4773 lines
126 KiB
C
4773 lines
126 KiB
C
/*
|
|
* Copyright (c) 2003-2022 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in.c 8.2 (Berkeley) 11/15/93
|
|
*/
|
|
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/kern_event.h>
|
|
#include <sys/mcache.h>
|
|
#include <sys/protosw.h>
|
|
|
|
#include <kern/locks.h>
|
|
#include <kern/zalloc.h>
|
|
#include <libkern/OSAtomic.h>
|
|
#include <machine/machine_routines.h>
|
|
#include <mach/boolean.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_var.h>
|
|
#include <net/route.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/kpi_protocol.h>
|
|
#include <net/nwk_wq.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_var.h>
|
|
|
|
#include <netinet6/nd6.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/mld6_var.h>
|
|
#include <netinet6/in6_ifattach.h>
|
|
#include <netinet6/scope6_var.h>
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
|
|
#include <net/net_osdep.h>
|
|
|
|
#include <net/dlil.h>
|
|
|
|
#if PF
|
|
#include <net/pfvar.h>
|
|
#endif /* PF */
|
|
|
|
#include <net/sockaddr_utils.h>
|
|
|
|
/*
|
|
* Definitions of some costant IP6 addresses.
|
|
*/
|
|
const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
|
|
const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
|
|
const struct in6_addr in6addr_nodelocal_allnodes =
|
|
IN6ADDR_NODELOCAL_ALLNODES_INIT;
|
|
const struct in6_addr in6addr_linklocal_allnodes =
|
|
IN6ADDR_LINKLOCAL_ALLNODES_INIT;
|
|
const struct in6_addr in6addr_linklocal_allrouters =
|
|
IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
|
|
const struct in6_addr in6addr_linklocal_allv2routers =
|
|
IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT;
|
|
const struct in6_addr in6addr_multicast_prefix =
|
|
IN6ADDR_MULTICAST_PREFIX;
|
|
|
|
const struct in6_addr in6mask0 = IN6MASK0;
|
|
const struct in6_addr in6mask7 = IN6MASK7;
|
|
const struct in6_addr in6mask8 = IN6MASK8;
|
|
const struct in6_addr in6mask16 = IN6MASK16;
|
|
const struct in6_addr in6mask32 = IN6MASK32;
|
|
const struct in6_addr in6mask64 = IN6MASK64;
|
|
const struct in6_addr in6mask96 = IN6MASK96;
|
|
const struct in6_addr in6mask128 = IN6MASK128;
|
|
|
|
const struct sockaddr_in6 sa6_any = {
|
|
.sin6_len = sizeof(sa6_any),
|
|
.sin6_family = AF_INET6,
|
|
.sin6_port = 0,
|
|
.sin6_flowinfo = 0,
|
|
.sin6_addr = IN6ADDR_ANY_INIT,
|
|
.sin6_scope_id = 0
|
|
};
|
|
|
|
static int in6ctl_associd(struct socket *, u_long, caddr_t);
|
|
static int in6ctl_connid(struct socket *, u_long, caddr_t);
|
|
static int in6ctl_conninfo(struct socket *, u_long, caddr_t);
|
|
static int in6ctl_llstart(struct ifnet *, u_long, caddr_t);
|
|
static int in6ctl_llstop(struct ifnet *);
|
|
static int in6ctl_cgastart(struct ifnet *, u_long, caddr_t);
|
|
static int in6ctl_gifaddr(struct ifnet *, struct in6_ifaddr *, u_long,
|
|
struct in6_ifreq *);
|
|
static int in6ctl_gifstat(struct ifnet *, u_long, struct in6_ifreq *);
|
|
static int in6ctl_alifetime(struct in6_ifaddr *, u_long, struct in6_ifreq *,
|
|
boolean_t);
|
|
static int in6ctl_aifaddr(struct ifnet *, struct in6_aliasreq *);
|
|
static void in6ctl_difaddr(struct ifnet *, struct in6_ifaddr *);
|
|
static int in6_autoconf(struct ifnet *, int);
|
|
static int in6_setrouter(struct ifnet *, ipv6_router_mode_t);
|
|
static int in6_ifinit(struct ifnet *, struct in6_ifaddr *, int);
|
|
