3058 lines
88 KiB
C
3058 lines
88 KiB
C
/*
|
|
* Copyright (c) 2000-2020 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)tcp_timer.c 8.2 (Berkeley) 5/24/95
|
|
* $FreeBSD: src/sys/netinet/tcp_timer.c,v 1.34.2.11 2001/08/22 00:59:12 silby Exp $
|
|
*/
|
|
|
|
#include "tcp_includes.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/mcache.h>
|
|
#include <sys/queue.h>
|
|
#include <kern/locks.h>
|
|
#include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */
|
|
#include <mach/boolean.h>
|
|
|
|
#include <net/route.h>
|
|
#include <net/if_var.h>
|
|
#include <net/ntstat.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_cache.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/tcp_cc.h>
|
|
#include <netinet6/tcp6_var.h>
|
|
#include <netinet/tcpip.h>
|
|
#if TCPDEBUG
|
|
#include <netinet/tcp_debug.h>
|
|
#endif
|
|
#include <netinet/tcp_log.h>
|
|
|
|
#include <sys/kdebug.h>
|
|
#include <mach/sdt.h>
|
|
#include <netinet/mptcp_var.h>
|
|
#include <net/content_filter.h>
|
|
#include <net/sockaddr_utils.h>
|
|
|
|
/* Max number of times a stretch ack can be delayed on a connection */
|
|
#define TCP_STRETCHACK_DELAY_THRESHOLD 5
|
|
|
|
/*
|
|
* If the host processor has been sleeping for too long, this is the threshold
|
|
* used to avoid sending stale retransmissions.
|
|
*/
|
|
#define TCP_SLEEP_TOO_LONG (10 * 60 * 1000) /* 10 minutes in ms */
|
|
|
|
/* tcp timer list */
|
|
struct tcptimerlist tcp_timer_list;
|
|
|
|
/* List of pcbs in timewait state, protected by tcbinfo's ipi_lock */
|
|
struct tcptailq tcp_tw_tailq;
|
|
|
|
|
|
static int
|
|
sysctl_msec_to_ticks SYSCTL_HANDLER_ARGS
|
|
{
|
|
#pragma unused(arg2)
|
|
int error, temp;
|
|
long s, tt;
|
|
|
|
tt = *(int *)arg1;
|
|
s = tt * 1000 / TCP_RETRANSHZ;
|
|
if (tt < 0 || s > INT_MAX) {
|
|
return EINVAL;
|
|
}
|
|
temp = (int)s;
|
|
|
|
error = sysctl_handle_int(oidp, &temp, 0, req);
|
|
if (error || !req->newptr) {
|
|
return error;
|
|
}
|
|
|
|
tt = (long)temp * TCP_RETRANSHZ / 1000;
|
|
if (tt < 1 || tt > INT_MAX) {
|
|
return EINVAL;
|
|
}
|
|
|
|
*(int *)arg1 = (int)tt;
|
|
SYSCTL_SKMEM_UPDATE_AT_OFFSET(arg2, *(int*)arg1);
|
|
return 0;
|
|
}
|
|
|
|
#if SYSCTL_SKMEM
|
|
int tcp_keepinit = TCPTV_KEEP_INIT;
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPINIT, keepinit,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_keepinit, offsetof(skmem_sysctl, tcp.keepinit),
|
|
sysctl_msec_to_ticks, "I", "");
|
|
|
|
int tcp_keepidle = TCPTV_KEEP_IDLE;
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPIDLE, keepidle,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_keepidle, offsetof(skmem_sysctl, tcp.keepidle),
|
|
sysctl_msec_to_ticks, "I", "");
|
|
|
|
int tcp_keepintvl = TCPTV_KEEPINTVL;
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPINTVL, keepintvl,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_keepintvl, offsetof(skmem_sysctl, tcp.keepintvl),
|
|
sysctl_msec_to_ticks, "I", "");
|
|
|
|
SYSCTL_SKMEM_TCP_INT(OID_AUTO, keepcnt,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
int, tcp_keepcnt, TCPTV_KEEPCNT, "number of times to repeat keepalive");
|
|
|
|
int tcp_msl = TCPTV_MSL;
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, msl,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_msl, offsetof(skmem_sysctl, tcp.msl),
|
|
sysctl_msec_to_ticks, "I", "Maximum segment lifetime");
|
|
#else /* SYSCTL_SKMEM */
|
|
int tcp_keepinit;
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPINIT, keepinit,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_keepinit, 0, sysctl_msec_to_ticks, "I", "");
|
|
|
|
int tcp_keepidle;
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPIDLE, keepidle,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_keepidle, 0, sysctl_msec_to_ticks, "I", "");
|
|
|
|
int tcp_keepintvl;
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPINTVL, keepintvl,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_keepintvl, 0, sysctl_msec_to_ticks, "I", "");
|
|
|
|
int tcp_keepcnt;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, keepcnt,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_keepcnt, 0, "number of times to repeat keepalive");
|
|
|
|
int tcp_msl;
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, msl,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_msl, 0, sysctl_msec_to_ticks, "I", "Maximum segment lifetime");
|
|
#endif /* SYSCTL_SKMEM */
|
|
|
|
/*
|
|
* Avoid DoS with connections half-closed in TIME_WAIT_2
|
|
*/
|
|
int tcp_fin_timeout = TCPTV_FINWAIT2;
|
|
|
|
static int
|
|
sysctl_tcp_fin_timeout SYSCTL_HANDLER_ARGS
|
|
{
|
|
#pragma unused(arg2)
|
|
int error;
|
|
int value = tcp_fin_timeout;
|
|
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error != 0 || req->newptr == USER_ADDR_NULL) {
|
|
return error;
|
|
}
|
|
|
|
if (value == -1) {
|
|
/* Reset to default value */
|
|
value = TCPTV_FINWAIT2;
|
|
} else {
|
|
/* Convert from milliseconds */
|
|
long big_value = value * TCP_RETRANSHZ / 1000;
|
|
|
|
if (big_value < 0 || big_value > INT_MAX) {
|
|
return EINVAL;
|
|
}
|
|
value = (int)big_value;
|
|
}
|
|
tcp_fin_timeout = value;
|
|
SYSCTL_SKMEM_UPDATE_AT_OFFSET(arg2, value);
|
|
return 0;
|
|
}
|
|
|
|
#if SYSCTL_SKMEM
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, fin_timeout,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_fin_timeout, offsetof(skmem_sysctl, tcp.fin_timeout),
|
|
sysctl_tcp_fin_timeout, "I", "");
|
|
#else /* SYSCTL_SKMEM */
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, fin_timeout,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_fin_timeout, 0,
|
|
sysctl_tcp_fin_timeout, "I", "");
|
|
#endif /* SYSCTL_SKMEM */
|
|
|
|
/*
|
|
* Avoid DoS via TCP Robustness in Persist Condition
|
|
* (see http://www.ietf.org/id/draft-ananth-tcpm-persist-02.txt)
|
|
* by allowing a system wide maximum persistence timeout value when in
|
|
* Zero Window Probe mode.
|
|
*
|
|
* Expressed in milliseconds to be consistent without timeout related
|
|
* values, the TCP socket option is in seconds.
|
|
*/
|
|
#if SYSCTL_SKMEM
|
|
u_int32_t tcp_max_persist_timeout = 0;
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, max_persist_timeout,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_max_persist_timeout, offsetof(skmem_sysctl, tcp.max_persist_timeout),
|
|
sysctl_msec_to_ticks, "I", "Maximum persistence timeout for ZWP");
|
|
#else /* SYSCTL_SKMEM */
|
|
u_int32_t tcp_max_persist_timeout = 0;
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, max_persist_timeout,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_max_persist_timeout, 0, sysctl_msec_to_ticks, "I",
|
|
"Maximum persistence timeout for ZWP");
|
|
#endif /* SYSCTL_SKMEM */
|
|
|
|
SYSCTL_SKMEM_TCP_INT(OID_AUTO, always_keepalive,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, static int, always_keepalive, 0,
|
|
"Assume SO_KEEPALIVE on all TCP connections");
|
|
|
|
/*
|
|
* This parameter determines how long the timer list will stay in fast or
|
|
* quick mode even though all connections are idle. In this state, the
|
|
* timer will run more frequently anticipating new data.
|
|
*/
|
|
SYSCTL_SKMEM_TCP_INT(OID_AUTO, timer_fastmode_idlemax,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, int, timer_fastmode_idlemax,
|
|
TCP_FASTMODE_IDLERUN_MAX, "Maximum idle generations in fast mode");
|
|
|
|
/*
|
|
* See tcp_syn_backoff[] for interval values between SYN retransmits;
|
|
* the value set below defines the number of retransmits, before we
|
|
* disable the timestamp and window scaling options during subsequent
|
|
* SYN retransmits. Setting it to 0 disables the dropping off of those
|
|
* two options.
|
|
*/
|
|
SYSCTL_SKMEM_TCP_INT(OID_AUTO, broken_peer_syn_rexmit_thres,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, static int, tcp_broken_peer_syn_rxmit_thres,
|
|
10, "Number of retransmitted SYNs before disabling RFC 1323 "
|
|
"options on local connections");
|
|
|
|
static int tcp_timer_advanced = 0;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_timer_advanced,
|
|
CTLFLAG_RD | CTLFLAG_LOCKED, &tcp_timer_advanced, 0,
|
|
"Number of times one of the timers was advanced");
|
|
|
|
static int tcp_resched_timerlist = 0;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_resched_timerlist,
|
|
CTLFLAG_RD | CTLFLAG_LOCKED, &tcp_resched_timerlist, 0,
|
|
"Number of times timer list was rescheduled as part of processing a packet");
|
|
|
|
SYSCTL_SKMEM_TCP_INT(OID_AUTO, pmtud_blackhole_detection,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_pmtud_black_hole_detect, 1,
|
|
"Path MTU Discovery Black Hole Detection");
|
|
|
|
SYSCTL_SKMEM_TCP_INT(OID_AUTO, pmtud_blackhole_mss,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_pmtud_black_hole_mss, 1200,
|
|
"Path MTU Discovery Black Hole Detection lowered MSS");
|
|
|
|
#if (DEBUG || DEVELOPMENT)
|
|
int tcp_probe_if_fix_port = 0;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, probe_if_fix_port,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
&tcp_probe_if_fix_port, 0, "");
|
|
#endif /* (DEBUG || DEVELOPMENT) */
|
|
|
|
static u_int32_t tcp_mss_rec_medium = 1200;
|
|
static u_int32_t tcp_mss_rec_low = 512;
|
|
|
|
#define TCP_REPORT_STATS_INTERVAL 43200 /* 12 hours, in seconds */
|
|
int tcp_report_stats_interval = TCP_REPORT_STATS_INTERVAL;
|
|
|
|
/* performed garbage collection of "used" sockets */
|
|
static boolean_t tcp_gc_done = FALSE;
|
|
|
|
/* max idle probes */
|
|
int tcp_maxpersistidle = TCPTV_KEEP_IDLE;
|
|
|
|
/*
|
|
* TCP delack timer is set to 100 ms. Since the processing of timer list
|
|
* in fast mode will happen no faster than 100 ms, the delayed ack timer
|
|
* will fire some where between 100 and 200 ms.
|
|
*/
|
|
int tcp_delack = TCP_RETRANSHZ / 10;
|
|
|
|
#if MPTCP
|
|
/*
|
|
* MP_JOIN retransmission of 3rd ACK will be every 500 msecs without backoff
|
|
*/
|
|
int tcp_jack_rxmt = TCP_RETRANSHZ / 2;
|
|
#endif /* MPTCP */
|
|
|
|
static boolean_t tcp_itimer_done = FALSE;
|
|
|
|
static void tcp_remove_timer(struct tcpcb *tp);
|
|
static void tcp_sched_timerlist(uint32_t offset);
|
|
static u_int32_t tcp_run_conn_timer(struct tcpcb *tp, u_int16_t *mode,
|
|
u_int16_t probe_if_index);
|
|
static inline void tcp_set_lotimer_index(struct tcpcb *);
|
|
__private_extern__ void tcp_remove_from_time_wait(struct inpcb *inp);
|
|
static inline void tcp_update_mss_core(struct tcpcb *tp, struct ifnet *ifp);
|
|
__private_extern__ void tcp_report_stats(void);
|
|
|
|
static u_int64_t tcp_last_report_time;
|
|
|
|
/*
|
|
* Structure to store previously reported stats so that we can send
|
|
* incremental changes in each report interval.
