gems-kernel/source/THIRDPARTY/xnu/bsd/netinet/tcp_usrreq.c
2024-06-03 11:29:39 -05:00

3324 lines
85 KiB
C

/*
* Copyright (c) 2000-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* From: @(#)tcp_usrreq.c 8.2 (Berkeley) 1/3/94
* $FreeBSD: src/sys/netinet/tcp_usrreq.c,v 1.51.2.9 2001/08/22 00:59:12 silby Exp $
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/priv.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/route.h>
#include <net/ntstat.h>
#include <net/content_filter.h>
#include <net/multi_layer_pkt_log.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip6.h>
#include <netinet/in_pcb.h>
#include <netinet6/in6_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet6/ip6_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcpip.h>
#include <netinet/tcp_cc.h>
#include <netinet/tcp_log.h>
#include <mach/sdt.h>
#if TCPDEBUG
#include <netinet/tcp_debug.h>
#endif
#if MPTCP
#include <netinet/mptcp_var.h>
#endif /* MPTCP */
#if IPSEC
#include <netinet6/ipsec.h>
#endif /*IPSEC*/
#if FLOW_DIVERT
#include <netinet/flow_divert.h>
#endif /* FLOW_DIVERT */
#if SKYWALK
#include <libkern/sysctl.h>
#include <skywalk/os_stats_private.h>
#endif /* SKYWALK */
#include <net/sockaddr_utils.h>
extern char *proc_name_address(void *p);
errno_t tcp_fill_info_for_info_tuple(struct info_tuple *, struct tcp_info *);
static int tcp_sysctl_info(struct sysctl_oid *, void *, int, struct sysctl_req *);
static void tcp_connection_fill_info(struct tcpcb *tp,
struct tcp_connection_info *tci);
static int tcp_get_mpkl_send_info(struct mbuf *, struct so_mpkl_send_info *);
/*
* TCP protocol interface to socket abstraction.
*/
static int tcp_attach(struct socket *, struct proc *);
static int tcp_connect(struct tcpcb *, struct sockaddr *, struct proc *);
static int tcp6_connect(struct tcpcb *, struct sockaddr *, struct proc *);
static int tcp6_usr_connect(struct socket *, struct sockaddr *,
struct proc *);
static struct tcpcb *tcp_disconnect(struct tcpcb *);
static struct tcpcb *tcp_usrclosed(struct tcpcb *);
extern void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb);
#if TCPDEBUG
#define TCPDEBUG0 int ostate = 0
#define TCPDEBUG1() ostate = tp ? tp->t_state : 0
#define TCPDEBUG2(req) if (tp && (so->so_options & SO_DEBUG)) \
tcp_trace(TA_USER, ostate, tp, 0, 0, req)
#else
#define TCPDEBUG0
#define TCPDEBUG1()
#define TCPDEBUG2(req)
#endif
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, info,
CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY | CTLFLAG_KERN,
0, 0, tcp_sysctl_info, "S", "TCP info per tuple");
int faster_mcopy = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, faster_mcopy,
CTLFLAG_RW | CTLFLAG_LOCKED, &faster_mcopy, 1,
"Speed up m_copym");
/*
* TCP attaches to socket via pru_attach(), reserving space,
* and an internet control block.
*
* Returns: 0 Success
* EISCONN
* tcp_attach:ENOBUFS
* tcp_attach:ENOMEM
* tcp_attach:??? [IPSEC specific]
*/
static int
tcp_usr_attach(struct socket *so, __unused int proto, struct proc *p)
{
int error;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = 0;
TCPDEBUG0;
TCPDEBUG1();
if (inp) {
error = EISCONN;
goto out;
}
error = tcp_attach(so, p);
if (error) {
goto out;
}
if ((so->so_options & SO_LINGER) && so->so_linger == 0) {
so->so_linger = (short)(TCP_LINGERTIME * hz);
}
if (faster_mcopy) {
so->so_snd.sb_flags |= SB_SENDHEAD;
so->so_snd.sb_sendhead = NULL;
so->so_snd.sb_sendoff = 0;
}
tp = sototcpcb(so);
out:
TCPDEBUG2(PRU_ATTACH);
return error;
}
/*
* pru_detach() detaches the TCP protocol from the socket.
* If the protocol state is non-embryonic, then can't
* do this directly: have to initiate a pru_disconnect(),
* which may finish later; embryonic TCB's can just
* be discarded here.
*/
static int
tcp_usr_detach(struct socket *so)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
TCPDEBUG0;
if (inp == 0 || (inp->inp_state == INPCB_STATE_DEAD)) {
return EINVAL; /* XXX */
}
socket_lock_assert_owned(so);
tp = intotcpcb(inp);
/* In case we got disconnected from the peer */
if (tp == NULL) {
goto out;
}
TCPDEBUG1();
calculate_tcp_clock();
tp = tcp_disconnect(tp);
out:
TCPDEBUG2(PRU_DETACH);
return error;
}
#if NECP
#define COMMON_START_ALLOW_FLOW_DIVERT(allow) TCPDEBUG0; \
do { \
if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) \
return (EINVAL); \
if (!(allow) && necp_socket_should_use_flow_divert(inp)) \
return (EPROTOTYPE); \
tp = intotcpcb(inp); \
TCPDEBUG1(); \
calculate_tcp_clock(); \
} while (0)
#else /* NECP */
#define COMMON_START_ALLOW_FLOW_DIVERT(allow) TCPDEBUG0; \
do { \
if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) \
return (EINVAL); \
tp = intotcpcb(inp); \
TCPDEBUG1(); \
calculate_tcp_clock(); \
} while (0)
#endif /* !NECP */
#define COMMON_START() COMMON_START_ALLOW_FLOW_DIVERT(false)
#define COMMON_END(req) out: TCPDEBUG2(req); return error; goto out
/*
* Give the socket an address.
*
* Returns: 0 Success
* EINVAL Invalid argument [COMMON_START]
* EAFNOSUPPORT Address family not supported
* in_pcbbind:EADDRNOTAVAIL Address not available.
* in_pcbbind:EINVAL Invalid argument
* in_pcbbind:EAFNOSUPPORT Address family not supported [notdef]
* in_pcbbind:EACCES Permission denied
* in_pcbbind:EADDRINUSE Address in use
* in_pcbbind:EAGAIN Resource unavailable, try again
* in_pcbbind:EPERM Operation not permitted
*/
static int
tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
struct sockaddr_in *sinp;
COMMON_START_ALLOW_FLOW_DIVERT(true);
if (nam->sa_family != 0 && nam->sa_family != AF_INET) {
error = EAFNOSUPPORT;
goto out;
}
/*
* Must check for multicast and broadcast addresses and disallow binding
* to them.
*/
sinp = SIN(nam);
if (sinp->sin_family == AF_INET &&
(IN_MULTICAST(ntohl(sinp->sin_addr.s_addr)) ||
sinp->sin_addr.s_addr == INADDR_BROADCAST)) {
error = EAFNOSUPPORT;
goto out;
}
error = in_pcbbind(inp, nam, p);
if (error) {
goto out;
}
#if NECP
/* Update NECP client with bind result if not in middle of connect */
if ((inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS) &&
!uuid_is_null(inp->necp_client_uuid)) {
socket_unlock(so, 0);
necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp);
socket_lock(so, 0);
}
#endif /* NECP */
COMMON_END(PRU_BIND);
}
static int
tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
const uint8_t old_flags = inp->inp_vflag;
struct tcpcb *tp;
struct sockaddr_in6 *sin6p;
COMMON_START_ALLOW_FLOW_DIVERT(true);
if (nam->sa_family != 0 && nam->sa_family != AF_INET6) {
error = EAFNOSUPPORT;
goto out;
}
/*
* Must check for multicast and broadcast addresses and disallow binding
* to them.
*/
sin6p = SIN6(nam);
if (sin6p->sin6_family == AF_INET6 &&
(IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr) ||
((IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr) ||
IN6_IS_ADDR_V4COMPAT(&sin6p->sin6_addr)) &&
(IN_MULTICAST(ntohl(sin6p->sin6_addr.s6_addr32[3])) ||
sin6p->sin6_addr.s6_addr32[3] == INADDR_BROADCAST)))) {
error = EAFNOSUPPORT;
goto out;
}
/*
* Another thread won the binding race so do not change inp_vflag
*/
if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) {
error = EINVAL;
goto out;
}
inp->inp_vflag &= ~INP_IPV4;
inp->inp_vflag |= INP_IPV6;
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
if (IN6_IS_ADDR_UNSPECIFIED(&sin6p->sin6_addr)) {
inp->inp_vflag |= INP_IPV4;
} else if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) {
struct sockaddr_in sin;
in6_sin6_2_sin(&sin, sin6p);
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_IPV6;
error = in_pcbbind(inp, SA(&sin), p);
if (error != 0) {
inp->inp_vflag = old_flags;
route_clear(&inp->inp_route);
}
goto out;
}
}
error = in6_pcbbind(inp, nam, p);
if (error) {
inp->inp_vflag = old_flags;
route_clear(&inp->inp_route);
goto out;
}
COMMON_END(PRU_BIND);
}
/*
* Prepare to accept connections.
*
* Returns: 0 Success
* EINVAL [COMMON_START]
* in_pcbbind:EADDRNOTAVAIL Address not available.
* in_pcbbind:EINVAL Invalid argument
* in_pcbbind:EAFNOSUPPORT Address family not supported [notdef]
* in_pcbbind:EACCES Permission denied
* in_pcbbind:EADDRINUSE Address in use
* in_pcbbind:EAGAIN Resource unavailable, try again
* in_pcbbind:EPERM Operation not permitted
*/
static int
tcp_usr_listen(struct socket *so, struct proc *p)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
COMMON_START_ALLOW_FLOW_DIVERT(true);
if (inp->inp_lport == 0) {
error = in_pcbbind(inp, NULL, p);
}
if (error == 0) {
TCP_LOG_STATE(tp, TCPS_LISTEN);
tp->t_state = TCPS_LISTEN;
if (nstat_collect) {
nstat_pcb_event(inp, NSTAT_EVENT_SRC_FLOW_STATE_LISTEN);
}
}
TCP_LOG_LISTEN(tp, error);
COMMON_END(PRU_LISTEN);
}
static int
tcp6_usr_listen(struct socket *so, struct proc *p)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
COMMON_START_ALLOW_FLOW_DIVERT(true);
if (inp->inp_lport == 0) {
inp->inp_vflag &= ~INP_IPV4;
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
inp->inp_vflag |= INP_IPV4;
}
error = in6_pcbbind(inp, NULL, p);
}
if (error == 0) {
TCP_LOG_STATE(tp, TCPS_LISTEN);
tp->t_state = TCPS_LISTEN;
if (nstat_collect) {
nstat_pcb_event(inp, NSTAT_EVENT_SRC_FLOW_STATE_LISTEN);
}
}
TCP_LOG_LISTEN(tp, error);
COMMON_END(PRU_LISTEN);
}
static int
tcp_connect_complete(struct socket *so)
{
struct tcpcb *tp = sototcpcb(so);
struct inpcb *inp = sotoinpcb(so);
int error = 0;
/* TFO delays the tcp_output until later, when the app calls write() */
if (so->so_flags1 & SOF1_PRECONNECT_DATA) {
if (!necp_socket_is_allowed_to_send_recv(sotoinpcb(so), NULL, 0, NULL, NULL, NULL, NULL)) {
TCP_LOG_DROP_NECP(NULL, NULL, tp, true);
return EHOSTUNREACH;
}
/* Initialize enough state so that we can actually send data */
tcp_mss(tp, -1, IFSCOPE_NONE);
tp->snd_wnd = tp->t_maxseg;
tp->max_sndwnd = tp->snd_wnd;
} else {
tp->t_flagsext |= TF_USR_OUTPUT;
error = tcp_output(tp);
tp->t_flagsext &= ~TF_USR_OUTPUT;
}
#if NECP
/* Update NECP client with connected five-tuple */
if (error == 0 && !uuid_is_null(inp->necp_client_uuid)) {
socket_unlock(so, 0);
necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp);
socket_lock(so, 0);
}
#endif /* NECP */
return error;
}
__attribute__((noinline))
static void
tcp_log_address_error(int error, struct sockaddr *nam, struct proc *p)
{
char buffer[MAX_IPv6_STR_LEN];
if (nam->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6p = SIN6(nam);
inet_ntop(AF_INET6, &sin6p->sin6_addr, buffer, sizeof(buffer));
} else {
struct sockaddr_in *sinp = SIN(nam);
inet_ntop(AF_INET, &sinp->sin_addr, buffer, sizeof(buffer));
}
if (p == NULL) {
p = current_proc();
}
os_log(OS_LOG_DEFAULT, "connect address error %d for %s process %s:%u",
error, buffer, proc_name_address(p), proc_pid(p));
}
/*
* Note that connecting to the all-zeros address is OK and is treated as the
* loopback address
*/
static int
tcp_usr_connect_common(struct socket *so, struct tcpcb *tp, struct sockaddr *nam,
struct proc *p, bool isipv6, bool need_connect_complete)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
if (isipv6 == 0) {
struct sockaddr_in *sinp;
if (nam->sa_family != 0 && nam->sa_family != AF_INET) {
error = EAFNOSUPPORT;
goto out;
}
/*
* Disallow connecting to multicast and broadcast addresses.
