1625 lines
44 KiB
C
1625 lines
44 KiB
C
/*
|
|
* Copyright (c) 2015-2021 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
|
|
/* TCP-cache to store and retrieve TCP-related information */
|
|
|
|
#include <net/flowhash.h>
|
|
#include <net/route.h>
|
|
#include <net/necp.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/mptcp.h>
|
|
#include <netinet/mptcp_var.h>
|
|
#include <netinet/tcp_cache.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <kern/locks.h>
|
|
#include <sys/queue.h>
|
|
#include <dev/random/randomdev.h>
|
|
#include <net/sockaddr_utils.h>
|
|
|
|
typedef union {
|
|
struct in_addr addr;
|
|
struct in6_addr addr6;
|
|
} in_4_6_addr;
|
|
|
|
struct tcp_heuristic_key {
|
|
union {
|
|
uint8_t thk_net_signature[IFNET_SIGNATURELEN];
|
|
in_4_6_addr thk_ip;
|
|
};
|
|
sa_family_t thk_family;
|
|
};
|
|
|
|
struct tcp_heuristic {
|
|
SLIST_ENTRY(tcp_heuristic) list;
|
|
|
|
uint32_t th_last_access;
|
|
|
|
struct tcp_heuristic_key th_key;
|
|
|
|
char th_val_start[0]; /* Marker for memsetting to 0 */
|
|
|
|
uint8_t th_tfo_data_loss; /* The number of times a SYN+data has been lost */
|
|
uint8_t th_tfo_req_loss; /* The number of times a SYN+cookie-req has been lost */
|
|
uint8_t th_tfo_data_rst; /* The number of times a SYN+data has received a RST */
|
|
uint8_t th_tfo_req_rst; /* The number of times a SYN+cookie-req has received a RST */
|
|
uint8_t th_mptcp_loss; /* The number of times a SYN+MP_CAPABLE has been lost */
|
|
uint8_t th_mptcp_success; /* The number of times MPTCP-negotiation has been successful */
|
|
uint8_t th_ecn_loss; /* The number of times a SYN+ecn has been lost */
|
|
uint8_t th_ecn_aggressive; /* The number of times we did an aggressive fallback */
|
|
uint8_t th_ecn_droprst; /* The number of times ECN connections received a RST after first data pkt */
|
|
uint8_t th_ecn_droprxmt; /* The number of times ECN connection is dropped after multiple retransmits */
|
|
uint8_t th_ecn_synrst; /* number of times RST was received in response to an ECN enabled SYN */
|
|
uint32_t th_tfo_enabled_time; /* The moment when we reenabled TFO after backing off */
|
|
uint32_t th_tfo_backoff_until; /* Time until when we should not try out TFO */
|
|
uint32_t th_tfo_backoff; /* Current backoff timer */
|
|
uint32_t th_mptcp_backoff; /* Time until when we should not try out MPTCP */
|
|
uint32_t th_ecn_backoff; /* Time until when we should not try out ECN */
|
|
|
|
uint8_t th_tfo_in_backoff:1, /* Are we avoiding TFO due to the backoff timer? */
|
|
th_mptcp_in_backoff:1, /* Are we avoiding MPTCP due to the backoff timer? */
|
|
th_mptcp_heuristic_disabled:1; /* Are heuristics disabled? */
|
|
|
|
char th_val_end[0]; /* Marker for memsetting to 0 */
|
|
};
|
|
|
|
struct tcp_heuristics_head {
|
|
SLIST_HEAD(tcp_heur_bucket, tcp_heuristic) tcp_heuristics;
|
|
|
|
/* Per-hashbucket lock to avoid lock-contention */
|
|
lck_mtx_t thh_mtx;
|
|
};
|
|
|
|
struct tcp_cache_key {
|
|
sa_family_t tck_family;
|
|
|
|
struct tcp_heuristic_key tck_src;
|
|
in_4_6_addr tck_dst;
|
|
};
|
|
|
|
#define MPTCP_VERSION_SUPPORTED 1
|
|
#define MPTCP_VERSION_UNSUPPORTED -1
|
|
#define MPTCP_VERSION_SUPPORTED_UNKNOWN 0
|
|
struct tcp_cache {
|
|
SLIST_ENTRY(tcp_cache) list;
|
|
|
|
uint32_t tc_last_access;
|
|
|
|
struct tcp_cache_key tc_key;
|
|
|
|
uint8_t tc_tfo_cookie[TFO_COOKIE_LEN_MAX];
|
|
uint8_t tc_tfo_cookie_len;
|
|
|
|
uint8_t tc_mptcp_version_confirmed:1;
|
|
uint8_t tc_mptcp_version; /* version to use right now */
|
|
uint32_t tc_mptcp_next_version_try; /* Time, until we try preferred version again */
|
|
};
|
|
|
|
struct tcp_cache_head {
|
|
SLIST_HEAD(tcp_cache_bucket, tcp_cache) tcp_caches;
|
|
|
|
/* Per-hashbucket lock to avoid lock-contention */
|
|
lck_mtx_t tch_mtx;
|
|
};
|
|
|
|
struct tcp_cache_key_src {
|
|
struct ifnet *ifp;
|
|
in_4_6_addr laddr;
|
|
in_4_6_addr faddr;
|
|
int af;
|
|
};
|
|
|
|
static uint32_t tcp_cache_hash_seed;
|
|
|
|
size_t tcp_cache_size;
|
|
|
|
/*
|
|
* The maximum depth of the hash-bucket. This way we limit the tcp_cache to
|
|
* TCP_CACHE_BUCKET_SIZE * tcp_cache_size and have "natural" garbage collection
|
|
*/
|
|
#define TCP_CACHE_BUCKET_SIZE 5
|
|
|
|
static struct tcp_cache_head *tcp_cache;
|
|
|
|
static LCK_ATTR_DECLARE(tcp_cache_mtx_attr, 0, 0);
|
|
static LCK_GRP_DECLARE(tcp_cache_mtx_grp, "tcpcache");
|
|
|
|
static struct tcp_heuristics_head *tcp_heuristics;
|
|
|
|
static LCK_ATTR_DECLARE(tcp_heuristic_mtx_attr, 0, 0);
|
|
static LCK_GRP_DECLARE(tcp_heuristic_mtx_grp, "tcpheuristic");
|
|
|
|
static uint32_t tcp_backoff_maximum = 65536;
|
|
|
|
SYSCTL_UINT(_net_inet_tcp, OID_AUTO, backoff_maximum, CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_backoff_maximum, 0, "Maximum time for which we won't try TFO");
|
|
|
|
static uint32_t tcp_ecn_timeout = 60;
|
|
|
|
SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ecn_timeout, CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_ecn_timeout, 60, "Initial minutes to wait before re-trying ECN");
|
|
|
|
static int disable_tcp_heuristics = 0;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, disable_tcp_heuristics, CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&disable_tcp_heuristics, 0, "Set to 1, to disable all TCP heuristics (TFO, ECN, MPTCP)");
|
|
|
|
static uint32_t mptcp_version_timeout = 24 * 60;
|
|
|
|
SYSCTL_UINT(_net_inet_tcp, OID_AUTO, mptcp_version_timeout, CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&mptcp_version_timeout, 24 * 60, "Initial minutes to wait before re-trying MPTCP's preferred version");
|
|
|
|
|
|
static uint32_t
|
|
tcp_min_to_hz(uint32_t minutes)
|
|
{
|
|
if (minutes > 65536) {
|
|
return (uint32_t)65536 * 60 * TCP_RETRANSHZ;
|
|
}
|
|
|
|
return minutes * 60 * TCP_RETRANSHZ;
|
|
}
|
|
|
|
/*
|
|
* This number is coupled with tcp_ecn_timeout, because we want to prevent
|
|
* integer overflow. Need to find an unexpensive way to prevent integer overflow
|
|
* while still allowing a dynamic sysctl.