|
|
*/
|
|
struct tcp_last_report_stats {
|
|
u_int32_t tcps_connattempt;
|
|
u_int32_t tcps_accepts;
|
|
u_int32_t tcps_ecn_client_setup;
|
|
u_int32_t tcps_ecn_server_setup;
|
|
u_int32_t tcps_ecn_client_success;
|
|
u_int32_t tcps_ecn_server_success;
|
|
u_int32_t tcps_ecn_not_supported;
|
|
u_int32_t tcps_ecn_lost_syn;
|
|
u_int32_t tcps_ecn_lost_synack;
|
|
u_int32_t tcps_ecn_recv_ce;
|
|
u_int32_t tcps_ecn_recv_ece;
|
|
u_int32_t tcps_ecn_sent_ece;
|
|
u_int32_t tcps_ecn_conn_recv_ce;
|
|
u_int32_t tcps_ecn_conn_recv_ece;
|
|
u_int32_t tcps_ecn_conn_plnoce;
|
|
u_int32_t tcps_ecn_conn_pl_ce;
|
|
u_int32_t tcps_ecn_conn_nopl_ce;
|
|
u_int32_t tcps_ecn_fallback_synloss;
|
|
u_int32_t tcps_ecn_fallback_reorder;
|
|
u_int32_t tcps_ecn_fallback_ce;
|
|
|
|
/* TFO-related statistics */
|
|
u_int32_t tcps_tfo_syn_data_rcv;
|
|
u_int32_t tcps_tfo_cookie_req_rcv;
|
|
u_int32_t tcps_tfo_cookie_sent;
|
|
u_int32_t tcps_tfo_cookie_invalid;
|
|
u_int32_t tcps_tfo_cookie_req;
|
|
u_int32_t tcps_tfo_cookie_rcv;
|
|
u_int32_t tcps_tfo_syn_data_sent;
|
|
u_int32_t tcps_tfo_syn_data_acked;
|
|
u_int32_t tcps_tfo_syn_loss;
|
|
u_int32_t tcps_tfo_blackhole;
|
|
u_int32_t tcps_tfo_cookie_wrong;
|
|
u_int32_t tcps_tfo_no_cookie_rcv;
|
|
u_int32_t tcps_tfo_heuristics_disable;
|
|
u_int32_t tcps_tfo_sndblackhole;
|
|
|
|
/* MPTCP-related statistics */
|
|
u_int32_t tcps_mptcp_handover_attempt;
|
|
u_int32_t tcps_mptcp_interactive_attempt;
|
|
u_int32_t tcps_mptcp_aggregate_attempt;
|
|
u_int32_t tcps_mptcp_fp_handover_attempt;
|
|
u_int32_t tcps_mptcp_fp_interactive_attempt;
|
|
u_int32_t tcps_mptcp_fp_aggregate_attempt;
|
|
u_int32_t tcps_mptcp_heuristic_fallback;
|
|
u_int32_t tcps_mptcp_fp_heuristic_fallback;
|
|
u_int32_t tcps_mptcp_handover_success_wifi;
|
|
u_int32_t tcps_mptcp_handover_success_cell;
|
|
u_int32_t tcps_mptcp_interactive_success;
|
|
u_int32_t tcps_mptcp_aggregate_success;
|
|
u_int32_t tcps_mptcp_fp_handover_success_wifi;
|
|
u_int32_t tcps_mptcp_fp_handover_success_cell;
|
|
u_int32_t tcps_mptcp_fp_interactive_success;
|
|
u_int32_t tcps_mptcp_fp_aggregate_success;
|
|
u_int32_t tcps_mptcp_handover_cell_from_wifi;
|
|
u_int32_t tcps_mptcp_handover_wifi_from_cell;
|
|
u_int32_t tcps_mptcp_interactive_cell_from_wifi;
|
|
u_int64_t tcps_mptcp_handover_cell_bytes;
|
|
u_int64_t tcps_mptcp_interactive_cell_bytes;
|
|
u_int64_t tcps_mptcp_aggregate_cell_bytes;
|
|
u_int64_t tcps_mptcp_handover_all_bytes;
|
|
u_int64_t tcps_mptcp_interactive_all_bytes;
|
|
u_int64_t tcps_mptcp_aggregate_all_bytes;
|
|
u_int32_t tcps_mptcp_back_to_wifi;
|
|
u_int32_t tcps_mptcp_wifi_proxy;
|
|
u_int32_t tcps_mptcp_cell_proxy;
|
|
u_int32_t tcps_mptcp_triggered_cell;
|
|
};
|
|
|
|
|
|
/* Returns true if the timer is on the timer list */
|
|
#define TIMER_IS_ON_LIST(tp) ((tp)->t_flags & TF_TIMER_ONLIST)
|
|
|
|
/* Run the TCP timerlist atleast once every hour */
|
|
#define TCP_TIMERLIST_MAX_OFFSET (60 * 60 * TCP_RETRANSHZ)
|
|
|
|
|
|
static void add_to_time_wait_locked(struct tcpcb *tp, uint32_t delay);
|
|
static boolean_t tcp_garbage_collect(struct inpcb *, int);
|
|
|
|
#define TIMERENTRY_TO_TP(te) ((struct tcpcb *)((uintptr_t)te - offsetof(struct tcpcb, tentry.le.le_next)))
|
|
|
|
#define VERIFY_NEXT_LINK(elm, field) do { \
|
|
if (LIST_NEXT((elm),field) != NULL && \
|
|
LIST_NEXT((elm),field)->field.le_prev != \
|
|
&((elm)->field.le_next)) \
|
|
panic("Bad link elm %p next->prev != elm", (elm)); \
|
|
} while(0)
|
|
|
|
#define VERIFY_PREV_LINK(elm, field) do { \
|
|
if (*(elm)->field.le_prev != (elm)) \
|
|
panic("Bad link elm %p prev->next != elm", (elm)); \
|
|
} while(0)
|
|
|
|
#define TCP_SET_TIMER_MODE(mode, i) do { \
|
|
if (IS_TIMER_HZ_10MS(i)) \
|
|
(mode) |= TCP_TIMERLIST_10MS_MODE; \
|
|
else if (IS_TIMER_HZ_100MS(i)) \
|
|
(mode) |= TCP_TIMERLIST_100MS_MODE; \
|
|
else \
|
|
(mode) |= TCP_TIMERLIST_500MS_MODE; \
|
|
} while(0)
|
|
|
|
#if (DEVELOPMENT || DEBUG)
|
|
SYSCTL_UINT(_net_inet_tcp, OID_AUTO, mss_rec_medium,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_mss_rec_medium, 0,
|
|
"Medium MSS based on recommendation in link status report");
|
|
SYSCTL_UINT(_net_inet_tcp, OID_AUTO, mss_rec_low,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_mss_rec_low, 0,
|
|
"Low MSS based on recommendation in link status report");
|
|
|
|
static int32_t tcp_change_mss_recommended = 0;
|
|
static int
|
|
sysctl_change_mss_recommended SYSCTL_HANDLER_ARGS
|
|
{
|
|
#pragma unused(oidp, arg1, arg2)
|
|
int i, err = 0, changed = 0;
|
|
struct ifnet *ifp;
|
|
struct if_link_status ifsr;
|
|
struct if_cellular_status_v1 *new_cell_sr;
|
|
err = sysctl_io_number(req, tcp_change_mss_recommended,
|
|
sizeof(int32_t), &i, &changed);
|
|
if (changed) {
|
|
if (i < 0 || i > UINT16_MAX) {
|
|
return EINVAL;
|
|
}
|
|
ifnet_head_lock_shared();
|
|
TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
|
|
if (IFNET_IS_CELLULAR(ifp)) {
|
|
bzero(&ifsr, sizeof(ifsr));
|
|
new_cell_sr = &ifsr.ifsr_u.ifsr_cell.if_cell_u.if_status_v1;
|
|
ifsr.ifsr_version = IF_CELLULAR_STATUS_REPORT_CURRENT_VERSION;
|
|
ifsr.ifsr_len = sizeof(*new_cell_sr);
|
|
|
|
/* Set MSS recommended */
|
|
new_cell_sr->valid_bitmask |= IF_CELL_UL_MSS_RECOMMENDED_VALID;
|
|
new_cell_sr->mss_recommended = (uint16_t)i;
|
|
err = ifnet_link_status_report(ifp, new_cell_sr, sizeof(new_cell_sr));
|
|
if (err == 0) {
|
|
tcp_change_mss_recommended = i;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
ifnet_head_done();
|
|
}
|
|
return err;
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, change_mss_recommended,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_change_mss_recommended,
|
|
0, sysctl_change_mss_recommended, "IU", "Change MSS recommended");
|
|
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, report_stats_interval,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_report_stats_interval, 0,
|
|
"Report stats interval");
|
|
#endif /* (DEVELOPMENT || DEBUG) */
|
|
|
|
/*
|
|
* Macro to compare two timers. If there is a reset of the sign bit,
|
|
* it is safe to assume that the timer has wrapped around. By doing
|
|
* signed comparision, we take care of wrap around such that the value
|
|
* with the sign bit reset is actually ahead of the other.
|
|
*/
|
|
inline int32_t
|
|
timer_diff(uint32_t t1, uint32_t toff1, uint32_t t2, uint32_t toff2)
|
|
{
|
|
return (int32_t)((t1 + toff1) - (t2 + toff2));
|
|
}
|
|
|
|
/*
|
|
* Add to tcp timewait list, delay is given in milliseconds.
|
|
*/
|
|
static void
|
|
add_to_time_wait_locked(struct tcpcb *tp, uint32_t delay)
|
|
{
|
|
struct inpcbinfo *pcbinfo = &tcbinfo;
|
|
struct inpcb *inp = tp->t_inpcb;
|
|
uint32_t timer;
|
|
|
|
/* pcb list should be locked when we get here */
|
|
LCK_RW_ASSERT(&pcbinfo->ipi_lock, LCK_RW_ASSERT_EXCLUSIVE);
|
|
|
|
/* We may get here multiple times, so check */
|
|
if (!(inp->inp_flags2 & INP2_TIMEWAIT)) {
|
|
pcbinfo->ipi_twcount++;
|
|
inp->inp_flags2 |= INP2_TIMEWAIT;
|
|
|
|
/* Remove from global inp list */
|
|
LIST_REMOVE(inp, inp_list);
|
|
} else {
|
|
TAILQ_REMOVE(&tcp_tw_tailq, tp, t_twentry);
|
|
}
|
|
|
|
/* Compute the time at which this socket can be closed */
|
|
timer = tcp_now + delay;
|
|
|
|
/* We will use the TCPT_2MSL timer for tracking this delay */
|
|
|
|
if (TIMER_IS_ON_LIST(tp)) {
|
|
tcp_remove_timer(tp);
|
|
}
|
|
tp->t_timer[TCPT_2MSL] = timer;
|
|
|
|
TAILQ_INSERT_TAIL(&tcp_tw_tailq, tp, t_twentry);
|
|
}
|
|
|
|
void
|
|
add_to_time_wait(struct tcpcb *tp, uint32_t delay)
|
|
{
|
|
if (tp->t_inpcb->inp_socket->so_options & SO_NOWAKEFROMSLEEP) {
|
|
socket_post_kev_msg_closed(tp->t_inpcb->inp_socket);
|
|
}
|
|
|
|
tcp_del_fsw_flow(tp);
|
|
|
|
/* 19182803: Notify nstat that connection is closing before waiting. */
|
|
nstat_pcb_detach(tp->t_inpcb);
|
|
|
|
#if CONTENT_FILTER
|
|
if ((tp->t_inpcb->inp_socket->so_flags & SOF_CONTENT_FILTER) != 0) {
|
|
/* If filter present, allow filter to finish processing all queued up data before adding to time wait queue */
|
|
(void) cfil_sock_tcp_add_time_wait(tp->t_inpcb->inp_socket);
|
|
} else
|
|
#endif /* CONTENT_FILTER */
|
|
{
|
|
add_to_time_wait_now(tp, delay);
|
|
}
|
|
}
|
|
|
|
void
|
|
add_to_time_wait_now(struct tcpcb *tp, uint32_t delay)
|
|
{
|
|
struct inpcbinfo *pcbinfo = &tcbinfo;
|
|
|
|
if (!lck_rw_try_lock_exclusive(&pcbinfo->ipi_lock)) {
|
|
socket_unlock(tp->t_inpcb->inp_socket, 0);
|
|
lck_rw_lock_exclusive(&pcbinfo->ipi_lock);
|
|
socket_lock(tp->t_inpcb->inp_socket, 0);
|
|
}
|
|
add_to_time_wait_locked(tp, delay);
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
|
|
inpcb_gc_sched(pcbinfo, INPCB_TIMER_LAZY);
|
|
}
|
|
|
|
/* If this is on time wait queue, remove it. */
|
|
void
|
|
tcp_remove_from_time_wait(struct inpcb *inp)
|
|
{
|
|
struct tcpcb *tp = intotcpcb(inp);
|
|
if (inp->inp_flags2 & INP2_TIMEWAIT) {
|
|
TAILQ_REMOVE(&tcp_tw_tailq, tp, t_twentry);
|
|
}
|
|
}
|
|
|
|
static boolean_t
|
|
tcp_garbage_collect(struct inpcb *inp, int istimewait)
|
|
{
|
|
boolean_t active = FALSE;
|
|
struct socket *so, *mp_so = NULL;
|
|
struct tcpcb *tp;
|
|
|
|
so = inp->inp_socket;
|
|
tp = intotcpcb(inp);
|
|
|
|
if (so->so_flags & SOF_MP_SUBFLOW) {
|
|
mp_so = mptetoso(tptomptp(tp)->mpt_mpte);
|
|
if (!socket_try_lock(mp_so)) {
|
|
mp_so = NULL;
|
|
active = TRUE;
|
|
goto out;
|
|
}
|
|
if (mpsotomppcb(mp_so)->mpp_inside > 0) {
|
|
os_log(mptcp_log_handle, "%s - %lx: Still inside %d usecount %d\n", __func__,
|
|
(unsigned long)VM_KERNEL_ADDRPERM(mpsotompte(mp_so)),
|
|
mpsotomppcb(mp_so)->mpp_inside,
|
|
mp_so->so_usecount);
|
|
socket_unlock(mp_so, 0);
|
|
mp_so = NULL;
|
|
active = TRUE;
|
|
goto out;
|
|
}
|
|
/* We call socket_unlock with refcount further below */
|
|
mp_so->so_usecount++;
|
|
tptomptp(tp)->mpt_mpte->mpte_mppcb->mpp_inside++;
|
|
}
|
|
|
|
/*
|
|
* Skip if still in use or busy; it would have been more efficient
|
|
* if we were to test so_usecount against 0, but this isn't possible
|
|
* due to the current implementation of tcp_dropdropablreq() where
|
|
* overflow sockets that are eligible for garbage collection have
|
|
* their usecounts set to 1.
|
|
*/
|
|
if (!lck_mtx_try_lock_spin(&inp->inpcb_mtx)) {
|
|
active = TRUE;
|
|
goto out;
|
|
}
|
|
|
|
/* Check again under the lock */
|
|
if (so->so_usecount > 1) {
|
|
if (inp->inp_wantcnt == WNT_STOPUSING) {
|
|
active = TRUE;
|
|
}
|
|
lck_mtx_unlock(&inp->inpcb_mtx);
|
|
goto out;
|
|
}
|
|
|
|
if (istimewait && TSTMP_GEQ(tcp_now, tp->t_timer[TCPT_2MSL]) &&
|
|
tp->t_state != TCPS_CLOSED) {
|
|
/* Become a regular mutex */
|
|
lck_mtx_convert_spin(&inp->inpcb_mtx);
|
|
tcp_close(tp);
|
|
}
|
|
|
|
/*
|
|
* Overflowed socket dropped from the listening queue? Do this
|
|
* only if we are called to clean up the time wait slots, since
|
|
* tcp_dropdropablreq() considers a socket to have been fully
|
|
* dropped after add_to_time_wait() is finished.
|
|
* Also handle the case of connections getting closed by the peer
|
|
* while in the queue as seen with rdar://6422317
|
|
*
|
|
*/
|
|
if (so->so_usecount == 1 &&
|
|
((istimewait && (so->so_flags & SOF_OVERFLOW)) ||
|
|
((tp != NULL) && (tp->t_state == TCPS_CLOSED) &&
|
|
(so->so_head != NULL) &&
|
|
((so->so_state & (SS_INCOMP | SS_CANTSENDMORE | SS_CANTRCVMORE)) ==
|
|
(SS_INCOMP | SS_CANTSENDMORE | SS_CANTRCVMORE))))) {
|
|
if (inp->inp_state != INPCB_STATE_DEAD) {
|
|
/* Become a regular mutex */
|
|
lck_mtx_convert_spin(&inp->inpcb_mtx);
|
|
if (SOCK_CHECK_DOM(so, PF_INET6)) {
|
|
in6_pcbdetach(inp);
|
|
} else {
|
|
in_pcbdetach(inp);
|
|
}
|
|
}
|
|
VERIFY(so->so_usecount > 0);
|
|
so->so_usecount--;
|
|
if (inp->inp_wantcnt == WNT_STOPUSING) {
|
|
active = TRUE;
|
|
}
|
|
lck_mtx_unlock(&inp->inpcb_mtx);
|
|
goto out;
|
|
} else if (inp->inp_wantcnt != WNT_STOPUSING) {
|
|
lck_mtx_unlock(&inp->inpcb_mtx);
|
|
active = FALSE;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We get here because the PCB is no longer searchable
|
|
* (WNT_STOPUSING); detach (if needed) and dispose if it is dead
|
|
* (usecount is 0). This covers all cases, including overflow
|
|
* sockets and those that are considered as "embryonic",
|
|
* i.e. created by sonewconn() in TCP input path, and have
|
|
* not yet been committed. For the former, we reduce the usecount
|
|
* to 0 as done by the code above. For the latter, the usecount
|
|
* would have reduced to 0 as part calling soabort() when the
|
|
* socket is dropped at the end of tcp_input().
|
|
*/
|
|
if (so->so_usecount == 0) {
|
|
DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
|
|
struct tcpcb *, tp, int32_t, TCPS_CLOSED);
|
|
/* Become a regular mutex */
|
|
lck_mtx_convert_spin(&inp->inpcb_mtx);
|
|
|
|
/*
|
|
* If this tp still happens to be on the timer list,
|
|
* take it out
|
|
*/
|
|
if (TIMER_IS_ON_LIST(tp)) {
|
|
tcp_remove_timer(tp);
|
|
}
|
|
|
|
if (inp->inp_state != INPCB_STATE_DEAD) {
|
|
if (SOCK_CHECK_DOM(so, PF_INET6)) {
|
|
in6_pcbdetach(inp);
|
|
} else {
|
|
in_pcbdetach(inp);
|
|
}
|
|
}
|
|
|
|
if (mp_so) {
|
|
mptcp_subflow_del(tptomptp(tp)->mpt_mpte, tp->t_mpsub);
|
|
|
|
/* so is now unlinked from mp_so - let's drop the lock */
|
|
socket_unlock(mp_so, 1);
|
|
mp_so = NULL;
|
|
}
|
|
|
|
in_pcbdispose(inp);
|
|
active = FALSE;
|
|
goto out;
|
|
}
|
|
|
|
lck_mtx_unlock(&inp->inpcb_mtx);
|
|
active = TRUE;
|
|
|
|
out:
|
|
if (mp_so) {
|
|
socket_unlock(mp_so, 1);
|
|
}
|
|
|
|
return active;
|
|
}
|
|
|
|
/*
|
|
* TCP garbage collector callback (inpcb_timer_func_t).
|
|
*
|
|
* Returns the number of pcbs that will need to be gc-ed soon,
|
|
* returnining > 0 will keep timer active.