*/
sinp = SIN(nam);
if (sinp->sin_family == AF_INET &&
(IN_MULTICAST(ntohl(sinp->sin_addr.s_addr)) ||
sinp->sin_addr.s_addr == INADDR_BROADCAST)) {
error = EAFNOSUPPORT;
goto out;
}
if ((error = tcp_connect(tp, nam, p)) != 0) {
goto out;
}
} else {
struct sockaddr_in6 *sin6p;
if (nam->sa_family != 0 && nam->sa_family != AF_INET6) {
error = EAFNOSUPPORT;
goto out;
}
/*
* Disallow connecting to multicast and broadcast addresses.
*/
sin6p = SIN6(nam);
if (sin6p->sin6_family == AF_INET6 &&
IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) {
error = EAFNOSUPPORT;
goto out;
}
if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) {
struct sockaddr_in sin;
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) {
error = EINVAL;
goto out;
}
in6_sin6_2_sin(&sin, sin6p);
/*
* Disallow connecting to multicast and broadcast addresses.
*/
if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr)) ||
sin.sin_addr.s_addr == INADDR_BROADCAST) {
error = EAFNOSUPPORT;
goto out;
}
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_IPV6;
if ((error = tcp_connect(tp, SA(&sin), p)) != 0) {
goto out;
}
goto out;
} else if (IN6_IS_ADDR_V4COMPAT(&sin6p->sin6_addr)) {
/*
* Disallow connecting to multicast and broadcast addresses.
*/
if (IN_MULTICAST(ntohl(sin6p->sin6_addr.s6_addr32[3])) ||
sin6p->sin6_addr.s6_addr32[3] == INADDR_BROADCAST) {
error = EAFNOSUPPORT;
goto out;
}
}
inp->inp_vflag &= ~INP_IPV4;
inp->inp_vflag |= INP_IPV6;
if ((error = tcp6_connect(tp, nam, p)) != 0) {
goto out;
}
}
out:
if (need_connect_complete && error == 0) {
error = tcp_connect_complete(so);
}
TCP_LOG_CONNECT(tp, true, error);
if (error == EAFNOSUPPORT) {
tcp_log_address_error(error, nam, p);
}
return error;
}
/*
* Initiate connection to peer.
* Create a template for use in transmissions on this connection.
* Enter SYN_SENT state, and mark socket as connecting.
* Start keep-alive timer, and seed output sequence space.
* Send initial segment on connection.
*/
static int
tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
TCPDEBUG0;
if (inp == NULL) {
return EINVAL;
} else if (inp->inp_state == INPCB_STATE_DEAD) {
if (so->so_error) {
error = so->so_error;
so->so_error = 0;
return error;
} else {
return EINVAL;
}
}
#if NECP
#if CONTENT_FILTER
error = cfil_sock_attach(so, NULL, nam, CFS_CONNECTION_DIR_OUT);
if (error != 0) {
return error;
}
#endif /* CONTENT_FILTER */
#if FLOW_DIVERT
if (necp_socket_should_use_flow_divert(inp)) {
error = flow_divert_pcb_init(so);
if (error == 0) {
error = flow_divert_connect_out(so, nam, p);
}
return error;
} else {
so->so_flags1 |= SOF1_FLOW_DIVERT_SKIP;
}
#endif /* FLOW_DIVERT */
#endif /* NECP */
tp = intotcpcb(inp);
TCPDEBUG1();
calculate_tcp_clock();
error = tcp_usr_connect_common(so, tp, nam, p, false, true);
if (error != 0) {
goto out;
}
COMMON_END(PRU_CONNECT);
}
static int
tcp_usr_connectx_common(struct socket *so, int af,
struct sockaddr *src, struct sockaddr *dst,
struct proc *p, uint32_t ifscope, sae_associd_t aid, sae_connid_t *pcid,
uint32_t flags, void *arg, uint32_t arglen, struct uio *auio,
user_ssize_t *bytes_written)
{
#pragma unused(aid, flags, arg, arglen)
struct inpcb *inp = sotoinpcb(so);
int error = 0;
user_ssize_t datalen = 0;
if (inp == NULL) {
return EINVAL;
}
VERIFY(dst != NULL);
ASSERT(!(inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS));
inp->inp_flags2 |= INP2_CONNECT_IN_PROGRESS;
#if NECP
inp_update_necp_policy(inp, src, dst, ifscope);
#endif /* NECP */
if ((so->so_flags1 & SOF1_DATA_IDEMPOTENT) &&
(tcp_fastopen & TCP_FASTOPEN_CLIENT)) {
sototcpcb(so)->t_flagsext |= TF_FASTOPEN;
}
/* bind socket to the specified interface, if requested */
if (ifscope != IFSCOPE_NONE &&
(error = inp_bindif(inp, ifscope, NULL)) != 0) {
goto done;
}
/* if source address and/or port is specified, bind to it */
if (src != NULL) {
error = sobindlock(so, src, 0); /* already locked */
if (error != 0) {
goto done;
}
}
switch (af) {
case AF_INET:
error = tcp_usr_connect(so, dst, p);
break;
case AF_INET6:
error = tcp6_usr_connect(so, dst, p);
break;
default:
VERIFY(0);
/* NOTREACHED */
}
if (error != 0) {
goto done;
}
/* if there is data, copy it */
if (auio != NULL) {
socket_unlock(so, 0);
VERIFY(bytes_written != NULL);
datalen = uio_resid(auio);
error = so->so_proto->pr_usrreqs->pru_sosend(so, NULL,
(uio_t)auio, NULL, NULL, 0);
socket_lock(so, 0);
if (error == 0 || error == EWOULDBLOCK) {
*bytes_written = datalen - uio_resid(auio);
}
/*
* sosend returns EWOULDBLOCK if it's a non-blocking
* socket or a timeout occured (this allows to return
* the amount of queued data through sendit()).
*
* However, connectx() returns EINPROGRESS in case of a
* blocking socket. So we change the return value here.
*/
if (error == EWOULDBLOCK) {
error = EINPROGRESS;
}
}
if (error == 0 && pcid != NULL) {
*pcid = 1; /* there is only one connection in regular TCP */
}
done:
if (error && error != EINPROGRESS) {
so->so_flags1 &= ~SOF1_PRECONNECT_DATA;
}
inp->inp_flags2 &= ~INP2_CONNECT_IN_PROGRESS;
return error;
}
static int
tcp_usr_connectx(struct socket *so, struct sockaddr *src,
struct sockaddr *dst, struct proc *p, uint32_t ifscope,
sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg,
uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written)
{
return tcp_usr_connectx_common(so, AF_INET, src, dst, p, ifscope, aid,
pcid, flags, arg, arglen, uio, bytes_written);
}
static int
tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
TCPDEBUG0;
if (inp == NULL) {
return EINVAL;
} else if (inp->inp_state == INPCB_STATE_DEAD) {
if (so->so_error) {
error = so->so_error;
so->so_error = 0;
return error;
} else {
return EINVAL;
}
}
#if NECP
#if CONTENT_FILTER
error = cfil_sock_attach(so, NULL, nam, CFS_CONNECTION_DIR_OUT);
if (error != 0) {
return error;
}
#endif /* CONTENT_FILTER */
#if FLOW_DIVERT
if (necp_socket_should_use_flow_divert(inp)) {
error = flow_divert_pcb_init(so);
if (error == 0) {
error = flow_divert_connect_out(so, nam, p);
}
return error;
} else {
so->so_flags1 |= SOF1_FLOW_DIVERT_SKIP;
}
#endif /* FLOW_DIVERT */
#endif /* NECP */
tp = intotcpcb(inp);
TCPDEBUG1();
calculate_tcp_clock();
error = tcp_usr_connect_common(so, tp, nam, p, true, true);
if (error != 0) {
route_clear(&inp->inp_route);
goto out;
}
COMMON_END(PRU_CONNECT);
}
static int
tcp6_usr_connectx(struct socket *so, struct sockaddr*src,
struct sockaddr *dst, struct proc *p, uint32_t ifscope,
sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg,
uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written)
{
return tcp_usr_connectx_common(so, AF_INET6, src, dst, p, ifscope, aid,
pcid, flags, arg, arglen, uio, bytes_written);
}
/*
* Initiate disconnect from peer.
* If connection never passed embryonic stage, just drop;
* else if don't need to let data drain, then can just drop anyways,
* else have to begin TCP shutdown process: mark socket disconnecting,
* drain unread data, state switch to reflect user close, and
* send segment (e.g. FIN) to peer. Socket will be really disconnected
* when peer sends FIN and acks ours.
*
* SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB.
*/
static int
tcp_usr_disconnect(struct socket *so)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
socket_lock_assert_owned(so);
COMMON_START();
/* In case we got disconnected from the peer */
if (tp == NULL) {
goto out;
}
tp = tcp_disconnect(tp);
COMMON_END(PRU_DISCONNECT);
}
/*
* User-protocol pru_disconnectx callback.
*/
static int
tcp_usr_disconnectx(struct socket *so, sae_associd_t aid, sae_connid_t cid)
{
#pragma unused(cid)
if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) {
return EINVAL;
}
return tcp_usr_disconnect(so);
}
/*
* Accept a connection. Essentially all the work is
* done at higher levels; just return the address
* of the peer, storing through addr.
*/
static int
tcp_usr_accept(struct socket *so, struct sockaddr **nam)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = NULL;
TCPDEBUG0;
in_getpeeraddr(so, nam);
if (so->so_state & SS_ISDISCONNECTED) {
error = ECONNABORTED;
goto out;
}
if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) {
return EINVAL;
}
#if NECP
else if (necp_socket_should_use_flow_divert(inp)) {
return EPROTOTYPE;
}
#endif /* NECP */
tp = intotcpcb(inp);
TCPDEBUG1();
TCP_LOG_ACCEPT(tp, 0);
calculate_tcp_clock();
COMMON_END(PRU_ACCEPT);
}
static int
tcp6_usr_accept(struct socket *so, struct sockaddr **nam)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = NULL;
TCPDEBUG0;
if (so->so_state & SS_ISDISCONNECTED) {
error = ECONNABORTED;
goto out;
}
if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) {
return EINVAL;
}
#if NECP
else if (necp_socket_should_use_flow_divert(inp)) {
return EPROTOTYPE;
}
#endif /* NECP */
tp = intotcpcb(inp);
TCPDEBUG1();
TCP_LOG_ACCEPT(tp, 0);
calculate_tcp_clock();
in6_mapped_peeraddr(so, nam);
COMMON_END(PRU_ACCEPT);
}
/*
* Mark the connection as being incapable of further output.
*
* Returns: 0 Success
* EINVAL [COMMON_START]
* tcp_output:EADDRNOTAVAIL
* tcp_output:ENOBUFS
* tcp_output:EMSGSIZE
* tcp_output:EHOSTUNREACH
* tcp_output:ENETUNREACH
* tcp_output:ENETDOWN
* tcp_output:ENOMEM
* tcp_output:EACCES
* tcp_output:EMSGSIZE
* tcp_output:ENOBUFS
* tcp_output:??? [ignorable: mostly IPSEC/firewall/DLIL]
*/
static int
tcp_usr_shutdown(struct socket *so)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
TCPDEBUG0;
if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) {
return EINVAL;
}
socantsendmore(so);
/*
* In case we got disconnected from the peer, or if this is
* a socket that is to be flow-diverted (but not yet).
*/
tp = intotcpcb(inp);
TCPDEBUG1();
if (tp == NULL
#if NECP
|| (necp_socket_should_use_flow_divert(inp))
#endif /* NECP */
) {
if (tp != NULL) {
error = EPROTOTYPE;
}
goto out;
}
calculate_tcp_clock();
tp = tcp_usrclosed(tp);
#if MPTCP
/* A reset has been sent but socket exists, do not send FIN */
if ((so->so_flags & SOF_MP_SUBFLOW) &&
(tp) && (tp->t_mpflags & TMPF_RESET)) {
goto out;
}
#endif
#if CONTENT_FILTER
/* Don't send a FIN yet */
if (tp && !(so->so_state & SS_ISDISCONNECTED) &&
cfil_sock_data_pending(&so->so_snd)) {
goto out;
}
#endif /* CONTENT_FILTER */
if (tp) {
error = tcp_output(tp);
}
COMMON_END(PRU_SHUTDOWN);
}
/*
* After a receive, possibly send window update to peer.
