /* adjust for Data FIN */
} else if (event == MPCE_RECV_DATA_FIN) {
mp_tp->mpt_rcvnxt += 1; /* adj remote data FIN */
mp_tp->mpt_state = MPTCPS_CLOSE_WAIT;
}
break;
case MPTCPS_CLOSE_WAIT:
if (event == MPCE_CLOSE) {
mp_tp->mpt_state = MPTCPS_LAST_ACK;
mp_tp->mpt_sndmax += 1; /* adjust for Data FIN */
}
break;
case MPTCPS_FIN_WAIT_1:
if (event == MPCE_RECV_DATA_ACK) {
mp_tp->mpt_state = MPTCPS_FIN_WAIT_2;
} else if (event == MPCE_RECV_DATA_FIN) {
mp_tp->mpt_rcvnxt += 1; /* adj remote data FIN */
mp_tp->mpt_state = MPTCPS_CLOSING;
}
break;
case MPTCPS_CLOSING:
if (event == MPCE_RECV_DATA_ACK) {
mp_tp->mpt_state = MPTCPS_TIME_WAIT;
}
break;
case MPTCPS_LAST_ACK:
if (event == MPCE_RECV_DATA_ACK) {
mptcp_close(mp_tp->mpt_mpte, mp_tp);
}
break;
case MPTCPS_FIN_WAIT_2:
if (event == MPCE_RECV_DATA_FIN) {
mp_tp->mpt_rcvnxt += 1; /* adj remote data FIN */
mp_tp->mpt_state = MPTCPS_TIME_WAIT;
}
break;
case MPTCPS_TIME_WAIT:
case MPTCPS_TERMINATE:
break;
default:
VERIFY(0);
/* NOTREACHED */
}
DTRACE_MPTCP2(state__change, struct mptcb *, mp_tp,
uint32_t, event);
}
/* If you change this function, match up mptcp_update_rcv_state_f */
void
mptcp_update_dss_rcv_state(struct mptcp_dsn_opt *dss_info, struct tcpcb *tp,
uint16_t csum)
{
struct mptcb *mp_tp = tptomptp(tp);
u_int64_t full_dsn = 0;
NTOHL(dss_info->mdss_dsn);
NTOHL(dss_info->mdss_subflow_seqn);
NTOHS(dss_info->mdss_data_len);
/* XXX for autosndbuf grow sb here */
MPTCP_EXTEND_DSN(mp_tp->mpt_rcvnxt, dss_info->mdss_dsn, full_dsn);
mptcp_update_rcv_state_meat(mp_tp, tp,
full_dsn, dss_info->mdss_subflow_seqn, dss_info->mdss_data_len,
csum);
}
void
mptcp_update_rcv_state_meat(struct mptcb *mp_tp, struct tcpcb *tp,
u_int64_t full_dsn, u_int32_t seqn, u_int16_t mdss_data_len,
uint16_t csum)
{
if (mdss_data_len == 0) {
os_log_error(mptcp_log_handle, "%s - %lx: Infinite Mapping.\n",
__func__, (unsigned long)VM_KERNEL_ADDRPERM(mp_tp->mpt_mpte));
if ((mp_tp->mpt_flags & MPTCPF_CHECKSUM) && (csum != 0)) {
os_log_error(mptcp_log_handle, "%s - %lx: Bad checksum %x \n",
__func__, (unsigned long)VM_KERNEL_ADDRPERM(mp_tp->mpt_mpte), csum);
}
mptcp_notify_mpfail(tp->t_inpcb->inp_socket);
return;
}
mptcp_notify_mpready(tp->t_inpcb->inp_socket);
tp->t_rcv_map.mpt_dsn = full_dsn;
tp->t_rcv_map.mpt_sseq = seqn;
tp->t_rcv_map.mpt_len = mdss_data_len;
tp->t_rcv_map.mpt_csum = csum;
tp->t_mpflags |= TMPF_EMBED_DSN;
}
static uint16_t
mptcp_input_csum(struct tcpcb *tp, struct mbuf *m, uint64_t dsn, uint32_t sseq,
uint16_t dlen, uint16_t csum, int dfin)
{
struct mptcb *mp_tp = tptomptp(tp);
int real_len = dlen - dfin;
uint32_t sum = 0;
VERIFY(real_len >= 0);
if (mp_tp == NULL) {
return 0;
}
if (!(mp_tp->mpt_flags & MPTCPF_CHECKSUM)) {
return 0;
}
if (tp->t_mpflags & TMPF_TCP_FALLBACK) {
return 0;
}
/*
* The remote side may send a packet with fewer bytes than the
* claimed DSS checksum length.