|
|
*/
|
|
void
|
|
tcp_gc(struct inpcbinfo *ipi)
|
|
{
|
|
struct inpcb *inp, *nxt;
|
|
struct tcpcb *tw_tp, *tw_ntp;
|
|
#if TCPDEBUG
|
|
int ostate;
|
|
#endif
|
|
#if KDEBUG
|
|
static int tws_checked = 0;
|
|
#endif
|
|
|
|
KERNEL_DEBUG(DBG_FNC_TCP_SLOW | DBG_FUNC_START, 0, 0, 0, 0, 0);
|
|
|
|
/*
|
|
* Update tcp_now here as it may get used while
|
|
* processing the slow timer.
|
|
*/
|
|
calculate_tcp_clock();
|
|
|
|
/*
|
|
* Garbage collect socket/tcpcb: We need to acquire the list lock
|
|
* exclusively to do this
|
|
*/
|
|
|
|
if (lck_rw_try_lock_exclusive(&ipi->ipi_lock) == FALSE) {
|
|
/* don't sweat it this time; cleanup was done last time */
|
|
if (tcp_gc_done == TRUE) {
|
|
tcp_gc_done = FALSE;
|
|
KERNEL_DEBUG(DBG_FNC_TCP_SLOW | DBG_FUNC_END,
|
|
tws_checked, cur_tw_slot, 0, 0, 0);
|
|
/* Lock upgrade failed, give up this round */
|
|
os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed);
|
|
return;
|
|
}
|
|
/* Upgrade failed, lost lock now take it again exclusive */
|
|
lck_rw_lock_exclusive(&ipi->ipi_lock);
|
|
}
|
|
tcp_gc_done = TRUE;
|
|
|
|
LIST_FOREACH_SAFE(inp, &tcb, inp_list, nxt) {
|
|
if (tcp_garbage_collect(inp, 0)) {
|
|
os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed);
|
|
}
|
|
}
|
|
|
|
/* Now cleanup the time wait ones */
|
|
TAILQ_FOREACH_SAFE(tw_tp, &tcp_tw_tailq, t_twentry, tw_ntp) {
|
|
/*
|
|
* We check the timestamp here without holding the
|
|
* socket lock for better performance. If there are
|
|
* any pcbs in time-wait, the timer will get rescheduled.
|
|
* Hence some error in this check can be tolerated.
|
|
*
|
|
* Sometimes a socket on time-wait queue can be closed if
|
|
* 2MSL timer expired but the application still has a
|
|
* usecount on it.
|
|
*/
|
|
if (tw_tp->t_state == TCPS_CLOSED ||
|
|
TSTMP_GEQ(tcp_now, tw_tp->t_timer[TCPT_2MSL])) {
|
|
if (tcp_garbage_collect(tw_tp->t_inpcb, 1)) {
|
|
os_atomic_inc(&ipi->ipi_gc_req.intimer_lazy, relaxed);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* take into account pcbs that are still in time_wait_slots */
|
|
os_atomic_add(&ipi->ipi_gc_req.intimer_lazy, ipi->ipi_twcount, relaxed);
|
|
|
|
lck_rw_done(&ipi->ipi_lock);
|
|
|
|
/* Clean up the socache while we are here */
|
|
if (so_cache_timer()) {
|
|
os_atomic_inc(&ipi->ipi_gc_req.intimer_lazy, relaxed);
|
|
}
|
|
|
|
KERNEL_DEBUG(DBG_FNC_TCP_SLOW | DBG_FUNC_END, tws_checked,
|
|
cur_tw_slot, 0, 0, 0);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Cancel all timers for TCP tp.
|
|
*/
|
|
void
|
|
tcp_canceltimers(struct tcpcb *tp)
|
|
{
|
|
int i;
|
|
|
|
tcp_remove_timer(tp);
|
|
for (i = 0; i < TCPT_NTIMERS; i++) {
|
|
tp->t_timer[i] = 0;
|
|
}
|
|
tp->tentry.timer_start = tcp_now;
|
|
tp->tentry.index = TCPT_NONE;
|
|
}
|
|
|
|
int tcp_syn_backoff[TCP_MAXRXTSHIFT + 1] =
|
|
{ 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 64, 64 };
|
|
|
|
int tcp_backoff[TCP_MAXRXTSHIFT + 1] =
|
|
{ 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };
|
|
|
|
static int tcp_totbackoff = 511; /* sum of tcp_backoff[] */
|
|
|
|
void
|
|
tcp_rexmt_save_state(struct tcpcb *tp)
|
|
{
|
|
u_int32_t fsize;
|
|
if (TSTMP_SUPPORTED(tp)) {
|
|
/*
|
|
* Since timestamps are supported on the connection,
|
|
* we can do recovery as described in rfc 4015.
|
|
*/
|
|
fsize = tp->snd_max - tp->snd_una;
|
|
tp->snd_ssthresh_prev = max(fsize, tp->snd_ssthresh);
|
|
tp->snd_recover_prev = tp->snd_recover;
|
|
} else {
|
|
/*
|
|
* Timestamp option is not supported on this connection.
|
|
* Record ssthresh and cwnd so they can
|
|
* be recovered if this turns out to be a "bad" retransmit.
|
|
* A retransmit is considered "bad" if an ACK for this
|
|
* segment is received within RTT/2 interval; the assumption
|
|
* here is that the ACK was already in flight. See
|
|
* "On Estimating End-to-End Network Path Properties" by
|
|
* Allman and Paxson for more details.
|
|
*/
|
|
tp->snd_cwnd_prev = tp->snd_cwnd;
|
|
tp->snd_ssthresh_prev = tp->snd_ssthresh;
|
|
tp->snd_recover_prev = tp->snd_recover;
|
|
if (IN_FASTRECOVERY(tp)) {
|
|
tp->t_flags |= TF_WASFRECOVERY;
|
|
} else {
|
|
tp->t_flags &= ~TF_WASFRECOVERY;
|
|
}
|
|
}
|
|
tp->t_srtt_prev = (tp->t_srtt >> TCP_RTT_SHIFT) + 2;
|
|
tp->t_rttvar_prev = (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
|
|
tp->t_flagsext &= ~(TF_RECOMPUTE_RTT);
|
|
}
|
|
|
|
/*
|
|
* Revert to the older segment size if there is an indication that PMTU
|
|
* blackhole detection was not needed.
|
|
*/
|
|
void
|
|
tcp_pmtud_revert_segment_size(struct tcpcb *tp)
|
|
{
|
|
int32_t optlen;
|
|
|
|
VERIFY(tp->t_pmtud_saved_maxopd > 0);
|
|
tp->t_flags |= TF_PMTUD;
|
|
tp->t_flags &= ~TF_BLACKHOLE;
|
|
optlen = tp->t_maxopd - tp->t_maxseg;
|
|
tp->t_maxopd = tp->t_pmtud_saved_maxopd;
|
|
tp->t_maxseg = tp->t_maxopd - optlen;
|
|
|
|
/*
|
|
* Reset the slow-start flight size as it
|
|
* may depend on the new MSS
|
|
*/
|
|
if (CC_ALGO(tp)->cwnd_init != NULL) {
|
|
CC_ALGO(tp)->cwnd_init(tp);
|
|
}
|
|
|
|
if (TCP_USE_RLEDBAT(tp, tp->t_inpcb->inp_socket) &&
|
|
tcp_cc_rledbat.rwnd_init != NULL) {
|
|
tcp_cc_rledbat.rwnd_init(tp);
|
|
}
|
|
|
|
tp->t_pmtud_start_ts = 0;
|
|
tcpstat.tcps_pmtudbh_reverted++;
|
|
|
|
/* change MSS according to recommendation, if there was one */
|
|
tcp_update_mss_locked(tp->t_inpcb->inp_socket, NULL);
|
|
}
|
|
|
|
static uint32_t
|
|
tcp_pmtud_black_holed_next_mss(struct tcpcb *tp)
|
|
{
|
|
/* Reduce the MSS to intermediary value */
|
|
if (tp->t_maxopd > tcp_pmtud_black_hole_mss) {
|
|
return tcp_pmtud_black_hole_mss;
|
|
} else {
|
|
if (tp->t_inpcb->inp_vflag & INP_IPV4) {
|
|
return tcp_mssdflt;
|
|
} else {
|
|
return tcp_v6mssdflt;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send a packet designed to force a response
|
|
* if the peer is up and reachable:
|
|
* either an ACK if the connection is still alive,
|
|
* or an RST if the peer has closed the connection
|
|
* due to timeout or reboot.
|
|
* Using sequence number tp->snd_una-1
|
|
* causes the transmitted zero-length segment
|
|
* to lie outside the receive window;
|
|
* by the protocol spec, this requires the
|
|
* correspondent TCP to respond.
|
|
*/
|
|
static bool
|
|
tcp_send_keep_alive(struct tcpcb *tp)
|
|
{
|
|
struct tcptemp *t_template;
|
|
struct mbuf *m;
|
|
|
|
tcpstat.tcps_keepprobe++;
|
|
t_template = tcp_maketemplate(tp, &m);
|
|
if (t_template != NULL) {
|
|
struct inpcb *inp = tp->t_inpcb;
|
|
struct tcp_respond_args tra;
|
|
|
|
bzero(&tra, sizeof(tra));
|
|
tra.nocell = INP_NO_CELLULAR(inp) ? 1 : 0;
|
|
tra.noexpensive = INP_NO_EXPENSIVE(inp) ? 1 : 0;
|
|
tra.noconstrained = INP_NO_CONSTRAINED(inp) ? 1 : 0;
|
|
tra.awdl_unrestricted = INP_AWDL_UNRESTRICTED(inp) ? 1 : 0;
|
|
tra.intcoproc_allowed = INP_INTCOPROC_ALLOWED(inp) ? 1 : 0;
|
|
tra.management_allowed = INP_MANAGEMENT_ALLOWED(inp) ? 1 : 0;
|
|
tra.keep_alive = 1;
|
|
if (tp->t_inpcb->inp_flags & INP_BOUND_IF) {
|
|
tra.ifscope = tp->t_inpcb->inp_boundifp->if_index;
|
|
} else {
|
|
tra.ifscope = IFSCOPE_NONE;
|
|
}
|
|
tcp_respond(tp, t_template->tt_ipgen,
|
|
&t_template->tt_t, (struct mbuf *)NULL,
|
|
tp->rcv_nxt, tp->snd_una - 1, 0, &tra);
|
|
(void) m_free(m);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* TCP timer processing.
|
|
*/
|
|
struct tcpcb *
|
|
tcp_timers(struct tcpcb *tp, int timer)
|
|
{
|
|
int32_t rexmt, optlen = 0, idle_time = 0;
|
|
struct socket *so;
|
|
#if TCPDEBUG
|
|
int ostate;
|
|
#endif
|
|
u_int64_t accsleep_ms;
|
|
u_int64_t last_sleep_ms = 0;
|
|
|
|
so = tp->t_inpcb->inp_socket;
|
|
idle_time = tcp_now - tp->t_rcvtime;
|
|
|
|
switch (timer) {
|
|
/*
|
|
* 2 MSL timeout in shutdown went off. If we're closed but
|
|
* still waiting for peer to close and connection has been idle
|
|
* too long, or if 2MSL time is up from TIME_WAIT or FIN_WAIT_2,
|
|
* delete connection control block.
|
|
* Otherwise, (this case shouldn't happen) check again in a bit
|
|
* we keep the socket in the main list in that case.
|
|
*/
|
|
case TCPT_2MSL:
|
|
tcp_free_sackholes(tp);
|
|
if (tp->t_state != TCPS_TIME_WAIT &&
|
|
tp->t_state != TCPS_FIN_WAIT_2 &&
|
|
((idle_time > 0) && (idle_time < TCP_CONN_MAXIDLE(tp)))) {
|
|
tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp,
|
|
(u_int32_t)TCP_CONN_KEEPINTVL(tp));
|
|
} else {
|
|
if (tp->t_state == TCPS_FIN_WAIT_2) {
|
|
TCP_LOG_DROP_PCB(NULL, NULL, tp, false,
|
|
"FIN wait timeout drop");
|
|
tcpstat.tcps_fin_timeout_drops++;
|
|
tp = tcp_drop(tp, 0);
|
|
} else {
|
|
tp = tcp_close(tp);
|
|
}
|
|
return tp;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Retransmission timer went off. Message has not
|
|
* been acked within retransmit interval. Back off
|
|
* to a longer retransmit interval and retransmit one segment.
|
|
*/
|
|
case TCPT_REXMT:
|
|
absolutetime_to_nanoseconds(mach_absolutetime_asleep,
|
|
&accsleep_ms);
|
|
accsleep_ms = accsleep_ms / 1000000UL;
|
|
if (accsleep_ms > tp->t_accsleep_ms) {
|
|
last_sleep_ms = accsleep_ms - tp->t_accsleep_ms;
|
|
}
|
|
/*
|
|
* Drop a connection in the retransmit timer
|
|
* 1. If we have retransmitted more than TCP_MAXRXTSHIFT
|
|
* times
|
|
* 2. If the time spent in this retransmission episode is
|
|
* more than the time limit set with TCP_RXT_CONNDROPTIME
|
|
* socket option
|
|
* 3. If TCP_RXT_FINDROP socket option was set and
|
|
* we have already retransmitted the FIN 3 times without
|
|
* receiving an ack
|
|
*/
|
|
if (++tp->t_rxtshift > TCP_MAXRXTSHIFT ||
|
|
(tp->t_rxt_conndroptime > 0 && tp->t_rxtstart > 0 &&
|
|
(tcp_now - tp->t_rxtstart) >= tp->t_rxt_conndroptime) ||
|
|
((tp->t_flagsext & TF_RXTFINDROP) != 0 &&
|
|
(tp->t_flags & TF_SENTFIN) != 0 && tp->t_rxtshift >= 4) ||
|
|
(tp->t_rxtshift > 4 && last_sleep_ms >= TCP_SLEEP_TOO_LONG)) {
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
|
tp->t_rxt_minimum_timeout > 0) {
|
|
/*
|
|
* Avoid dropping a connection if minimum
|
|
* timeout is set and that time did not
|
|
* pass. We will retry sending
|
|
* retransmissions at the maximum interval
|
|
*/
|
|
if (TSTMP_LT(tcp_now, (tp->t_rxtstart +
|
|
tp->t_rxt_minimum_timeout))) {
|
|
tp->t_rxtshift = TCP_MAXRXTSHIFT - 1;
|
|
goto retransmit_packet;
|
|
}
|
|
}
|
|
if ((tp->t_flagsext & TF_RXTFINDROP) != 0) {
|
|
tcpstat.tcps_rxtfindrop++;
|
|
} else if (last_sleep_ms >= TCP_SLEEP_TOO_LONG) {
|
|
tcpstat.tcps_drop_after_sleep++;
|
|
} else {
|
|
tcpstat.tcps_timeoutdrop++;
|
|
}
|
|
if (tp->t_rxtshift >= TCP_MAXRXTSHIFT) {
|
|
if (TCP_ECN_ENABLED(tp)) {
|
|
INP_INC_IFNET_STAT(tp->t_inpcb,
|
|
ecn_on.rxmit_drop);
|
|
} else {
|
|
INP_INC_IFNET_STAT(tp->t_inpcb,
|
|
ecn_off.rxmit_drop);
|
|
}
|
|
}
|
|
tp->t_rxtshift = TCP_MAXRXTSHIFT;
|
|
soevent(so,
|
|
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_TIMEOUT));
|
|
|
|
if (TCP_ECN_ENABLED(tp) &&
|
|
tp->t_state == TCPS_ESTABLISHED) {
|
|
tcp_heuristic_ecn_droprxmt(tp);
|
|
}
|
|
|
|
TCP_LOG_DROP_PCB(NULL, NULL, tp, false,
|
|
"retransmission timeout drop");
|
|
tp = tcp_drop(tp, tp->t_softerror ?