static int in6_ifaupdate_aux(struct in6_ifaddr *, struct ifnet *, int);
|
|
static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *);
|
|
static struct in6_ifaddr *in6_ifaddr_alloc(zalloc_flags_t);
|
|
static void in6_ifaddr_free(struct ifaddr *);
|
|
#if defined(__LP64__)
|
|
static void in6_cgareq_32_to_64(const struct in6_cgareq_32 *,
|
|
struct in6_cgareq_64 *);
|
|
#else
|
|
static void in6_cgareq_64_to_32(const struct in6_cgareq_64 *,
|
|
struct in6_cgareq_32 *);
|
|
#endif
|
|
static struct in6_aliasreq *in6_aliasreq_to_native(void *, int,
|
|
struct in6_aliasreq *);
|
|
static int in6_to_kamescope(struct sockaddr_in6 *, struct ifnet *);
|
|
static int in6_getassocids(struct socket *, uint32_t *, user_addr_t);
|
|
static int in6_getconnids(struct socket *, sae_associd_t, uint32_t *,
|
|
user_addr_t);
|
|
|
|
static void in6_if_up_dad_start(struct ifnet *);
|
|
|
|
#define IA6_HASH_INIT(ia) { \
|
|
(ia)->ia6_hash.tqe_next = (void *)(uintptr_t)-1; \
|
|
(ia)->ia6_hash.tqe_prev = (void *)(uintptr_t)-1; \
|
|
}
|
|
|
|
#define IA6_IS_HASHED(ia) \
|
|
(!((ia)->ia6_hash.tqe_next == (void *)(uintptr_t)-1 || \
|
|
(ia)->ia6_hash.tqe_prev == (void *)(uintptr_t)-1))
|
|
|
|
static void in6_iahash_remove(struct in6_ifaddr *);
|
|
static void in6_iahash_insert(struct in6_ifaddr *);
|
|
static void in6_iahash_insert_ptp(struct in6_ifaddr *);
|
|
|
|
struct eventhandler_lists_ctxt in6_evhdlr_ctxt;
|
|
struct eventhandler_lists_ctxt in6_clat46_evhdlr_ctxt;
|
|
/*
|
|
* Subroutine for in6_ifaddloop() and in6_ifremloop().
|
|
* This routine does actual work.
|
|
*/
|
|
static void
|
|
in6_ifloop_request(int cmd, struct ifaddr *ifa)
|
|
{
|
|
struct sockaddr_in6 all1_sa;
|
|
struct rtentry *nrt __single = NULL;
|
|
int e;
|
|
|
|
SOCKADDR_ZERO(&all1_sa, sizeof(all1_sa));
|
|
all1_sa.sin6_family = AF_INET6;
|
|
all1_sa.sin6_len = sizeof(struct sockaddr_in6);
|
|
all1_sa.sin6_addr = in6mask128;
|
|
|
|
/*
|
|
* We specify the address itself as the gateway, and set the
|
|
* RTF_LLINFO flag, so that the corresponding host route would have
|
|
* the flag, and thus applications that assume traditional behavior
|
|
* would be happy. Note that we assume the caller of the function
|
|
* (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
|
|
* which changes the outgoing interface to the loopback interface.
|
|
* ifa_addr for INET6 is set once during init; no need to hold lock.
|
|
*/
|
|
lck_mtx_lock(rnh_lock);
|
|
e = rtrequest_locked(cmd, ifa->ifa_addr, ifa->ifa_addr,
|
|
SA(&all1_sa), RTF_UP | RTF_HOST | RTF_LLINFO, &nrt);
|
|
if (e != 0) {
|
|
log(LOG_ERR, "in6_ifloop_request: "
|
|
"%s operation failed for %s (errno=%d)\n",
|
|
cmd == RTM_ADD ? "ADD" : "DELETE",
|
|
ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
|
|
e);
|
|
}
|
|
|
|
if (nrt != NULL) {
|
|
RT_LOCK(nrt);
|
|
}
|
|
/*
|
|
* Make sure rt_ifa be equal to IFA, the second argument of the
|
|
* function.
|
|
* We need this because when we refer to rt_ifa->ia6_flags in
|
|
* ip6_input, we assume that the rt_ifa points to the address instead
|
|
* of the loopback address.
|
|
*/
|
|
if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
|
|
rtsetifa(nrt, ifa);
|
|
}
|
|
|
|
/*
|
|
* Report the addition/removal of the address to the routing socket.
|
|
* XXX: since we called rtinit for a p2p interface with a destination,
|
|
* we end up reporting twice in such a case. Should we rather
|
|
* omit the second report?