|
|
*/
|
|
#define TCP_CACHE_OVERFLOW_PROTECT 9
|
|
|
|
/* Number of SYN-losses we accept */
|
|
#define TFO_MAX_COOKIE_LOSS 2
|
|
#define ECN_MAX_SYN_LOSS 2
|
|
#define MPTCP_MAX_SYN_LOSS 2
|
|
#define MPTCP_SUCCESS_TRIGGER 10
|
|
#define MPTCP_VERSION_MAX_FAIL 2
|
|
#define ECN_MAX_DROPRST 1
|
|
#define ECN_MAX_DROPRXMT 4
|
|
#define ECN_MAX_SYNRST 4
|
|
|
|
/* Flags for setting/unsetting loss-heuristics, limited to 4 bytes */
|
|
#define TCPCACHE_F_TFO_REQ 0x01
|
|
#define TCPCACHE_F_TFO_DATA 0x02
|
|
#define TCPCACHE_F_ECN 0x04
|
|
#define TCPCACHE_F_MPTCP 0x08
|
|
#define TCPCACHE_F_ECN_DROPRST 0x10
|
|
#define TCPCACHE_F_ECN_DROPRXMT 0x20
|
|
#define TCPCACHE_F_TFO_REQ_RST 0x40
|
|
#define TCPCACHE_F_TFO_DATA_RST 0x80
|
|
#define TCPCACHE_F_ECN_SYNRST 0x100
|
|
|
|
/* Always retry ECN after backing off to this level for some heuristics */
|
|
#define ECN_RETRY_LIMIT 9
|
|
|
|
#define TCP_CACHE_INC_IFNET_STAT(_ifp_, _af_, _stat_) { \
|
|
if ((_ifp_) != NULL) { \
|
|
if ((_af_) == AF_INET6) { \
|
|
(_ifp_)->if_ipv6_stat->_stat_++;\
|
|
} else { \
|
|
(_ifp_)->if_ipv4_stat->_stat_++;\
|
|
}\
|
|
}\
|
|
}
|
|
|
|
/*
|
|
* Round up to next higher power-of 2. See "Bit Twiddling Hacks".
|
|
*
|
|
* Might be worth moving this to a library so that others
|
|
* (e.g., scale_to_powerof2()) can use this as well instead of a while-loop.
|
|
*/
|
|
static uint32_t
|
|
tcp_cache_roundup2(uint32_t a)
|
|
{
|
|
a--;
|
|
a |= a >> 1;
|
|
a |= a >> 2;
|
|
a |= a >> 4;
|
|
a |= a >> 8;
|
|
a |= a >> 16;
|
|
a++;
|
|
|
|
return a;
|
|
}
|
|
|
|
static void
|
|
tcp_cache_hash_src(struct tcp_cache_key_src *tcks, struct tcp_heuristic_key *key)
|
|
{
|
|
struct ifnet *ifp = tcks->ifp;
|
|
uint8_t len = sizeof(key->thk_net_signature);
|
|
uint16_t flags;
|
|
|
|
if (tcks->af == AF_INET6) {
|
|
int ret;
|
|
|
|
key->thk_family = AF_INET6;
|
|
ret = ifnet_get_netsignature(ifp, AF_INET6, &len, &flags,
|
|
key->thk_net_signature);
|
|
|
|
/*
|
|
* ifnet_get_netsignature only returns EINVAL if ifn is NULL
|
|
* (we made sure that in the other cases it does not). So,
|
|
* in this case we should take the connection's address.
|
|
*/
|
|
if (ret == ENOENT || ret == EINVAL) {
|
|
memcpy(&key->thk_ip.addr6, &tcks->laddr.addr6, sizeof(struct in6_addr));
|
|
}
|
|
} else {
|
|
int ret;
|
|
|
|
key->thk_family = AF_INET;
|
|
ret = ifnet_get_netsignature(ifp, AF_INET, &len, &flags,
|
|
key->thk_net_signature);
|
|
|
|
/*
|
|
* ifnet_get_netsignature only returns EINVAL if ifn is NULL
|
|
* (we made sure that in the other cases it does not). So,
|
|
* in this case we should take the connection's address.
|
|
*/
|
|
if (ret == ENOENT || ret == EINVAL) {
|
|
memcpy(&key->thk_ip.addr, &tcks->laddr.addr, sizeof(struct in_addr));
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint16_t
|
|
tcp_cache_hash(struct tcp_cache_key_src *tcks, struct tcp_cache_key *key)
|
|
{
|
|
uint32_t hash;
|
|
|
|
bzero(key, sizeof(struct tcp_cache_key));
|
|
|
|
tcp_cache_hash_src(tcks, &key->tck_src);
|
|
|
|
if (tcks->af == AF_INET6) {
|
|
key->tck_family = AF_INET6;
|
|
memcpy(&key->tck_dst.addr6, &tcks->faddr.addr6,
|
|
sizeof(struct in6_addr));
|
|
} else {
|
|
key->tck_family = AF_INET;
|
|
memcpy(&key->tck_dst.addr, &tcks->faddr.addr,
|
|
sizeof(struct in_addr));
|
|
}
|
|
|
|
hash = net_flowhash(key, sizeof(struct tcp_cache_key),
|
|
tcp_cache_hash_seed);
|
|
|
|
return (uint16_t)(hash & (tcp_cache_size - 1));
|
|
}
|
|
|
|
static void
|
|
tcp_cache_unlock(struct tcp_cache_head *head)
|
|
{
|
|
lck_mtx_unlock(&head->tch_mtx);
|
|
}
|
|
|
|
/*
|
|
* Make sure that everything that happens after tcp_getcache_with_lock()
|
|
* is short enough to justify that you hold the per-bucket lock!!!
|
|
*
|
|
* Otherwise, better build another lookup-function that does not hold the
|
|
* lock and you copy out the bits and bytes.
|
|
*
|
|
* That's why we provide the head as a "return"-pointer so that the caller
|
|
* can give it back to use for tcp_cache_unlock().
|
|
*/
|
|
static struct tcp_cache *
|
|
tcp_getcache_with_lock(struct tcp_cache_key_src *tcks,
|
|
int create, struct tcp_cache_head **headarg)
|
|
{
|
|
struct tcp_cache *tpcache = NULL;
|
|
struct tcp_cache_head *head;
|
|
struct tcp_cache_key key;
|
|
uint16_t hash;
|
|
int i = 0;
|
|
|
|
hash = tcp_cache_hash(tcks, &key);
|
|
head = &tcp_cache[hash];
|
|
|
|
lck_mtx_lock(&head->tch_mtx);
|
|
|
|
/*** First step: Look for the tcp_cache in our bucket ***/
|
|
SLIST_FOREACH(tpcache, &head->tcp_caches, list) {
|
|
if (memcmp(&tpcache->tc_key, &key, sizeof(key)) == 0) {
|
|
break;
|
|
}
|
|
|
|
i++;
|
|
}
|
|
|
|
/*** Second step: If it's not there, create/recycle it ***/
|
|
if ((tpcache == NULL) && create) {
|
|
if (i >= TCP_CACHE_BUCKET_SIZE) {
|
|
struct tcp_cache *oldest_cache = NULL;
|
|
uint32_t max_age = 0;
|
|
|
|
/* Look for the oldest tcp_cache in the bucket */
|
|
SLIST_FOREACH(tpcache, &head->tcp_caches, list) {
|
|
uint32_t age = tcp_now - tpcache->tc_last_access;
|
|
if (age > max_age) {
|
|
max_age = age;
|
|
oldest_cache = tpcache;
|
|
}
|
|
}
|
|
VERIFY(oldest_cache != NULL);
|
|
|
|
tpcache = oldest_cache;
|
|
|
|
/* We recycle, thus let's indicate that there is no cookie */
|
|
tpcache->tc_tfo_cookie_len = 0;
|
|
} else {
|
|
/* Create a new cache and add it to the list */
|
|
tpcache = kalloc_type(struct tcp_cache, Z_NOPAGEWAIT | Z_ZERO);
|
|
if (tpcache == NULL) {
|
|
os_log_error(OS_LOG_DEFAULT, "%s could not allocate cache", __func__);
|
|
goto out_null;
|
|
}
|
|
|
|
tpcache->tc_mptcp_version = (uint8_t)mptcp_preferred_version;
|
|
tpcache->tc_mptcp_next_version_try = tcp_now;
|
|
|
|
SLIST_INSERT_HEAD(&head->tcp_caches, tpcache, list);
|
|
}
|
|
|
|
memcpy(&tpcache->tc_key, &key, sizeof(key));
|
|
}
|
|
|
|
if (tpcache == NULL) {
|
|
goto out_null;
|
|
}
|
|
|
|
/* Update timestamp for garbage collection purposes */
|
|
tpcache->tc_last_access = tcp_now;
|
|
*headarg = head;
|
|
|
|
return tpcache;
|
|
|
|
out_null:
|
|
tcp_cache_unlock(head);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
tcp_cache_key_src_create(struct tcpcb *tp, struct tcp_cache_key_src *tcks)
|
|
{
|
|
struct inpcb *inp = tp->t_inpcb;
|
|
memset(tcks, 0, sizeof(*tcks));
|
|
|
|
tcks->ifp = inp->inp_last_outifp;
|
|
|
|
if (inp->inp_vflag & INP_IPV6) {
|
|
memcpy(&tcks->laddr.addr6, &inp->in6p_laddr, sizeof(struct in6_addr));
|
|
memcpy(&tcks->faddr.addr6, &inp->in6p_faddr, sizeof(struct in6_addr));
|
|
tcks->af = AF_INET6;
|
|
} else {
|
|
memcpy(&tcks->laddr.addr, &inp->inp_laddr, sizeof(struct in_addr));
|
|
memcpy(&tcks->faddr.addr, &inp->inp_faddr, sizeof(struct in_addr));
|
|
tcks->af = AF_INET;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
mptcp_version_cache_key_src_init(struct sockaddr *dst, struct tcp_cache_key_src *tcks)
|
|
{
|
|
memset(tcks, 0, sizeof(*tcks));
|
|
|
|
if (dst->sa_family == AF_INET) {
|
|
memcpy(&tcks->faddr.addr, &SIN(dst)->sin_addr, sizeof(struct in_addr));
|
|
tcks->af = AF_INET;
|
|
} else {
|
|
memcpy(&tcks->faddr.addr6, &SIN6(dst)->sin6_addr, sizeof(struct in6_addr));
|
|
tcks->af = AF_INET6;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
tcp_cache_set_cookie_common(struct tcp_cache_key_src *tcks, u_char *cookie, uint8_t len)
|
|
{
|
|
struct tcp_cache_head *head;
|
|
struct tcp_cache *tpcache;
|
|
|
|
/* Call lookup/create function */
|
|
tpcache = tcp_getcache_with_lock(tcks, 1, &head);
|
|
if (tpcache == NULL) {
|
|
return;
|
|
}
|
|
|
|
tpcache->tc_tfo_cookie_len = len > TFO_COOKIE_LEN_MAX ?