|
|
tp->t_softerror : ETIMEDOUT);
|
|
|
|
break;
|
|
}
|
|
retransmit_packet:
|
|
tcpstat.tcps_rexmttimeo++;
|
|
tp->t_accsleep_ms = accsleep_ms;
|
|
|
|
if (tp->t_rxtshift == 1 &&
|
|
tp->t_state == TCPS_ESTABLISHED) {
|
|
/* Set the time at which retransmission started. */
|
|
tp->t_rxtstart = tcp_now;
|
|
|
|
/*
|
|
* if this is the first retransmit timeout, save
|
|
* the state so that we can recover if the timeout
|
|
* is spurious.
|
|
*/
|
|
tcp_rexmt_save_state(tp);
|
|
tcp_ccdbg_trace(tp, NULL, TCP_CC_FIRST_REXMT);
|
|
}
|
|
#if MPTCP
|
|
if ((tp->t_rxtshift >= mptcp_fail_thresh) &&
|
|
(tp->t_state == TCPS_ESTABLISHED) &&
|
|
(tp->t_mpflags & TMPF_MPTCP_TRUE)) {
|
|
mptcp_act_on_txfail(so);
|
|
}
|
|
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(so->so_flags & SOF_MP_SUBFLOW)) {
|
|
struct mptses *mpte = tptomptp(tp)->mpt_mpte;
|
|
|
|
if (mpte->mpte_svctype == MPTCP_SVCTYPE_HANDOVER ||
|
|
mpte->mpte_svctype == MPTCP_SVCTYPE_PURE_HANDOVER) {
|
|
mptcp_check_subflows_and_add(mpte);
|
|
}
|
|
}
|
|
#endif /* MPTCP */
|
|
|
|
if (tp->t_adaptive_wtimo > 0 &&
|
|
tp->t_rxtshift > tp->t_adaptive_wtimo &&
|
|
TCPS_HAVEESTABLISHED(tp->t_state)) {
|
|
/* Send an event to the application */
|
|
soevent(so,
|
|
(SO_FILT_HINT_LOCKED |
|
|
SO_FILT_HINT_ADAPTIVE_WTIMO));
|
|
}
|
|
|
|
/*
|
|
* If this is a retransmit timeout after PTO, the PTO
|
|
* was not effective
|
|
*/
|
|
if (tp->t_flagsext & TF_SENT_TLPROBE) {
|
|
tp->t_flagsext &= ~(TF_SENT_TLPROBE);
|
|
tcpstat.tcps_rto_after_pto++;
|
|
}
|
|
|
|
if (tp->t_flagsext & TF_DELAY_RECOVERY) {
|
|
/*
|
|
* Retransmit timer fired before entering recovery
|
|
* on a connection with packet re-ordering. This
|
|
* suggests that the reordering metrics computed
|
|
* are not accurate.
|
|
*/
|
|
tp->t_reorderwin = 0;
|
|
tp->t_timer[TCPT_DELAYFR] = 0;
|
|
tp->t_flagsext &= ~(TF_DELAY_RECOVERY);
|
|
}
|
|
|
|
if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) &&
|
|
tp->t_state == TCPS_SYN_RECEIVED) {
|
|
tcp_disable_tfo(tp);
|
|
}
|
|
|
|
if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) &&
|
|
!(tp->t_tfo_flags & TFO_F_HEURISTIC_DONE) &&
|
|
(tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) &&
|
|
!(tp->t_tfo_flags & TFO_F_NO_SNDPROBING) &&
|
|
((tp->t_state != TCPS_SYN_SENT && tp->t_rxtshift > 1) ||
|
|
tp->t_rxtshift > 4)) {
|
|
/*
|
|
* For regular retransmissions, a first one is being
|
|
* done for tail-loss probe.
|
|
* Thus, if rxtshift > 1, this means we have sent the segment
|
|
* a total of 3 times.
|
|
*
|
|
* If we are in SYN-SENT state, then there is no tail-loss
|
|
* probe thus we have to let rxtshift go up to 3.
|
|
*/
|
|
tcp_heuristic_tfo_middlebox(tp);
|
|
|
|
so->so_error = ENODATA;
|
|
soevent(so,
|
|
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_MP_SUB_ERROR));
|
|
sorwakeup(so);
|
|
sowwakeup(so);
|
|
|
|
tp->t_tfo_stats |= TFO_S_SEND_BLACKHOLE;
|
|
tcpstat.tcps_tfo_sndblackhole++;
|
|
}
|
|
|
|
if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) &&
|
|
!(tp->t_tfo_flags & TFO_F_HEURISTIC_DONE) &&
|
|
(tp->t_tfo_stats & TFO_S_SYN_DATA_ACKED) &&
|
|
tp->t_rxtshift > 3) {
|
|
if (TSTMP_GT(tp->t_sndtime - 10 * TCP_RETRANSHZ, tp->t_rcvtime)) {
|
|
tcp_heuristic_tfo_middlebox(tp);
|
|
|
|
so->so_error = ENODATA;
|
|
soevent(so,
|
|
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_MP_SUB_ERROR));
|
|
sorwakeup(so);
|
|
sowwakeup(so);
|
|
}
|
|
}
|
|
|
|
if (tp->t_state == TCPS_SYN_SENT) {
|
|
rexmt = TCP_REXMTVAL(tp) * tcp_syn_backoff[tp->t_rxtshift];
|
|
tp->t_stat.synrxtshift = tp->t_rxtshift;
|
|
tp->t_stat.rxmitsyns++;
|
|
|
|
/* When retransmitting, disable TFO */
|
|
if (tfo_enabled(tp) &&
|
|
!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE)) {
|
|
tcp_disable_tfo(tp);
|
|
tp->t_tfo_flags |= TFO_F_SYN_LOSS;
|
|
}
|
|
} else {
|
|
rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
|
|
}
|
|
|
|
TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin, TCPTV_REXMTMAX,
|
|
TCP_ADD_REXMTSLOP(tp));
|
|
tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur);
|
|
|
|
TCP_LOG_RTT_INFO(tp);
|
|
|
|
if (INP_WAIT_FOR_IF_FEEDBACK(tp->t_inpcb)) {
|
|
goto fc_output;
|
|
}
|
|
|
|
tcp_free_sackholes(tp);
|
|
/*
|
|
* Check for potential Path MTU Discovery Black Hole
|
|
*/
|
|
if (tcp_pmtud_black_hole_detect &&
|
|
!(tp->t_flagsext & TF_NOBLACKHOLE_DETECTION) &&
|
|
(tp->t_state == TCPS_ESTABLISHED)) {
|
|
if ((tp->t_flags & TF_PMTUD) &&
|
|
tp->t_pmtud_lastseg_size > tcp_pmtud_black_holed_next_mss(tp) &&
|
|
tp->t_rxtshift == 2) {
|
|
/*
|
|
* Enter Path MTU Black-hole Detection mechanism:
|
|
* - Disable Path MTU Discovery (IP "DF" bit).
|
|
* - Reduce MTU to lower value than what we
|
|
* negotiated with the peer.
|
|
*/
|
|
/* Disable Path MTU Discovery for now */
|
|
tp->t_flags &= ~TF_PMTUD;
|
|
/* Record that we may have found a black hole */
|
|
tp->t_flags |= TF_BLACKHOLE;
|
|
optlen = tp->t_maxopd - tp->t_maxseg;
|
|
/* Keep track of previous MSS */
|
|
tp->t_pmtud_saved_maxopd = tp->t_maxopd;
|
|
tp->t_pmtud_start_ts = tcp_now;
|
|
if (tp->t_pmtud_start_ts == 0) {
|
|
tp->t_pmtud_start_ts++;
|
|
}
|
|
/* Reduce the MSS to intermediary value */
|
|
tp->t_maxopd = tcp_pmtud_black_holed_next_mss(tp);
|
|
tp->t_maxseg = tp->t_maxopd - optlen;
|
|
|
|
/*
|
|
* Reset the slow-start flight size
|
|
* as it may depend on the new MSS
|
|
*/
|
|
if (CC_ALGO(tp)->cwnd_init != NULL) {
|
|
CC_ALGO(tp)->cwnd_init(tp);
|
|
}
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
|
|
if (TCP_USE_RLEDBAT(tp, so) &&
|
|
tcp_cc_rledbat.rwnd_init != NULL) {
|
|
tcp_cc_rledbat.rwnd_init(tp);
|
|
}
|
|
}
|
|
/*
|
|
* If further retransmissions are still
|
|
* unsuccessful with a lowered MTU, maybe this
|
|
* isn't a Black Hole and we restore the previous
|
|
* MSS and blackhole detection flags.
|
|
*/
|
|
else {
|
|
if ((tp->t_flags & TF_BLACKHOLE) &&
|
|
(tp->t_rxtshift > 4)) {
|
|
tcp_pmtud_revert_segment_size(tp);
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disable rfc1323 and rfc1644 if we haven't got any
|
|
* response to our SYN (after we reach the threshold)
|
|
* to work-around some broken terminal servers (most of
|
|
* which have hopefully been retired) that have bad VJ
|
|
* header compression code which trashes TCP segments
|
|
* containing unknown-to-them TCP options.
|
|
* Do this only on non-local connections.
|
|
*/
|
|
if (tp->t_state == TCPS_SYN_SENT &&
|
|
tp->t_rxtshift == tcp_broken_peer_syn_rxmit_thres) {
|
|
tp->t_flags &= ~(TF_REQ_SCALE | TF_REQ_TSTMP | TF_REQ_CC);
|
|
}
|
|
|
|
/*
|
|
* If losing, let the lower level know and try for
|
|
* a better route. Also, if we backed off this far,
|
|
* our srtt estimate is probably bogus. Clobber it
|
|
* so we'll take the next rtt measurement as our srtt;
|
|
* move the current srtt into rttvar to keep the current
|
|
* retransmit times until then.
|
|
*/
|
|
if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
|
|
if (!(tp->t_inpcb->inp_vflag & INP_IPV4)) {
|
|
in6_losing(tp->t_inpcb);
|
|
} else {
|
|
in_losing(tp->t_inpcb);
|
|
}
|
|
tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
|
|
tp->t_srtt = 0;
|
|
}
|
|
tp->snd_nxt = tp->snd_una;
|
|
/*
|
|
* Note: We overload snd_recover to function also as the
|
|
* snd_last variable described in RFC 2582
|
|
*/
|
|
tp->snd_recover = tp->snd_max;
|
|
/*
|
|
* Force a segment to be sent.
|
|
*/
|
|
tp->t_flags |= TF_ACKNOW;
|
|
|
|
/* If timing a segment in this window, stop the timer */
|
|
tp->t_rtttime = 0;
|
|
|
|
if (!IN_FASTRECOVERY(tp) && tp->t_rxtshift == 1) {
|
|
tcpstat.tcps_tailloss_rto++;
|
|
}
|
|
|
|
|
|
/*
|
|
* RFC 5681 says: when a TCP sender detects segment loss
|
|
* using retransmit timer and the given segment has already
|
|
* been retransmitted by way of the retransmission timer at
|
|
* least once, the value of ssthresh is held constant
|
|
*/
|
|
if (tp->t_rxtshift == 1 &&
|
|
CC_ALGO(tp)->after_timeout != NULL) {
|
|
CC_ALGO(tp)->after_timeout(tp);
|
|
/*
|
|
* CWR notifications are to be sent on new data
|
|
* right after Fast Retransmits and ECE
|
|
* notification receipts.
|
|
*/
|
|
if (!TCP_ACC_ECN_ON(tp) && TCP_ECN_ENABLED(tp)) {
|
|
tp->ecn_flags |= TE_SENDCWR;
|
|
}
|
|
}
|
|
|
|
EXIT_FASTRECOVERY(tp);
|
|
|
|
/* Exit cwnd non validated phase */
|
|
tp->t_flagsext &= ~TF_CWND_NONVALIDATED;
|
|
|
|
|
|
fc_output:
|
|
tcp_ccdbg_trace(tp, NULL, TCP_CC_REXMT_TIMEOUT);
|
|
|
|
(void) tcp_output(tp);
|
|
break;
|
|
|
|
/*
|
|
* Persistance timer into zero window.
|
|
* Force a byte to be output, if possible.
|
|
*/
|
|
case TCPT_PERSIST:
|
|
tcpstat.tcps_persisttimeo++;
|
|
/*
|
|
* Hack: if the peer is dead/unreachable, we do not
|
|
* time out if the window is closed. After a full
|
|
* backoff, drop the connection if the idle time
|
|
* (no responses to probes) reaches the maximum
|
|
* backoff that we would use if retransmitting.
|
|
*
|
|
* Drop the connection if we reached the maximum allowed time for
|
|
* Zero Window Probes without a non-zero update from the peer.
|
|
* See rdar://5805356
|
|
*/
|
|
if ((tp->t_rxtshift == TCP_MAXRXTSHIFT &&
|
|
(idle_time >= tcp_maxpersistidle ||
|
|
idle_time >= TCP_REXMTVAL(tp) * tcp_totbackoff)) ||
|
|
((tp->t_persist_stop != 0) &&
|
|
TSTMP_LEQ(tp->t_persist_stop, tcp_now))) {
|
|
TCP_LOG_DROP_PCB(NULL, NULL, tp, false, "persist timeout drop");
|
|
tcpstat.tcps_persistdrop++;
|
|
soevent(so,
|
|
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_TIMEOUT));
|
|
tp = tcp_drop(tp, ETIMEDOUT);
|
|
break;
|
|
}
|
|
tcp_setpersist(tp);
|
|
tp->t_flagsext |= TF_FORCE;
|
|
(void) tcp_output(tp);
|
|
tp->t_flagsext &= ~TF_FORCE;
|
|
break;
|
|
|
|
/*
|
|
* Keep-alive timer went off; send something
|
|
* or drop connection if idle for too long.
|
|
*/
|
|
case TCPT_KEEP:
|
|
#if FLOW_DIVERT
|
|
if (tp->t_inpcb->inp_socket->so_flags & SOF_FLOW_DIVERT) {
|
|
break;
|
|
}
|
|
#endif /* FLOW_DIVERT */
|
|
|
|
tcpstat.tcps_keeptimeo++;
|
|
#if MPTCP
|
|
/*
|
|
* Regular TCP connections do not send keepalives after closing
|
|
* MPTCP must not also, after sending Data FINs.
|
|
*/
|
|
struct mptcb *mp_tp = tptomptp(tp);
|
|
if ((tp->t_mpflags & TMPF_MPTCP_TRUE) &&
|
|
(tp->t_state > TCPS_ESTABLISHED)) {
|
|
goto dropit;
|
|
} else if (mp_tp != NULL) {
|
|
if ((mptcp_ok_to_keepalive(mp_tp) == 0)) {
|
|
goto dropit;
|
|
}
|
|
}
|
|
#endif /* MPTCP */
|
|
if (tp->t_state < TCPS_ESTABLISHED) {
|
|
goto dropit;
|
|
}
|
|
if ((always_keepalive ||
|
|
(tp->t_inpcb->inp_socket->so_options & SO_KEEPALIVE) ||
|
|
(tp->t_flagsext & TF_DETECT_READSTALL) ||
|
|
(tp->t_tfo_probe_state == TFO_PROBE_PROBING)) &&
|
|
(tp->t_state <= TCPS_CLOSING || tp->t_state == TCPS_FIN_WAIT_2)) {
|
|
if (idle_time >= TCP_CONN_KEEPIDLE(tp) + TCP_CONN_MAXIDLE(tp)) {
|
|
TCP_LOG_DROP_PCB(NULL, NULL, tp, false,
|
|
"keep alive timeout drop");
|
|
goto dropit;
|
|
}
|
|
|
|
if (tcp_send_keep_alive(tp)) {
|
|
if (tp->t_flagsext & TF_DETECT_READSTALL) {
|
|
tp->t_rtimo_probes++;
|
|
}
|
|
|
|
TCP_LOG_KEEP_ALIVE(tp, idle_time);
|
|
}
|
|
|
|
tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
|
|
TCP_CONN_KEEPINTVL(tp));
|
|
} else {
|
|
tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
|
|
TCP_CONN_KEEPIDLE(tp));
|
|
}
|
|
if (tp->t_flagsext & TF_DETECT_READSTALL) {
|
|
struct ifnet *outifp = tp->t_inpcb->inp_last_outifp;
|
|
bool reenable_probe = false;
|
|
/*
|
|
* The keep alive packets sent to detect a read
|
|
* stall did not get a response from the
|
|
* peer. Generate more keep-alives to confirm this.
