gems-kernel/source/THIRDPARTY/xnu/bsd/netinet/tcp_ledbat.c
2024-06-03 11:29:39 -05:00

581 lines
16 KiB
C

/*
* Copyright (c) 2010-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include "tcp_includes.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/ip_var.h>
/* This file implements an alternate TCP congestion control algorithm
* for background transport developed by LEDBAT working group at IETF and
* described in draft: draft-ietf-ledbat-congestion-02
*
* Currently, it also implements LEDBAT++ as described in draft
* draft-irtf-iccrg-ledbat-plus-plus-01.
*/
#define GAIN_CONSTANT (16)
#define DEFER_SLOWDOWN_DURATION (30 * 1000) /* 30s */
int tcp_ledbat_init(struct tcpcb *tp);
int tcp_ledbat_cleanup(struct tcpcb *tp);
void tcp_ledbat_cwnd_init(struct tcpcb *tp);
void tcp_ledbat_congestion_avd(struct tcpcb *tp, struct tcphdr *th);
void tcp_ledbat_ack_rcvd(struct tcpcb *tp, struct tcphdr *th);
static void ledbat_pp_ack_rcvd(struct tcpcb *tp, uint32_t bytes_acked);
void tcp_ledbat_pre_fr(struct tcpcb *tp);
void tcp_ledbat_post_fr(struct tcpcb *tp, struct tcphdr *th);
void tcp_ledbat_after_idle(struct tcpcb *tp);
void tcp_ledbat_after_timeout(struct tcpcb *tp);
static int tcp_ledbat_delay_ack(struct tcpcb *tp, struct tcphdr *th);
void tcp_ledbat_switch_cc(struct tcpcb *tp);
struct tcp_cc_algo tcp_cc_ledbat = {
.name = "ledbat",
.init = tcp_ledbat_init,
.cleanup = tcp_ledbat_cleanup,
.cwnd_init = tcp_ledbat_cwnd_init,
.congestion_avd = tcp_ledbat_congestion_avd,
.ack_rcvd = tcp_ledbat_ack_rcvd,
.pre_fr = tcp_ledbat_pre_fr,
.post_fr = tcp_ledbat_post_fr,
.after_idle = tcp_ledbat_after_idle,
.after_timeout = tcp_ledbat_after_timeout,
.delay_ack = tcp_ledbat_delay_ack,
.switch_to = tcp_ledbat_switch_cc
};
static void
update_cwnd(struct tcpcb *tp, uint32_t update, bool is_incr)
{
uint32_t max_allowed_cwnd = 0, flight_size = 0;
uint32_t base_rtt = get_base_rtt(tp);
uint32_t curr_rtt = tcp_use_min_curr_rtt ? tp->curr_rtt_min :
tp->t_rttcur;
/* If we do not have a good RTT measurement yet, increment
* congestion window by the default value.
*/
if (base_rtt == 0 || curr_rtt == 0) {
tp->snd_cwnd += update;
goto check_max;
}
if (curr_rtt <= (base_rtt + target_qdelay)) {
/*
* Delay decreased or remained the same, we can increase
* the congestion window according to RFC 3465.
*
* Move background slow-start threshold to current
* congestion window so that the next time (after some idle
* period), we can attempt to do slow-start till here if there
* is no increase in rtt
*/
if (tp->bg_ssthresh < tp->snd_cwnd) {
tp->bg_ssthresh = tp->snd_cwnd;
}
tp->snd_cwnd += update;
tp->snd_cwnd = tcp_round_to(tp->snd_cwnd, tp->t_maxseg);
} else {
if (tcp_ledbat_plus_plus) {
VERIFY(is_incr == false);
tp->snd_cwnd -= update;
} else {
/* In response to an increase in rtt, reduce the congestion
* window by one-eighth. This will help to yield immediately
* to a competing stream.