|
|
TFO_COOKIE_LEN_MAX : len;
|
|
memcpy(tpcache->tc_tfo_cookie, cookie, tpcache->tc_tfo_cookie_len);
|
|
|
|
tcp_cache_unlock(head);
|
|
}
|
|
|
|
void
|
|
tcp_cache_set_cookie(struct tcpcb *tp, u_char *cookie, uint8_t len)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
tcp_cache_set_cookie_common(&tcks, cookie, len);
|
|
}
|
|
|
|
static int
|
|
tcp_cache_get_cookie_common(struct tcp_cache_key_src *tcks, u_char *cookie, uint8_t *len)
|
|
{
|
|
struct tcp_cache_head *head;
|
|
struct tcp_cache *tpcache;
|
|
|
|
/* Call lookup/create function */
|
|
tpcache = tcp_getcache_with_lock(tcks, 1, &head);
|
|
if (tpcache == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (tpcache->tc_tfo_cookie_len == 0) {
|
|
tcp_cache_unlock(head);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Not enough space - this should never happen as it has been checked
|
|
* in tcp_tfo_check. So, fail here!
|
|
*/
|
|
VERIFY(tpcache->tc_tfo_cookie_len <= *len);
|
|
|
|
memcpy(cookie, tpcache->tc_tfo_cookie, tpcache->tc_tfo_cookie_len);
|
|
*len = tpcache->tc_tfo_cookie_len;
|
|
|
|
tcp_cache_unlock(head);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Get the cookie related to 'tp', and copy it into 'cookie', provided that len
|
|
* is big enough (len designates the available memory.
|
|
* Upon return, 'len' is set to the cookie's length.
|
|
*
|
|
* Returns 0 if we should request a cookie.
|
|
* Returns 1 if the cookie has been found and written.
|
|
*/
|
|
int
|
|
tcp_cache_get_cookie(struct tcpcb *tp, u_char *cookie, uint8_t *len)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
return tcp_cache_get_cookie_common(&tcks, cookie, len);
|
|
}
|
|
|
|
static unsigned int
|
|
tcp_cache_get_cookie_len_common(struct tcp_cache_key_src *tcks)
|
|
{
|
|
struct tcp_cache_head *head;
|
|
struct tcp_cache *tpcache;
|
|
unsigned int cookie_len;
|
|
|
|
/* Call lookup/create function */
|
|
tpcache = tcp_getcache_with_lock(tcks, 1, &head);
|
|
if (tpcache == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
cookie_len = tpcache->tc_tfo_cookie_len;
|
|
|
|
tcp_cache_unlock(head);
|
|
|
|
return cookie_len;
|
|
}
|
|
|
|
unsigned int
|
|
tcp_cache_get_cookie_len(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
return tcp_cache_get_cookie_len_common(&tcks);
|
|
}
|
|
|
|
/*
|
|
* @return:
|
|
* 0 MPTCP_VERSION_0
|
|
* 1 MPTCP_VERSION_1
|
|
*/
|
|
uint8_t
|
|
tcp_cache_get_mptcp_version(struct sockaddr *dst)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
mptcp_version_cache_key_src_init(dst, &tcks);
|
|
uint8_t version = (uint8_t) mptcp_preferred_version;
|
|
|
|
struct tcp_cache_head *head;
|
|
struct tcp_cache *tpcache;
|
|
|
|
/* Call lookup/create function */
|
|
tpcache = tcp_getcache_with_lock(&tcks, 1, &head);
|
|
if (tpcache == NULL) {
|
|
return version;
|
|
}
|
|
|
|
version = tpcache->tc_mptcp_version;
|
|
|
|
/* Let's see if we should try the preferred version again */
|
|
if (!tpcache->tc_mptcp_version_confirmed &&
|
|
version != mptcp_preferred_version &&
|
|
TSTMP_GEQ(tcp_now, tpcache->tc_mptcp_next_version_try)) {
|
|
version = (uint8_t) mptcp_preferred_version;
|
|
}
|
|
|
|
tcp_cache_unlock(head);
|
|
return version;
|
|
}
|
|
|
|
void
|
|
tcp_cache_update_mptcp_version(struct tcpcb *tp, boolean_t succeeded)
|
|
{
|
|
uint8_t version = tptomptp(tp)->mpt_version;
|
|
struct inpcb *inp = tp->t_inpcb;
|
|
struct tcp_cache_key_src tcks;
|
|
struct tcp_cache_head *head;
|
|
struct tcp_cache *tpcache;
|
|
|
|
if (inp->inp_vflag & INP_IPV6) {
|
|
struct sockaddr_in6 dst = {
|
|
.sin6_len = sizeof(struct sockaddr_in6),
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = inp->in6p_faddr,
|
|
};
|
|
mptcp_version_cache_key_src_init(SA(&dst), &tcks);
|
|
} else {
|
|
struct sockaddr_in dst = {
|
|
.sin_len = sizeof(struct sockaddr_in),
|
|
.sin_family = AF_INET,
|
|
.sin_addr = inp->inp_faddr,
|
|
};
|
|
mptcp_version_cache_key_src_init(SA(&dst), &tcks);
|
|
}
|
|
|
|
/* Call lookup/create function */
|
|
tpcache = tcp_getcache_with_lock(&tcks, 1, &head);
|
|
if (tpcache == NULL) {
|
|
return;
|
|
}
|
|
|
|
/* We are still in probing phase */
|
|
if (tpcache->tc_mptcp_version_confirmed) {
|
|
goto exit;
|
|
}
|
|
|
|
if (succeeded) {
|
|
if (version == (uint8_t)mptcp_preferred_version) {
|
|
/* Preferred version succeeded - make it sticky */
|
|
tpcache->tc_mptcp_version_confirmed = true;
|
|
tpcache->tc_mptcp_version = version;
|
|
} else {
|
|
/* If we are past the next version try, set it
|
|
* so that we try preferred again in 24h
|
|
*/
|
|
if (TSTMP_GEQ(tcp_now, tpcache->tc_mptcp_next_version_try)) {
|
|
tpcache->tc_mptcp_next_version_try = tcp_now + tcp_min_to_hz(mptcp_version_timeout);
|
|
}
|
|
}
|
|
} else {
|
|
if (version == (uint8_t)mptcp_preferred_version) {
|
|
/* Preferred version failed - try the other version */
|
|
tpcache->tc_mptcp_version = version == MPTCP_VERSION_0 ? MPTCP_VERSION_1 : MPTCP_VERSION_0;
|
|
}
|
|
/* Preferred version failed - make sure we give the preferred another
|
|
* shot in 24h.