|
|
*/
|
|
if (nrt != NULL) {
|
|
rt_newaddrmsg((u_char)cmd, ifa, e, nrt);
|
|
if (cmd == RTM_DELETE) {
|
|
RT_UNLOCK(nrt);
|
|
rtfree_locked(nrt);
|
|
} else {
|
|
/* the cmd must be RTM_ADD here */
|
|
RT_REMREF_LOCKED(nrt);
|
|
RT_UNLOCK(nrt);
|
|
}
|
|
}
|
|
lck_mtx_unlock(rnh_lock);
|
|
}
|
|
|
|
/*
|
|
* Add ownaddr as loopback rtentry. We previously add the route only if
|
|
* necessary (ex. on a p2p link). However, since we now manage addresses
|
|
* separately from prefixes, we should always add the route. We can't
|
|
* rely on the cloning mechanism from the corresponding interface route
|
|
* any more.
|
|
*/
|
|
static void
|
|
in6_ifaddloop(struct ifaddr *ifa)
|
|
{
|
|
struct rtentry *rt;
|
|
|
|
/*
|
|
* If there is no loopback entry, allocate one. ifa_addr for
|
|
* INET6 is set once during init; no need to hold lock.
|
|
*/
|
|
rt = rtalloc1(ifa->ifa_addr, 0, 0);
|
|
if (rt != NULL) {
|
|
RT_LOCK(rt);
|
|
}
|
|
if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
|
|
(rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
|
|
if (rt != NULL) {
|
|
RT_REMREF_LOCKED(rt);
|
|
RT_UNLOCK(rt);
|
|
}
|
|
in6_ifloop_request(RTM_ADD, ifa);
|
|
} else if (rt != NULL) {
|
|
RT_REMREF_LOCKED(rt);
|
|
RT_UNLOCK(rt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
|
|
* if it exists.
|
|
*/
|
|
static void
|
|
in6_ifremloop(struct ifaddr *ifa)
|
|
{
|
|
struct in6_ifaddr *ia;
|
|
struct rtentry *rt;
|
|
int ia_count = 0;
|
|
|
|
/*
|
|
* Some of BSD variants do not remove cloned routes
|
|
* from an interface direct route, when removing the direct route
|
|
* (see comments in net/net_osdep.h). Even for variants that do remove
|
|
* cloned routes, they could fail to remove the cloned routes when
|
|
* we handle multple addresses that share a common prefix.
|
|
* So, we should remove the route corresponding to the deleted address
|
|
* regardless of the result of in6_is_ifloop_auto().
|
|
*/
|
|
|
|
/*
|
|
* Delete the entry only if exact one ifa exists. More than one ifa
|
|
* can exist if we assign a same single address to multiple
|
|
* (probably p2p) interfaces.
|
|
* XXX: we should avoid such a configuration in IPv6...
|
|
*/
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
TAILQ_FOREACH(ia, IN6ADDR_HASH(IFA_IN6(ifa)), ia6_hash) {
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
if (in6_are_addr_equal_scoped(IFA_IN6(ifa), &ia->ia_addr.sin6_addr, IFA_SIN6(ifa)->sin6_scope_id, ia->ia_addr.sin6_scope_id)) {
|
|
ia_count++;
|
|
if (ia_count > 1) {
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
break;
|
|
}
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
}
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
|
|
if (ia_count == 1) {
|
|
/*
|
|
* Before deleting, check if a corresponding loopbacked host
|
|
* route surely exists. With this check, we can avoid to
|
|
* delete an interface direct route whose destination is same
|
|
* as the address being removed. This can happen when removing
|
|
* a subnet-router anycast address on an interface attahced
|
|
* to a shared medium. ifa_addr for INET6 is set once during
|
|
* init; no need to hold lock.
|
|
*/
|
|
rt = rtalloc1(ifa->ifa_addr, 0, 0);
|
|
if (rt != NULL) {
|
|
RT_LOCK(rt);
|
|
if ((rt->rt_flags & RTF_HOST) != 0 &&
|
|
(rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
|
|
RT_REMREF_LOCKED(rt);
|
|
RT_UNLOCK(rt);
|
|
in6_ifloop_request(RTM_DELETE, ifa);
|
|
} else {
|
|
RT_UNLOCK(rt);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
in6_mask2len(struct in6_addr *mask, u_char *lim0)
|
|
{
|
|
int x = 0, y;
|
|
u_char *lim = lim0, *p;
|
|
|
|
/* ignore the scope_id part */
|
|
if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) {
|
|
lim = (u_char *)mask + sizeof(*mask);
|
|
}
|
|
for (p = (u_char *)mask; p < lim; x++, p++) {
|
|
if (*p != 0xff) {
|
|
break;
|
|
}
|
|
}
|
|
y = 0;
|
|
if (p < lim) {
|
|
for (y = 0; y < 8; y++) {
|
|
if ((*p & (0x80 >> y)) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* when the limit pointer is given, do a stricter check on the
|
|
* remaining bits.