*/
if ((int)m_length2(m, NULL) < real_len) {
return 0xffff;
}
if (real_len != 0) {
sum = m_sum16(m, 0, real_len);
}
sum += in_pseudo64(htonll(dsn), htonl(sseq), htons(dlen) + csum);
ADDCARRY(sum);
DTRACE_MPTCP3(checksum__result, struct tcpcb *, tp, struct mbuf *, m,
uint32_t, sum);
return ~sum & 0xffff;
}
/*
* MPTCP Checksum support
* The checksum is calculated whenever the MPTCP DSS option is included
* in the TCP packet. The checksum includes the sum of the MPTCP psuedo
* header and the actual data indicated by the length specified in the
* DSS option.
*/
int
mptcp_validate_csum(struct tcpcb *tp, struct mbuf *m, uint64_t dsn,
uint32_t sseq, uint16_t dlen, uint16_t csum, int dfin)
{
uint16_t mptcp_csum;
mptcp_csum = mptcp_input_csum(tp, m, dsn, sseq, dlen, csum, dfin);
if (mptcp_csum) {
tp->t_mpflags |= TMPF_SND_MPFAIL;
mptcp_notify_mpfail(tp->t_inpcb->inp_socket);
m_freem(m);
tcpstat.tcps_mp_badcsum++;
return -1;
}
return 0;
}
uint16_t
mptcp_output_csum(struct mbuf *m, uint64_t dss_val, uint32_t sseq, uint16_t dlen)
{
uint32_t sum = 0;
if (dlen) {
sum = m_sum16(m, 0, dlen);
}
dss_val = mptcp_hton64(dss_val);
sseq = htonl(sseq);
dlen = htons(dlen);
sum += in_pseudo64(dss_val, sseq, dlen);
ADDCARRY(sum);
sum = ~sum & 0xffff;
DTRACE_MPTCP2(checksum__result, struct mbuf *, m, uint32_t, sum);
return (uint16_t)sum;
}
/*
* When WiFi signal starts fading, there's more loss and RTT spikes.
* Check if there has been a large spike by comparing against
* a tolerable RTT spike threshold.
*/
boolean_t
mptcp_no_rto_spike(struct socket *so)
{
struct tcpcb *tp = intotcpcb(sotoinpcb(so));
int32_t spike = 0;
if (tp->t_rxtcur > mptcp_rtothresh) {
spike = tp->t_rxtcur - mptcp_rtothresh;
}
if (spike > 0) {
return FALSE;
} else {
return TRUE;
}
}
void
mptcp_handle_deferred_upcalls(struct mppcb *mpp, uint32_t flag)
{
VERIFY(mpp->mpp_flags & flag);
mpp->mpp_flags &= ~flag;
if (mptcp_should_defer_upcall(mpp)) {
return;
}
if (mpp->mpp_flags & MPP_SHOULD_WORKLOOP) {
mpp->mpp_flags &= ~MPP_SHOULD_WORKLOOP;
mptcp_subflow_workloop(mpp->mpp_pcbe);
}
if (mpp->mpp_flags & MPP_SHOULD_RWAKEUP) {
mpp->mpp_flags &= ~MPP_SHOULD_RWAKEUP;
sorwakeup(mpp->mpp_socket);
}
if (mpp->mpp_flags & MPP_SHOULD_WWAKEUP) {
mpp->mpp_flags &= ~MPP_SHOULD_WWAKEUP;
sowwakeup(mpp->mpp_socket);
}
}
static void
mptcp_reset_itfinfo(struct mpt_itf_info *info)
{
memset(info, 0, sizeof(*info));
}
void
mptcp_session_necp_cb(void *handle, int action, uint32_t interface_index,
uint32_t necp_flags, __unused bool *viable)
{
boolean_t has_v4 = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_HAS_IPV4);
boolean_t has_v6 = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_HAS_IPV6);
boolean_t has_nat64 = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_HAS_NAT64);