|
|
*/
|
|
if (TSTMP_GEQ(tcp_now, tpcache->tc_mptcp_next_version_try)) {
|
|
tpcache->tc_mptcp_next_version_try = tcp_now + tcp_min_to_hz(mptcp_version_timeout);
|
|
}
|
|
}
|
|
|
|
exit:
|
|
tcp_cache_unlock(head);
|
|
}
|
|
|
|
static uint16_t
|
|
tcp_heuristics_hash(struct tcp_cache_key_src *tcks, struct tcp_heuristic_key *key)
|
|
{
|
|
uint32_t hash;
|
|
|
|
bzero(key, sizeof(struct tcp_heuristic_key));
|
|
|
|
tcp_cache_hash_src(tcks, key);
|
|
|
|
hash = net_flowhash(key, sizeof(struct tcp_heuristic_key),
|
|
tcp_cache_hash_seed);
|
|
|
|
return (uint16_t)(hash & (tcp_cache_size - 1));
|
|
}
|
|
|
|
static void
|
|
tcp_heuristic_unlock(struct tcp_heuristics_head *head)
|
|
{
|
|
lck_mtx_unlock(&head->thh_mtx);
|
|
}
|
|
|
|
/*
|
|
* Make sure that everything that happens after tcp_getheuristic_with_lock()
|
|
* is short enough to justify that you hold the per-bucket lock!!!
|
|
*
|
|
* Otherwise, better build another lookup-function that does not hold the
|
|
* lock and you copy out the bits and bytes.
|
|
*
|
|
* That's why we provide the head as a "return"-pointer so that the caller
|
|
* can give it back to use for tcp_heur_unlock().
|
|
*
|
|
*
|
|
* ToDo - way too much code-duplication. We should create an interface to handle
|
|
* bucketized hashtables with recycling of the oldest element.
|
|
*/
|
|
static struct tcp_heuristic *
|
|
tcp_getheuristic_with_lock(struct tcp_cache_key_src *tcks,
|
|
int create, struct tcp_heuristics_head **headarg)
|
|
{
|
|
struct tcp_heuristic *tpheur = NULL;
|
|
struct tcp_heuristics_head *head;
|
|
struct tcp_heuristic_key key;
|
|
uint16_t hash;
|
|
int i = 0;
|
|
|
|
hash = tcp_heuristics_hash(tcks, &key);
|
|
head = &tcp_heuristics[hash];
|
|
|
|
lck_mtx_lock(&head->thh_mtx);
|
|
|
|
/*** First step: Look for the tcp_heur in our bucket ***/
|
|
SLIST_FOREACH(tpheur, &head->tcp_heuristics, list) {
|
|
if (memcmp(&tpheur->th_key, &key, sizeof(key)) == 0) {
|
|
break;
|
|
}
|
|
|
|
i++;
|
|
}
|
|
|
|
/*** Second step: If it's not there, create/recycle it ***/
|
|
if ((tpheur == NULL) && create) {
|
|
if (i >= TCP_CACHE_BUCKET_SIZE) {
|
|
struct tcp_heuristic *oldest_heur = NULL;
|
|
uint32_t max_age = 0;
|
|
|
|
/* Look for the oldest tcp_heur in the bucket */
|
|
SLIST_FOREACH(tpheur, &head->tcp_heuristics, list) {
|
|
uint32_t age = tcp_now - tpheur->th_last_access;
|
|
if (age > max_age) {
|
|
max_age = age;
|
|
oldest_heur = tpheur;
|
|
}
|
|
}
|
|
VERIFY(oldest_heur != NULL);
|
|
|
|
tpheur = oldest_heur;
|
|
|
|
/* We recycle - set everything to 0 */
|
|
bzero(tpheur->th_val_start,
|
|
tpheur->th_val_end - tpheur->th_val_start);
|
|
} else {
|
|
/* Create a new heuristic and add it to the list */
|
|
tpheur = kalloc_type(struct tcp_heuristic, Z_NOPAGEWAIT | Z_ZERO);
|
|
if (tpheur == NULL) {
|
|
os_log_error(OS_LOG_DEFAULT, "%s could not allocate heuristic", __func__);
|
|
goto out_null;
|
|
}
|
|
|
|
SLIST_INSERT_HEAD(&head->tcp_heuristics, tpheur, list);
|
|
}
|
|
|
|
/*
|
|
* Set to tcp_now, to make sure it won't be > than tcp_now in the
|
|
* near future.
|
|
*/
|
|
tpheur->th_ecn_backoff = tcp_now;
|
|
tpheur->th_tfo_backoff_until = tcp_now;
|
|
tpheur->th_mptcp_backoff = tcp_now;
|
|
tpheur->th_tfo_backoff = tcp_min_to_hz(tcp_ecn_timeout);
|
|
|
|
memcpy(&tpheur->th_key, &key, sizeof(key));
|
|
}
|
|
|
|
if (tpheur == NULL) {
|
|
goto out_null;
|
|
}
|
|
|
|
/* Update timestamp for garbage collection purposes */
|
|
tpheur->th_last_access = tcp_now;
|
|
*headarg = head;
|
|
|
|
return tpheur;
|
|
|
|
out_null:
|
|
tcp_heuristic_unlock(head);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
tcp_heuristic_reset_counters(struct tcp_cache_key_src *tcks, uint8_t flags)
|
|
{
|
|
struct tcp_heuristics_head *head;
|
|
struct tcp_heuristic *tpheur;
|
|
|
|
/*
|
|
* Always create heuristics here because MPTCP needs to write success
|
|
* into it. Thus, we always end up creating them.