|
|
*/
|
|
if (p < lim) {
|
|
if (y != 0 && (*p & (0x00ff >> y)) != 0) {
|
|
return -1;
|
|
}
|
|
for (p = p + 1; p < lim; p++) {
|
|
if (*p != 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return x * 8 + y;
|
|
}
|
|
|
|
void
|
|
in6_len2mask(struct in6_addr *mask, int len)
|
|
{
|
|
int i;
|
|
|
|
bzero(mask, sizeof(*mask));
|
|
for (i = 0; i < len / 8; i++) {
|
|
mask->s6_addr8[i] = 0xff;
|
|
}
|
|
if (len % 8) {
|
|
mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
|
|
}
|
|
}
|
|
|
|
void
|
|
in6_aliasreq_64_to_32(struct in6_aliasreq_64 *src, struct in6_aliasreq_32 *dst)
|
|
{
|
|
bzero(dst, sizeof(*dst));
|
|
bcopy(src->ifra_name, dst->ifra_name, sizeof(dst->ifra_name));
|
|
dst->ifra_addr = src->ifra_addr;
|
|
dst->ifra_dstaddr = src->ifra_dstaddr;
|
|
dst->ifra_prefixmask = src->ifra_prefixmask;
|
|
dst->ifra_flags = src->ifra_flags;
|
|
dst->ifra_lifetime.ia6t_expire = (u_int32_t)src->ifra_lifetime.ia6t_expire;
|
|
dst->ifra_lifetime.ia6t_preferred = (u_int32_t)src->ifra_lifetime.ia6t_preferred;
|
|
dst->ifra_lifetime.ia6t_vltime = src->ifra_lifetime.ia6t_vltime;
|
|
dst->ifra_lifetime.ia6t_pltime = src->ifra_lifetime.ia6t_pltime;
|
|
}
|
|
|
|
void
|
|
in6_aliasreq_32_to_64(struct in6_aliasreq_32 *src, struct in6_aliasreq_64 *dst)
|
|
{
|
|
bzero(dst, sizeof(*dst));
|
|
bcopy(src->ifra_name, dst->ifra_name, sizeof(dst->ifra_name));
|
|
dst->ifra_addr = src->ifra_addr;
|
|
dst->ifra_dstaddr = src->ifra_dstaddr;
|
|
dst->ifra_prefixmask = src->ifra_prefixmask;
|
|
dst->ifra_flags = src->ifra_flags;
|
|
dst->ifra_lifetime.ia6t_expire = src->ifra_lifetime.ia6t_expire;
|
|
dst->ifra_lifetime.ia6t_preferred = src->ifra_lifetime.ia6t_preferred;
|
|
dst->ifra_lifetime.ia6t_vltime = src->ifra_lifetime.ia6t_vltime;
|
|
dst->ifra_lifetime.ia6t_pltime = src->ifra_lifetime.ia6t_pltime;
|
|
}
|
|
|
|
#if defined(__LP64__)
|
|
static void
|
|
in6_cgareq_32_to_64(const struct in6_cgareq_32 *src,
|
|
struct in6_cgareq_64 *dst)
|
|
{
|
|
bzero(dst, sizeof(*dst));
|
|
bcopy(src->cgar_name, dst->cgar_name, sizeof(dst->cgar_name));
|
|
dst->cgar_flags = src->cgar_flags;
|
|
bcopy(src->cgar_cgaprep.cga_modifier.octets,
|
|
dst->cgar_cgaprep.cga_modifier.octets,
|
|
sizeof(dst->cgar_cgaprep.cga_modifier.octets));
|
|
dst->cgar_cgaprep.cga_security_level =
|
|
src->cgar_cgaprep.cga_security_level;
|
|
dst->cgar_lifetime.ia6t_expire = src->cgar_lifetime.ia6t_expire;
|
|
dst->cgar_lifetime.ia6t_preferred = src->cgar_lifetime.ia6t_preferred;
|
|
dst->cgar_lifetime.ia6t_vltime = src->cgar_lifetime.ia6t_vltime;
|
|
dst->cgar_lifetime.ia6t_pltime = src->cgar_lifetime.ia6t_pltime;
|
|
dst->cgar_collision_count = src->cgar_collision_count;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(__LP64__)
|
|
static void
|
|
in6_cgareq_64_to_32(const struct in6_cgareq_64 *src,
|
|
struct in6_cgareq_32 *dst)
|
|
{
|
|
bzero(dst, sizeof(*dst));
|
|