*/
static int
tcp_usr_rcvd(struct socket *so, int flags)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
COMMON_START();
/* In case we got disconnected from the peer */
if (tp == NULL) {
goto out;
}
tcp_sbrcv_trim(tp, &so->so_rcv);
if ((flags & MSG_WAITALL) && SEQ_LT(tp->last_ack_sent, tp->rcv_nxt)) {
tp->t_flags |= TF_ACKNOW;
}
/*
* This tcp_output is solely there to trigger window-updates.
* However, we really do not want these window-updates while we
* are still in SYN_SENT or SYN_RECEIVED.
*/
if (TCPS_HAVEESTABLISHED(tp->t_state)) {
tcp_output(tp);
}
#if CONTENT_FILTER
cfil_sock_buf_update(&so->so_rcv);
#endif /* CONTENT_FILTER */
COMMON_END(PRU_RCVD);
}
__attribute__((noinline))
static int
tcp_send_implied_connect(struct socket *so, struct tcpcb *tp, struct sockaddr *nam,
struct proc *p, bool isipv6)
{
int error = 0;
error = tcp_usr_connect_common(so, tp, nam, p, isipv6, false);
if (error != 0) {
goto out;
}
/*
* initialize window to default value, and
* initialize maxseg/maxopd using peer's cached
* MSS.
*/
tp->snd_wnd = TTCP_CLIENT_SND_WND;
tp->max_sndwnd = tp->snd_wnd;
tcp_mss(tp, -1, IFSCOPE_NONE);
out:
return error;
}
__attribute__((noinline))
static void
mpkl_tcp_send(struct socket *so, struct tcpcb *tp, uint32_t mpkl_seq, uint32_t mpkl_len,
struct so_mpkl_send_info *mpkl_send_info)
{
struct inpcb *inp = tp->t_inpcb;
if (inp == NULL) {
return;
}
if ((inp->inp_last_outifp != NULL &&
(inp->inp_last_outifp->if_xflags & IFXF_MPK_LOG)) ||
(inp->inp_boundifp != NULL &&
(inp->inp_boundifp->if_xflags & IFXF_MPK_LOG))) {
MPKL_TCP_SEND(tcp_mpkl_log_object,
mpkl_send_info->mpkl_proto,
mpkl_send_info->mpkl_uuid,
ntohs(inp->inp_lport),
ntohs(inp->inp_fport),
mpkl_seq,
mpkl_len,
so->last_pid,
so->so_log_seqn++);
}
}
/*
* Do a send by putting data in output queue and updating urgent
* marker if URG set. Possibly send more data. Unlike the other
* pru_*() routines, the mbuf chains are our responsibility. We
* must either enqueue them or free them. The other pru_* routines
* generally are caller-frees.
*
* Returns: 0 Success
* ECONNRESET
* EINVAL
* ENOBUFS
* tcp_connect:EADDRINUSE Address in use
* tcp_connect:EADDRNOTAVAIL Address not available.
* tcp_connect:EINVAL Invalid argument
* tcp_connect:EAFNOSUPPORT Address family not supported [notdef]
* tcp_connect:EACCES Permission denied
* tcp_connect:EAGAIN Resource unavailable, try again
* tcp_connect:EPERM Operation not permitted
* tcp_output:EADDRNOTAVAIL
* tcp_output:ENOBUFS
* tcp_output:EMSGSIZE
* tcp_output:EHOSTUNREACH
* tcp_output:ENETUNREACH
* tcp_output:ENETDOWN
* tcp_output:ENOMEM
* tcp_output:EACCES
* tcp_output:EMSGSIZE
* tcp_output:ENOBUFS
* tcp_output:??? [ignorable: mostly IPSEC/firewall/DLIL]
* tcp6_connect:??? [IPV6 only]
*/
static int
tcp_usr_send(struct socket *so, int flags, struct mbuf *m,
struct sockaddr *nam, struct mbuf *control, struct proc *p)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
uint32_t mpkl_len = 0; /* length of mbuf chain */
uint32_t mpkl_seq = 0; /* sequence number where new data is added */
struct so_mpkl_send_info mpkl_send_info = {};
bool isipv6;
TCPDEBUG0;
if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD
#if NECP
|| (necp_socket_should_use_flow_divert(inp))
#endif /* NECP */
) {
/*
* OOPS! we lost a race, the TCP session got reset after
* we checked SS_CANTSENDMORE, eg: while doing uiomove or a
* network interrupt in the non-splnet() section of sosend().
*/
if (m != NULL) {
m_freem(m);
}
if (control != NULL) {
m_freem(control);
control = NULL;
}
if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) {
error = ECONNRESET; /* XXX EPIPE? */
} else {
error = EPROTOTYPE;
}
tp = NULL;
TCPDEBUG1();
goto out;
}
isipv6 = nam && nam->sa_family == AF_INET6 ? true : false;
tp = intotcpcb(inp);
TCPDEBUG1();
calculate_tcp_clock();
if (net_mpklog_enabled) {
mpkl_seq = tp->snd_una + so->so_snd.sb_cc;
if (m) {
mpkl_len = m_length(m);
}
if (so->so_flags1 & SOF1_MPKL_SEND_INFO) {
uuid_copy(mpkl_send_info.mpkl_uuid, so->so_mpkl_send_uuid);
mpkl_send_info.mpkl_proto = so->so_mpkl_send_proto;
}
}
if (control != NULL) {
if (control->m_len > 0 && net_mpklog_enabled) {
error = tcp_get_mpkl_send_info(control, &mpkl_send_info);
/*
* Intepretation of the returned code:
* 0: client wants us to use value passed in SCM_MPKL_SEND_INFO
* 1: SCM_MPKL_SEND_INFO was not present
* other: failure
*/
if (error != 0 && error != ENOMSG) {
m_freem(control);
if (m != NULL) {
m_freem(m);
}
control = NULL;
m = NULL;
goto out;
}
}
/*
* Silently drop unsupported ancillary data messages
*/
m_freem(control);
control = NULL;
}
/* MPTCP sublow socket buffers must not be compressed */
VERIFY(!(so->so_flags & SOF_MP_SUBFLOW) ||
(so->so_snd.sb_flags & SB_NOCOMPRESS));
if (!(flags & PRUS_OOB) || (so->so_flags1 & SOF1_PRECONNECT_DATA)) {
sbappendstream(&so->so_snd, m);
if (nam && tp->t_state < TCPS_SYN_SENT) {
/*
* Do implied connect if not yet connected,
*/
error = tcp_send_implied_connect(so, tp, nam, p, isipv6);
if (error != 0) {
goto out;
}
/* The sequence number of the data is past the SYN */
mpkl_seq = tp->iss + 1;
}
if (flags & PRUS_EOF) {
/*
* Close the send side of the connection after
* the data is sent.
*/
socantsendmore(so);
tp = tcp_usrclosed(tp);
}
if (tp != NULL) {
if (flags & PRUS_MORETOCOME) {
tp->t_flags |= TF_MORETOCOME;
}
tp->t_flagsext |= TF_USR_OUTPUT;
error = tcp_output(tp);
tp->t_flagsext &= ~TF_USR_OUTPUT;
if (flags & PRUS_MORETOCOME) {
tp->t_flags &= ~TF_MORETOCOME;
}
}
} else {
if (sbspace(&so->so_snd) == 0) {
/* if no space is left in sockbuf,
* do not try to squeeze in OOB traffic */
m_freem(m);
error = ENOBUFS;
goto out;
}
/*
* According to RFC961 (Assigned Protocols),
* the urgent pointer points to the last octet
* of urgent data. We continue, however,
* to consider it to indicate the first octet
* of data past the urgent section.
* Otherwise, snd_up should be one lower.
*/
sbappendstream(&so->so_snd, m);
if (nam && tp->t_state < TCPS_SYN_SENT) {
/*
* Do implied connect if not yet connected,
* initialize window to default value, and
* initialize maxseg/maxopd using peer's cached
* MSS.
*/
error = tcp_send_implied_connect(so, tp, nam, p, isipv6);
if (error != 0) {
goto out;
}
}
tp->snd_up = tp->snd_una + so->so_snd.sb_cc;
tp->t_flagsext |= TF_FORCE;
tp->t_flagsext |= TF_USR_OUTPUT;
error = tcp_output(tp);
tp->t_flagsext &= ~TF_USR_OUTPUT;
tp->t_flagsext &= ~TF_FORCE;
}
if (net_mpklog_enabled) {
mpkl_tcp_send(so, tp, mpkl_seq, mpkl_len, &mpkl_send_info);
}
/*
* We wait for the socket to successfully connect before returning.
* This allows us to signal a timeout to the application.
*/
if (so->so_state & SS_ISCONNECTING) {
if (so->so_state & SS_NBIO) {
error = EWOULDBLOCK;
} else {
error = sbwait(&so->so_snd);
}
}
COMMON_END((flags & PRUS_OOB) ? PRU_SENDOOB :
((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND));
}
/*
* Abort the TCP.
*/
static int
tcp_usr_abort(struct socket *so)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
COMMON_START();
/* In case we got disconnected from the peer */
if (tp == NULL) {
goto out;
}
tp = tcp_drop(tp, ECONNABORTED);
VERIFY(so->so_usecount > 0);
so->so_usecount--;
COMMON_END(PRU_ABORT);
}
/*
* Receive out-of-band data.
*
* Returns: 0 Success
* EINVAL [COMMON_START]
* EINVAL
* EWOULDBLOCK
*/
static int
tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags)
{
int error = 0;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
COMMON_START();
if ((so->so_oobmark == 0 &&
(so->so_state & SS_RCVATMARK) == 0) ||
so->so_options & SO_OOBINLINE ||
tp->t_oobflags & TCPOOB_HADDATA) {
error = EINVAL;
goto out;
}
if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) {
error = EWOULDBLOCK;
goto out;
}
m->m_len = 1;
*mtod(m, caddr_t) = tp->t_iobc;
so->so_state &= ~SS_RCVATMARK;
if ((flags & MSG_PEEK) == 0) {
tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA);
}
COMMON_END(PRU_RCVOOB);
}
static int
tcp_usr_preconnect(struct socket *so)
{
struct inpcb *inp = sotoinpcb(so);
int error = 0;
#if NECP
if (necp_socket_should_use_flow_divert(inp)) {
/* May happen, if in tcp_usr_connect we did not had a chance
* to set the usrreqs (due to some error). So, let's get out
* of here.
*/
goto out;
}
#endif /* NECP */
error = tcp_output(sototcpcb(so));
soclearfastopen(so);
COMMON_END(PRU_PRECONNECT);
}
/* xxx - should be const */
struct pr_usrreqs tcp_usrreqs = {
.pru_abort = tcp_usr_abort,
.pru_accept = tcp_usr_accept,
.pru_attach = tcp_usr_attach,
.pru_bind = tcp_usr_bind,
.pru_connect = tcp_usr_connect,
.pru_connectx = tcp_usr_connectx,
.pru_control = in_control,
.pru_detach = tcp_usr_detach,
.pru_disconnect = tcp_usr_disconnect,
.pru_disconnectx = tcp_usr_disconnectx,
.pru_listen = tcp_usr_listen,
.pru_peeraddr = in_getpeeraddr,
.pru_rcvd = tcp_usr_rcvd,
.pru_rcvoob = tcp_usr_rcvoob,
.pru_send = tcp_usr_send,
.pru_shutdown = tcp_usr_shutdown,
.pru_sockaddr = in_getsockaddr,
.pru_sosend = sosend,
.pru_soreceive = soreceive,
.pru_preconnect = tcp_usr_preconnect,
};
struct pr_usrreqs tcp6_usrreqs = {
.pru_abort = tcp_usr_abort,
.pru_accept = tcp6_usr_accept,
.pru_attach = tcp_usr_attach,
.pru_bind = tcp6_usr_bind,
.pru_connect = tcp6_usr_connect,
.pru_connectx = tcp6_usr_connectx,
.pru_control = in6_control,
.pru_detach = tcp_usr_detach,
.pru_disconnect = tcp_usr_disconnect,
.pru_disconnectx = tcp_usr_disconnectx,
.pru_listen = tcp6_usr_listen,
.pru_peeraddr = in6_mapped_peeraddr,
.pru_rcvd = tcp_usr_rcvd,
.pru_rcvoob = tcp_usr_rcvoob,
.pru_send = tcp_usr_send,
.pru_shutdown = tcp_usr_shutdown,
.pru_sockaddr = in6_mapped_sockaddr,
.pru_sosend = sosend,
.pru_soreceive = soreceive,
.pru_preconnect = tcp_usr_preconnect,
};
/*
* Common subroutine to open a TCP connection to remote host specified
* by struct sockaddr_in in mbuf *nam. Call in_pcbbind to assign a local
* port number if needed. Call in_pcbladdr to do the routing and to choose
* a local host address (interface). If there is an existing incarnation
* of the same connection in TIME-WAIT state and if the remote host was
* sending CC options and if the connection duration was < MSL, then
* truncate the previous TIME-WAIT state and proceed.