|
|
*/
|
|
tpheur = tcp_getheuristic_with_lock(tcks, 1, &head);
|
|
if (tpheur == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (flags & TCPCACHE_F_TFO_DATA) {
|
|
if (tpheur->th_tfo_data_loss >= TFO_MAX_COOKIE_LOSS) {
|
|
os_log(OS_LOG_DEFAULT, "%s: Resetting TFO-data loss to 0 from %u on heur %lx\n",
|
|
__func__, tpheur->th_tfo_data_loss, (unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
tpheur->th_tfo_data_loss = 0;
|
|
}
|
|
|
|
if (flags & TCPCACHE_F_TFO_REQ) {
|
|
if (tpheur->th_tfo_req_loss >= TFO_MAX_COOKIE_LOSS) {
|
|
os_log(OS_LOG_DEFAULT, "%s: Resetting TFO-req loss to 0 from %u on heur %lx\n",
|
|
__func__, tpheur->th_tfo_req_loss, (unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
tpheur->th_tfo_req_loss = 0;
|
|
}
|
|
|
|
if (flags & TCPCACHE_F_TFO_DATA_RST) {
|
|
if (tpheur->th_tfo_data_rst >= TFO_MAX_COOKIE_LOSS) {
|
|
os_log(OS_LOG_DEFAULT, "%s: Resetting TFO-data RST to 0 from %u on heur %lx\n",
|
|
__func__, tpheur->th_tfo_data_rst, (unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
tpheur->th_tfo_data_rst = 0;
|
|
}
|
|
|
|
if (flags & TCPCACHE_F_TFO_REQ_RST) {
|
|
if (tpheur->th_tfo_req_rst >= TFO_MAX_COOKIE_LOSS) {
|
|
os_log(OS_LOG_DEFAULT, "%s: Resetting TFO-req RST to 0 from %u on heur %lx\n",
|
|
__func__, tpheur->th_tfo_req_rst, (unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
tpheur->th_tfo_req_rst = 0;
|
|
}
|
|
|
|
if (flags & TCPCACHE_F_ECN) {
|
|
if (tpheur->th_ecn_loss >= ECN_MAX_SYN_LOSS || tpheur->th_ecn_synrst >= ECN_MAX_SYNRST) {
|
|
os_log(OS_LOG_DEFAULT, "%s: Resetting ECN-loss to 0 from %u and synrst from %u on heur %lx\n",
|
|
__func__, tpheur->th_ecn_loss, tpheur->th_ecn_synrst, (unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
tpheur->th_ecn_loss = 0;
|
|
tpheur->th_ecn_synrst = 0;
|
|
}
|
|
|
|
if (flags & TCPCACHE_F_MPTCP) {
|
|
tpheur->th_mptcp_loss = 0;
|
|
if (tpheur->th_mptcp_success < MPTCP_SUCCESS_TRIGGER) {
|
|
tpheur->th_mptcp_success++;
|
|
|
|
if (tpheur->th_mptcp_success == MPTCP_SUCCESS_TRIGGER) {
|
|
os_log(mptcp_log_handle, "%s disabling heuristics for 12 hours", __func__);
|
|
tpheur->th_mptcp_heuristic_disabled = 1;
|
|
/* Disable heuristics for 12 hours */
|
|
tpheur->th_mptcp_backoff = tcp_now + tcp_min_to_hz(tcp_ecn_timeout * 12);
|
|
}
|
|
}
|
|
}
|
|
|
|
tcp_heuristic_unlock(head);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_tfo_success(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
uint8_t flag = 0;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
|
|
if (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) {
|
|
flag = (TCPCACHE_F_TFO_DATA | TCPCACHE_F_TFO_REQ |
|
|
TCPCACHE_F_TFO_DATA_RST | TCPCACHE_F_TFO_REQ_RST);
|
|
}
|
|
if (tp->t_tfo_stats & TFO_S_COOKIE_REQ) {
|
|
flag = (TCPCACHE_F_TFO_REQ | TCPCACHE_F_TFO_REQ_RST);
|
|
}
|
|
|
|
tcp_heuristic_reset_counters(&tcks, flag);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_mptcp_success(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
tcp_heuristic_reset_counters(&tcks, TCPCACHE_F_MPTCP);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_ecn_success(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
tcp_heuristic_reset_counters(&tcks, TCPCACHE_F_ECN);
|
|
}
|
|
|
|
static void
|
|
__tcp_heuristic_tfo_middlebox_common(struct tcp_heuristic *tpheur)
|
|
{
|
|
if (tpheur->th_tfo_in_backoff) {
|
|
return;
|
|
}
|
|
|
|
tpheur->th_tfo_in_backoff = 1;
|
|
|
|
if (tpheur->th_tfo_enabled_time) {
|
|
uint32_t old_backoff = tpheur->th_tfo_backoff;
|
|
|
|
tpheur->th_tfo_backoff -= (tcp_now - tpheur->th_tfo_enabled_time);
|
|
if (tpheur->th_tfo_backoff > old_backoff) {
|
|
tpheur->th_tfo_backoff = tcp_min_to_hz(tcp_ecn_timeout);
|
|
}
|
|
}
|
|
|
|
tpheur->th_tfo_backoff_until = tcp_now + tpheur->th_tfo_backoff;
|
|
|
|
/* Then, increase the backoff time */
|
|
tpheur->th_tfo_backoff *= 2;
|
|
|
|
if (tpheur->th_tfo_backoff > tcp_min_to_hz(tcp_backoff_maximum)) {
|
|
tpheur->th_tfo_backoff = tcp_min_to_hz(tcp_ecn_timeout);
|
|
}
|
|
|
|
os_log(OS_LOG_DEFAULT, "%s disable TFO until %u now %u on %lx\n", __func__,
|
|
tpheur->th_tfo_backoff_until, tcp_now, (unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
|
|
static void
|
|
tcp_heuristic_tfo_middlebox_common(struct tcp_cache_key_src *tcks)
|
|
{
|
|
struct tcp_heuristics_head *head;
|
|
struct tcp_heuristic *tpheur;
|
|
|
|
tpheur = tcp_getheuristic_with_lock(tcks, 1, &head);
|
|
if (tpheur == NULL) {
|
|
return;
|
|
}
|
|
|
|
__tcp_heuristic_tfo_middlebox_common(tpheur);
|
|
|
|
tcp_heuristic_unlock(head);
|
|
}
|
|
|
|
static void
|
|
tcp_heuristic_inc_counters(struct tcp_cache_key_src *tcks,
|
|
uint32_t flags)
|
|
{
|
|
struct tcp_heuristics_head *head;
|
|
struct tcp_heuristic *tpheur;
|
|
|
|
tpheur = tcp_getheuristic_with_lock(tcks, 1, &head);
|
|
if (tpheur == NULL) {
|
|
return;
|
|
}
|
|
|
|
/* Limit to prevent integer-overflow during exponential backoff */
|
|
if ((flags & TCPCACHE_F_TFO_DATA) && tpheur->th_tfo_data_loss < TCP_CACHE_OVERFLOW_PROTECT) {
|
|
tpheur->th_tfo_data_loss++;
|
|
|
|
if (tpheur->th_tfo_data_loss >= TFO_MAX_COOKIE_LOSS) {
|
|
__tcp_heuristic_tfo_middlebox_common(tpheur);
|
|
}
|
|
}
|
|
|
|
if ((flags & TCPCACHE_F_TFO_REQ) && tpheur->th_tfo_req_loss < TCP_CACHE_OVERFLOW_PROTECT) {
|
|
tpheur->th_tfo_req_loss++;
|
|
|
|
if (tpheur->th_tfo_req_loss >= TFO_MAX_COOKIE_LOSS) {
|
|
__tcp_heuristic_tfo_middlebox_common(tpheur);
|
|
}
|
|
}
|
|
|
|
if ((flags & TCPCACHE_F_TFO_DATA_RST) && tpheur->th_tfo_data_rst < TCP_CACHE_OVERFLOW_PROTECT) {
|
|
tpheur->th_tfo_data_rst++;
|
|
|
|
if (tpheur->th_tfo_data_rst >= TFO_MAX_COOKIE_LOSS) {
|
|
__tcp_heuristic_tfo_middlebox_common(tpheur);
|
|
}
|
|
}
|
|
|
|
if ((flags & TCPCACHE_F_TFO_REQ_RST) && tpheur->th_tfo_req_rst < TCP_CACHE_OVERFLOW_PROTECT) {
|
|
tpheur->th_tfo_req_rst++;
|
|
|
|
if (tpheur->th_tfo_req_rst >= TFO_MAX_COOKIE_LOSS) {
|
|
__tcp_heuristic_tfo_middlebox_common(tpheur);
|
|
}
|
|
}
|
|
|
|
if ((flags & TCPCACHE_F_ECN) &&
|
|
tpheur->th_ecn_loss < TCP_CACHE_OVERFLOW_PROTECT &&
|
|
TSTMP_LEQ(tpheur->th_ecn_backoff, tcp_now)) {
|
|
tpheur->th_ecn_loss++;
|
|
if (tpheur->th_ecn_loss >= ECN_MAX_SYN_LOSS) {
|
|
tcpstat.tcps_ecn_fallback_synloss++;
|
|
TCP_CACHE_INC_IFNET_STAT(tcks->ifp, tcks->af, ecn_fallback_synloss);
|
|
tpheur->th_ecn_backoff = tcp_now +
|
|
(tcp_min_to_hz(tcp_ecn_timeout) <<
|
|
(tpheur->th_ecn_loss - ECN_MAX_SYN_LOSS));
|
|
|
|
os_log(OS_LOG_DEFAULT, "%s disable ECN until %u now %u on %lx for SYN-loss\n",
|
|
__func__, tpheur->th_ecn_backoff, tcp_now,
|
|
(unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
}
|
|
|
|
if ((flags & TCPCACHE_F_MPTCP) &&
|
|
tpheur->th_mptcp_loss < TCP_CACHE_OVERFLOW_PROTECT &&
|
|
tpheur->th_mptcp_heuristic_disabled == 0) {
|
|
tpheur->th_mptcp_loss++;
|
|
if (tpheur->th_mptcp_loss >= MPTCP_MAX_SYN_LOSS) {
|
|
/*
|
|
* Yes, we take tcp_ecn_timeout, to avoid adding yet
|
|
* another sysctl that is just used for testing.