bcopy(src->cgar_name, dst->cgar_name, sizeof(dst->cgar_name));
|
|
dst->cgar_flags = src->cgar_flags;
|
|
bcopy(src->cgar_cgaprep.cga_modifier.octets,
|
|
dst->cgar_cgaprep.cga_modifier.octets,
|
|
sizeof(dst->cgar_cgaprep.cga_modifier.octets));
|
|
dst->cgar_cgaprep.cga_security_level =
|
|
src->cgar_cgaprep.cga_security_level;
|
|
dst->cgar_lifetime.ia6t_expire = (u_int32_t)src->cgar_lifetime.ia6t_expire;
|
|
dst->cgar_lifetime.ia6t_preferred = (u_int32_t)src->cgar_lifetime.ia6t_preferred;
|
|
dst->cgar_lifetime.ia6t_vltime = src->cgar_lifetime.ia6t_vltime;
|
|
dst->cgar_lifetime.ia6t_pltime = src->cgar_lifetime.ia6t_pltime;
|
|
dst->cgar_collision_count = src->cgar_collision_count;
|
|
}
|
|
#endif
|
|
|
|
static struct in6_aliasreq *
|
|
in6_aliasreq_to_native(void *data, int data_is_64, struct in6_aliasreq *dst)
|
|
{
|
|
#if defined(__LP64__)
|
|
if (data_is_64) {
|
|
bcopy(data, dst, sizeof(*dst));
|
|
} else {
|
|
in6_aliasreq_32_to_64((struct in6_aliasreq_32 *)data,
|
|
(struct in6_aliasreq_64 *)dst);
|
|
}
|
|
#else
|
|
if (data_is_64) {
|
|
in6_aliasreq_64_to_32((struct in6_aliasreq_64 *)data,
|
|
(struct in6_aliasreq_32 *)dst);
|
|
} else {
|
|
bcopy(data, dst, sizeof(*dst));
|
|
}
|
|
#endif /* __LP64__ */
|
|
return dst;
|
|
}
|
|
|
|
void
|
|
in6_cgareq_copy_from_user(const void *user_data, int user_is_64,
|
|
struct in6_cgareq *cgareq)
|
|
{
|
|
#if defined(__LP64__)
|
|
if (user_is_64) {
|
|
bcopy(user_data, cgareq, sizeof(*cgareq));
|
|
} else {
|
|
in6_cgareq_32_to_64((const struct in6_cgareq_32 *)user_data,
|
|
(struct in6_cgareq_64 *)cgareq);
|
|
}
|
|
#else
|
|
if (user_is_64) {
|
|
in6_cgareq_64_to_32((const struct in6_cgareq_64 *)user_data,
|
|
(struct in6_cgareq_32 *)cgareq);
|
|
} else {
|
|
bcopy(user_data, cgareq, sizeof(*cgareq));
|
|
}
|
|
#endif /* __LP64__ */
|
|
}
|
|
|
|
static __attribute__((noinline)) int
|
|
in6ctl_associd(struct socket *so, u_long cmd, caddr_t data)
|
|
{
|
|
int error = 0;
|
|
union {
|
|
struct so_aidreq32 a32;
|
|
struct so_aidreq64 a64;
|
|
} u;
|
|
|
|
VERIFY(so != NULL);
|
|
|
|
switch (cmd) {
|
|
case SIOCGASSOCIDS32: { /* struct so_aidreq32 */
|
|
bcopy(data, &u.a32, sizeof(u.a32));
|
|
error = in6_getassocids(so, &u.a32.sar_cnt, u.a32.sar_aidp);
|
|
if (error == 0) {
|
|
bcopy(&u.a32, data, sizeof(u.a32));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SIOCGASSOCIDS64: { /* struct so_aidreq64 */
|
|
bcopy(data, &u.a64, sizeof(u.a64));
|
|
error = in6_getassocids(so, &u.a64.sar_cnt, (user_addr_t)u.a64.sar_aidp);
|
|
if (error == 0) {
|
|
bcopy(&u.a64, data, sizeof(u.a64));
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
VERIFY(0);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static __attribute__((noinline)) int
|
|
in6ctl_connid(struct socket *so, u_long cmd, caddr_t data)
|
|
{
|
|
int error = 0;
|
|
union {
|
|
struct so_cidreq32 c32;
|
|
struct so_cidreq64 c64;
|
|
} u;
|
|