*/
uint32_t redwin;
redwin = tp->snd_cwnd >> 3;
tp->snd_cwnd -= redwin;
}
if (tp->snd_cwnd < bg_ss_fltsz * tp->t_maxseg) {
tp->snd_cwnd = bg_ss_fltsz * tp->t_maxseg;
}
tp->snd_cwnd = tcp_round_to(tp->snd_cwnd, tp->t_maxseg);
/* Lower background slow-start threshold so that the connection
* will go into congestion avoidance phase
*/
if (tp->bg_ssthresh > tp->snd_cwnd) {
tp->bg_ssthresh = tp->snd_cwnd;
}
}
check_max:
if (!tcp_ledbat_plus_plus) {
/* Calculate the outstanding flight size and restrict the
* congestion window to a factor of flight size.
*/
flight_size = tp->snd_max - tp->snd_una;
max_allowed_cwnd = (tcp_ledbat_allowed_increase * tp->t_maxseg)
+ (flight_size << tcp_ledbat_tether_shift);
tp->snd_cwnd = min(tp->snd_cwnd, max_allowed_cwnd);
} else {
tp->snd_cwnd = min(tp->snd_cwnd, TCP_MAXWIN << tp->snd_scale);
}
}
static inline void
tcp_ledbat_clear_state(struct tcpcb *tp)
{
tp->t_ccstate->ledbat_slowdown_events = 0;
tp->t_ccstate->ledbat_slowdown_ts = 0;
tp->t_ccstate->ledbat_slowdown_begin = 0;
tp->t_ccstate->ledbat_md_bytes_acked = 0;
}
int
tcp_ledbat_init(struct tcpcb *tp)
{
os_atomic_inc(&tcp_cc_ledbat.num_sockets, relaxed);
tcp_ledbat_clear_state(tp);
return 0;
}
int
tcp_ledbat_cleanup(struct tcpcb *tp)
{
#pragma unused(tp)
os_atomic_dec(&tcp_cc_ledbat.num_sockets, relaxed);
return 0;
}
/*
* Initialize the congestion window for a connection
*/
void
tcp_ledbat_cwnd_init(struct tcpcb *tp)
{
tp->snd_cwnd = tp->t_maxseg * bg_ss_fltsz;
tp->bg_ssthresh = tp->snd_ssthresh;
}
/* Function to handle an in-sequence ack which is fast-path processing
* of an in sequence ack in tcp_input function (called as header prediction).
* This gets called only during congestion avoidance phase.
*/
void
tcp_ledbat_congestion_avd(struct tcpcb *tp, struct tcphdr *th)
{
int acked = 0;
uint32_t incr = 0;
acked = BYTES_ACKED(th, tp);
if (tcp_ledbat_plus_plus) {
ledbat_pp_ack_rcvd(tp, acked);
} else {
tp->t_bytes_acked += acked;
if (tp->t_bytes_acked > tp->snd_cwnd) {
tp->t_bytes_acked -= tp->snd_cwnd;
incr = tp->t_maxseg;
}
if (tp->snd_cwnd < tp->snd_wnd && incr > 0) {
update_cwnd(tp, incr, true);
}
}
}
/*
* Compute the denominator
* MIN(16, ceil(2 * TARGET / base))
*/
static uint32_t
ledbat_gain(uint32_t base_rtt)
{
return MIN(GAIN_CONSTANT, tcp_ceil(2 * target_qdelay /
(double)base_rtt));
}
/*
* Congestion avoidance for ledbat++
*/
static void
ledbat_pp_congestion_avd(struct tcpcb *tp, uint32_t bytes_acked,
uint32_t base_rtt, uint32_t curr_rtt, uint32_t now)
{
uint32_t update = 0;
/*
* Set the next slowdown time i.e. 9 times the duration
* of previous slowdown except the initial slowdown.