|
|
*/
|
|
tpheur->th_mptcp_backoff = tcp_now +
|
|
(tcp_min_to_hz(tcp_ecn_timeout) <<
|
|
(tpheur->th_mptcp_loss - MPTCP_MAX_SYN_LOSS));
|
|
tpheur->th_mptcp_in_backoff = 1;
|
|
|
|
os_log(OS_LOG_DEFAULT, "%s disable MPTCP until %u now %u on %lx\n",
|
|
__func__, tpheur->th_mptcp_backoff, tcp_now,
|
|
(unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
}
|
|
|
|
if ((flags & TCPCACHE_F_ECN_DROPRST) &&
|
|
tpheur->th_ecn_droprst < TCP_CACHE_OVERFLOW_PROTECT &&
|
|
TSTMP_LEQ(tpheur->th_ecn_backoff, tcp_now)) {
|
|
tpheur->th_ecn_droprst++;
|
|
if (tpheur->th_ecn_droprst >= ECN_MAX_DROPRST) {
|
|
tcpstat.tcps_ecn_fallback_droprst++;
|
|
TCP_CACHE_INC_IFNET_STAT(tcks->ifp, tcks->af,
|
|
ecn_fallback_droprst);
|
|
tpheur->th_ecn_backoff = tcp_now +
|
|
(tcp_min_to_hz(tcp_ecn_timeout) <<
|
|
(tpheur->th_ecn_droprst - ECN_MAX_DROPRST));
|
|
|
|
os_log(OS_LOG_DEFAULT, "%s disable ECN until %u now %u on %lx for drop-RST\n",
|
|
__func__, tpheur->th_ecn_backoff, tcp_now,
|
|
(unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
}
|
|
|
|
if ((flags & TCPCACHE_F_ECN_DROPRXMT) &&
|
|
tpheur->th_ecn_droprxmt < TCP_CACHE_OVERFLOW_PROTECT &&
|
|
TSTMP_LEQ(tpheur->th_ecn_backoff, tcp_now)) {
|
|
tpheur->th_ecn_droprxmt++;
|
|
if (tpheur->th_ecn_droprxmt >= ECN_MAX_DROPRXMT) {
|
|
tcpstat.tcps_ecn_fallback_droprxmt++;
|
|
TCP_CACHE_INC_IFNET_STAT(tcks->ifp, tcks->af,
|
|
ecn_fallback_droprxmt);
|
|
tpheur->th_ecn_backoff = tcp_now +
|
|
(tcp_min_to_hz(tcp_ecn_timeout) <<
|
|
(tpheur->th_ecn_droprxmt - ECN_MAX_DROPRXMT));
|
|
|
|
os_log(OS_LOG_DEFAULT, "%s disable ECN until %u now %u on %lx for drop-Rxmit\n",
|
|
__func__, tpheur->th_ecn_backoff, tcp_now,
|
|
(unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
}
|
|
if ((flags & TCPCACHE_F_ECN_SYNRST) &&
|
|
tpheur->th_ecn_synrst < TCP_CACHE_OVERFLOW_PROTECT) {
|
|
tpheur->th_ecn_synrst++;
|
|
if (tpheur->th_ecn_synrst >= ECN_MAX_SYNRST) {
|
|
tcpstat.tcps_ecn_fallback_synrst++;
|
|
TCP_CACHE_INC_IFNET_STAT(tcks->ifp, tcks->af,
|
|
ecn_fallback_synrst);
|
|
tpheur->th_ecn_backoff = tcp_now +
|
|
(tcp_min_to_hz(tcp_ecn_timeout) <<
|
|
(tpheur->th_ecn_synrst - ECN_MAX_SYNRST));
|
|
|
|
os_log(OS_LOG_DEFAULT, "%s disable ECN until %u now %u on %lx for SYN-RST\n",
|
|
__func__, tpheur->th_ecn_backoff, tcp_now,
|
|
(unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
}
|
|
tcp_heuristic_unlock(head);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_tfo_loss(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
uint32_t flag = 0;
|
|
|
|
if (symptoms_is_wifi_lossy() &&
|
|
IFNET_IS_WIFI(tp->t_inpcb->inp_last_outifp)) {
|
|
return;
|
|
}
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
|
|
if (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) {
|
|
flag = (TCPCACHE_F_TFO_DATA | TCPCACHE_F_TFO_REQ);
|
|
}
|
|
if (tp->t_tfo_stats & TFO_S_COOKIE_REQ) {
|
|
flag = TCPCACHE_F_TFO_REQ;
|
|
}
|
|
|
|
tcp_heuristic_inc_counters(&tcks, flag);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_tfo_rst(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
uint32_t flag = 0;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
|
|
if (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) {
|
|
flag = (TCPCACHE_F_TFO_DATA_RST | TCPCACHE_F_TFO_REQ_RST);
|
|
}
|
|
if (tp->t_tfo_stats & TFO_S_COOKIE_REQ) {
|
|
flag = TCPCACHE_F_TFO_REQ_RST;
|
|
}
|
|
|
|
tcp_heuristic_inc_counters(&tcks, flag);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_mptcp_loss(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
if (symptoms_is_wifi_lossy() &&
|
|
IFNET_IS_WIFI(tp->t_inpcb->inp_last_outifp)) {
|
|
return;
|
|
}
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_MPTCP);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_ecn_loss(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
if (symptoms_is_wifi_lossy() &&
|
|
IFNET_IS_WIFI(tp->t_inpcb->inp_last_outifp)) {
|
|
return;
|
|
}
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_ecn_droprst(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_DROPRST);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_ecn_droprxmt(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_DROPRXMT);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_ecn_synrst(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_SYNRST);
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_tfo_middlebox(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tp->t_tfo_flags |= TFO_F_HEURISTIC_DONE;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
tcp_heuristic_tfo_middlebox_common(&tcks);
|
|
}
|
|
|
|
static void
|
|
tcp_heuristic_ecn_aggressive_common(struct tcp_cache_key_src *tcks)
|
|
{
|
|
struct tcp_heuristics_head *head;
|
|
struct tcp_heuristic *tpheur;
|
|
|
|
tpheur = tcp_getheuristic_with_lock(tcks, 1, &head);
|
|
if (tpheur == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (TSTMP_GT(tpheur->th_ecn_backoff, tcp_now)) {
|
|
/* We are already in aggressive mode */
|
|
tcp_heuristic_unlock(head);
|
|
return;
|
|
}
|
|
|
|
/* Must be done before, otherwise we will start off with expo-backoff */
|
|
tpheur->th_ecn_backoff = tcp_now +
|
|
(tcp_min_to_hz(tcp_ecn_timeout) << (tpheur->th_ecn_aggressive));
|
|
|
|
/*
|
|
* Ugly way to prevent integer overflow... limit to prevent in
|
|
* overflow during exp. backoff.