|
|
* If the number of probes sent reaches the limit,
|
|
* generate an event.
|
|
*/
|
|
if (tp->t_adaptive_rtimo > 0) {
|
|
if (tp->t_rtimo_probes > tp->t_adaptive_rtimo) {
|
|
/* Generate an event */
|
|
soevent(so,
|
|
(SO_FILT_HINT_LOCKED |
|
|
SO_FILT_HINT_ADAPTIVE_RTIMO));
|
|
tcp_keepalive_reset(tp);
|
|
} else {
|
|
reenable_probe = true;
|
|
}
|
|
} else if (outifp != NULL &&
|
|
(outifp->if_eflags & IFEF_PROBE_CONNECTIVITY) &&
|
|
tp->t_rtimo_probes <= TCP_CONNECTIVITY_PROBES_MAX) {
|
|
reenable_probe = true;
|
|
} else {
|
|
tp->t_flagsext &= ~TF_DETECT_READSTALL;
|
|
}
|
|
if (reenable_probe) {
|
|
int ind = min(tp->t_rtimo_probes,
|
|
TCP_MAXRXTSHIFT);
|
|
tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(
|
|
tp, tcp_backoff[ind] * TCP_REXMTVAL(tp));
|
|
}
|
|
}
|
|
if (tp->t_tfo_probe_state == TFO_PROBE_PROBING) {
|
|
int ind;
|
|
|
|
tp->t_tfo_probes++;
|
|
ind = min(tp->t_tfo_probes, TCP_MAXRXTSHIFT);
|
|
|
|
/*
|
|
* We take the minimum among the time set by true
|
|
* keepalive (see above) and the backoff'd RTO. That
|
|
* way we backoff in case of packet-loss but will never
|
|
* timeout slower than regular keepalive due to the
|
|
* backing off.
|
|
*/
|
|
tp->t_timer[TCPT_KEEP] = min(OFFSET_FROM_START(
|
|
tp, tcp_backoff[ind] * TCP_REXMTVAL(tp)),
|
|
tp->t_timer[TCPT_KEEP]);
|
|
} else if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) &&
|
|
!(tp->t_tfo_flags & TFO_F_HEURISTIC_DONE) &&
|
|
tp->t_tfo_probe_state == TFO_PROBE_WAIT_DATA) {
|
|
/* Still no data! Let's assume a TFO-error and err out... */
|
|
tcp_heuristic_tfo_middlebox(tp);
|
|
|
|
so->so_error = ENODATA;
|
|
soevent(so,
|
|
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_MP_SUB_ERROR));
|
|
sorwakeup(so);
|
|
tp->t_tfo_stats |= TFO_S_RECV_BLACKHOLE;
|
|
tcpstat.tcps_tfo_blackhole++;
|
|
}
|
|
break;
|
|
case TCPT_DELACK:
|
|
if (tcp_delack_enabled && (tp->t_flags & TF_DELACK)) {
|
|
tp->t_flags &= ~TF_DELACK;
|
|
tp->t_timer[TCPT_DELACK] = 0;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
|
|
/*
|
|
* If delayed ack timer fired while stretching
|
|
* acks, count the number of times the streaming
|
|
* detection was not correct. If this exceeds a
|
|
* threshold, disable strech ack on this
|
|
* connection
|
|
*
|
|
* Also, go back to acking every other packet.
|
|
*/
|
|
if ((tp->t_flags & TF_STRETCHACK)) {
|
|
if (tp->t_unacksegs > 1 &&
|
|
tp->t_unacksegs < maxseg_unacked) {
|
|
tp->t_stretchack_delayed++;
|
|
}
|
|
|
|
if (tp->t_stretchack_delayed >
|
|
TCP_STRETCHACK_DELAY_THRESHOLD) {
|
|
tp->t_flagsext |= TF_DISABLE_STRETCHACK;
|
|
/*
|
|
* Note the time at which stretch
|
|
* ack was disabled automatically
|
|
*/
|
|
tp->rcv_nostrack_ts = tcp_now;
|
|
tcpstat.tcps_nostretchack++;
|
|
tp->t_stretchack_delayed = 0;
|
|
tp->rcv_nostrack_pkts = 0;
|
|
}
|
|
tcp_reset_stretch_ack(tp);
|
|
}
|
|
tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
|
|
|
|
/*
|
|
* If we are measuring inter packet arrival jitter
|
|
* for throttling a connection, this delayed ack
|
|
* might be the reason for accumulating some
|
|
* jitter. So let's restart the measurement.
|
|
*/
|
|
CLEAR_IAJ_STATE(tp);
|
|
|
|
tcpstat.tcps_delack++;
|
|
tp->t_stat.delayed_acks_sent++;
|
|
(void) tcp_output(tp);
|
|
}
|
|
break;
|
|
|
|
#if MPTCP
|
|
case TCPT_JACK_RXMT:
|
|
if ((tp->t_state == TCPS_ESTABLISHED) &&
|
|
(tp->t_mpflags & TMPF_PREESTABLISHED) &&
|
|
(tp->t_mpflags & TMPF_JOINED_FLOW)) {
|
|
if (++tp->t_mprxtshift > TCP_MAXRXTSHIFT) {
|
|
tcpstat.tcps_timeoutdrop++;
|
|
soevent(so,
|
|
(SO_FILT_HINT_LOCKED |
|
|
SO_FILT_HINT_TIMEOUT));
|
|
tp = tcp_drop(tp, tp->t_softerror ?
|
|
tp->t_softerror : ETIMEDOUT);
|
|
break;
|
|
}
|
|
tcpstat.tcps_join_rxmts++;
|
|
tp->t_mpflags |= TMPF_SND_JACK;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
|
|
/*
|
|
* No backoff is implemented for simplicity for this
|
|
* corner case.
|
|
*/
|
|
(void) tcp_output(tp);
|
|
}
|
|
break;
|
|
case TCPT_CELLICON:
|
|
{
|
|
struct mptses *mpte = tptomptp(tp)->mpt_mpte;
|
|
|
|
tp->t_timer[TCPT_CELLICON] = 0;
|
|
|
|
if (mpte->mpte_cellicon_increments == 0) {
|
|
/* Cell-icon not set by this connection */
|
|
break;
|
|
}
|
|
|
|
if (TSTMP_LT(mpte->mpte_last_cellicon_set + MPTCP_CELLICON_TOGGLE_RATE, tcp_now)) {
|
|
mptcp_unset_cellicon(mpte, NULL, 1);
|
|
}
|
|
|
|
if (mpte->mpte_cellicon_increments) {
|
|
tp->t_timer[TCPT_CELLICON] = OFFSET_FROM_START(tp, MPTCP_CELLICON_TOGGLE_RATE);
|
|
}
|
|
|
|
break;
|
|
}
|
|
#endif /* MPTCP */
|
|
|
|
case TCPT_PTO:
|
|
{
|
|
int32_t ret = 0;
|
|
|
|
if (!(tp->t_flagsext & TF_IF_PROBING)) {
|
|
tp->t_flagsext &= ~(TF_SENT_TLPROBE);
|
|
}
|
|
/*
|
|
* Check if the connection is in the right state to
|
|
* send a probe
|
|
*/
|
|
if ((tp->t_state != TCPS_ESTABLISHED ||
|
|
tp->t_rxtshift > 0 ||
|
|
tp->snd_max == tp->snd_una ||
|
|
!SACK_ENABLED(tp) ||
|
|
(tcp_do_better_lr != 1 && !TAILQ_EMPTY(&tp->snd_holes)) ||
|
|
IN_FASTRECOVERY(tp)) &&
|
|
!(tp->t_flagsext & TF_IF_PROBING)) {
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* When the interface state is changed explicitly reset the retransmission
|
|
* timer state for both SYN and data packets because we do not want to
|
|
* wait unnecessarily or timeout too quickly if the link characteristics
|
|
* have changed drastically
|
|
*/
|
|
if (tp->t_flagsext & TF_IF_PROBING) {
|
|
tp->t_rxtshift = 0;
|
|
if (tp->t_state == TCPS_SYN_SENT) {
|
|
tp->t_stat.synrxtshift = tp->t_rxtshift;
|
|
}
|
|
/*
|
|
* Reset to the the default RTO
|
|
*/
|
|
tp->t_srtt = TCPTV_SRTTBASE;
|
|
tp->t_rttvar =
|
|
((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
|
|
tp->t_rttmin = tp->t_flags & TF_LOCAL ? tcp_TCPTV_MIN :
|
|
TCPTV_REXMTMIN;
|
|
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
|
|
tp->t_rttmin, TCPTV_REXMTMAX, TCP_ADD_REXMTSLOP(tp));
|
|
TCP_LOG_RTT_INFO(tp);
|
|
}
|
|
|
|
if (tp->t_state == TCPS_SYN_SENT) {
|
|
/*
|
|
* The PTO for SYN_SENT reinitializes TCP as if it was a fresh
|
|
* connection attempt
|
|
*/
|
|
tp->snd_nxt = tp->snd_una;
|
|
/*
|
|
* Note: We overload snd_recover to function also as the
|
|
* snd_last variable described in RFC 2582
|
|
*/
|
|
tp->snd_recover = tp->snd_max;
|
|
/*
|
|
* Force a segment to be sent.
|
|
*/
|
|
tp->t_flags |= TF_ACKNOW;
|
|
|
|
/* If timing a segment in this window, stop the timer */
|
|
tp->t_rtttime = 0;
|
|
} else {
|
|
int32_t snd_len;
|
|
|
|
/*
|
|
* If there is no new data to send or if the
|
|
* connection is limited by receive window then
|
|
* retransmit the last segment, otherwise send
|
|
* new data.
|
|
*/
|
|
snd_len = min(so->so_snd.sb_cc, tp->snd_wnd)
|
|
- (tp->snd_max - tp->snd_una);
|
|
if (snd_len > 0) {
|
|
tp->snd_nxt = tp->snd_max;
|
|
} else {
|
|
snd_len = min((tp->snd_max - tp->snd_una),
|
|
tp->t_maxseg);
|
|
tp->snd_nxt = tp->snd_max - snd_len;
|
|
}
|
|
}
|
|
|
|
tcpstat.tcps_pto++;
|
|
if (tp->t_flagsext & TF_IF_PROBING) {
|
|
tcpstat.tcps_probe_if++;
|
|
}
|
|
|
|
/* If timing a segment in this window, stop the timer */
|
|
tp->t_rtttime = 0;
|
|
/* Note that tail loss probe is being sent. Exclude IF probe */
|
|
if (!(tp->t_flagsext & TF_IF_PROBING)) {
|
|
tp->t_flagsext |= TF_SENT_TLPROBE;
|
|
tp->t_tlpstart = tcp_now;
|
|
}
|
|
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
/*
|
|
* When tail-loss-probe fires, we reset the RTO timer, because
|
|
* a probe just got sent, so we are good to push out the timer.
|
|
*
|
|
* Set to 0 to ensure that tcp_output() will reschedule it
|
|
*/
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
ret = tcp_output(tp);
|
|
|
|
#if (DEBUG || DEVELOPMENT)
|
|
if ((tp->t_flagsext & TF_IF_PROBING) &&
|
|
((IFNET_IS_COMPANION_LINK(tp->t_inpcb->inp_last_outifp)) ||
|
|
tp->t_state == TCPS_SYN_SENT)) {
|
|
if (ret == 0 && tcp_probe_if_fix_port > 0 &&
|
|
tcp_probe_if_fix_port <= IPPORT_HILASTAUTO) {
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
tcp_set_lotimer_index(tp);
|
|
}
|
|
|
|
os_log(OS_LOG_DEFAULT,
|
|
"%s: sent %s probe for %u > %u on interface %s"
|
|
" (%u) %s(%d)",
|
|
__func__,
|
|
tp->t_state == TCPS_SYN_SENT ? "SYN" : "data",
|
|
ntohs(tp->t_inpcb->inp_lport),
|
|
ntohs(tp->t_inpcb->inp_fport),
|
|
if_name(tp->t_inpcb->inp_last_outifp),
|
|
tp->t_inpcb->inp_last_outifp->if_index,
|
|
ret == 0 ? "succeeded" :"failed", ret);
|
|
}
|
|
#endif /* DEBUG || DEVELOPMENT */
|
|
|
|
/*
|
|
* When there is data (or a SYN) to send, the above call to
|
|
* tcp_output() should have armed either the REXMT or the
|
|
* PERSIST timer. If it didn't, something is wrong and this
|
|
* connection would idle around forever. Let's make sure that
|
|
* at least the REXMT timer is set.
|
|
*/
|
|
if (tp->t_timer[TCPT_REXMT] == 0 && tp->t_timer[TCPT_PERSIST] == 0 &&
|
|
(tp->t_inpcb->inp_socket->so_snd.sb_cc != 0 || tp->t_state == TCPS_SYN_SENT ||
|
|
tp->t_state == TCPS_SYN_RECEIVED)) {
|
|
tp->t_timer[TCPT_REXMT] =
|
|
OFFSET_FROM_START(tp, tp->t_rxtcur);
|
|
|
|
os_log(OS_LOG_DEFAULT,
|
|
"%s: tcp_output() returned %u with retransmission timer disabled "
|
|
"for %u > %u in state %d, reset timer to %d",
|
|
__func__, ret,
|
|
ntohs(tp->t_inpcb->inp_lport),
|
|
ntohs(tp->t_inpcb->inp_fport),
|
|
tp->t_state,
|
|
tp->t_timer[TCPT_REXMT]);
|
|
|
|
tcp_check_timer_state(tp);
|
|
}
|
|
tp->snd_cwnd -= tp->t_maxseg;
|
|
|
|
if (!(tp->t_flagsext & TF_IF_PROBING)) {
|
|
tp->t_tlphighrxt = tp->snd_nxt;
|
|
}
|
|
break;
|
|
}
|
|
case TCPT_DELAYFR:
|
|
tp->t_flagsext &= ~TF_DELAY_RECOVERY;
|
|
|
|
/*
|
|
* Don't do anything if one of the following is true:
|
|
* - the connection is already in recovery
|
|
* - sequence until snd_recover has been acknowledged.
|
|
* - retransmit timeout has fired
|
|
*/
|
|
if (IN_FASTRECOVERY(tp) ||
|
|
SEQ_GEQ(tp->snd_una, tp->snd_recover) ||
|
|
tp->t_rxtshift > 0) {
|
|
break;
|
|
}
|
|
|
|
VERIFY(SACK_ENABLED(tp));
|
|
tcp_rexmt_save_state(tp);
|
|
if (CC_ALGO(tp)->pre_fr != NULL) {
|
|
CC_ALGO(tp)->pre_fr(tp);
|
|
if (!TCP_ACC_ECN_ON(tp) && TCP_ECN_ENABLED(tp)) {
|
|
tp->ecn_flags |= TE_SENDCWR;
|
|
}
|
|
}
|
|
ENTER_FASTRECOVERY(tp);
|
|
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
tcpstat.tcps_sack_recovery_episode++;
|
|
tp->t_sack_recovery_episode++;
|
|
tp->sack_newdata = tp->snd_nxt;
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
tcp_ccdbg_trace(tp, NULL, TCP_CC_ENTER_FASTRECOVERY);
|
|
(void) tcp_output(tp);
|
|
break;
|
|
|
|
dropit:
|
|
tcpstat.tcps_keepdrops++;
|
|
soevent(so,
|
|
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_TIMEOUT));
|
|
tp = tcp_drop(tp, ETIMEDOUT);
|
|
break;
|
|
}
|
|
#if TCPDEBUG
|
|
if (tp->t_inpcb->inp_socket->so_options & SO_DEBUG) {
|
|
tcp_trace(TA_USER, ostate, tp, (void *)0, (struct tcphdr *)0,
|
|
PRU_SLOWTIMO);
|
|
}
|
|
#endif
|
|
return tp;
|
|
}
|
|
|
|
/* Remove a timer entry from timer list */
|
|
void
|
|
tcp_remove_timer(struct tcpcb *tp)
|
|
{
|
|
struct tcptimerlist *listp = &tcp_timer_list;
|
|
|
|
socket_lock_assert_owned(tp->t_inpcb->inp_socket);
|
|
if (!(TIMER_IS_ON_LIST(tp))) {
|
|
return;
|
|
}
|
|
lck_mtx_lock(&listp->mtx);
|
|
|
|
/* Check if pcb is on timer list again after acquiring the lock */
|
|
if (!(TIMER_IS_ON_LIST(tp))) {
|
|
lck_mtx_unlock(&listp->mtx);
|
|
return;
|
|
}
|
|
|
|
if (listp->next_te != NULL && listp->next_te == &tp->tentry) {
|
|
listp->next_te = LIST_NEXT(&tp->tentry, le);
|
|
}
|
|
|
|
LIST_REMOVE(&tp->tentry, le);
|
|
tp->t_flags &= ~(TF_TIMER_ONLIST);
|
|
|
|
listp->entries--;
|
|
|
|
tp->tentry.le.le_next = NULL;
|
|
tp->tentry.le.le_prev = NULL;
|
|
lck_mtx_unlock(&listp->mtx);
|
|
}
|
|
|
|
/*
|
|
* Function to check if the timerlist needs to be rescheduled to run
|
|
* the timer entry correctly. Basically, this is to check if we can avoid
|
|
* taking the list lock.