boolean_t low_power = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_INTERFACE_LOW_POWER);
struct mppcb *mp = (struct mppcb *)handle;
struct mptses *mpte = mptompte(mp);
struct socket *mp_so;
struct mptcb *mp_tp;
uint32_t i, ifindex;
struct ifnet *ifp;
int locked = 0;
ifindex = interface_index;
VERIFY(ifindex != IFSCOPE_NONE);
/* About to be garbage-collected (see note about MPTCP/NECP interactions) */
if (mp->mpp_socket->so_usecount == 0) {
return;
}
mp_so = mptetoso(mpte);
if (action != NECP_CLIENT_CBACTION_INITIAL) {
socket_lock(mp_so, 1);
locked = 1;
/* Check again, because it might have changed while waiting */
if (mp->mpp_socket->so_usecount == 0) {
goto out;
}
}
socket_lock_assert_owned(mp_so);
mp_tp = mpte->mpte_mptcb;
ifnet_head_lock_shared();
ifp = ifindex2ifnet[ifindex];
ifnet_head_done();
os_log(mptcp_log_handle, "%s - %lx: action: %u ifindex %u delegated to %u usecount %u mpt_flags %#x state %u v4 %u v6 %u nat64 %u power %u\n",
__func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte), action, ifindex,
ifp && ifp->if_delegated.ifp ? ifp->if_delegated.ifp->if_index : IFSCOPE_NONE,
mp->mpp_socket->so_usecount, mp_tp->mpt_flags, mp_tp->mpt_state,
has_v4, has_v6, has_nat64, low_power);
/* No need on fallen back sockets */
if (mp_tp->mpt_flags & MPTCPF_FALLBACK_TO_TCP) {
goto out;
}
/*
* When the interface goes in low-power mode we don't want to establish
* new subflows on it. Thus, mark it internally as non-viable.
*/
if (low_power) {
action = NECP_CLIENT_CBACTION_NONVIABLE;
}
if (action == NECP_CLIENT_CBACTION_INITIAL) {
mpte->mpte_flags |= MPTE_ITFINFO_INIT;
}
if (action == NECP_CLIENT_CBACTION_NONVIABLE) {
for (i = 0; i < mpte->mpte_itfinfo_size; i++) {
if (mpte->mpte_itfinfo[i].ifindex == IFSCOPE_NONE) {
continue;
}
if (mpte->mpte_itfinfo[i].ifindex == ifindex) {
mptcp_reset_itfinfo(&mpte->mpte_itfinfo[i]);
}
}
mptcp_sched_create_subflows(mpte);
} else if (action == NECP_CLIENT_CBACTION_VIABLE ||
action == NECP_CLIENT_CBACTION_INITIAL) {
int found_slot = 0, slot_index = -1;
struct sockaddr *dst;
if (ifp == NULL) {
goto out;
}
if (IFNET_IS_COMPANION_LINK(ifp)) {
goto out;
}
if (IFNET_IS_EXPENSIVE(ifp) &&
(mp_so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE)) {
goto out;
}
if (IFNET_IS_CONSTRAINED(ifp) &&
(mp_so->so_restrictions & SO_RESTRICT_DENY_CONSTRAINED)) {
goto out;
}
if (IFNET_IS_CELLULAR(ifp) &&
(mp_so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) {
goto out;
}
if (IS_INTF_CLAT46(ifp)) {
has_v4 = FALSE;
}
/* Look for the slot on where to store/update the interface-info. */
for (i = 0; i < mpte->mpte_itfinfo_size; i++) {
/* Found a potential empty slot where we can put it */
if (mpte->mpte_itfinfo[i].ifindex == 0) {
found_slot = 1;
slot_index = i;
}
/*
* The interface is already in our array. Check if we
* need to update it.