*/
if (tp->t_ccstate->ledbat_slowdown_ts == 0) {
uint32_t slowdown_duration = 0;
if (tp->t_ccstate->ledbat_slowdown_events > 0) {
slowdown_duration = now -
tp->t_ccstate->ledbat_slowdown_begin;
if (tp->bg_ssthresh > tp->snd_cwnd) {
/*
* Special case for slowdowns (other than initial)
* where cwnd doesn't recover fully to previous
* ssthresh
*/
slowdown_duration *= 2;
}
}
tp->t_ccstate->ledbat_slowdown_ts = now + (9 * slowdown_duration);
if (slowdown_duration == 0) {
tp->t_ccstate->ledbat_slowdown_ts += (2 * (tp->t_srtt >> TCP_RTT_SHIFT));
}
/* Reset the start */
tp->t_ccstate->ledbat_slowdown_begin = 0;
/* On exit slow start due to higher qdelay, cap the ssthresh */
if (tp->bg_ssthresh > tp->snd_cwnd) {
tp->bg_ssthresh = tp->snd_cwnd;
}
}
if (curr_rtt <= base_rtt + target_qdelay) {
/* Additive increase */
tp->t_bytes_acked += bytes_acked;
if (tp->t_bytes_acked >= tp->snd_cwnd) {
update = tp->t_maxseg;
tp->t_bytes_acked -= tp->snd_cwnd;
update_cwnd(tp, update, true);
}
} else {
/*
* Multiplicative decrease
* W -= min(W * (qdelay/target - 1), W/2) (per RTT)
* To calculate per bytes acked, it becomes
* W -= min((qdelay/target - 1), 1/2) * bytes_acked
*/
uint32_t qdelay = curr_rtt > base_rtt ?
(curr_rtt - base_rtt) : 0;
tp->t_ccstate->ledbat_md_bytes_acked += bytes_acked;
if (tp->t_ccstate->ledbat_md_bytes_acked >= tp->snd_cwnd) {
update = (uint32_t)(MIN(((double)qdelay / target_qdelay - 1), 0.5) *
(double)tp->snd_cwnd);
tp->t_ccstate->ledbat_md_bytes_acked -= tp->snd_cwnd;
update_cwnd(tp, update, false);
if (tp->t_ccstate->ledbat_slowdown_ts != 0) {
/* As the window has been reduced, defer the slowdown. */
tp->t_ccstate->ledbat_slowdown_ts = now + DEFER_SLOWDOWN_DURATION;
}
}
}
}
/*
* Different handling for ack received for ledbat++
*/
static void
ledbat_pp_ack_rcvd(struct tcpcb *tp, uint32_t bytes_acked)
{
uint32_t update = 0;
const uint32_t base_rtt = get_base_rtt(tp);
const uint32_t curr_rtt = tcp_use_min_curr_rtt ? tp->curr_rtt_min :
tp->t_rttcur;
const uint32_t ss_target = (uint32_t)(3 * target_qdelay / 4);
struct tcp_globals *globals = tcp_get_globals(tp);
/*
* Slowdown period - first slowdown
* is 2RTT after we exit initial slow start.
* Subsequent slowdowns are after 9 times the
* previous slow down durations.
*/
if (tp->t_ccstate->ledbat_slowdown_ts != 0 &&
tcp_globals_now(globals) >= tp->t_ccstate->ledbat_slowdown_ts) {
if (tp->t_ccstate->ledbat_slowdown_begin == 0) {
tp->t_ccstate->ledbat_slowdown_begin = tcp_globals_now(globals);
tp->t_ccstate->ledbat_slowdown_events++;
}
if (tcp_globals_now(globals) < tp->t_ccstate->ledbat_slowdown_ts +
(2 * (tp->t_srtt >> TCP_RTT_SHIFT))) {
// Set cwnd to 2 packets and return
if (tp->snd_cwnd > bg_ss_fltsz * tp->t_maxseg) {
if (tp->bg_ssthresh < tp->snd_cwnd) {
tp->bg_ssthresh = tp->snd_cwnd;
}
tp->snd_cwnd = bg_ss_fltsz * tp->t_maxseg;
/* Reset total bytes acked */
tp->t_bytes_acked = 0;
}
return;
}
}
if (curr_rtt == 0 || base_rtt == 0) {
update = MIN(bytes_acked, TCP_CC_CWND_INIT_PKTS *
tp->t_maxseg);
update_cwnd(tp, update, true);
} else if (tp->snd_cwnd < tp->bg_ssthresh &&
((tp->t_ccstate->ledbat_slowdown_events > 0 &&
curr_rtt <= (base_rtt + target_qdelay)) ||
curr_rtt <= (base_rtt + ss_target))) {
/*
* Modified slow start with a dynamic GAIN
* If the queuing delay is larger than 3/4 of the target
* delay, exit slow start, iff, it is the initial slow start.