|
|
*/
|
|
|
|
static boolean_t
|
|
need_to_resched_timerlist(u_int32_t runtime, u_int16_t mode)
|
|
{
|
|
struct tcptimerlist *listp = &tcp_timer_list;
|
|
int32_t diff;
|
|
|
|
/*
|
|
* If the list is being processed then the state of the list is
|
|
* in flux. In this case always acquire the lock and set the state
|
|
* correctly.
|
|
*/
|
|
if (listp->running) {
|
|
return TRUE;
|
|
}
|
|
|
|
if (!listp->scheduled) {
|
|
return TRUE;
|
|
}
|
|
|
|
diff = timer_diff(listp->runtime, 0, runtime, 0);
|
|
if (diff <= 0) {
|
|
/* The list is going to run before this timer */
|
|
return FALSE;
|
|
} else {
|
|
if (mode & TCP_TIMERLIST_10MS_MODE) {
|
|
if (diff <= TCP_TIMER_10MS_QUANTUM) {
|
|
return FALSE;
|
|
}
|
|
} else if (mode & TCP_TIMERLIST_100MS_MODE) {
|
|
if (diff <= TCP_TIMER_100MS_QUANTUM) {
|
|
return FALSE;
|
|
}
|
|
} else {
|
|
if (diff <= TCP_TIMER_500MS_QUANTUM) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
void
|
|
tcp_sched_timerlist(uint32_t offset)
|
|
{
|
|
uint64_t deadline = 0;
|
|
struct tcptimerlist *listp = &tcp_timer_list;
|
|
|
|
LCK_MTX_ASSERT(&listp->mtx, LCK_MTX_ASSERT_OWNED);
|
|
|
|
offset = min(offset, TCP_TIMERLIST_MAX_OFFSET);
|
|
listp->runtime = tcp_now + offset;
|
|
listp->schedtime = tcp_now;
|
|
if (listp->runtime == 0) {
|
|
listp->runtime++;
|
|
offset++;
|
|
}
|
|
|
|
clock_interval_to_deadline(offset, USEC_PER_SEC, &deadline);
|
|
|
|
thread_call_enter_delayed(listp->call, deadline);
|
|
listp->scheduled = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Function to run the timers for a connection.
|
|
*
|
|
* Returns the offset of next timer to be run for this connection which
|
|
* can be used to reschedule the timerlist.
|
|
*
|
|
* te_mode is an out parameter that indicates the modes of active
|
|
* timers for this connection.
|
|
*/
|
|
u_int32_t
|
|
tcp_run_conn_timer(struct tcpcb *tp, u_int16_t *te_mode,
|
|
u_int16_t probe_if_index)
|
|
{
|
|
struct socket *so;
|
|
u_int16_t i = 0, index = TCPT_NONE, lo_index = TCPT_NONE;
|
|
u_int32_t timer_val, offset = 0, lo_timer = 0;
|
|
int32_t diff;
|
|
boolean_t needtorun[TCPT_NTIMERS];
|
|
int count = 0;
|
|
|
|
VERIFY(tp != NULL);
|
|
bzero(needtorun, sizeof(needtorun));
|
|
*te_mode = 0;
|
|
|
|
socket_lock(tp->t_inpcb->inp_socket, 1);
|
|
|
|
so = tp->t_inpcb->inp_socket;
|
|
/* Release the want count on inp */
|
|
if (in_pcb_checkstate(tp->t_inpcb, WNT_RELEASE, 1)
|
|
== WNT_STOPUSING) {
|
|
if (TIMER_IS_ON_LIST(tp)) {
|
|
tcp_remove_timer(tp);
|
|
}
|
|
|
|
/* Looks like the TCP connection got closed while we
|
|
* were waiting for the lock.. Done
|
|
*/
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If this connection is over an interface that needs to
|
|
* be probed, send probe packets to reinitiate communication.
|
|
*/
|
|
if (TCP_IF_STATE_CHANGED(tp, probe_if_index)) {
|
|
tp->t_flagsext |= TF_IF_PROBING;
|
|
tcp_timers(tp, TCPT_PTO);
|
|
tp->t_timer[TCPT_PTO] = 0;
|
|
tp->t_flagsext &= ~TF_IF_PROBING;
|
|
}
|
|
|
|
/*
|
|
* Since the timer thread needs to wait for tcp lock, it may race
|
|
* with another thread that can cancel or reschedule the timer
|
|
* that is about to run. Check if we need to run anything.
|
|
*/
|
|
if ((index = tp->tentry.index) == TCPT_NONE) {
|
|
goto done;
|
|
}
|
|
|
|
timer_val = tp->t_timer[index];
|
|
|
|
diff = timer_diff(tp->tentry.runtime, 0, tcp_now, 0);
|
|
if (diff > 0) {
|
|
if (tp->tentry.index != TCPT_NONE) {
|
|
offset = diff;
|
|
*(te_mode) = tp->tentry.mode;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
tp->t_timer[index] = 0;
|
|
if (timer_val > 0) {
|
|
tp = tcp_timers(tp, index);
|
|
if (tp == NULL) {
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if there are any other timers that need to be run.
|
|
* While doing it, adjust the timer values wrt tcp_now.
|
|
*/
|
|
tp->tentry.mode = 0;
|
|
for (i = 0; i < TCPT_NTIMERS; ++i) {
|
|
if (tp->t_timer[i] != 0) {
|
|
diff = timer_diff(tp->tentry.timer_start,
|
|
tp->t_timer[i], tcp_now, 0);
|
|
if (diff <= 0) {
|
|
needtorun[i] = TRUE;
|
|
count++;
|
|
} else {
|
|
tp->t_timer[i] = diff;
|
|
needtorun[i] = FALSE;
|
|
if (lo_timer == 0 || diff < lo_timer) {
|
|
lo_timer = diff;
|
|
lo_index = i;
|
|
}
|
|
TCP_SET_TIMER_MODE(tp->tentry.mode, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
tp->tentry.timer_start = tcp_now;
|
|
tp->tentry.index = lo_index;
|
|
VERIFY(tp->tentry.index == TCPT_NONE || tp->tentry.mode > 0);
|
|
|
|
if (tp->tentry.index != TCPT_NONE) {
|
|
tp->tentry.runtime = tp->tentry.timer_start +
|
|
tp->t_timer[tp->tentry.index];
|
|
if (tp->tentry.runtime == 0) {
|
|
tp->tentry.runtime++;
|
|
}
|
|
}
|
|
|
|
if (count > 0) {
|
|
/* run any other timers outstanding at this time. */
|
|
for (i = 0; i < TCPT_NTIMERS; ++i) {
|
|
if (needtorun[i]) {
|
|
tp->t_timer[i] = 0;
|
|
tp = tcp_timers(tp, i);
|
|
if (tp == NULL) {
|
|
offset = 0;
|
|
*(te_mode) = 0;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
tcp_set_lotimer_index(tp);
|
|
}
|
|
|
|
if (tp->tentry.index < TCPT_NONE) {
|
|
offset = tp->t_timer[tp->tentry.index];
|
|
*(te_mode) = tp->tentry.mode;
|
|
}
|
|
|
|
done:
|
|
if (tp != NULL && tp->tentry.index == TCPT_NONE) {
|
|
tcp_remove_timer(tp);
|
|
offset = 0;
|
|
}
|
|
|
|
socket_unlock(so, 1);
|
|
return offset;
|
|
}
|
|
|
|
void
|
|
tcp_run_timerlist(void * arg1, void * arg2)
|
|
{
|
|
#pragma unused(arg1, arg2)
|
|
struct tcptimerentry *te, *next_te;
|
|
struct tcptimerlist *listp = &tcp_timer_list;
|
|
struct tcpcb *tp;
|
|
uint32_t next_timer = 0; /* offset of the next timer on the list */
|
|
u_int16_t te_mode = 0; /* modes of all active timers in a tcpcb */
|
|
u_int16_t list_mode = 0; /* cumulative of modes of all tcpcbs */
|
|
uint32_t active_count = 0;
|
|
|
|
calculate_tcp_clock();
|
|
|
|
lck_mtx_lock(&listp->mtx);
|
|
|
|
int32_t drift = tcp_now - listp->runtime;
|
|
if (drift <= 1) {
|
|
tcpstat.tcps_timer_drift_le_1_ms++;
|
|
} else if (drift <= 10) {
|
|
tcpstat.tcps_timer_drift_le_10_ms++;
|
|
} else if (drift <= 20) {
|
|
tcpstat.tcps_timer_drift_le_20_ms++;
|
|
} else if (drift <= 50) {
|
|
tcpstat.tcps_timer_drift_le_50_ms++;
|
|
} else if (drift <= 100) {
|
|
tcpstat.tcps_timer_drift_le_100_ms++;
|
|
} else if (drift <= 200) {
|
|
tcpstat.tcps_timer_drift_le_200_ms++;
|
|
} else if (drift <= 500) {
|
|
tcpstat.tcps_timer_drift_le_500_ms++;
|
|
} else if (drift <= 1000) {
|
|
tcpstat.tcps_timer_drift_le_1000_ms++;
|
|
} else {
|
|
tcpstat.tcps_timer_drift_gt_1000_ms++;
|
|
}
|
|
|
|
listp->running = TRUE;
|
|
|
|
LIST_FOREACH_SAFE(te, &listp->lhead, le, next_te) {
|
|
uint32_t offset = 0;
|
|
uint32_t runtime = te->runtime;
|
|
|
|
tp = TIMERENTRY_TO_TP(te);
|
|
|
|
/*
|
|
* An interface probe may need to happen before the previously scheduled runtime
|
|
*/
|
|
if (te->index < TCPT_NONE && TSTMP_GT(runtime, tcp_now) &&
|
|
!TCP_IF_STATE_CHANGED(tp, listp->probe_if_index)) {
|
|
offset = timer_diff(runtime, 0, tcp_now, 0);
|
|
if (next_timer == 0 || offset < next_timer) {
|
|
next_timer = offset;
|
|
}
|
|
list_mode |= te->mode;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Acquire an inp wantcnt on the inpcb so that the socket
|
|
* won't get detached even if tcp_close is called
|
|
*/
|
|
if (in_pcb_checkstate(tp->t_inpcb, WNT_ACQUIRE, 0)
|
|
== WNT_STOPUSING) {
|
|
/*
|
|
* Some how this pcb went into dead state while
|
|
* on the timer list, just take it off the list.
|
|
* Since the timer list entry pointers are
|
|
* protected by the timer list lock, we can
|
|
* do it here without the socket lock.
|
|
*/
|
|
if (TIMER_IS_ON_LIST(tp)) {
|
|
tp->t_flags &= ~(TF_TIMER_ONLIST);
|
|
LIST_REMOVE(&tp->tentry, le);
|
|
listp->entries--;
|
|
|
|
tp->tentry.le.le_next = NULL;
|
|
tp->tentry.le.le_prev = NULL;
|
|
}
|
|
continue;
|
|
}
|
|
active_count++;
|
|
|
|
/*
|
|
* Store the next timerentry pointer before releasing the
|
|
* list lock. If that entry has to be removed when we
|
|
* release the lock, this pointer will be updated to the
|
|
* element after that.
|
|
*/
|
|
listp->next_te = next_te;
|
|
|
|
VERIFY_NEXT_LINK(&tp->tentry, le);
|
|
VERIFY_PREV_LINK(&tp->tentry, le);
|
|
|
|
lck_mtx_unlock(&listp->mtx);
|
|
|
|
offset = tcp_run_conn_timer(tp, &te_mode,
|
|
listp->probe_if_index);
|
|
|
|
lck_mtx_lock(&listp->mtx);
|
|
|
|
next_te = listp->next_te;
|
|
listp->next_te = NULL;
|
|
|
|
if (offset > 0 && te_mode != 0) {
|
|
list_mode |= te_mode;
|
|
|
|
if (next_timer == 0 || offset < next_timer) {
|
|
next_timer = offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!LIST_EMPTY(&listp->lhead)) {
|
|
uint32_t next_mode = 0;
|
|
if ((list_mode & TCP_TIMERLIST_10MS_MODE) ||
|
|
(listp->pref_mode & TCP_TIMERLIST_10MS_MODE)) {
|
|
next_mode = TCP_TIMERLIST_10MS_MODE;
|
|
} else if ((list_mode & TCP_TIMERLIST_100MS_MODE) ||
|
|
(listp->pref_mode & TCP_TIMERLIST_100MS_MODE)) {
|
|
next_mode = TCP_TIMERLIST_100MS_MODE;
|
|
} else {
|
|
next_mode = TCP_TIMERLIST_500MS_MODE;
|
|
}
|
|
|
|
if (next_mode != TCP_TIMERLIST_500MS_MODE) {
|
|
listp->idleruns = 0;
|
|
} else {
|
|
/*
|
|
* the next required mode is slow mode, but if
|
|
* the last one was a faster mode and we did not
|
|
* have enough idle runs, repeat the last mode.
|
|
*
|
|
* We try to keep the timer list in fast mode for
|
|
* some idle time in expectation of new data.
|
|
*/
|
|
if (listp->mode != next_mode &&
|
|
listp->idleruns < timer_fastmode_idlemax) {
|
|
listp->idleruns++;
|
|
next_mode = listp->mode;
|
|
next_timer = TCP_TIMER_100MS_QUANTUM;
|
|
} else {
|
|
listp->idleruns = 0;
|
|
}
|
|
}
|
|
listp->mode = next_mode;
|
|
if (listp->pref_offset != 0) {
|
|
next_timer = min(listp->pref_offset, next_timer);
|
|
}
|
|
|
|
if (listp->mode == TCP_TIMERLIST_500MS_MODE) {
|
|
next_timer = max(next_timer,
|
|
TCP_TIMER_500MS_QUANTUM);
|
|
}
|
|
|
|
tcp_sched_timerlist(next_timer);
|
|
} else {
|
|
/*
|
|
* No need to reschedule this timer, but always run
|
|
* periodically at a much higher granularity.
|
|
*/
|
|
tcp_sched_timerlist(TCP_TIMERLIST_MAX_OFFSET);
|
|
}
|
|
|
|
listp->running = FALSE;
|
|
listp->pref_mode = 0;
|
|
listp->pref_offset = 0;
|
|
listp->probe_if_index = 0;
|
|
|
|
lck_mtx_unlock(&listp->mtx);
|
|
}
|
|
|
|
/*
|
|
* Function to check if the timerlist needs to be rescheduled to run this
|
|
* connection's timers correctly.