|
|
VERIFY(so != NULL);
|
|
|
|
switch (cmd) {
|
|
case SIOCGCONNIDS32: { /* struct so_cidreq32 */
|
|
bcopy(data, &u.c32, sizeof(u.c32));
|
|
error = in6_getconnids(so, u.c32.scr_aid, &u.c32.scr_cnt,
|
|
u.c32.scr_cidp);
|
|
if (error == 0) {
|
|
bcopy(&u.c32, data, sizeof(u.c32));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SIOCGCONNIDS64: { /* struct so_cidreq64 */
|
|
bcopy(data, &u.c64, sizeof(u.c64));
|
|
error = in6_getconnids(so, u.c64.scr_aid, &u.c64.scr_cnt,
|
|
(user_addr_t)u.c64.scr_cidp);
|
|
if (error == 0) {
|
|
bcopy(&u.c64, data, sizeof(u.c64));
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
VERIFY(0);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static __attribute__((noinline)) int
|
|
in6ctl_conninfo(struct socket *so, u_long cmd, caddr_t data)
|
|
{
|
|
int error = 0;
|
|
union {
|
|
struct so_cinforeq32 ci32;
|
|
struct so_cinforeq64 ci64;
|
|
} u;
|
|
|
|
VERIFY(so != NULL);
|
|
|
|
switch (cmd) {
|
|
case SIOCGCONNINFO32: { /* struct so_cinforeq32 */
|
|
bcopy(data, &u.ci32, sizeof(u.ci32));
|
|
error = in6_getconninfo(so, u.ci32.scir_cid, &u.ci32.scir_flags,
|
|
&u.ci32.scir_ifindex, &u.ci32.scir_error, u.ci32.scir_src,
|
|
&u.ci32.scir_src_len, u.ci32.scir_dst, &u.ci32.scir_dst_len,
|
|
&u.ci32.scir_aux_type, u.ci32.scir_aux_data,
|
|
&u.ci32.scir_aux_len);
|
|
if (error == 0) {
|
|
bcopy(&u.ci32, data, sizeof(u.ci32));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SIOCGCONNINFO64: { /* struct so_cinforeq64 */
|
|
bcopy(data, &u.ci64, sizeof(u.ci64));
|
|
error = in6_getconninfo(so, u.ci64.scir_cid, &u.ci64.scir_flags,
|
|
&u.ci64.scir_ifindex, &u.ci64.scir_error, (user_addr_t)u.ci64.scir_src,
|
|
&u.ci64.scir_src_len, (user_addr_t)u.ci64.scir_dst, &u.ci64.scir_dst_len,
|
|
&u.ci64.scir_aux_type, (user_addr_t)u.ci64.scir_aux_data,
|
|
&u.ci64.scir_aux_len);
|
|
if (error == 0) {
|
|
bcopy(&u.ci64, data, sizeof(u.ci64));
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
VERIFY(0);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static __attribute__((noinline)) int
|
|
in6ctl_llstart(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct in6_aliasreq sifra, *ifra = NULL;
|
|
boolean_t is64;
|
|
int error = 0;
|
|
|
|
VERIFY(ifp != NULL);
|
|
|
|
switch (cmd) {
|
|
case SIOCLL_START_32: /* struct in6_aliasreq_32 */
|
|
case SIOCLL_START_64: /* struct in6_aliasreq_64 */
|
|
is64 = (cmd == SIOCLL_START_64);
|
|
/*
|
|
* Convert user ifra to the kernel form, when appropriate.
|
|
* This allows the conversion between different data models
|
|
* to be centralized, so that it can be passed around to other
|
|
* routines that are expecting the kernel form.
|
|
*/
|
|
ifra = in6_aliasreq_to_native(data, is64, &sifra);
|
|
|
|
/*
|
|
* NOTE: All the interface specific DLIL attachements should
|
|
* be done here. They are currently done in in6_ifattach_aux()
|
|
* for the interfaces that need it.