* Initialize connection parameters and enter SYN-SENT state.
*
* Returns: 0 Success
* EADDRINUSE
* EINVAL
* in_pcbbind:EADDRNOTAVAIL Address not available.
* in_pcbbind:EINVAL Invalid argument
* in_pcbbind:EAFNOSUPPORT Address family not supported [notdef]
* in_pcbbind:EACCES Permission denied
* in_pcbbind:EADDRINUSE Address in use
* in_pcbbind:EAGAIN Resource unavailable, try again
* in_pcbbind:EPERM Operation not permitted
* in_pcbladdr:EINVAL Invalid argument
* in_pcbladdr:EAFNOSUPPORT Address family not supported
* in_pcbladdr:EADDRNOTAVAIL Address not available
*/
static int
tcp_connect(struct tcpcb *tp, struct sockaddr *nam, struct proc *p)
{
struct inpcb *inp = tp->t_inpcb, *oinp;
struct socket *so = inp->inp_socket;
struct tcpcb *otp;
struct sockaddr_in *sin = SIN(nam);
struct in_addr laddr;
int error = 0;
struct ifnet *outif = NULL;
if (inp->inp_lport == 0) {
error = in_pcbbind(inp, NULL, p);
if (error) {
goto done;
}
}
/*
* Cannot simply call in_pcbconnect, because there might be an
* earlier incarnation of this same connection still in
* TIME_WAIT state, creating an ADDRINUSE error.
*/
error = in_pcbladdr(inp, nam, &laddr, IFSCOPE_NONE, &outif, 0);
if (error) {
goto done;
}
socket_unlock(inp->inp_socket, 0);
oinp = in_pcblookup_hash(inp->inp_pcbinfo,
sin->sin_addr, sin->sin_port,
inp->inp_laddr.s_addr != INADDR_ANY ? inp->inp_laddr : laddr,
inp->inp_lport, 0, NULL);
socket_lock(inp->inp_socket, 0);
if (oinp) {
if (oinp != inp) { /* 4143933: avoid deadlock if inp == oinp */
socket_lock(oinp->inp_socket, 1);
}
if (in_pcb_checkstate(oinp, WNT_RELEASE, 1) == WNT_STOPUSING) {
if (oinp != inp) {
socket_unlock(oinp->inp_socket, 1);
}
goto skip_oinp;
}
if (oinp != inp && (otp = intotcpcb(oinp)) != NULL &&
otp->t_state == TCPS_TIME_WAIT &&
((int)(tcp_now - otp->t_starttime)) < tcp_msl &&
(otp->t_flags & TF_RCVD_CC)) {
otp = tcp_close(otp);
} else {
printf("tcp_connect: inp=0x%llx err=EADDRINUSE\n",
(uint64_t)VM_KERNEL_ADDRPERM(inp));
if (oinp != inp) {
socket_unlock(oinp->inp_socket, 1);
}
error = EADDRINUSE;
goto done;
}
if (oinp != inp) {
socket_unlock(oinp->inp_socket, 1);
}
}
skip_oinp:
if ((inp->inp_laddr.s_addr == INADDR_ANY ? laddr.s_addr :
inp->inp_laddr.s_addr) == sin->sin_addr.s_addr &&
inp->inp_lport == sin->sin_port) {
error = EINVAL;
goto done;
}
#if SKYWALK
if (!NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
error = netns_reserve_in(&inp->inp_netns_token,
inp->inp_laddr.s_addr != INADDR_ANY ?
inp->inp_laddr : laddr,
IPPROTO_TCP, inp->inp_lport, NETNS_BSD, NULL);
if (error) {
goto done;
}
}
#endif /* SKYWALK */
if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) {
/*lock inversion issue, mostly with udp multicast packets */
socket_unlock(inp->inp_socket, 0);
lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock);
socket_lock(inp->inp_socket, 0);
}
if (inp->inp_laddr.s_addr == INADDR_ANY) {
inp->inp_laddr = laddr;
/* no reference needed */
inp->inp_last_outifp = outif;
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token, inp->inp_last_outifp);
}
#endif /* SKYWALK */
inp->inp_flags |= INP_INADDR_ANY;
}
inp->inp_faddr = sin->sin_addr;
inp->inp_fport = sin->sin_port;
in_pcbrehash(inp);
lck_rw_done(&inp->inp_pcbinfo->ipi_lock);
if (inp->inp_flowhash == 0) {
inp_calc_flowhash(inp);
ASSERT(inp->inp_flowhash != 0);
}
tcp_set_max_rwinscale(tp, so);
soisconnecting(so);
tcpstat.tcps_connattempt++;
TCP_LOG_STATE(tp, TCPS_SYN_SENT);
tp->t_state = TCPS_SYN_SENT;
tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPINIT(tp));
tp->iss = tcp_new_isn(tp);
tcp_sendseqinit(tp);
tp->t_connect_time = tcp_now;
if (nstat_collect) {
nstat_pcb_event(inp, NSTAT_EVENT_SRC_FLOW_STATE_OUTBOUND);
nstat_route_connect_attempt(inp->inp_route.ro_rt);
}
tcp_add_fsw_flow(tp, outif);
done:
if (outif != NULL) {
ifnet_release(outif);
}
return error;
}
static int
tcp6_connect(struct tcpcb *tp, struct sockaddr *nam, struct proc *p)
{
struct inpcb *inp = tp->t_inpcb, *oinp;
struct socket *so = inp->inp_socket;
struct tcpcb *otp;
struct sockaddr_in6 *sin6 = SIN6(nam);
struct in6_addr addr6;
int error = 0;
struct ifnet *outif = NULL;
if (inp->inp_lport == 0) {
error = in6_pcbbind(inp, NULL, p);
if (error) {
goto done;
}
}
/*
* Cannot simply call in_pcbconnect, because there might be an
* earlier incarnation of this same connection still in
* TIME_WAIT state, creating an ADDRINUSE error.
*
* in6_pcbladdr() might return an ifp with its reference held
* even in the error case, so make sure that it's released
* whenever it's non-NULL.
*/
error = in6_pcbladdr(inp, nam, &addr6, &outif);
if (error) {
goto done;
}
socket_unlock(inp->inp_socket, 0);
uint32_t lifscope = IFSCOPE_NONE;
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
lifscope = inp->inp_lifscope;
} else if (sin6->sin6_scope_id != IFSCOPE_NONE) {
lifscope = sin6->sin6_scope_id;
} else if (outif != NULL) {
lifscope = outif->if_index;
}
oinp = in6_pcblookup_hash(inp->inp_pcbinfo,
&sin6->sin6_addr, sin6->sin6_port, sin6->sin6_scope_id,
IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)
? &addr6
: &inp->in6p_laddr,
inp->inp_lport, lifscope, 0, NULL);
socket_lock(inp->inp_socket, 0);
if (oinp) {
if (oinp != inp && (otp = intotcpcb(oinp)) != NULL &&
otp->t_state == TCPS_TIME_WAIT &&
((int)(tcp_now - otp->t_starttime)) < tcp_msl &&
(otp->t_flags & TF_RCVD_CC)) {
otp = tcp_close(otp);
} else {
error = EADDRINUSE;
goto done;
}
}
#if SKYWALK
if (!NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
error = netns_reserve_in6(&inp->inp_netns_token,
IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ?
addr6 : inp->in6p_laddr,
IPPROTO_TCP, inp->inp_lport, NETNS_BSD, NULL);
if (error) {
goto done;
}
}
#endif /* SKYWALK */
if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) {
/*lock inversion issue, mostly with udp multicast packets */
socket_unlock(inp->inp_socket, 0);
lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock);
socket_lock(inp->inp_socket, 0);
}
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
inp->in6p_laddr = addr6;
inp->in6p_last_outifp = outif; /* no reference needed */
inp->inp_lifscope = lifscope;
in6_verify_ifscope(&inp->in6p_laddr, inp->inp_lifscope);
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token, inp->in6p_last_outifp);
}
#endif /* SKYWALK */
inp->in6p_flags |= INP_IN6ADDR_ANY;
}
inp->in6p_faddr = sin6->sin6_addr;
inp->inp_fport = sin6->sin6_port;
inp->inp_fifscope = sin6->sin6_scope_id;
in6_verify_ifscope(&inp->in6p_faddr, inp->inp_fifscope);
if ((sin6->sin6_flowinfo & IPV6_FLOWINFO_MASK) != 0) {
inp->inp_flow = sin6->sin6_flowinfo;
}
in_pcbrehash(inp);
lck_rw_done(&inp->inp_pcbinfo->ipi_lock);
if (inp->inp_flowhash == 0) {
inp_calc_flowhash(inp);
ASSERT(inp->inp_flowhash != 0);
}
/* update flowinfo - RFC 6437 */
if (inp->inp_flow == 0 && inp->in6p_flags & IN6P_AUTOFLOWLABEL) {
inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
inp->inp_flow |=
(htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
}
tcp_set_max_rwinscale(tp, so);
soisconnecting(so);
tcpstat.tcps_connattempt++;
TCP_LOG_STATE(tp, TCPS_SYN_SENT);
tp->t_state = TCPS_SYN_SENT;
tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
TCP_CONN_KEEPINIT(tp));
tp->iss = tcp_new_isn(tp);
tcp_sendseqinit(tp);
tp->t_connect_time = tcp_now;
if (nstat_collect) {
nstat_pcb_event(inp, NSTAT_EVENT_SRC_FLOW_STATE_OUTBOUND);
nstat_route_connect_attempt(inp->inp_route.ro_rt);
}
tcp_add_fsw_flow(tp, outif);
done:
if (outif != NULL) {
ifnet_release(outif);
}
return error;
}
/*
* Export TCP internal state information via a struct tcp_info
*/
void
tcp_fill_info(struct tcpcb *tp, struct tcp_info *ti)
{
struct inpcb *inp = tp->t_inpcb;
bzero(ti, sizeof(*ti));
ti->tcpi_state = (uint8_t)tp->t_state;
ti->tcpi_flowhash = inp != NULL ? inp->inp_flowhash: 0;
if (TSTMP_SUPPORTED(tp)) {
ti->tcpi_options |= TCPI_OPT_TIMESTAMPS;
}
if (SACK_ENABLED(tp)) {
ti->tcpi_options |= TCPI_OPT_SACK;
}
if (TCP_WINDOW_SCALE_ENABLED(tp)) {
ti->tcpi_options |= TCPI_OPT_WSCALE;
ti->tcpi_snd_wscale = tp->snd_scale;
ti->tcpi_rcv_wscale = tp->rcv_scale;
}
if (TCP_ECN_ENABLED(tp)) {
ti->tcpi_options |= TCPI_OPT_ECN;
}
/* Are we in retranmission episode */
if (IN_FASTRECOVERY(tp) || tp->t_rxtshift > 0) {
ti->tcpi_flags |= TCPI_FLAG_LOSSRECOVERY;
}
if (tp->t_flags & TF_STREAMING_ON) {
ti->tcpi_flags |= TCPI_FLAG_STREAMING_ON;
}
ti->tcpi_rto = tp->t_timer[TCPT_REXMT] ? tp->t_rxtcur : 0;
ti->tcpi_snd_mss = tp->t_maxseg;
ti->tcpi_rcv_mss = tp->t_maxseg;
ti->tcpi_rttcur = tp->t_rttcur;
ti->tcpi_srtt = tp->t_srtt >> TCP_RTT_SHIFT;
ti->tcpi_rcv_srtt = tp->rcv_srtt >> TCP_RTT_SHIFT;
ti->tcpi_rttvar = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
ti->tcpi_rttbest = tp->t_rttbest >> TCP_RTT_SHIFT;
ti->tcpi_snd_ssthresh = tp->snd_ssthresh;
ti->tcpi_snd_cwnd = tp->snd_cwnd;
if (inp != NULL && inp->inp_socket != NULL) {
ti->tcpi_snd_sbbytes = inp->inp_socket->so_snd.sb_cc;
}
ti->tcpi_rcv_space = tp->rcv_adv > tp->rcv_nxt ?