|
|
*/
|
|
void
|
|
tcp_sched_timers(struct tcpcb *tp)
|
|
{
|
|
struct tcptimerentry *te = &tp->tentry;
|
|
u_int16_t index = te->index;
|
|
u_int16_t mode = te->mode;
|
|
struct tcptimerlist *listp = &tcp_timer_list;
|
|
int32_t offset = 0;
|
|
boolean_t list_locked = FALSE;
|
|
|
|
if (tp->t_inpcb->inp_state == INPCB_STATE_DEAD) {
|
|
/* Just return without adding the dead pcb to the list */
|
|
if (TIMER_IS_ON_LIST(tp)) {
|
|
tcp_remove_timer(tp);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (index == TCPT_NONE) {
|
|
/* Nothing to run */
|
|
tcp_remove_timer(tp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* compute the offset at which the next timer for this connection
|
|
* has to run.
|
|
*/
|
|
offset = timer_diff(te->runtime, 0, tcp_now, 0);
|
|
if (offset <= 0) {
|
|
offset = 1;
|
|
tcp_timer_advanced++;
|
|
}
|
|
|
|
if (!TIMER_IS_ON_LIST(tp)) {
|
|
if (!list_locked) {
|
|
lck_mtx_lock(&listp->mtx);
|
|
list_locked = TRUE;
|
|
}
|
|
|
|
if (!TIMER_IS_ON_LIST(tp)) {
|
|
LIST_INSERT_HEAD(&listp->lhead, te, le);
|
|
tp->t_flags |= TF_TIMER_ONLIST;
|
|
|
|
listp->entries++;
|
|
if (listp->entries > listp->maxentries) {
|
|
listp->maxentries = listp->entries;
|
|
}
|
|
|
|
/* if the list is not scheduled, just schedule it */
|
|
if (!listp->scheduled) {
|
|
goto schedule;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Timer entry is currently on the list, check if the list needs
|
|
* to be rescheduled.
|
|
*/
|
|
if (need_to_resched_timerlist(te->runtime, mode)) {
|
|
tcp_resched_timerlist++;
|
|
|
|
if (!list_locked) {
|
|
lck_mtx_lock(&listp->mtx);
|
|
list_locked = TRUE;
|
|
}
|
|
|
|
VERIFY_NEXT_LINK(te, le);
|
|
VERIFY_PREV_LINK(te, le);
|
|
|
|
if (listp->running) {
|
|
listp->pref_mode |= mode;
|
|
if (listp->pref_offset == 0 ||
|
|
offset < listp->pref_offset) {
|
|
listp->pref_offset = offset;
|
|
}
|
|
} else {
|
|
/*
|
|
* The list could have got rescheduled while
|
|
* this thread was waiting for the lock
|
|
*/
|
|
if (listp->scheduled) {
|
|
int32_t diff;
|
|
diff = timer_diff(listp->runtime, 0,
|
|
tcp_now, offset);
|
|
if (diff <= 0) {
|
|
goto done;
|
|
} else {
|
|
goto schedule;
|
|
}
|
|
} else {
|
|
goto schedule;
|
|
}
|
|
}
|
|
}
|
|
goto done;
|
|
|
|
schedule:
|
|
/*
|
|
* Since a connection with timers is getting scheduled, the timer
|
|
* list moves from idle to active state and that is why idlegen is
|
|
* reset
|
|
*/
|
|
if (mode & TCP_TIMERLIST_10MS_MODE) {
|
|
listp->mode = TCP_TIMERLIST_10MS_MODE;
|
|
listp->idleruns = 0;
|
|
offset = min(offset, TCP_TIMER_10MS_QUANTUM);
|
|
} else if (mode & TCP_TIMERLIST_100MS_MODE) {
|
|
if (listp->mode > TCP_TIMERLIST_100MS_MODE) {
|
|
listp->mode = TCP_TIMERLIST_100MS_MODE;
|
|
}
|
|
listp->idleruns = 0;
|
|
offset = min(offset, TCP_TIMER_100MS_QUANTUM);
|
|
}
|
|
tcp_sched_timerlist(offset);
|
|
|
|
done:
|
|
if (list_locked) {
|
|
lck_mtx_unlock(&listp->mtx);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static inline void
|
|
tcp_set_lotimer_index(struct tcpcb *tp)
|
|
{
|
|
uint16_t i, lo_index = TCPT_NONE, mode = 0;
|
|
uint32_t lo_timer = 0;
|
|
for (i = 0; i < TCPT_NTIMERS; ++i) {
|
|
if (tp->t_timer[i] != 0) {
|
|
TCP_SET_TIMER_MODE(mode, i);
|
|
if (lo_timer == 0 || tp->t_timer[i] < lo_timer) {
|
|
lo_timer = tp->t_timer[i];
|
|
lo_index = i;
|
|
}
|
|
}
|
|
}
|
|
tp->tentry.index = lo_index;
|
|
tp->tentry.mode = mode;
|
|
VERIFY(tp->tentry.index == TCPT_NONE || tp->tentry.mode > 0);
|
|
|
|
if (tp->tentry.index != TCPT_NONE) {
|
|
tp->tentry.runtime = tp->tentry.timer_start
|
|
+ tp->t_timer[tp->tentry.index];
|
|
if (tp->tentry.runtime == 0) {
|
|
tp->tentry.runtime++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
tcp_check_timer_state(struct tcpcb *tp)
|
|
{
|
|
socket_lock_assert_owned(tp->t_inpcb->inp_socket);
|
|
|
|
if (tp->t_inpcb->inp_flags2 & INP2_TIMEWAIT) {
|
|
return;
|
|
}
|
|
|
|
tcp_set_lotimer_index(tp);
|
|
|
|
tcp_sched_timers(tp);
|
|
return;
|
|
}
|
|
|
|
static inline void
|
|
tcp_cumulative_stat(u_int32_t cur, u_int32_t *prev, u_int32_t *dest)
|
|
{
|
|
/* handle wrap around */
|
|
int32_t diff = (int32_t) (cur - *prev);
|
|
if (diff > 0) {
|
|
*dest = diff;
|
|
} else {
|
|
*dest = 0;
|
|
}
|
|
*prev = cur;
|
|
return;
|
|
}
|
|
|
|
static inline void
|
|
tcp_cumulative_stat64(u_int64_t cur, u_int64_t *prev, u_int64_t *dest)
|
|
{
|
|
/* handle wrap around */
|
|
int64_t diff = (int64_t) (cur - *prev);
|
|
if (diff > 0) {
|
|
*dest = diff;
|
|
} else {
|
|
*dest = 0;
|
|
}
|
|
*prev = cur;
|
|
return;
|
|
}
|
|
|
|
__private_extern__ void
|
|
tcp_report_stats(void)
|
|
{
|
|
struct nstat_sysinfo_data data;
|
|
struct sockaddr_in dst;
|
|
struct sockaddr_in6 dst6;
|
|
struct rtentry *rt = NULL;
|
|
static struct tcp_last_report_stats prev;
|
|
u_int64_t var, uptime;
|
|
|
|
#define stat data.u.tcp_stats
|
|
if (((uptime = net_uptime()) - tcp_last_report_time) <
|
|
tcp_report_stats_interval) {
|
|
return;
|
|
}
|
|
|
|
tcp_last_report_time = uptime;
|
|
|
|
bzero(&data, sizeof(data));
|
|
data.flags = NSTAT_SYSINFO_TCP_STATS;
|
|
|
|
SOCKADDR_ZERO(&dst, sizeof(dst));
|
|
dst.sin_len = sizeof(dst);
|
|
dst.sin_family = AF_INET;
|
|
|
|
/* ipv4 avg rtt */
|
|
lck_mtx_lock(rnh_lock);
|
|
rt = rt_lookup(TRUE, SA(&dst), NULL,
|
|
rt_tables[AF_INET], IFSCOPE_NONE);
|
|
lck_mtx_unlock(rnh_lock);
|
|
if (rt != NULL) {
|
|
RT_LOCK(rt);
|
|
if (rt_primary_default(rt, rt_key(rt)) &&
|
|
rt->rt_stats != NULL) {
|
|
stat.ipv4_avgrtt = rt->rt_stats->nstat_avg_rtt;
|
|
}
|
|
RT_UNLOCK(rt);
|
|
rtfree(rt);
|
|
rt = NULL;
|
|
}
|
|
|
|
/* ipv6 avg rtt */
|
|
SOCKADDR_ZERO(&dst6, sizeof(dst6));
|
|
dst6.sin6_len = sizeof(dst6);
|
|
dst6.sin6_family = AF_INET6;
|
|
|
|
lck_mtx_lock(rnh_lock);
|
|
rt = rt_lookup(TRUE, SA(&dst6), NULL,
|
|
rt_tables[AF_INET6], IFSCOPE_NONE);
|
|
lck_mtx_unlock(rnh_lock);
|
|
if (rt != NULL) {
|
|
RT_LOCK(rt);
|
|
if (rt_primary_default(rt, rt_key(rt)) &&
|
|
rt->rt_stats != NULL) {
|
|
stat.ipv6_avgrtt = rt->rt_stats->nstat_avg_rtt;
|
|
}
|
|
RT_UNLOCK(rt);
|
|
rtfree(rt);
|
|
rt = NULL;
|
|
}
|
|
|
|
/* send packet loss rate, shift by 10 for precision */
|
|
if (tcpstat.tcps_sndpack > 0 && tcpstat.tcps_sndrexmitpack > 0) {
|
|
var = tcpstat.tcps_sndrexmitpack << 10;
|
|
stat.send_plr = (uint32_t)((var * 100) / tcpstat.tcps_sndpack);
|
|
}
|
|
|
|
/* recv packet loss rate, shift by 10 for precision */
|
|
if (tcpstat.tcps_rcvpack > 0 && tcpstat.tcps_recovered_pkts > 0) {
|
|
var = tcpstat.tcps_recovered_pkts << 10;
|
|
stat.recv_plr = (uint32_t)((var * 100) / tcpstat.tcps_rcvpack);
|
|
}
|
|
|
|
/* RTO after tail loss, shift by 10 for precision */
|
|
if (tcpstat.tcps_sndrexmitpack > 0
|
|
&& tcpstat.tcps_tailloss_rto > 0) {
|
|
var = tcpstat.tcps_tailloss_rto << 10;
|
|
stat.send_tlrto_rate =
|
|
(uint32_t)((var * 100) / tcpstat.tcps_sndrexmitpack);
|
|
}
|
|
|
|
/* packet reordering */
|
|
if (tcpstat.tcps_sndpack > 0 && tcpstat.tcps_reordered_pkts > 0) {
|
|
var = tcpstat.tcps_reordered_pkts << 10;
|
|
stat.send_reorder_rate =
|
|
(uint32_t)((var * 100) / tcpstat.tcps_sndpack);
|
|
}
|
|
|
|
if (tcp_ecn_outbound == 1) {
|
|
stat.ecn_client_enabled = 1;
|
|
}
|
|
if (tcp_ecn_inbound == 1) {
|
|
stat.ecn_server_enabled = 1;
|
|
}
|
|
tcp_cumulative_stat(tcpstat.tcps_connattempt,
|
|
&prev.tcps_connattempt, &stat.connection_attempts);
|
|
tcp_cumulative_stat(tcpstat.tcps_accepts,
|
|
&prev.tcps_accepts, &stat.connection_accepts);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_client_setup,
|
|
&prev.tcps_ecn_client_setup, &stat.ecn_client_setup);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_server_setup,
|
|
&prev.tcps_ecn_server_setup, &stat.ecn_server_setup);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_client_success,
|
|
&prev.tcps_ecn_client_success, &stat.ecn_client_success);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_server_success,
|
|
&prev.tcps_ecn_server_success, &stat.ecn_server_success);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_not_supported,
|
|
&prev.tcps_ecn_not_supported, &stat.ecn_not_supported);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_lost_syn,
|
|
&prev.tcps_ecn_lost_syn, &stat.ecn_lost_syn);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_lost_synack,
|
|
&prev.tcps_ecn_lost_synack, &stat.ecn_lost_synack);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_recv_ce,
|
|
&prev.tcps_ecn_recv_ce, &stat.ecn_recv_ce);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_recv_ece,
|
|
&prev.tcps_ecn_recv_ece, &stat.ecn_recv_ece);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_recv_ece,
|
|
&prev.tcps_ecn_recv_ece, &stat.ecn_recv_ece);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_sent_ece,
|
|
&prev.tcps_ecn_sent_ece, &stat.ecn_sent_ece);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_sent_ece,
|
|
&prev.tcps_ecn_sent_ece, &stat.ecn_sent_ece);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_conn_recv_ce,
|
|
&prev.tcps_ecn_conn_recv_ce, &stat.ecn_conn_recv_ce);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_conn_recv_ece,
|
|
&prev.tcps_ecn_conn_recv_ece, &stat.ecn_conn_recv_ece);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_conn_plnoce,
|
|
&prev.tcps_ecn_conn_plnoce, &stat.ecn_conn_plnoce);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_conn_pl_ce,
|
|
&prev.tcps_ecn_conn_pl_ce, &stat.ecn_conn_pl_ce);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_conn_nopl_ce,
|
|
&prev.tcps_ecn_conn_nopl_ce, &stat.ecn_conn_nopl_ce);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_fallback_synloss,
|
|
&prev.tcps_ecn_fallback_synloss, &stat.ecn_fallback_synloss);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_fallback_reorder,
|
|
&prev.tcps_ecn_fallback_reorder, &stat.ecn_fallback_reorder);
|
|
tcp_cumulative_stat(tcpstat.tcps_ecn_fallback_ce,
|
|
&prev.tcps_ecn_fallback_ce, &stat.ecn_fallback_ce);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_syn_data_rcv,
|
|
&prev.tcps_tfo_syn_data_rcv, &stat.tfo_syn_data_rcv);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_cookie_req_rcv,
|
|
&prev.tcps_tfo_cookie_req_rcv, &stat.tfo_cookie_req_rcv);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_cookie_sent,
|
|
&prev.tcps_tfo_cookie_sent, &stat.tfo_cookie_sent);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_cookie_invalid,
|
|
&prev.tcps_tfo_cookie_invalid, &stat.tfo_cookie_invalid);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_cookie_req,
|
|
&prev.tcps_tfo_cookie_req, &stat.tfo_cookie_req);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_cookie_rcv,
|
|
&prev.tcps_tfo_cookie_rcv, &stat.tfo_cookie_rcv);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_syn_data_sent,
|
|
&prev.tcps_tfo_syn_data_sent, &stat.tfo_syn_data_sent);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_syn_data_acked,
|
|
&prev.tcps_tfo_syn_data_acked, &stat.tfo_syn_data_acked);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_syn_loss,
|
|
&prev.tcps_tfo_syn_loss, &stat.tfo_syn_loss);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_blackhole,
|
|
&prev.tcps_tfo_blackhole, &stat.tfo_blackhole);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_cookie_wrong,
|
|
&prev.tcps_tfo_cookie_wrong, &stat.tfo_cookie_wrong);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_no_cookie_rcv,
|
|
&prev.tcps_tfo_no_cookie_rcv, &stat.tfo_no_cookie_rcv);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_heuristics_disable,
|
|
&prev.tcps_tfo_heuristics_disable, &stat.tfo_heuristics_disable);
|
|
tcp_cumulative_stat(tcpstat.tcps_tfo_sndblackhole,
|
|
&prev.tcps_tfo_sndblackhole, &stat.tfo_sndblackhole);
|
|
|
|
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_handover_attempt,
|
|
&prev.tcps_mptcp_handover_attempt, &stat.mptcp_handover_attempt);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_interactive_attempt,
|
|
&prev.tcps_mptcp_interactive_attempt, &stat.mptcp_interactive_attempt);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_aggregate_attempt,
|
|
&prev.tcps_mptcp_aggregate_attempt, &stat.mptcp_aggregate_attempt);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_fp_handover_attempt,
|
|
&prev.tcps_mptcp_fp_handover_attempt, &stat.mptcp_fp_handover_attempt);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_fp_interactive_attempt,
|
|