|
|
*/
|
|
if (ifra->ifra_addr.sin6_family == AF_INET6 &&
|
|
/* Only check ifra_dstaddr if valid */
|
|
(ifra->ifra_dstaddr.sin6_len == 0 ||
|
|
ifra->ifra_dstaddr.sin6_family == AF_INET6)) {
|
|
/* some interfaces may provide LinkLocal addresses */
|
|
error = in6_ifattach_aliasreq(ifp, NULL, ifra);
|
|
} else {
|
|
error = in6_ifattach_aliasreq(ifp, NULL, NULL);
|
|
}
|
|
if (error == 0) {
|
|
in6_if_up_dad_start(ifp);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
VERIFY(0);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static __attribute__((noinline)) int
|
|
in6ctl_llstop(struct ifnet *ifp)
|
|
{
|
|
struct in6_ifaddr *ia;
|
|
struct nd_prefix pr0, *pr;
|
|
|
|
VERIFY(ifp != NULL);
|
|
|
|
/* Remove link local addresses from interface */
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
boolean_t from_begining = TRUE;
|
|
while (from_begining) {
|
|
from_begining = FALSE;
|
|
TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) {
|
|
if (ia->ia_ifa.ifa_ifp != ifp) {
|
|
continue;
|
|
}
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) {
|
|
ifa_addref(&ia->ia_ifa); /* for us */
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
in6_purgeaddr(&ia->ia_ifa);
|
|
ifa_remref(&ia->ia_ifa); /* for us */
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
/*
|
|
* Purging the address caused in6_ifaddr_rwlock
|
|
* to be dropped and reacquired;
|
|
* therefore search again from the beginning
|
|
* of in6_ifaddrs list.
|
|
*/
|
|
from_begining = TRUE;
|
|
break;
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
}
|
|
}
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
|
|
/* Delete the link local prefix */
|
|
bzero(&pr0, sizeof(pr0));
|
|
pr0.ndpr_plen = 64;
|
|
pr0.ndpr_ifp = ifp;
|
|
pr0.ndpr_prefix.sin6_addr.s6_addr16[0] = IPV6_ADDR_INT16_ULL;
|
|
(void)in6_setscope(&pr0.ndpr_prefix.sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&pr0.ndpr_prefix.sin6_scope_id));
|
|
pr = nd6_prefix_lookup(&pr0, ND6_PREFIX_EXPIRY_UNSPEC);
|
|
if (pr) {
|
|
lck_mtx_lock(nd6_mutex);
|
|
NDPR_LOCK(pr);
|
|
prelist_remove(pr);
|
|
NDPR_UNLOCK(pr);
|
|
NDPR_REMREF(pr); /* Drop the reference from lookup */
|
|
lck_mtx_unlock(nd6_mutex);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine configures secure link local address
|
|
*/
|
|
static __attribute__((noinline)) int
|
|
in6ctl_cgastart(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct in6_cgareq llcgasr;
|
|
int is64, error = 0;
|
|
|
|
VERIFY(ifp != NULL);
|
|
|
|
switch (cmd) {
|
|
case SIOCLL_CGASTART_32: /* struct in6_cgareq_32 */
|
|
case SIOCLL_CGASTART_64: /* struct in6_cgareq_64 */
|
|
is64 = (cmd == SIOCLL_CGASTART_64);
|
|
/*
|
|
* Convert user cgareq to the kernel form, when appropriate.
|
|
* This allows the conversion between different data models
|
|
* to be centralized, so that it can be passed around to other
|
|
* routines that are expecting the kernel form.
|
|
*/
|
|
in6_cgareq_copy_from_user(data, is64, &llcgasr);
|
|
|
|
/*
|
|
* NOTE: All the interface specific DLIL attachements
|
|
* should be done here. They are currently done in
|
|
* in6_ifattach_cgareq() for the interfaces that
|
|
* need it.
|
|
*/
|
|
error = in6_ifattach_llcgareq(ifp, &llcgasr);
|
|
if (error == 0) {
|
|
in6_if_up_dad_start(ifp);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
VERIFY(0);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Caller passes in the ioctl data pointer directly via "ifr", with the
|
|
* expectation that this routine always uses bcopy() or other byte-aligned
|
|
* memory accesses.
|
|
*/
|
|
static __attribute__((noinline)) int
|
|
in6ctl_gifaddr(struct ifnet *ifp, struct in6_ifaddr *ia, u_long cmd,
|
|
struct in6_ifreq *ifr)
|
|
{
|
|
struct sockaddr_in6 addr;
|
|
int error = 0;
|
|
|
|
VERIFY(ifp != NULL);
|
|
|
|
if (ia == NULL) {
|
|
return EADDRNOTAVAIL;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case SIOCGIFADDR_IN6: /* struct in6_ifreq */
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
SOCKADDR_COPY(&ia->ia_addr, &addr, sizeof(addr));
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
if ((error = sa6_recoverscope(&addr, TRUE)) != 0) {
|
|
break;
|
|
}
|
|
SOCKADDR_COPY(&addr, &ifr->ifr_addr, sizeof(addr));
|
|
break;
|
|
|
|
case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */
|
|
if (!(ifp->if_flags & IFF_POINTOPOINT)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/*
|
|
* XXX: should we check if ifa_dstaddr is NULL and return
|
|
* an error?