|
|
*/
|
|
if (tpheur->th_ecn_aggressive < TCP_CACHE_OVERFLOW_PROTECT) {
|
|
tpheur->th_ecn_aggressive++;
|
|
}
|
|
|
|
tcp_heuristic_unlock(head);
|
|
|
|
os_log(OS_LOG_DEFAULT, "%s disable ECN until %u now %u on %lx\n", __func__,
|
|
tpheur->th_ecn_backoff, tcp_now, (unsigned long)VM_KERNEL_ADDRPERM(tpheur));
|
|
}
|
|
|
|
void
|
|
tcp_heuristic_ecn_aggressive(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
tcp_heuristic_ecn_aggressive_common(&tcks);
|
|
}
|
|
|
|
static boolean_t
|
|
tcp_heuristic_do_tfo_common(struct tcp_cache_key_src *tcks)
|
|
{
|
|
struct tcp_heuristics_head *head;
|
|
struct tcp_heuristic *tpheur;
|
|
|
|
if (disable_tcp_heuristics) {
|
|
return TRUE;
|
|
}
|
|
|
|
/* Get the tcp-heuristic. */
|
|
tpheur = tcp_getheuristic_with_lock(tcks, 0, &head);
|
|
if (tpheur == NULL) {
|
|
return TRUE;
|
|
}
|
|
|
|
if (tpheur->th_tfo_in_backoff == 0) {
|
|
goto tfo_ok;
|
|
}
|
|
|
|
if (TSTMP_GT(tcp_now, tpheur->th_tfo_backoff_until)) {
|
|
tpheur->th_tfo_in_backoff = 0;
|
|
tpheur->th_tfo_enabled_time = tcp_now;
|
|
|
|
goto tfo_ok;
|
|
}
|
|
|
|
tcp_heuristic_unlock(head);
|
|
return FALSE;
|
|
|
|
tfo_ok:
|
|
tcp_heuristic_unlock(head);
|
|
return TRUE;
|
|
}
|
|
|
|
boolean_t
|
|
tcp_heuristic_do_tfo(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
if (tcp_heuristic_do_tfo_common(&tcks)) {
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
/*
|
|
* @return:
|
|
* 0 Enable MPTCP (we are still discovering middleboxes)
|
|
* -1 Enable MPTCP (heuristics have been temporarily disabled)
|
|
* 1 Disable MPTCP
|
|
*/
|
|
int
|
|
tcp_heuristic_do_mptcp(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
struct tcp_heuristics_head *head = NULL;
|
|
struct tcp_heuristic *tpheur;
|
|
int ret = 0;
|
|
|
|
if (disable_tcp_heuristics ||
|
|
(tptomptp(tp)->mpt_mpte->mpte_flags & MPTE_FORCE_ENABLE)) {
|
|
return 0;
|
|
}
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
|
|
/* Get the tcp-heuristic. */
|
|
tpheur = tcp_getheuristic_with_lock(&tcks, 0, &head);
|
|
if (tpheur == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (tpheur->th_mptcp_in_backoff == 0 ||
|
|
tpheur->th_mptcp_heuristic_disabled == 1) {
|
|
goto mptcp_ok;
|
|
}
|
|
|
|
if (TSTMP_GT(tpheur->th_mptcp_backoff, tcp_now)) {
|
|
goto fallback;
|
|
}
|
|
|
|
tpheur->th_mptcp_in_backoff = 0;
|
|
|
|
mptcp_ok:
|
|
if (tpheur->th_mptcp_heuristic_disabled) {
|
|
ret = -1;
|
|
|
|
if (TSTMP_GT(tcp_now, tpheur->th_mptcp_backoff)) {
|
|
tpheur->th_mptcp_heuristic_disabled = 0;
|
|
tpheur->th_mptcp_success = 0;
|
|
}
|
|
}
|
|
|
|
tcp_heuristic_unlock(head);
|
|
return ret;
|
|
|
|
fallback:
|
|
if (head) {
|
|
tcp_heuristic_unlock(head);
|
|
}
|
|
|
|
if (tptomptp(tp)->mpt_mpte->mpte_flags & MPTE_FIRSTPARTY) {
|
|
tcpstat.tcps_mptcp_fp_heuristic_fallback++;
|
|
} else {
|
|
tcpstat.tcps_mptcp_heuristic_fallback++;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static boolean_t
|
|
tcp_heuristic_do_ecn_common(struct tcp_cache_key_src *tcks)
|
|
{
|
|
struct tcp_heuristics_head *head;
|
|
struct tcp_heuristic *tpheur;
|
|
boolean_t ret = TRUE;
|
|
|
|
if (disable_tcp_heuristics) {
|
|
return TRUE;
|
|
}
|
|
|
|
/* Get the tcp-heuristic. */
|
|
tpheur = tcp_getheuristic_with_lock(tcks, 0, &head);
|
|
if (tpheur == NULL) {
|
|
return ret;
|
|
}
|
|
|
|
if (TSTMP_GT(tpheur->th_ecn_backoff, tcp_now)) {
|
|
ret = FALSE;
|
|
} else {
|
|
/* Reset the following counters to start re-evaluating */
|
|
if (tpheur->th_ecn_droprst >= ECN_RETRY_LIMIT) {
|
|
tpheur->th_ecn_droprst = 0;
|
|
}
|
|
if (tpheur->th_ecn_droprxmt >= ECN_RETRY_LIMIT) {
|
|
tpheur->th_ecn_droprxmt = 0;
|
|
}
|
|
if (tpheur->th_ecn_synrst >= ECN_RETRY_LIMIT) {
|
|
tpheur->th_ecn_synrst = 0;
|
|
}
|
|
|
|
/* Make sure it follows along */
|
|
tpheur->th_ecn_backoff = tcp_now;
|
|
}
|
|
|
|
tcp_heuristic_unlock(head);
|
|
|
|
return ret;
|
|
}
|
|
|
|
boolean_t
|
|
tcp_heuristic_do_ecn(struct tcpcb *tp)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
tcp_cache_key_src_create(tp, &tcks);
|
|
return tcp_heuristic_do_ecn_common(&tcks);
|
|
}
|
|
|
|
boolean_t
|
|
tcp_heuristic_do_ecn_with_address(struct ifnet *ifp,
|
|
union sockaddr_in_4_6 *local_address)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
memset(&tcks, 0, sizeof(tcks));
|
|
tcks.ifp = ifp;
|
|
|
|
calculate_tcp_clock();
|
|
|
|
if (local_address->sa.sa_family == AF_INET6) {
|
|
memcpy(&tcks.laddr.addr6, &local_address->sin6.sin6_addr, sizeof(struct in6_addr));
|
|
tcks.af = AF_INET6;
|
|
} else if (local_address->sa.sa_family == AF_INET) {
|
|
memcpy(&tcks.laddr.addr, &local_address->sin.sin_addr, sizeof(struct in_addr));
|
|
tcks.af = AF_INET;
|
|
}
|
|
|
|
return tcp_heuristic_do_ecn_common(&tcks);
|
|
}
|
|
|
|
void
|
|
tcp_heuristics_ecn_update(struct necp_tcp_ecn_cache *necp_buffer,
|
|
struct ifnet *ifp, union sockaddr_in_4_6 *local_address)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
memset(&tcks, 0, sizeof(tcks));
|
|
tcks.ifp = ifp;
|
|
|
|
calculate_tcp_clock();
|
|
|
|
if (local_address->sa.sa_family == AF_INET6) {
|
|
memcpy(&tcks.laddr.addr6, &local_address->sin6.sin6_addr, sizeof(struct in6_addr));
|
|
tcks.af = AF_INET6;
|
|
} else if (local_address->sa.sa_family == AF_INET) {
|
|
memcpy(&tcks.laddr.addr, &local_address->sin.sin_addr, sizeof(struct in_addr));
|
|
tcks.af = AF_INET;
|
|
}
|
|
|
|
if (necp_buffer->necp_tcp_ecn_heuristics_success) {
|
|
tcp_heuristic_reset_counters(&tcks, TCPCACHE_F_ECN);
|
|
} else if (necp_buffer->necp_tcp_ecn_heuristics_loss) {
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN);
|
|
} else if (necp_buffer->necp_tcp_ecn_heuristics_drop_rst) {
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_DROPRST);
|
|
} else if (necp_buffer->necp_tcp_ecn_heuristics_drop_rxmt) {
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_DROPRXMT);
|
|
} else if (necp_buffer->necp_tcp_ecn_heuristics_syn_rst) {
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_SYNRST);
|
|
} else if (necp_buffer->necp_tcp_ecn_heuristics_aggressive) {
|
|
tcp_heuristic_ecn_aggressive_common(&tcks);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
boolean_t
|
|
tcp_heuristic_do_tfo_with_address(struct ifnet *ifp,
|
|
union sockaddr_in_4_6 *local_address, union sockaddr_in_4_6 *remote_address,