&prev.tcps_mptcp_fp_interactive_attempt, &stat.mptcp_fp_interactive_attempt);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_fp_aggregate_attempt,
|
|
&prev.tcps_mptcp_fp_aggregate_attempt, &stat.mptcp_fp_aggregate_attempt);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_heuristic_fallback,
|
|
&prev.tcps_mptcp_heuristic_fallback, &stat.mptcp_heuristic_fallback);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_fp_heuristic_fallback,
|
|
&prev.tcps_mptcp_fp_heuristic_fallback, &stat.mptcp_fp_heuristic_fallback);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_handover_success_wifi,
|
|
&prev.tcps_mptcp_handover_success_wifi, &stat.mptcp_handover_success_wifi);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_handover_success_cell,
|
|
&prev.tcps_mptcp_handover_success_cell, &stat.mptcp_handover_success_cell);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_interactive_success,
|
|
&prev.tcps_mptcp_interactive_success, &stat.mptcp_interactive_success);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_aggregate_success,
|
|
&prev.tcps_mptcp_aggregate_success, &stat.mptcp_aggregate_success);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_fp_handover_success_wifi,
|
|
&prev.tcps_mptcp_fp_handover_success_wifi, &stat.mptcp_fp_handover_success_wifi);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_fp_handover_success_cell,
|
|
&prev.tcps_mptcp_fp_handover_success_cell, &stat.mptcp_fp_handover_success_cell);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_fp_interactive_success,
|
|
&prev.tcps_mptcp_fp_interactive_success, &stat.mptcp_fp_interactive_success);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_fp_aggregate_success,
|
|
&prev.tcps_mptcp_fp_aggregate_success, &stat.mptcp_fp_aggregate_success);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_handover_cell_from_wifi,
|
|
&prev.tcps_mptcp_handover_cell_from_wifi, &stat.mptcp_handover_cell_from_wifi);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_handover_wifi_from_cell,
|
|
&prev.tcps_mptcp_handover_wifi_from_cell, &stat.mptcp_handover_wifi_from_cell);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_interactive_cell_from_wifi,
|
|
&prev.tcps_mptcp_interactive_cell_from_wifi, &stat.mptcp_interactive_cell_from_wifi);
|
|
tcp_cumulative_stat64(tcpstat.tcps_mptcp_handover_cell_bytes,
|
|
&prev.tcps_mptcp_handover_cell_bytes, &stat.mptcp_handover_cell_bytes);
|
|
tcp_cumulative_stat64(tcpstat.tcps_mptcp_interactive_cell_bytes,
|
|
&prev.tcps_mptcp_interactive_cell_bytes, &stat.mptcp_interactive_cell_bytes);
|
|
tcp_cumulative_stat64(tcpstat.tcps_mptcp_aggregate_cell_bytes,
|
|
&prev.tcps_mptcp_aggregate_cell_bytes, &stat.mptcp_aggregate_cell_bytes);
|
|
tcp_cumulative_stat64(tcpstat.tcps_mptcp_handover_all_bytes,
|
|
&prev.tcps_mptcp_handover_all_bytes, &stat.mptcp_handover_all_bytes);
|
|
tcp_cumulative_stat64(tcpstat.tcps_mptcp_interactive_all_bytes,
|
|
&prev.tcps_mptcp_interactive_all_bytes, &stat.mptcp_interactive_all_bytes);
|
|
tcp_cumulative_stat64(tcpstat.tcps_mptcp_aggregate_all_bytes,
|
|
&prev.tcps_mptcp_aggregate_all_bytes, &stat.mptcp_aggregate_all_bytes);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_back_to_wifi,
|
|
&prev.tcps_mptcp_back_to_wifi, &stat.mptcp_back_to_wifi);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_wifi_proxy,
|
|
&prev.tcps_mptcp_wifi_proxy, &stat.mptcp_wifi_proxy);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_cell_proxy,
|
|
&prev.tcps_mptcp_cell_proxy, &stat.mptcp_cell_proxy);
|
|
tcp_cumulative_stat(tcpstat.tcps_mptcp_triggered_cell,
|
|
&prev.tcps_mptcp_triggered_cell, &stat.mptcp_triggered_cell);
|
|
|
|
nstat_sysinfo_send_data(&data);
|
|
|
|
#undef stat
|
|
}
|
|
|
|
void
|
|
tcp_interface_send_probe(u_int16_t probe_if_index)
|
|
{
|
|
int32_t offset = 0;
|
|
struct tcptimerlist *listp = &tcp_timer_list;
|
|
|
|
/* Make sure TCP clock is up to date */
|
|
calculate_tcp_clock();
|
|
|
|
lck_mtx_lock(&listp->mtx);
|
|
if (listp->probe_if_index > 0 && listp->probe_if_index != probe_if_index) {
|
|
tcpstat.tcps_probe_if_conflict++;
|
|
os_log(OS_LOG_DEFAULT,
|
|
"%s: probe_if_index %u conflicts with %u, tcps_probe_if_conflict %u\n",
|
|
__func__, probe_if_index, listp->probe_if_index,
|
|
tcpstat.tcps_probe_if_conflict);
|
|
goto done;
|
|
}
|
|
|
|
listp->probe_if_index = probe_if_index;
|
|
if (listp->running) {
|
|
os_log(OS_LOG_DEFAULT, "%s: timer list already running for if_index %u\n",
|
|
__func__, probe_if_index);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Reschedule the timerlist to run within the next 10ms, which is
|
|
* the fastest that we can do.
|
|
*/
|
|
offset = TCP_TIMER_10MS_QUANTUM;
|
|
if (listp->scheduled) {
|
|
int32_t diff;
|
|
diff = timer_diff(listp->runtime, 0, tcp_now, offset);
|
|
if (diff <= 0) {
|
|
/* The timer will fire sooner than what's needed */
|
|
os_log(OS_LOG_DEFAULT,
|
|
"%s: timer will fire sooner than needed for if_index %u\n",
|
|
__func__, probe_if_index);
|
|
goto done;
|
|
}
|
|
}
|
|
listp->mode = TCP_TIMERLIST_10MS_MODE;
|
|
listp->idleruns = 0;
|
|
|
|
tcp_sched_timerlist(offset);
|
|
|
|
done:
|
|
lck_mtx_unlock(&listp->mtx);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Enable read probes on this connection, if:
|
|
* - it is in established state
|
|
* - doesn't have any data outstanding
|
|
* - the outgoing ifp matches
|
|
* - we have not already sent any read probes
|
|
*/
|
|
static void
|
|
tcp_enable_read_probe(struct tcpcb *tp, struct ifnet *ifp)
|
|
{
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
|
tp->snd_max == tp->snd_una &&
|
|
tp->t_inpcb->inp_last_outifp == ifp &&
|
|
!(tp->t_flagsext & TF_DETECT_READSTALL) &&
|
|
tp->t_rtimo_probes == 0) {
|
|
tp->t_flagsext |= TF_DETECT_READSTALL;
|
|
tp->t_rtimo_probes = 0;
|
|
tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
|
|
TCP_TIMER_10MS_QUANTUM);
|
|
if (tp->tentry.index == TCPT_NONE) {
|
|
tp->tentry.index = TCPT_KEEP;
|
|
tp->tentry.runtime = tcp_now +
|
|
TCP_TIMER_10MS_QUANTUM;
|
|
} else {
|
|
int32_t diff = 0;
|
|
|
|
/* Reset runtime to be in next 10ms */
|
|
diff = timer_diff(tp->tentry.runtime, 0,
|
|
tcp_now, TCP_TIMER_10MS_QUANTUM);
|
|
if (diff > 0) {
|
|
tp->tentry.index = TCPT_KEEP;
|
|
tp->tentry.runtime = tcp_now +
|
|
TCP_TIMER_10MS_QUANTUM;
|
|
if (tp->tentry.runtime == 0) {
|
|
tp->tentry.runtime++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disable read probe and reset the keep alive timer
|
|
*/
|
|
static void
|
|
tcp_disable_read_probe(struct tcpcb *tp)
|
|
{
|
|
if (tp->t_adaptive_rtimo == 0 &&
|
|
((tp->t_flagsext & TF_DETECT_READSTALL) ||
|
|
tp->t_rtimo_probes > 0)) {
|
|
tcp_keepalive_reset(tp);
|
|
|
|
if (tp->t_mpsub) {
|
|
mptcp_reset_keepalive(tp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reschedule the tcp timerlist in the next 10ms to re-enable read/write
|
|
* probes on connections going over a particular interface.
|
|
*/
|
|
void
|
|
tcp_probe_connectivity(struct ifnet *ifp, u_int32_t enable)
|
|
{
|
|
int32_t offset;
|
|
struct tcptimerlist *listp = &tcp_timer_list;
|
|
struct inpcbinfo *pcbinfo = &tcbinfo;
|
|
struct inpcb *inp, *nxt;
|
|
|
|
if (ifp == NULL) {
|
|
return;
|
|
}
|
|
|
|
/* update clock */
|
|
calculate_tcp_clock();
|
|
|
|
/*
|
|
* Enable keep alive timer on all connections that are
|
|
* active/established on this interface.
|
|
*/
|
|
lck_rw_lock_shared(&pcbinfo->ipi_lock);
|
|
|
|
LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, nxt) {
|
|
struct tcpcb *tp = NULL;
|
|
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) ==
|
|
WNT_STOPUSING) {
|
|
continue;
|
|
}
|
|
|
|
/* Acquire lock to look at the state of the connection */
|
|
socket_lock(inp->inp_socket, 1);
|
|
|
|
/* Release the want count */
|
|
if (inp->inp_ppcb == NULL ||
|
|
(in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING)) {
|
|
socket_unlock(inp->inp_socket, 1);
|
|
continue;
|
|
}
|
|
tp = intotcpcb(inp);
|
|
if (enable) {
|
|
tcp_enable_read_probe(tp, ifp);
|
|
} else {
|
|
tcp_disable_read_probe(tp);
|
|
}
|
|
|
|
socket_unlock(inp->inp_socket, 1);
|
|
}
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
|
|
lck_mtx_lock(&listp->mtx);
|
|
if (listp->running) {
|
|
listp->pref_mode |= TCP_TIMERLIST_10MS_MODE;
|
|
goto done;
|
|
}
|
|
|
|
/* Reschedule within the next 10ms */
|
|
offset = TCP_TIMER_10MS_QUANTUM;
|
|
if (listp->scheduled) {
|
|
int32_t diff;
|
|
diff = timer_diff(listp->runtime, 0, tcp_now, offset);
|
|
if (diff <= 0) {
|
|
/* The timer will fire sooner than what's needed */
|
|
goto done;
|
|
}
|
|
}
|
|
listp->mode = TCP_TIMERLIST_10MS_MODE;
|
|
listp->idleruns = 0;
|
|
|
|
tcp_sched_timerlist(offset);
|
|
done:
|
|
lck_mtx_unlock(&listp->mtx);
|
|
return;
|
|
}
|
|
|
|
inline void
|
|
tcp_update_mss_core(struct tcpcb *tp, struct ifnet *ifp)
|
|
{
|
|
struct if_cellular_status_v1 *ifsr;
|
|
u_int32_t optlen;
|
|
ifsr = &ifp->if_link_status->ifsr_u.ifsr_cell.if_cell_u.if_status_v1;
|
|
if (ifsr->valid_bitmask & IF_CELL_UL_MSS_RECOMMENDED_VALID) {
|
|
optlen = tp->t_maxopd - tp->t_maxseg;
|
|
|
|
if (ifsr->mss_recommended ==
|
|
IF_CELL_UL_MSS_RECOMMENDED_NONE &&
|
|
tp->t_cached_maxopd > 0 &&
|
|
tp->t_maxopd < tp->t_cached_maxopd) {
|
|
tp->t_maxopd = tp->t_cached_maxopd;
|
|
tcpstat.tcps_mss_to_default++;
|
|
} else if (ifsr->mss_recommended ==
|
|
IF_CELL_UL_MSS_RECOMMENDED_MEDIUM &&
|
|
tp->t_maxopd > tcp_mss_rec_medium) {
|
|
tp->t_cached_maxopd = tp->t_maxopd;
|
|
tp->t_maxopd = tcp_mss_rec_medium;
|
|
tcpstat.tcps_mss_to_medium++;
|
|
} else if (ifsr->mss_recommended ==
|
|
IF_CELL_UL_MSS_RECOMMENDED_LOW &&
|
|
tp->t_maxopd > tcp_mss_rec_low) {
|
|
tp->t_cached_maxopd = tp->t_maxopd;
|
|
tp->t_maxopd = tcp_mss_rec_low;
|
|
tcpstat.tcps_mss_to_low++;
|
|
}
|
|
tp->t_maxseg = tp->t_maxopd - optlen;
|
|
|
|
/*
|
|
* clear the cached value if it is same as the current
|
|
*/
|
|
if (tp->t_maxopd == tp->t_cached_maxopd) {
|
|
tp->t_cached_maxopd = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
tcp_update_mss_locked(struct socket *so, struct ifnet *ifp)
|
|
{
|
|
struct inpcb *inp = sotoinpcb(so);
|
|
struct tcpcb *tp = intotcpcb(inp);
|
|
|
|
if (ifp == NULL && (ifp = inp->inp_last_outifp) == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (!IFNET_IS_CELLULAR(ifp)) {
|
|
/*
|
|
* This optimization is implemented for cellular
|
|
* networks only
|
|
*/
|
|
return;
|
|
}
|
|
if (tp->t_state <= TCPS_CLOSE_WAIT) {
|
|
/*
|
|
* If the connection is currently doing or has done PMTU
|
|
* blackhole detection, do not change the MSS
|
|
*/
|
|
if (tp->t_flags & TF_BLACKHOLE) {
|
|
return;
|
|
}
|
|
if (ifp->if_link_status == NULL) {
|
|
return;
|
|
}
|
|
tcp_update_mss_core(tp, ifp);
|
|
}
|
|
}
|
|
|
|
void
|
|
tcp_itimer(struct inpcbinfo *ipi)
|
|
{
|
|
struct inpcb *inp, *nxt;
|
|
|
|
if (lck_rw_try_lock_exclusive(&ipi->ipi_lock) == FALSE) {
|
|
if (tcp_itimer_done == TRUE) {
|
|
tcp_itimer_done = FALSE;
|
|
os_atomic_inc(&ipi->ipi_timer_req.intimer_fast, relaxed);
|
|
return;
|
|
}
|
|
/* Upgrade failed, lost lock now take it again exclusive */
|
|
lck_rw_lock_exclusive(&ipi->ipi_lock);
|
|
}
|
|
tcp_itimer_done = TRUE;
|
|
|
|
LIST_FOREACH_SAFE(inp, &tcb, inp_list, nxt) {
|
|
struct socket *so;
|
|
struct ifnet *ifp;
|
|
|
|
if (inp->inp_ppcb == NULL ||
|
|
in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
|
|
continue;
|
|
}
|
|
so = inp->inp_socket;
|
|
ifp = inp->inp_last_outifp;
|
|
socket_lock(so, 1);
|
|
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
|
|
socket_unlock(so, 1);
|
|
continue;
|
|
}
|
|
so_check_extended_bk_idle_time(so);
|
|
if (ipi->ipi_flags & INPCBINFO_UPDATE_MSS) {
|
|
tcp_update_mss_locked(so, NULL);
|
|
}
|
|
socket_unlock(so, 1);
|
|
|
|
/*
|
|
* Defunct all system-initiated background sockets if the
|
|
* socket is using the cellular interface and the interface
|
|
* has its LQM set to abort.
|
|
*/
|
|
if ((ipi->ipi_flags & INPCBINFO_HANDLE_LQM_ABORT) &&
|
|
IS_SO_TC_BACKGROUNDSYSTEM(so->so_traffic_class) &&
|
|
ifp != NULL && IFNET_IS_CELLULAR(ifp) &&
|
|
(ifp->if_interface_state.valid_bitmask &
|
|
IF_INTERFACE_STATE_LQM_STATE_VALID) &&
|
|
ifp->if_interface_state.lqm_state ==
|
|
IFNET_LQM_THRESH_ABORT) {
|
|
socket_defunct(current_proc(), so,
|
|
SHUTDOWN_SOCKET_LEVEL_DISCONNECT_ALL);
|
|
}
|
|
}
|
|
|
|
ipi->ipi_flags &= ~(INPCBINFO_UPDATE_MSS | INPCBINFO_HANDLE_LQM_ABORT);
|
|
lck_rw_done(&ipi->ipi_lock);
|
|
}
|