*/
if (mpte->mpte_itfinfo[i].ifindex == ifindex &&
(mpte->mpte_itfinfo[i].has_v4_conn != has_v4 ||
mpte->mpte_itfinfo[i].has_v6_conn != has_v6 ||
mpte->mpte_itfinfo[i].has_nat64_conn != has_nat64)) {
found_slot = 1;
slot_index = i;
break;
}
if (mpte->mpte_itfinfo[i].ifindex == ifindex) {
/*
* Ok, it's already there and we don't need
* to update it
*/
goto out;
}
}
dst = mptcp_get_session_dst(mpte, has_v6, has_v4);
if (dst && dst->sa_family == AF_INET &&
has_v6 && !has_nat64 && !has_v4) {
if (found_slot) {
mpte->mpte_itfinfo[slot_index].ifindex = ifindex;
mpte->mpte_itfinfo[slot_index].has_v4_conn = has_v4;
mpte->mpte_itfinfo[slot_index].has_v6_conn = has_v6;
mpte->mpte_itfinfo[slot_index].has_nat64_conn = has_nat64;
}
goto out;
}
if (found_slot == 0) {
int new_size = mpte->mpte_itfinfo_size * 2;
struct mpt_itf_info *info = kalloc_data(sizeof(*info) * new_size, Z_ZERO);
if (info == NULL) {
os_log_error(mptcp_log_handle, "%s - %lx: malloc failed for %u\n",
__func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte), new_size);
goto out;
}
memcpy(info, mpte->mpte_itfinfo, mpte->mpte_itfinfo_size * sizeof(*info));
if (mpte->mpte_itfinfo_size > MPTE_ITFINFO_SIZE) {
kfree_data(mpte->mpte_itfinfo,
sizeof(*info) * mpte->mpte_itfinfo_size);
}
/* We allocated a new one, thus the first must be empty */
slot_index = mpte->mpte_itfinfo_size;
mpte->mpte_itfinfo = info;
mpte->mpte_itfinfo_size = new_size;
}
VERIFY(slot_index >= 0 && slot_index < (int)mpte->mpte_itfinfo_size);
mpte->mpte_itfinfo[slot_index].ifindex = ifindex;
mpte->mpte_itfinfo[slot_index].has_v4_conn = has_v4;
mpte->mpte_itfinfo[slot_index].has_v6_conn = has_v6;
mpte->mpte_itfinfo[slot_index].has_nat64_conn = has_nat64;
mptcp_sched_create_subflows(mpte);
}
out:
if (locked) {
socket_unlock(mp_so, 1);
}
}
void
mptcp_set_restrictions(struct socket *mp_so)
{
struct mptses *mpte = mpsotompte(mp_so);
uint32_t i;
socket_lock_assert_owned(mp_so);
ifnet_head_lock_shared();
for (i = 0; i < mpte->mpte_itfinfo_size; i++) {
struct mpt_itf_info *info = &mpte->mpte_itfinfo[i];
uint32_t ifindex = info->ifindex;
struct ifnet *ifp;
if (ifindex == IFSCOPE_NONE) {
continue;
}
ifp = ifindex2ifnet[ifindex];
if (ifp == NULL) {
continue;
}
if (IFNET_IS_EXPENSIVE(ifp) &&
(mp_so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE)) {
info->ifindex = IFSCOPE_NONE;
}
if (IFNET_IS_CONSTRAINED(ifp) &&
(mp_so->so_restrictions & SO_RESTRICT_DENY_CONSTRAINED)) {
info->ifindex = IFSCOPE_NONE;
}
if (IFNET_IS_CELLULAR(ifp) &&
(mp_so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) {
info->ifindex = IFSCOPE_NONE;
}
}
ifnet_head_done();
}
#define DUMP_BUF_CHK() { \
clen -= k; \
if (clen < 1) \
goto done; \
c += k; \
}
int
dump_mptcp_reass_qlen(char *str, int str_len)
{
char *c = str;
int k, clen = str_len;
if (mptcp_reass_total_qlen != 0) {
k = scnprintf(c, clen, "\nmptcp reass qlen %d\n", mptcp_reass_total_qlen);
DUMP_BUF_CHK();
}
done:
return str_len - clen;
}