|
|
uint8_t *cookie, uint8_t *cookie_len)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
memset(&tcks, 0, sizeof(tcks));
|
|
tcks.ifp = ifp;
|
|
|
|
calculate_tcp_clock();
|
|
|
|
if (remote_address->sa.sa_family == AF_INET6) {
|
|
memcpy(&tcks.laddr.addr6, &local_address->sin6.sin6_addr, sizeof(struct in6_addr));
|
|
memcpy(&tcks.faddr.addr6, &remote_address->sin6.sin6_addr, sizeof(struct in6_addr));
|
|
tcks.af = AF_INET6;
|
|
} else if (remote_address->sa.sa_family == AF_INET) {
|
|
memcpy(&tcks.laddr.addr, &local_address->sin.sin_addr, sizeof(struct in_addr));
|
|
memcpy(&tcks.faddr.addr, &remote_address->sin.sin_addr, sizeof(struct in_addr));
|
|
tcks.af = AF_INET;
|
|
}
|
|
|
|
if (tcp_heuristic_do_tfo_common(&tcks)) {
|
|
if (!tcp_cache_get_cookie_common(&tcks, cookie, cookie_len)) {
|
|
*cookie_len = 0;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
void
|
|
tcp_heuristics_tfo_update(struct necp_tcp_tfo_cache *necp_buffer,
|
|
struct ifnet *ifp, union sockaddr_in_4_6 *local_address,
|
|
union sockaddr_in_4_6 *remote_address)
|
|
{
|
|
struct tcp_cache_key_src tcks;
|
|
|
|
memset(&tcks, 0, sizeof(tcks));
|
|
tcks.ifp = ifp;
|
|
|
|
calculate_tcp_clock();
|
|
|
|
if (remote_address->sa.sa_family == AF_INET6) {
|
|
memcpy(&tcks.laddr.addr6, &local_address->sin6.sin6_addr, sizeof(struct in6_addr));
|
|
memcpy(&tcks.faddr.addr6, &remote_address->sin6.sin6_addr, sizeof(struct in6_addr));
|
|
tcks.af = AF_INET6;
|
|
} else if (remote_address->sa.sa_family == AF_INET) {
|
|
memcpy(&tcks.laddr.addr, &local_address->sin.sin_addr, sizeof(struct in_addr));
|
|
memcpy(&tcks.faddr.addr, &remote_address->sin.sin_addr, sizeof(struct in_addr));
|
|
tcks.af = AF_INET;
|
|
}
|
|
|
|
if (necp_buffer->necp_tcp_tfo_heuristics_success) {
|
|
tcp_heuristic_reset_counters(&tcks, TCPCACHE_F_TFO_REQ | TCPCACHE_F_TFO_DATA |
|
|
TCPCACHE_F_TFO_REQ_RST | TCPCACHE_F_TFO_DATA_RST);
|
|
}
|
|
|
|
if (necp_buffer->necp_tcp_tfo_heuristics_success_req) {
|
|
tcp_heuristic_reset_counters(&tcks, TCPCACHE_F_TFO_REQ | TCPCACHE_F_TFO_REQ_RST);
|
|
}
|
|
|
|
if (necp_buffer->necp_tcp_tfo_heuristics_loss) {
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_TFO_REQ | TCPCACHE_F_TFO_DATA);
|
|
}
|
|
|
|
if (necp_buffer->necp_tcp_tfo_heuristics_loss_req) {
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_TFO_REQ);
|
|
}
|
|
|
|
if (necp_buffer->necp_tcp_tfo_heuristics_rst_data) {
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_TFO_REQ_RST | TCPCACHE_F_TFO_DATA_RST);
|
|
}
|
|
|
|
if (necp_buffer->necp_tcp_tfo_heuristics_rst_req) {
|
|
tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_TFO_REQ_RST);
|
|
}
|
|
|
|
if (necp_buffer->necp_tcp_tfo_heuristics_middlebox) {
|
|
tcp_heuristic_tfo_middlebox_common(&tcks);
|
|
}
|
|
|
|
if (necp_buffer->necp_tcp_tfo_cookie_len != 0) {
|
|
tcp_cache_set_cookie_common(&tcks,
|
|
necp_buffer->necp_tcp_tfo_cookie, necp_buffer->necp_tcp_tfo_cookie_len);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sysctl_cleartfocache(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < tcp_cache_size; i++) {
|
|
struct tcp_cache_head *head = &tcp_cache[i];
|
|
struct tcp_cache *tpcache, *tmp;
|
|
struct tcp_heuristics_head *hhead = &tcp_heuristics[i];
|
|
struct tcp_heuristic *tpheur, *htmp;
|
|
|
|
lck_mtx_lock(&head->tch_mtx);
|
|
SLIST_FOREACH_SAFE(tpcache, &head->tcp_caches, list, tmp) {
|
|
SLIST_REMOVE(&head->tcp_caches, tpcache, tcp_cache, list);
|
|
kfree_type(struct tcp_cache, tpcache);
|
|
}
|
|
lck_mtx_unlock(&head->tch_mtx);
|
|
|
|
lck_mtx_lock(&hhead->thh_mtx);
|
|
SLIST_FOREACH_SAFE(tpheur, &hhead->tcp_heuristics, list, htmp) {
|
|
SLIST_REMOVE(&hhead->tcp_heuristics, tpheur, tcp_heuristic, list);
|
|
kfree_type(struct tcp_heuristic, tpheur);
|
|
}
|
|
lck_mtx_unlock(&hhead->thh_mtx);
|
|
}
|
|
}
|
|
|
|
/* This sysctl is useful for testing purposes only */
|
|
static int tcpcleartfo = 0;
|
|
|
|
static int sysctl_cleartfo SYSCTL_HANDLER_ARGS
|
|
{
|
|
#pragma unused(arg1, arg2)
|
|
int error = 0, val, oldval = tcpcleartfo;
|
|
|
|
val = oldval;
|
|
error = sysctl_handle_int(oidp, &val, 0, req);
|
|
if (error || !req->newptr) {
|
|
if (error) {
|
|
os_log_error(OS_LOG_DEFAULT, "%s could not parse int: %d", __func__, error);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* The actual value does not matter. If the value is set, it triggers
|
|
* the clearing of the TFO cache. If a future implementation does not
|
|
* use the route entry to hold the TFO cache, replace the route sysctl.
|
|
*/
|
|
|
|
if (val != oldval) {
|
|
sysctl_cleartfocache();
|
|
}
|
|
|
|
tcpcleartfo = val;
|
|
|
|
return error;
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, clear_tfocache, CTLTYPE_INT | CTLFLAG_RW |
|
|
CTLFLAG_LOCKED, &tcpcleartfo, 0, &sysctl_cleartfo, "I",
|
|
"Toggle to clear the TFO destination based heuristic cache");
|
|
|
|
void
|
|
tcp_cache_init(void)
|
|
{
|
|
uint64_t sane_size_meg = sane_size / 1024 / 1024;
|
|
|
|
/*
|
|
* On machines with <100MB of memory this will result in a (full) cache-size
|
|
* of 32 entries, thus 32 * 5 * 64bytes = 10KB. (about 0.01 %)
|
|
* On machines with > 4GB of memory, we have a cache-size of 1024 entries,
|
|
* thus about 327KB.
|
|
*
|
|
* Side-note: we convert to uint32_t. If sane_size is more than
|
|
* 16000 TB, we loose precision. But, who cares? :)
|
|
*/
|
|
tcp_cache_size = tcp_cache_roundup2((uint32_t)(sane_size_meg >> 2));
|
|
if (tcp_cache_size < 32) {
|
|
tcp_cache_size = 32;
|
|
} else if (tcp_cache_size > 1024) {
|
|
tcp_cache_size = 1024;
|
|
}
|
|
|
|
tcp_cache = zalloc_permanent(sizeof(struct tcp_cache_head) * tcp_cache_size,
|
|
ZALIGN(struct tcp_cache_head));
|
|
|
|
tcp_heuristics = zalloc_permanent(sizeof(struct tcp_heuristics_head) * tcp_cache_size,
|
|
ZALIGN(struct tcp_heuristics_head));
|
|
|
|
for (int i = 0; i < tcp_cache_size; i++) {
|
|
lck_mtx_init(&tcp_cache[i].tch_mtx, &tcp_cache_mtx_grp,
|
|
&tcp_cache_mtx_attr);
|
|
SLIST_INIT(&tcp_cache[i].tcp_caches);
|
|
|
|
lck_mtx_init(&tcp_heuristics[i].thh_mtx, &tcp_heuristic_mtx_grp,
|
|
&tcp_heuristic_mtx_attr);
|
|
SLIST_INIT(&tcp_heuristics[i].tcp_heuristics);
|
|
}
|
|
|
|
tcp_cache_hash_seed = RandomULong();
|
|
}
|