tp->rcv_adv - tp->rcv_nxt : 0;
ti->tcpi_snd_wnd = tp->snd_wnd;
ti->tcpi_snd_nxt = tp->snd_nxt;
ti->tcpi_rcv_nxt = tp->rcv_nxt;
/* convert bytes/msec to bits/sec */
if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
tp->t_bwmeas != NULL) {
ti->tcpi_snd_bw = (tp->t_bwmeas->bw_sndbw * 8000);
}
ti->tcpi_txpackets = inp != NULL ? inp->inp_stat->txpackets : 0;
ti->tcpi_txbytes = inp != NULL ? inp->inp_stat->txbytes : 0;
ti->tcpi_txretransmitbytes = tp->t_stat.txretransmitbytes;
ti->tcpi_txretransmitpackets = tp->t_stat.rxmitpkts;
ti->tcpi_txunacked = tp->snd_max - tp->snd_una;
ti->tcpi_rxpackets = inp != NULL ? inp->inp_stat->rxpackets : 0;
ti->tcpi_rxbytes = inp != NULL ? inp->inp_stat->rxbytes : 0;
ti->tcpi_rxduplicatebytes = tp->t_stat.rxduplicatebytes;
ti->tcpi_rxoutoforderbytes = tp->t_stat.rxoutoforderbytes;
if (tp->t_state > TCPS_LISTEN) {
ti->tcpi_synrexmits = (uint8_t)tp->t_stat.rxmitsyns;
}
if (inp != NULL) {
ti->tcpi_cell_rxpackets = inp->inp_cstat->rxpackets;
ti->tcpi_cell_rxbytes = inp->inp_cstat->rxbytes;
ti->tcpi_cell_txpackets = inp->inp_cstat->txpackets;
ti->tcpi_cell_txbytes = inp->inp_cstat->txbytes;
ti->tcpi_wifi_rxpackets = inp->inp_wstat->rxpackets;
ti->tcpi_wifi_rxbytes = inp->inp_wstat->rxbytes;
ti->tcpi_wifi_txpackets = inp->inp_wstat->txpackets;
ti->tcpi_wifi_txbytes = inp->inp_wstat->txbytes;
ti->tcpi_wired_rxpackets = inp->inp_Wstat->rxpackets;
ti->tcpi_wired_rxbytes = inp->inp_Wstat->rxbytes;
ti->tcpi_wired_txpackets = inp->inp_Wstat->txpackets;
ti->tcpi_wired_txbytes = inp->inp_Wstat->txbytes;
}
tcp_get_connectivity_status(tp, &ti->tcpi_connstatus);
ti->tcpi_tfo_syn_data_rcv = !!(tp->t_tfo_stats & TFO_S_SYNDATA_RCV);
ti->tcpi_tfo_cookie_req_rcv = !!(tp->t_tfo_stats & TFO_S_COOKIEREQ_RECV);
ti->tcpi_tfo_cookie_sent = !!(tp->t_tfo_stats & TFO_S_COOKIE_SENT);
ti->tcpi_tfo_cookie_invalid = !!(tp->t_tfo_stats & TFO_S_COOKIE_INVALID);
ti->tcpi_tfo_cookie_req = !!(tp->t_tfo_stats & TFO_S_COOKIE_REQ);
ti->tcpi_tfo_cookie_rcv = !!(tp->t_tfo_stats & TFO_S_COOKIE_RCV);
ti->tcpi_tfo_syn_data_sent = !!(tp->t_tfo_stats & TFO_S_SYN_DATA_SENT);
ti->tcpi_tfo_syn_data_acked = !!(tp->t_tfo_stats & TFO_S_SYN_DATA_ACKED);
ti->tcpi_tfo_syn_loss = !!(tp->t_tfo_stats & TFO_S_SYN_LOSS);
ti->tcpi_tfo_cookie_wrong = !!(tp->t_tfo_stats & TFO_S_COOKIE_WRONG);
ti->tcpi_tfo_no_cookie_rcv = !!(tp->t_tfo_stats & TFO_S_NO_COOKIE_RCV);
ti->tcpi_tfo_heuristics_disable = !!(tp->t_tfo_stats & TFO_S_HEURISTICS_DISABLE);
ti->tcpi_tfo_send_blackhole = !!(tp->t_tfo_stats & TFO_S_SEND_BLACKHOLE);
ti->tcpi_tfo_recv_blackhole = !!(tp->t_tfo_stats & TFO_S_RECV_BLACKHOLE);
ti->tcpi_tfo_onebyte_proxy = !!(tp->t_tfo_stats & TFO_S_ONE_BYTE_PROXY);
ti->tcpi_ecn_client_setup = !!(tp->ecn_flags & (TE_SETUPSENT | TE_ACE_SETUPSENT));
ti->tcpi_ecn_server_setup = !!(tp->ecn_flags & (TE_SETUPRECEIVED | TE_ACE_SETUPRECEIVED));
ti->tcpi_ecn_success = (TCP_ECN_ENABLED(tp) || TCP_ACC_ECN_ON(tp)) ? 1 : 0;
ti->tcpi_ecn_lost_syn = !!(tp->ecn_flags & TE_LOST_SYN);
ti->tcpi_ecn_lost_synack = !!(tp->ecn_flags & TE_LOST_SYNACK);
ti->tcpi_local_peer = !!(tp->t_flags & TF_LOCAL);
if (inp != NULL && inp->inp_last_outifp != NULL) {
ti->tcpi_last_outif = inp->inp_last_outifp->if_index;
if (IFNET_IS_CELLULAR(inp->inp_last_outifp)) {
ti->tcpi_if_cell = 1;
}
if (IFNET_IS_WIFI(inp->inp_last_outifp)) {
ti->tcpi_if_wifi = 1;
}
if (IFNET_IS_WIRED(inp->inp_last_outifp)) {
ti->tcpi_if_wired = 1;
}
if (IFNET_IS_WIFI_INFRA(inp->inp_last_outifp)) {
ti->tcpi_if_wifi_infra = 1;
}
if (inp->inp_last_outifp->if_eflags & IFEF_AWDL) {
ti->tcpi_if_wifi_awdl = 1;
}
}
if (tp->tcp_cc_index == TCP_CC_ALGO_BACKGROUND_INDEX) {
ti->tcpi_snd_background = 1;
}
if (tcp_recv_bg == 1 || (inp != NULL && inp->inp_socket != NULL &&
IS_TCP_RECV_BG(inp->inp_socket))) {
ti->tcpi_rcv_background = 1;
}
ti->tcpi_ecn_recv_ce = tp->t_ecn_recv_ce;
ti->tcpi_ecn_recv_cwr = tp->t_ecn_recv_cwr;
ti->tcpi_rcvoopack = tp->t_rcvoopack;
ti->tcpi_pawsdrop = tp->t_pawsdrop;
ti->tcpi_sack_recovery_episode = tp->t_sack_recovery_episode;
ti->tcpi_reordered_pkts = tp->t_reordered_pkts;
ti->tcpi_dsack_sent = tp->t_dsack_sent;
ti->tcpi_dsack_recvd = tp->t_dsack_recvd;
ti->tcpi_client_accecn_state = tp->t_client_accecn_state;
ti->tcpi_server_accecn_state = tp->t_server_accecn_state;
ti->tcpi_ecn_capable_packets_sent = tp->t_ecn_capable_packets_sent;
ti->tcpi_ecn_capable_packets_acked = tp->t_ecn_capable_packets_acked;
ti->tcpi_ecn_capable_packets_marked = tp->t_ecn_capable_packets_marked;
ti->tcpi_ecn_capable_packets_lost = tp->t_ecn_capable_packets_lost;
ti->tcpi_flow_control_total_time = inp->inp_fadv_total_time;
ti->tcpi_rcvwnd_limited_total_time = tp->t_rcvwnd_limited_total_time;
}
__private_extern__ errno_t
tcp_fill_info_for_info_tuple(struct info_tuple *itpl, struct tcp_info *ti)
{
struct inpcbinfo *pcbinfo = NULL;
struct inpcb *inp = NULL;
struct socket *so;
struct tcpcb *tp;
if (itpl->itpl_proto == IPPROTO_TCP) {
pcbinfo = &tcbinfo;
} else {
return EINVAL;
}
if (itpl->itpl_local_sa.sa_family == AF_INET &&
itpl->itpl_remote_sa.sa_family == AF_INET) {
inp = in_pcblookup_hash(pcbinfo,
itpl->itpl_remote_sin.sin_addr,
itpl->itpl_remote_sin.sin_port,
itpl->itpl_local_sin.sin_addr,
itpl->itpl_local_sin.sin_port,
0, NULL);
} else if (itpl->itpl_local_sa.sa_family == AF_INET6 &&
itpl->itpl_remote_sa.sa_family == AF_INET6) {
struct in6_addr ina6_local;
struct in6_addr ina6_remote;
ina6_local = itpl->itpl_local_sin6.sin6_addr;
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&ina6_local) &&
itpl->itpl_local_sin6.sin6_scope_id) {
ina6_local.s6_addr16[1] = htons((uint16_t)itpl->itpl_local_sin6.sin6_scope_id);
}
ina6_remote = itpl->itpl_remote_sin6.sin6_addr;
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&ina6_remote) &&
itpl->itpl_remote_sin6.sin6_scope_id) {
ina6_remote.s6_addr16[1] = htons((uint16_t)itpl->itpl_remote_sin6.sin6_scope_id);
}
inp = in6_pcblookup_hash(pcbinfo,
&ina6_remote,
itpl->itpl_remote_sin6.sin6_port,
itpl->itpl_remote_sin6.sin6_scope_id,
&ina6_local,
itpl->itpl_local_sin6.sin6_port,
itpl->itpl_local_sin6.sin6_scope_id,
0, NULL);
} else {
return EINVAL;
}
if (inp != NULL) {
if ((so = inp->inp_socket) == NULL) {
return ENOENT;
}
socket_lock(so, 0);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
socket_unlock(so, 0);
return ENOENT;
}
tp = intotcpcb(inp);
tcp_fill_info(tp, ti);
socket_unlock(so, 0);
return 0;
}
#if SKYWALK
else {
/* if no pcb found, check for flowswitch for uTCP flow */
int error;
struct nexus_mib_filter nmf = {
.nmf_type = NXMIB_FLOW,
.nmf_bitmap = NXMIB_FILTER_INFO_TUPLE,
.nmf_info_tuple = *itpl,
};
struct sk_stats_flow sf;
size_t len = sizeof(sf);
error = kernel_sysctlbyname(SK_STATS_FLOW, &sf, &len, &nmf, sizeof(nmf));
if (error != 0) {
printf("kernel_sysctlbyname err %d\n", error);
return error;
}
if (len != sizeof(sf)) {
printf("kernel_sysctlbyname invalid len %zu\n", len);
return ENOENT;
}
/*
* This is what flow tracker can offer right now, which is good
* for mDNS TCP keep alive offload.