* After the initial slow start, during CA, window growth
* will be bound by ssthresh.
*/
tp->t_bytes_acked += bytes_acked;
uint32_t gain_factor = ledbat_gain(base_rtt);
if (tp->t_bytes_acked >= tp->t_maxseg * gain_factor) {
update = MIN(tp->t_bytes_acked / gain_factor,
TCP_CC_CWND_INIT_PKTS * tp->t_maxseg);
tp->t_bytes_acked = 0;
update_cwnd(tp, update, true);
}
/* Reset the next slowdown timestamp */
if (tp->t_ccstate->ledbat_slowdown_ts != 0) {
tp->t_ccstate->ledbat_slowdown_ts = 0;
}
} else {
/* Congestion avoidance */
ledbat_pp_congestion_avd(tp, bytes_acked, base_rtt, curr_rtt, tcp_globals_now(globals));
}
}
/* Function to process an ack.
*/
void
tcp_ledbat_ack_rcvd(struct tcpcb *tp, struct tcphdr *th)
{
/*
* RFC 3465 - Appropriate Byte Counting.
*
* If the window is currently less than ssthresh,
* open the window by the number of bytes ACKed by
* the last ACK, however clamp the window increase
* to an upper limit "L".
*
* In congestion avoidance phase, open the window by
* one segment each time "bytes_acked" grows to be
* greater than or equal to the congestion window.
*/
uint32_t cw = tp->snd_cwnd;
uint32_t incr = tp->t_maxseg;
uint32_t acked = 0;
acked = BYTES_ACKED(th, tp);
if (tcp_ledbat_plus_plus) {
ledbat_pp_ack_rcvd(tp, acked);
return;
}
tp->t_bytes_acked += acked;
if (cw >= tp->bg_ssthresh) {
/* congestion-avoidance */
if (tp->t_bytes_acked < cw) {
/* No need to increase yet. */
incr = 0;
}
} else {
/*
* If the user explicitly enables RFC3465
* use 2*SMSS for the "L" param. Otherwise
* use the more conservative 1*SMSS.
*
* (See RFC 3465 2.3 Choosing the Limit)
*/
u_int abc_lim;
abc_lim = (tp->snd_nxt == tp->snd_max) ? incr * 2 : incr;
incr = ulmin(acked, abc_lim);
}
if (tp->t_bytes_acked >= cw) {
tp->t_bytes_acked -= cw;
}
if (incr > 0) {
update_cwnd(tp, incr, true);
}
}
void
tcp_ledbat_pre_fr(struct tcpcb *tp)
{
uint32_t win = min(tp->snd_wnd, tp->snd_cwnd);
if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
tp->t_lossflightsize = tp->snd_max - tp->snd_una;
win = max(tp->t_pipeack, tp->t_lossflightsize);
} else {
tp->t_lossflightsize = 0;
}
win = win / 2;
win = tcp_round_to(win, tp->t_maxseg);
if (win < 2 * tp->t_maxseg) {
win = 2 * tp->t_maxseg;
}
tp->snd_ssthresh = win;
if (tp->bg_ssthresh > tp->snd_ssthresh) {
tp->bg_ssthresh = tp->snd_ssthresh;
}
tcp_cc_resize_sndbuf(tp);
}
void
tcp_ledbat_post_fr(struct tcpcb *tp, struct tcphdr *th)
{
int32_t ss;
if (th) {
ss = tp->snd_max - th->th_ack;
} else {
ss = tp->snd_max - tp->snd_una;
}
/*
* Complete ack. Inflate the congestion window to
* ssthresh and exit fast recovery.