*/
ti->tcpi_snd_nxt = sf.sf_lseq;
ti->tcpi_rcv_nxt = sf.sf_rseq;
ti->tcpi_rcv_space = (uint32_t)(sf.sf_lmax_win << sf.sf_lwscale);
ti->tcpi_rcv_wscale = sf.sf_lwscale;
ti->tcpi_last_outif = (int32_t)sf.sf_if_index;
return 0;
}
#endif /* SKYWALK */
return ENOENT;
}
static void
tcp_connection_fill_info(struct tcpcb *tp, struct tcp_connection_info *tci)
{
struct inpcb *inp = tp->t_inpcb;
bzero(tci, sizeof(*tci));
tci->tcpi_state = (uint8_t)tp->t_state;
if (TSTMP_SUPPORTED(tp)) {
tci->tcpi_options |= TCPCI_OPT_TIMESTAMPS;
}
if (SACK_ENABLED(tp)) {
tci->tcpi_options |= TCPCI_OPT_SACK;
}
if (TCP_WINDOW_SCALE_ENABLED(tp)) {
tci->tcpi_options |= TCPCI_OPT_WSCALE;
tci->tcpi_snd_wscale = tp->snd_scale;
tci->tcpi_rcv_wscale = tp->rcv_scale;
}
if (TCP_ECN_ENABLED(tp)) {
tci->tcpi_options |= TCPCI_OPT_ECN;
}
if (IN_FASTRECOVERY(tp) || tp->t_rxtshift > 0) {
tci->tcpi_flags |= TCPCI_FLAG_LOSSRECOVERY;
}
if (tp->t_flagsext & TF_PKTS_REORDERED) {
tci->tcpi_flags |= TCPCI_FLAG_REORDERING_DETECTED;
}
tci->tcpi_rto = tp->t_timer[TCPT_REXMT] > 0 ? tp->t_rxtcur : 0;
tci->tcpi_maxseg = tp->t_maxseg;
tci->tcpi_snd_ssthresh = tp->snd_ssthresh;
tci->tcpi_snd_cwnd = tp->snd_cwnd;
tci->tcpi_snd_wnd = tp->snd_wnd;
if (inp != NULL && inp->inp_socket != NULL) {
tci->tcpi_snd_sbbytes = inp->inp_socket->so_snd.sb_cc;
}
tci->tcpi_rcv_wnd = tp->rcv_adv > tp->rcv_nxt ? tp->rcv_adv - tp->rcv_nxt : 0;
tci->tcpi_rttcur = tp->t_rttcur;
tci->tcpi_srtt = (tp->t_srtt >> TCP_RTT_SHIFT);
tci->tcpi_rttvar = (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
tci->tcpi_txpackets = inp != NULL ? inp->inp_stat->txpackets : 0;
tci->tcpi_txbytes = inp != NULL ? inp->inp_stat->txbytes : 0;
tci->tcpi_txretransmitbytes = tp->t_stat.txretransmitbytes;
tci->tcpi_txretransmitpackets = tp->t_stat.rxmitpkts;
tci->tcpi_rxpackets = inp != NULL ? inp->inp_stat->rxpackets : 0;
tci->tcpi_rxbytes = inp != NULL ? inp->inp_stat->rxbytes : 0;
tci->tcpi_rxoutoforderbytes = tp->t_stat.rxoutoforderbytes;
tci->tcpi_tfo_syn_data_rcv = !!(tp->t_tfo_stats & TFO_S_SYNDATA_RCV);
tci->tcpi_tfo_cookie_req_rcv = !!(tp->t_tfo_stats & TFO_S_COOKIEREQ_RECV);
tci->tcpi_tfo_cookie_sent = !!(tp->t_tfo_stats & TFO_S_COOKIE_SENT);
tci->tcpi_tfo_cookie_invalid = !!(tp->t_tfo_stats & TFO_S_COOKIE_INVALID);
tci->tcpi_tfo_cookie_req = !!(tp->t_tfo_stats & TFO_S_COOKIE_REQ);
tci->tcpi_tfo_cookie_rcv = !!(tp->t_tfo_stats & TFO_S_COOKIE_RCV);
tci->tcpi_tfo_syn_data_sent = !!(tp->t_tfo_stats & TFO_S_SYN_DATA_SENT);
tci->tcpi_tfo_syn_data_acked = !!(tp->t_tfo_stats & TFO_S_SYN_DATA_ACKED);
tci->tcpi_tfo_syn_loss = !!(tp->t_tfo_stats & TFO_S_SYN_LOSS);
tci->tcpi_tfo_cookie_wrong = !!(tp->t_tfo_stats & TFO_S_COOKIE_WRONG);
tci->tcpi_tfo_no_cookie_rcv = !!(tp->t_tfo_stats & TFO_S_NO_COOKIE_RCV);
tci->tcpi_tfo_heuristics_disable = !!(tp->t_tfo_stats & TFO_S_HEURISTICS_DISABLE);
tci->tcpi_tfo_send_blackhole = !!(tp->t_tfo_stats & TFO_S_SEND_BLACKHOLE);
tci->tcpi_tfo_recv_blackhole = !!(tp->t_tfo_stats & TFO_S_RECV_BLACKHOLE);
tci->tcpi_tfo_onebyte_proxy = !!(tp->t_tfo_stats & TFO_S_ONE_BYTE_PROXY);
}
__private_extern__ int
tcp_sysctl_info(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int error;
struct tcp_info ti = {};
struct info_tuple itpl;
if (req->newptr == USER_ADDR_NULL) {
return EINVAL;
}
if (req->newlen < sizeof(struct info_tuple)) {
return EINVAL;
}
error = SYSCTL_IN(req, &itpl, sizeof(struct info_tuple));
if (error != 0) {
return error;
}
error = tcp_fill_info_for_info_tuple(&itpl, &ti);
if (error != 0) {
return error;
}
error = SYSCTL_OUT(req, &ti, sizeof(struct tcp_info));
if (error != 0) {
return error;
}
return 0;
}
static int
tcp_lookup_peer_pid_locked(struct socket *so, pid_t *out_pid)
{
int error = EHOSTUNREACH;
*out_pid = -1;
if ((so->so_state & SS_ISCONNECTED) == 0) {
return ENOTCONN;
}
struct inpcb *inp = (struct inpcb*)so->so_pcb;
uint16_t lport = inp->inp_lport;
uint16_t fport = inp->inp_fport;
uint32_t fifscope = inp->inp_fifscope;
uint32_t lifscope = inp->inp_lifscope;
struct inpcb *finp = NULL;
struct in6_addr laddr6, faddr6;
struct in_addr laddr4, faddr4;
if (inp->inp_vflag & INP_IPV6) {
laddr6 = inp->in6p_laddr;
faddr6 = inp->in6p_faddr;
} else if (inp->inp_vflag & INP_IPV4) {
laddr4 = inp->inp_laddr;
faddr4 = inp->inp_faddr;
}
socket_unlock(so, 0);
if (inp->inp_vflag & INP_IPV6) {
finp = in6_pcblookup_hash(&tcbinfo, &laddr6, lport, lifscope, &faddr6, fport, fifscope, 0, NULL);
} else if (inp->inp_vflag & INP_IPV4) {
finp = in_pcblookup_hash(&tcbinfo, laddr4, lport, faddr4, fport, 0, NULL);
}
if (finp) {
*out_pid = finp->inp_socket->last_pid;
error = 0;
in_pcb_checkstate(finp, WNT_RELEASE, 0);
}
socket_lock(so, 0);
return error;
}
void
tcp_getconninfo(struct socket *so, struct conninfo_tcp *tcp_ci)
{
tcp_fill_info(sototcpcb(so), &tcp_ci->tcpci_tcp_info);
}
void
tcp_clear_keep_alive_offload(struct socket *so)
{
struct inpcb *inp;
struct ifnet *ifp;
inp = sotoinpcb(so);
if (inp == NULL) {
return;
}
if ((inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD) == 0) {
return;
}
ifp = inp->inp_boundifp != NULL ? inp->inp_boundifp :
inp->inp_last_outifp;
if (ifp == NULL) {
panic("%s: so %p inp %p ifp NULL",
__func__, so, inp);
}
ifnet_lock_exclusive(ifp);
if (ifp->if_tcp_kao_cnt == 0) {
panic("%s: so %p inp %p ifp %p if_tcp_kao_cnt == 0",
__func__, so, inp, ifp);
}
ifp->if_tcp_kao_cnt--;
inp->inp_flags2 &= ~INP2_KEEPALIVE_OFFLOAD;
ifnet_lock_done(ifp);
}
static int
tcp_set_keep_alive_offload(struct socket *so, struct proc *proc)
{
int error = 0;
struct inpcb *inp;
struct ifnet *ifp;
inp = sotoinpcb(so);
if (inp == NULL) {
return ECONNRESET;
}
if ((inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD) != 0) {
return 0;
}
ifp = inp->inp_boundifp != NULL ? inp->inp_boundifp :
inp->inp_last_outifp;
if (ifp == NULL) {
error = ENXIO;
os_log_info(OS_LOG_DEFAULT,
"%s: error %d for proc %s[%u] out ifp is not set\n",
__func__, error,
proc != NULL ? proc->p_comm : "kernel",
proc != NULL ? proc_getpid(proc) : 0);
return ENXIO;
}
error = if_get_tcp_kao_max(ifp);
if (error != 0) {
return error;
}
ifnet_lock_exclusive(ifp);
if (ifp->if_tcp_kao_cnt < ifp->if_tcp_kao_max) {
ifp->if_tcp_kao_cnt++;
inp->inp_flags2 |= INP2_KEEPALIVE_OFFLOAD;
} else {
error = ETOOMANYREFS;
os_log_info(OS_LOG_DEFAULT,
"%s: error %d for proc %s[%u] if_tcp_kao_max %u\n",
__func__, error,
proc != NULL ? proc->p_comm : "kernel",
proc != NULL ? proc_getpid(proc) : 0,
ifp->if_tcp_kao_max);
}
ifnet_lock_done(ifp);
return error;
}
/*
* The new sockopt interface makes it possible for us to block in the
* copyin/out step (if we take a page fault). Taking a page fault at
* splnet() is probably a Bad Thing. (Since sockets and pcbs both now
* use TSM, there probably isn't any need for this function to run at
* splnet() any more. This needs more examination.)
*/
int
tcp_ctloutput(struct socket *so, struct sockopt *sopt)
{
int error = 0, opt = 0, optval = 0;
struct inpcb *inp;
struct tcpcb *tp;
inp = sotoinpcb(so);
if (inp == NULL) {
return ECONNRESET;
}
/* Allow <SOL_SOCKET,SO_FLUSH/SO_TRAFFIC_MGT_BACKGROUND> at this level */
if (sopt->sopt_level != IPPROTO_TCP &&
!(sopt->sopt_level == SOL_SOCKET && (sopt->sopt_name == SO_FLUSH ||
sopt->sopt_name == SO_TRAFFIC_MGT_BACKGROUND))) {
if (SOCK_CHECK_DOM(so, PF_INET6)) {
error = ip6_ctloutput(so, sopt);
} else {
error = ip_ctloutput(so, sopt);
}
return error;
}
tp = intotcpcb(inp);
if (tp == NULL) {
return ECONNRESET;
}
calculate_tcp_clock();
switch (sopt->sopt_dir) {
case SOPT_SET:
switch (sopt->sopt_name) {
case TCP_NODELAY:
case TCP_NOOPT:
case TCP_NOPUSH:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
switch (sopt->sopt_name) {
case TCP_NODELAY:
opt = TF_NODELAY;
break;
case TCP_NOOPT:
opt = TF_NOOPT;
break;
case TCP_NOPUSH:
opt = TF_NOPUSH;
break;
default:
opt = 0; /* dead code to fool gcc */
break;
}
if (optval) {
tp->t_flags |= opt;
} else {
tp->t_flags &= ~opt;
}
break;
case TCP_RXT_FINDROP:
case TCP_NOTIMEWAIT:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
switch (sopt->sopt_name) {
case TCP_RXT_FINDROP:
opt = TF_RXTFINDROP;
break;
case TCP_NOTIMEWAIT:
opt = TF_NOTIMEWAIT;
break;
default:
opt = 0;
break;
}
if (optval) {
tp->t_flagsext |= opt;
} else {
tp->t_flagsext &= ~opt;
}
break;
case TCP_MEASURE_SND_BW:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
opt = TF_MEASURESNDBW;
if (optval) {
if (tp->t_bwmeas == NULL) {
tp->t_bwmeas = tcp_bwmeas_alloc(tp);
if (tp->t_bwmeas == NULL) {
error = ENOMEM;
break;
}
}
tp->t_flagsext |= opt;
} else {
tp->t_flagsext &= ~opt;
/* Reset snd bw measurement state */
tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS);
if (tp->t_bwmeas != NULL) {
tcp_bwmeas_free(tp);
}
}
break;
case TCP_MEASURE_BW_BURST: {
struct tcp_measure_bw_burst in;
uint32_t minpkts, maxpkts;
bzero(&in, sizeof(in));
error = sooptcopyin(sopt, &in, sizeof(in),
sizeof(in));
if (error) {
break;
}
if ((tp->t_flagsext & TF_MEASURESNDBW) == 0 ||
tp->t_bwmeas == NULL) {
error = EINVAL;
break;
}
minpkts = (in.min_burst_size != 0) ? in.min_burst_size :
tp->t_bwmeas->bw_minsizepkts;
maxpkts = (in.max_burst_size != 0) ? in.max_burst_size :
tp->t_bwmeas->bw_maxsizepkts;
if (minpkts > maxpkts) {
error = EINVAL;
break;
}
tp->t_bwmeas->bw_minsizepkts = minpkts;
tp->t_bwmeas->bw_maxsizepkts = maxpkts;
tp->t_bwmeas->bw_minsize = (minpkts * tp->t_maxseg);
tp->t_bwmeas->bw_maxsize = (maxpkts * tp->t_maxseg);
break;
}
case TCP_MAXSEG:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
if (optval > 0 && optval <= tp->t_maxseg &&
optval + 40 >= tcp_minmss) {
tp->t_maxseg = optval;
} else {
error = EINVAL;
}
break;
case TCP_KEEPALIVE:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
if (optval < 0 || optval > UINT32_MAX / TCP_RETRANSHZ) {
error = EINVAL;
} else {
tp->t_keepidle = optval * TCP_RETRANSHZ;
/* reset the timer to new value */
if (TCPS_HAVEESTABLISHED(tp->t_state)) {
tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
TCP_CONN_KEEPIDLE(tp));
tcp_check_timer_state(tp);
}
}
break;
case TCP_CONNECTIONTIMEOUT:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
if (optval < 0 || optval > UINT32_MAX / TCP_RETRANSHZ) {
error = EINVAL;
} else {
tp->t_keepinit = optval * TCP_RETRANSHZ;