*
* Window inflation should have left us with approx.
* snd_ssthresh outstanding data. But in case we
* would be inclined to send a burst, better to do
* it via the slow start mechanism.
*
* If the flight size is zero, then make congestion
* window to be worth at least 2 segments to avoid
* delayed acknowledgement (draft-ietf-tcpm-rfc3782-bis-05).
*/
if (ss < (int32_t)tp->snd_ssthresh) {
tp->snd_cwnd = max(ss, tp->t_maxseg) + tp->t_maxseg;
} else {
tp->snd_cwnd = tp->snd_ssthresh;
}
tp->t_bytes_acked = 0;
tp->t_ccstate->ledbat_md_bytes_acked = 0;
}
/*
* Function to handle connections that have been idle for
* some time. Slow start to get ack "clock" running again.
* Clear base history after idle time.
*/
void
tcp_ledbat_after_idle(struct tcpcb *tp)
{
tcp_ledbat_clear_state(tp);
/* Reset the congestion window */
tp->snd_cwnd = tp->t_maxseg * bg_ss_fltsz;
tp->t_bytes_acked = 0;
tp->t_ccstate->ledbat_md_bytes_acked = 0;
}
/* Function to change the congestion window when the retransmit
* timer fires. The behavior is the same as that for best-effort
* TCP, reduce congestion window to one segment and start probing
* the link using "slow start". The slow start threshold is set
* to half of the current window. Lower the background slow start
* threshold also.
*/
void
tcp_ledbat_after_timeout(struct tcpcb *tp)
{
if (tp->t_state >= TCPS_ESTABLISHED) {
tcp_ledbat_clear_state(tp);
tcp_ledbat_pre_fr(tp);
tp->snd_cwnd = tp->t_maxseg;
}
}
/*
* Indicate whether this ack should be delayed.
* We can delay the ack if:
* - our last ack wasn't a 0-sized window.
* - the peer hasn't sent us a TH_PUSH data packet: if he did, take this
* as a clue that we need to ACK without any delay. This helps higher
* level protocols who won't send us more data even if the window is
* open because their last "segment" hasn't been ACKed
* Otherwise the receiver will ack every other full-sized segment or when the
* delayed ack timer fires. This will help to generate better rtt estimates for
* the other end if it is a ledbat sender.
*
*/
static int
tcp_ledbat_delay_ack(struct tcpcb *tp, struct tcphdr *th)
{
if (tcp_ack_strategy == TCP_ACK_STRATEGY_MODERN) {
return tcp_cc_delay_ack(tp, th);
} else {
if ((tp->t_flags & TF_RXWIN0SENT) == 0 &&
(th->th_flags & TH_PUSH) == 0 && (tp->t_unacksegs == 1)) {
return 1;
}
return 0;
}
}
/* Change a connection to use ledbat. First, lower bg_ssthresh value
* if it needs to be.
*/
void
tcp_ledbat_switch_cc(struct tcpcb *tp)
{
uint32_t cwnd;
tcp_ledbat_clear_state(tp);
if (tp->bg_ssthresh == 0 || tp->bg_ssthresh > tp->snd_ssthresh) {
tp->bg_ssthresh = tp->snd_ssthresh;
}
cwnd = min(tp->snd_wnd, tp->snd_cwnd);
if (tp->snd_cwnd > tp->bg_ssthresh) {
cwnd = cwnd / tp->t_maxseg;
} else {
cwnd = cwnd / 2 / tp->t_maxseg;
}
if (cwnd < bg_ss_fltsz) {
cwnd = bg_ss_fltsz;
}
tp->snd_cwnd = cwnd * tp->t_maxseg;
tp->t_bytes_acked = 0;
os_atomic_inc(&tcp_cc_ledbat.num_sockets, relaxed);
}