if (tp->t_state == TCPS_SYN_RECEIVED ||
tp->t_state == TCPS_SYN_SENT) {
tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
TCP_CONN_KEEPINIT(tp));
tcp_check_timer_state(tp);
}
}
break;
case TCP_KEEPINTVL:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0 || optval > UINT32_MAX / TCP_RETRANSHZ) {
error = EINVAL;
} else {
tp->t_keepintvl = optval * TCP_RETRANSHZ;
if (tp->t_state == TCPS_FIN_WAIT_2 &&
TCP_CONN_MAXIDLE(tp) > 0) {
tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp,
TCP_CONN_MAXIDLE(tp));
tcp_check_timer_state(tp);
}
}
break;
case TCP_KEEPCNT:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0 || optval > INT32_MAX) {
error = EINVAL;
} else {
tp->t_keepcnt = optval;
if (tp->t_state == TCPS_FIN_WAIT_2 &&
TCP_CONN_MAXIDLE(tp) > 0) {
tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp,
TCP_CONN_MAXIDLE(tp));
tcp_check_timer_state(tp);
}
}
break;
case TCP_KEEPALIVE_OFFLOAD:
if ((error = priv_check_cred(kauth_cred_get(),
PRIV_NETINET_TCP_KA_OFFLOAD, 0)) != 0) {
break;
}
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0 || optval > INT32_MAX) {
error = EINVAL;
break;
}
if (optval != 0) {
error = tcp_set_keep_alive_offload(so,
sopt->sopt_p);
} else {
tcp_clear_keep_alive_offload(so);
}
break;
case PERSIST_TIMEOUT:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
if (optval < 0) {
error = EINVAL;
} else {
tp->t_persist_timeout = optval * TCP_RETRANSHZ;
}
break;
case TCP_RXT_CONNDROPTIME:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0) {
error = EINVAL;
} else {
tp->t_rxt_conndroptime = optval * TCP_RETRANSHZ;
}
break;
case TCP_NOTSENT_LOWAT:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0) {
error = EINVAL;
break;
} else {
if (optval == 0) {
so->so_flags &= ~(SOF_NOTSENT_LOWAT);
tp->t_notsent_lowat = 0;
} else {
so->so_flags |= SOF_NOTSENT_LOWAT;
tp->t_notsent_lowat = optval;
}
}
break;
case TCP_ADAPTIVE_READ_TIMEOUT:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0 ||
optval > TCP_ADAPTIVE_TIMEOUT_MAX) {
error = EINVAL;
break;
} else if (optval == 0) {
tp->t_adaptive_rtimo = 0;
tcp_keepalive_reset(tp);
if (tp->t_mpsub) {
mptcp_reset_keepalive(tp);
}
} else {
tp->t_adaptive_rtimo = (uint8_t)optval;
}
break;
case TCP_ADAPTIVE_WRITE_TIMEOUT:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0 ||
optval > TCP_ADAPTIVE_TIMEOUT_MAX) {
error = EINVAL;
break;
} else {
tp->t_adaptive_wtimo = (uint8_t)optval;
}
break;
case TCP_SENDMOREACKS:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0 || optval > 1) {
error = EINVAL;
} else if (optval == 0) {
tp->t_flagsext &= ~(TF_NOSTRETCHACK);
} else {
tp->t_flagsext |= TF_NOSTRETCHACK;
}
break;
case TCP_DISABLE_BLACKHOLE_DETECTION:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0 || optval > 1) {
error = EINVAL;
} else if (optval == 0) {
tp->t_flagsext &= ~TF_NOBLACKHOLE_DETECTION;
} else {
tp->t_flagsext |= TF_NOBLACKHOLE_DETECTION;
if ((tp->t_flags & TF_BLACKHOLE) &&
tp->t_pmtud_saved_maxopd > 0) {
tcp_pmtud_revert_segment_size(tp);
}
}
break;
case TCP_FASTOPEN:
if (!(tcp_fastopen & TCP_FASTOPEN_SERVER)) {
error = ENOTSUP;
break;
}
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0 || optval > 1) {
error = EINVAL;
break;
}
if (tp->t_state != TCPS_LISTEN) {
error = EINVAL;
break;
}
if (optval) {
tp->t_flagsext |= TF_FASTOPEN;
} else {
tcp_disable_tfo(tp);
}
break;
case TCP_FASTOPEN_FORCE_HEURISTICS:
break;
case TCP_FASTOPEN_FORCE_ENABLE:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0 || optval > 1) {
error = EINVAL;
break;
}
if (tp->t_state != TCPS_CLOSED) {
error = EINVAL;
break;
}
if (optval) {
tp->t_flagsext |= TF_FASTOPEN_FORCE_ENABLE;
} else {
tp->t_flagsext &= ~TF_FASTOPEN_FORCE_ENABLE;
}
break;
case TCP_ENABLE_ECN:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
if (optval) {
tp->ecn_flags |= TE_ECN_MODE_ENABLE;
tp->ecn_flags &= ~TE_ECN_MODE_DISABLE;
} else {
tp->ecn_flags &= ~TE_ECN_MODE_ENABLE;
tp->ecn_flags |= TE_ECN_MODE_DISABLE;
}
break;
case TCP_ECN_MODE:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
if (optval == ECN_MODE_DEFAULT) {
tp->ecn_flags &= ~TE_ECN_MODE_ENABLE;
tp->ecn_flags &= ~TE_ECN_MODE_DISABLE;
} else if (optval == ECN_MODE_ENABLE) {
tp->ecn_flags |= TE_ECN_MODE_ENABLE;
tp->ecn_flags &= ~TE_ECN_MODE_DISABLE;
} else if (optval == ECN_MODE_DISABLE) {
tp->ecn_flags &= ~TE_ECN_MODE_ENABLE;
tp->ecn_flags |= TE_ECN_MODE_DISABLE;
} else {
error = EINVAL;
}
break;
case TCP_ENABLE_L4S:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
if (optval < 0 || optval > 1) {
error = EINVAL;
break;
}
if (tp->t_state != TCPS_CLOSED) {
error = EINVAL;
break;
}
if (optval == 1) {
tp->t_flagsext |= TF_L4S_ENABLED;
tp->t_flagsext &= ~TF_L4S_DISABLED;
} else {
tp->t_flagsext &= ~TF_L4S_ENABLED;
tp->t_flagsext |= TF_L4S_DISABLED;
}
break;
case TCP_NOTIFY_ACKNOWLEDGEMENT:
error = sooptcopyin(sopt, &optval,
sizeof(optval), sizeof(optval));
if (error) {
break;
}
if (optval <= 0) {
error = EINVAL;
break;
}
if (tp->t_notify_ack_count >= TCP_MAX_NOTIFY_ACK) {
error = ETOOMANYREFS;
break;
}
/*
* validate that the given marker id is not
* a duplicate to avoid ambiguity
*/
if ((error = tcp_notify_ack_id_valid(tp, so,
optval)) != 0) {
break;
}
error = tcp_add_notify_ack_marker(tp, optval);
break;
case SO_FLUSH:
if ((error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval))) != 0) {
break;
}
error = inp_flush(inp, optval);
break;
case SO_TRAFFIC_MGT_BACKGROUND:
if ((error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval))) != 0) {
break;
}
if (optval) {
socket_set_traffic_mgt_flags_locked(so,
TRAFFIC_MGT_SO_BACKGROUND);
} else {
socket_clear_traffic_mgt_flags_locked(so,
TRAFFIC_MGT_SO_BACKGROUND);
}
break;
case TCP_RXT_MINIMUM_TIMEOUT:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
if (optval < 0) {
error = EINVAL;
break;
}
if (optval == 0) {
tp->t_rxt_minimum_timeout = 0;
} else {
tp->t_rxt_minimum_timeout = min(optval,
TCP_RXT_MINIMUM_TIMEOUT_LIMIT);
/* convert to milliseconds */
tp->t_rxt_minimum_timeout *= TCP_RETRANSHZ;
}
break;
default:
error = ENOPROTOOPT;
break;
}
break;
case SOPT_GET:
switch (sopt->sopt_name) {
case TCP_NODELAY:
optval = tp->t_flags & TF_NODELAY;
break;
case TCP_MAXSEG:
optval = tp->t_maxseg;
break;
case TCP_KEEPALIVE:
if (tp->t_keepidle > 0) {
optval = tp->t_keepidle / TCP_RETRANSHZ;
} else {
optval = tcp_keepidle / TCP_RETRANSHZ;
}
break;
case TCP_KEEPINTVL:
if (tp->t_keepintvl > 0) {
optval = tp->t_keepintvl / TCP_RETRANSHZ;
} else {
optval = tcp_keepintvl / TCP_RETRANSHZ;
}
break;
case TCP_KEEPCNT:
if (tp->t_keepcnt > 0) {
optval = tp->t_keepcnt;
} else {
optval = tcp_keepcnt;
}
break;
case TCP_KEEPALIVE_OFFLOAD:
optval = !!(inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD);
break;
case TCP_NOOPT:
optval = tp->t_flags & TF_NOOPT;
break;
case TCP_NOPUSH:
optval = tp->t_flags & TF_NOPUSH;
break;
case TCP_ENABLE_ECN:
optval = (tp->ecn_flags & TE_ECN_MODE_ENABLE) ? 1 : 0;
break;
case TCP_ECN_MODE:
if (tp->ecn_flags & TE_ECN_MODE_ENABLE) {
optval = ECN_MODE_ENABLE;
} else if (tp->ecn_flags & TE_ECN_MODE_DISABLE) {
optval = ECN_MODE_DISABLE;
} else {
optval = ECN_MODE_DEFAULT;
}
break;
case TCP_ENABLE_L4S:
optval = (tp->t_flagsext & TF_L4S_ENABLED) ? 1 : 0;
break;
case TCP_CONNECTIONTIMEOUT:
optval = tp->t_keepinit / TCP_RETRANSHZ;
break;
case PERSIST_TIMEOUT:
optval = tp->t_persist_timeout / TCP_RETRANSHZ;
break;
case TCP_RXT_CONNDROPTIME:
optval = tp->t_rxt_conndroptime / TCP_RETRANSHZ;
break;
case TCP_RXT_FINDROP:
optval = tp->t_flagsext & TF_RXTFINDROP;
break;
case TCP_NOTIMEWAIT:
optval = (tp->t_flagsext & TF_NOTIMEWAIT) ? 1 : 0;
break;
case TCP_FASTOPEN:
if (tp->t_state != TCPS_LISTEN ||
!(tcp_fastopen & TCP_FASTOPEN_SERVER)) {
error = ENOTSUP;
break;
}
optval = tfo_enabled(tp);
break;
case TCP_FASTOPEN_FORCE_HEURISTICS:
optval = 0;
break;
case TCP_FASTOPEN_FORCE_ENABLE:
optval = (tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) ? 1 : 0;
break;
case TCP_MEASURE_SND_BW:
optval = tp->t_flagsext & TF_MEASURESNDBW;
break;
case TCP_INFO: {
struct tcp_info ti;
tcp_fill_info(tp, &ti);
error = sooptcopyout(sopt, &ti, sizeof(struct tcp_info));
goto done;
/* NOT REACHED */
}
case TCP_CONNECTION_INFO: {
struct tcp_connection_info tci;
tcp_connection_fill_info(tp, &tci);
error = sooptcopyout(sopt, &tci,
sizeof(struct tcp_connection_info));
goto done;
}
case TCP_MEASURE_BW_BURST: {
struct tcp_measure_bw_burst out = {};
if ((tp->t_flagsext & TF_MEASURESNDBW) == 0 ||
tp->t_bwmeas == NULL) {
error = EINVAL;
break;
}
out.min_burst_size = tp->t_bwmeas->bw_minsizepkts;
out.max_burst_size = tp->t_bwmeas->bw_maxsizepkts;
error = sooptcopyout(sopt, &out, sizeof(out));
goto done;
}
case TCP_NOTSENT_LOWAT:
if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0) {
optval = tp->t_notsent_lowat;
} else {
optval = 0;
}
break;
case TCP_SENDMOREACKS:
if (tp->t_flagsext & TF_NOSTRETCHACK) {
optval = 1;
} else {
optval = 0;
}
break;
case TCP_DISABLE_BLACKHOLE_DETECTION:
if (tp->t_flagsext & TF_NOBLACKHOLE_DETECTION) {
optval = 1;
} else {
optval = 0;
}
break;
case TCP_PEER_PID: {
pid_t pid;
error = tcp_lookup_peer_pid_locked(so, &pid);
if (error == 0) {
error = sooptcopyout(sopt, &pid, sizeof(pid));
}
goto done;
}
case TCP_ADAPTIVE_READ_TIMEOUT:
optval = tp->t_adaptive_rtimo;
break;
case TCP_ADAPTIVE_WRITE_TIMEOUT:
optval = tp->t_adaptive_wtimo;
break;
case SO_TRAFFIC_MGT_BACKGROUND:
optval = (so->so_flags1 &
SOF1_TRAFFIC_MGT_SO_BACKGROUND) ? 1 : 0;
break;
case TCP_NOTIFY_ACKNOWLEDGEMENT: {
struct tcp_notify_ack_complete retid;
if (sopt->sopt_valsize != sizeof(retid)) {
error = EINVAL;
break;
}
bzero(&retid, sizeof(retid));
tcp_get_notify_ack_count(tp, &retid);
if (retid.notify_complete_count > 0) {
tcp_get_notify_ack_ids(tp, &retid);
}
error = sooptcopyout(sopt, &retid, sizeof(retid));
goto done;
}
case TCP_RXT_MINIMUM_TIMEOUT:
optval = tp->t_rxt_minimum_timeout / TCP_RETRANSHZ;
break;
default:
error = ENOPROTOOPT;
break;
}
if (error == 0) {
error = sooptcopyout(sopt, &optval, sizeof optval);
}
break;
}
done:
return error;
}
/*
* tcp_sendspace and tcp_recvspace are the default send and receive window
* sizes, respectively. These are obsolescent (this information should
* be set by the route).
*/
uint32_t tcp_sendspace = 1448 * 256;
uint32_t tcp_recvspace = 1448 * 384;
/* During attach, the size of socket buffer allocated is limited to
* sb_max in sbreserve. Disallow setting the tcp send and recv space
* to be more than sb_max because that will cause tcp_attach to fail
* (see radar 5713060)
*/
static int
sysctl_tcp_sospace(struct sysctl_oid *oidp, __unused void *arg1,
int arg2, struct sysctl_req *req)
{
#pragma unused(arg2)
u_int32_t new_value = 0, *space_p = NULL;
int changed = 0, error = 0;
switch (oidp->oid_number) {
case TCPCTL_SENDSPACE:
space_p = &tcp_sendspace;
break;
case TCPCTL_RECVSPACE:
space_p = &tcp_recvspace;
break;
default:
return EINVAL;
}
error = sysctl_io_number(req, *space_p, sizeof(u_int32_t),
&new_value, &changed);
if (changed) {
if (new_value > 0 && new_value <= sb_max) {
*space_p = new_value;
SYSCTL_SKMEM_UPDATE_AT_OFFSET(arg2, new_value);
} else {
error = ERANGE;
}
}
return error;
}
#if SYSCTL_SKMEM
SYSCTL_PROC(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &tcp_sendspace,
offsetof(skmem_sysctl, tcp.sendspace), sysctl_tcp_sospace,
"IU", "Maximum outgoing TCP datagram size");
SYSCTL_PROC(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &tcp_recvspace,
offsetof(skmem_sysctl, tcp.recvspace), sysctl_tcp_sospace,
"IU", "Maximum incoming TCP datagram size");
#else /* SYSCTL_SKMEM */
SYSCTL_PROC(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN,
&tcp_sendspace, 0, &sysctl_tcp_sospace, "IU", "Maximum outgoing TCP datagram size");
SYSCTL_PROC(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN,
&tcp_recvspace, 0, &sysctl_tcp_sospace, "IU", "Maximum incoming TCP datagram size");
#endif /* SYSCTL_SKMEM */
/*
* Attach TCP protocol to socket, allocating
* internet protocol control block, tcp control block,
* bufer space, and entering LISTEN state if to accept connections.
*
* Returns: 0 Success
* in_pcballoc:ENOBUFS
* in_pcballoc:ENOMEM
* in_pcballoc:??? [IPSEC specific]
* soreserve:ENOBUFS
*/
static int
tcp_attach(struct socket *so, struct proc *p)
{
struct tcpcb *tp;
struct inpcb *inp;
int error;
int isipv6 = SOCK_CHECK_DOM(so, PF_INET6) != 0;
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = soreserve(so, tcp_sendspace, tcp_recvspace);
if (error) {
return error;
}
}
error = in_pcballoc(so, &tcbinfo, p);
if (error) {
return error;
}
inp = sotoinpcb(so);
if (so->so_snd.sb_preconn_hiwat == 0) {
soreserve_preconnect(so, 2048);
}
if ((so->so_rcv.sb_flags & SB_USRSIZE) == 0) {
so->so_rcv.sb_flags |= SB_AUTOSIZE;
}
if ((so->so_snd.sb_flags & SB_USRSIZE) == 0) {
so->so_snd.sb_flags |= SB_AUTOSIZE;
}
if (isipv6) {
inp->inp_vflag |= INP_IPV6;
inp->in6p_hops = -1; /* use kernel default */
} else {
inp->inp_vflag |= INP_IPV4;
}
tp = tcp_newtcpcb(inp);
if (tp == NULL) {
short nofd = so->so_state & SS_NOFDREF; /* XXX */
so->so_state &= ~SS_NOFDREF; /* don't free the socket yet */
if (isipv6) {
in6_pcbdetach(inp);
} else {
in_pcbdetach(inp);
}
so->so_state |= nofd;
return ENOBUFS;
}
if (nstat_collect) {
nstat_tcp_new_pcb(inp);
}
TCP_LOG_STATE(tp, TCPS_CLOSED);
tp->t_state = TCPS_CLOSED;
return 0;
}
/*
* Initiate (or continue) disconnect.
* If embryonic state, just send reset (once).
* If in ``let data drain'' option and linger null, just drop.
* Otherwise (hard), mark socket disconnecting and drop
* current input data; switch states based on user close, and
* send segment to peer (with FIN).
*/
static struct tcpcb *
tcp_disconnect(struct tcpcb *tp)
{
struct socket *so = tp->t_inpcb->inp_socket;
if (so->so_rcv.sb_cc != 0 || tp->t_reassqlen != 0 ||
so->so_flags1 & SOF1_DEFUNCTINPROG) {
return tcp_drop(tp, 0);
}
if (tp->t_state < TCPS_ESTABLISHED) {
tp = tcp_close(tp);
} else if ((so->so_options & SO_LINGER) && so->so_linger == 0) {
tp = tcp_drop(tp, 0);
} else {
soisdisconnecting(so);
sbflush(&so->so_rcv);
tp = tcp_usrclosed(tp);
#if MPTCP
/* A reset has been sent but socket exists, do not send FIN */
if ((so->so_flags & SOF_MP_SUBFLOW) &&
(tp) && (tp->t_mpflags & TMPF_RESET)) {
return tp;
}
#endif
if (tp) {
(void) tcp_output(tp);
}
}
return tp;
}
/*
* User issued close, and wish to trail through shutdown states:
* if never received SYN, just forget it. If got a SYN from peer,
* but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN.
* If already got a FIN from peer, then almost done; go to LAST_ACK
* state. In all other cases, have already sent FIN to peer (e.g.
* after PRU_SHUTDOWN), and just have to play tedious game waiting
* for peer to send FIN or not respond to keep-alives, etc.
* We can let the user exit from the close as soon as the FIN is acked.
*/
static struct tcpcb *
tcp_usrclosed(struct tcpcb *tp)
{
switch (tp->t_state) {
case TCPS_CLOSED:
case TCPS_LISTEN:
case TCPS_SYN_SENT:
tp = tcp_close(tp);
break;
case TCPS_SYN_RECEIVED:
tp->t_flags |= TF_NEEDFIN;
break;
case TCPS_ESTABLISHED:
DTRACE_TCP4(state__change, void, NULL,
struct inpcb *, tp->t_inpcb,
struct tcpcb *, tp,
int32_t, TCPS_FIN_WAIT_1);
TCP_LOG_STATE(tp, TCPS_FIN_WAIT_1);
tp->t_state = TCPS_FIN_WAIT_1;
TCP_LOG_CONNECTION_SUMMARY(tp);
break;
case TCPS_CLOSE_WAIT:
DTRACE_TCP4(state__change, void, NULL,
struct inpcb *, tp->t_inpcb,
struct tcpcb *, tp,
int32_t, TCPS_LAST_ACK);
TCP_LOG_STATE(tp, TCPS_LAST_ACK);
tp->t_state = TCPS_LAST_ACK;
TCP_LOG_CONNECTION_SUMMARY(tp);
break;
}
if (tp && tp->t_state >= TCPS_FIN_WAIT_2) {
soisdisconnected(tp->t_inpcb->inp_socket);
/* To prevent the connection hanging in FIN_WAIT_2 forever. */
if (tp->t_state == TCPS_FIN_WAIT_2) {
tcp_set_finwait_timeout(tp);
}
}
return tp;
}
void
tcp_in_cksum_stats(u_int32_t len)
{
tcpstat.tcps_rcv_swcsum++;
tcpstat.tcps_rcv_swcsum_bytes += len;
}
void
tcp_out_cksum_stats(u_int32_t len)
{
tcpstat.tcps_snd_swcsum++;
tcpstat.tcps_snd_swcsum_bytes += len;
}
void
tcp_in6_cksum_stats(u_int32_t len)
{
tcpstat.tcps_rcv6_swcsum++;
tcpstat.tcps_rcv6_swcsum_bytes += len;
}
void
tcp_out6_cksum_stats(u_int32_t len)
{
tcpstat.tcps_snd6_swcsum++;
tcpstat.tcps_snd6_swcsum_bytes += len;
}
int
tcp_get_mpkl_send_info(struct mbuf *control,
struct so_mpkl_send_info *mpkl_send_info)
{
struct cmsghdr *cm;
if (control == NULL || mpkl_send_info == NULL) {
return EINVAL;
}
for (cm = M_FIRST_CMSGHDR(control); cm;
cm = M_NXT_CMSGHDR(control, cm)) {
if (cm->cmsg_len < sizeof(struct cmsghdr) ||
cm->cmsg_len > control->m_len) {
return EINVAL;
}
if (cm->cmsg_level != SOL_SOCKET ||
cm->cmsg_type != SCM_MPKL_SEND_INFO) {
continue;
}
if (cm->cmsg_len != CMSG_LEN(sizeof(struct so_mpkl_send_info))) {
return EINVAL;
}
memcpy(mpkl_send_info, CMSG_DATA(cm),
sizeof(struct so_mpkl_send_info));
return 0;
}
return ENOMSG;
}
/*
* tcp socket options.
*
* The switch statement below does nothing at runtime, as it serves as a
* compile time check to ensure that all of the tcp socket options are
* unique. This works as long as this routine gets updated each time a
* new tcp socket option gets added.
*
* Any failures at compile time indicates duplicated tcp socket option
* values.
*/
static __attribute__((unused)) void
tcpsockopt_cassert(void)
{
/*
* This is equivalent to _CASSERT() and the compiler wouldn't
* generate any instructions, thus for compile time only.
*/
switch ((int)0) {
case 0:
/* bsd/netinet/tcp.h */
case TCP_NODELAY:
case TCP_MAXSEG:
case TCP_NOPUSH:
case TCP_NOOPT:
case TCP_KEEPALIVE:
case TCP_CONNECTIONTIMEOUT:
case PERSIST_TIMEOUT:
case TCP_RXT_CONNDROPTIME:
case TCP_RXT_FINDROP:
case TCP_KEEPINTVL:
case TCP_KEEPCNT:
case TCP_SENDMOREACKS:
case TCP_ENABLE_ECN:
case TCP_FASTOPEN:
case TCP_CONNECTION_INFO:
case TCP_NOTSENT_LOWAT:
/* bsd/netinet/tcp_private.h */
case TCP_INFO:
case TCP_MEASURE_SND_BW:
case TCP_MEASURE_BW_BURST:
case TCP_PEER_PID:
case TCP_ADAPTIVE_READ_TIMEOUT:
case TCP_OPTION_UNUSED_0:
case TCP_ADAPTIVE_WRITE_TIMEOUT:
case TCP_NOTIMEWAIT:
case TCP_DISABLE_BLACKHOLE_DETECTION:
case TCP_ECN_MODE:
case TCP_KEEPALIVE_OFFLOAD:
;
}
}