|
|
*/
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
SOCKADDR_COPY(&ia->ia_dstaddr, &addr, sizeof(addr));
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
if ((error = sa6_recoverscope(&addr, TRUE)) != 0) {
|
|
break;
|
|
}
|
|
SOCKADDR_COPY(&addr, &ifr->ifr_dstaddr, sizeof(addr));
|
|
break;
|
|
|
|
default:
|
|
VERIFY(0);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Caller passes in the ioctl data pointer directly via "ifr", with the
|
|
* expectation that this routine always uses bcopy() or other byte-aligned
|
|
* memory accesses.
|
|
*/
|
|
static __attribute__((noinline)) int
|
|
in6ctl_gifstat(struct ifnet *ifp, u_long cmd, struct in6_ifreq *ifr)
|
|
{
|
|
int error = 0, index;
|
|
|
|
VERIFY(ifp != NULL);
|
|
index = ifp->if_index;
|
|
|
|
switch (cmd) {
|
|
case SIOCGIFSTAT_IN6: /* struct in6_ifreq */
|
|
/* N.B.: if_inet6data is never freed once set. */
|
|
if (IN6_IFEXTRA(ifp) == NULL) {
|
|
/* return (EAFNOSUPPORT)? */
|
|
bzero(&ifr->ifr_ifru.ifru_stat,
|
|
sizeof(ifr->ifr_ifru.ifru_stat));
|
|
} else {
|
|
bcopy(&IN6_IFEXTRA(ifp)->in6_ifstat,
|
|
&ifr->ifr_ifru.ifru_stat,
|
|
sizeof(ifr->ifr_ifru.ifru_stat));
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFSTAT_ICMP6: /* struct in6_ifreq */
|
|
/* N.B.: if_inet6data is never freed once set. */
|
|
if (IN6_IFEXTRA(ifp) == NULL) {
|
|
/* return (EAFNOSUPPORT)? */
|
|
bzero(&ifr->ifr_ifru.ifru_icmp6stat,
|
|
sizeof(ifr->ifr_ifru.ifru_icmp6stat));
|
|
} else {
|
|
bcopy(&IN6_IFEXTRA(ifp)->icmp6_ifstat,
|
|
&ifr->ifr_ifru.ifru_icmp6stat,
|
|
sizeof(ifr->ifr_ifru.ifru_icmp6stat));
|
|
}
|
|
break;
|
|
|
|
default:
|
|
VERIFY(0);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Caller passes in the ioctl data pointer directly via "ifr", with the
|
|
* expectation that this routine always uses bcopy() or other byte-aligned
|
|
* memory accesses.
|
|
*/
|
|
static __attribute__((noinline)) int
|
|
in6ctl_alifetime(struct in6_ifaddr *ia, u_long cmd, struct in6_ifreq *ifr,
|
|
boolean_t p64)
|
|
{
|
|
uint64_t timenow = net_uptime();
|
|
struct in6_addrlifetime ia6_lt;
|
|
struct timeval caltime;
|
|
int error = 0;
|
|
|
|
if (ia == NULL) {
|
|
return EADDRNOTAVAIL;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
/* retrieve time as calendar time (last arg is 1) */
|
|
in6ifa_getlifetime(ia, &ia6_lt, 1);
|
|
if (p64) {
|
|
struct in6_addrlifetime_64 lt;
|
|
|
|
bzero(<, sizeof(lt));
|
|
lt.ia6t_expire = ia6_lt.ia6t_expire;
|
|
lt.ia6t_preferred = ia6_lt.ia6t_preferred;
|
|
lt.ia6t_vltime = ia6_lt.ia6t_vltime;
|
|
lt.ia6t_pltime = ia6_lt.ia6t_pltime;
|
|
bcopy(<, &ifr->ifr_ifru.ifru_lifetime, sizeof(ifr->ifr_ifru.ifru_lifetime));
|
|
} else {
|
|
struct in6_addrlifetime_32 lt;
|
|
|
|
bzero(<, sizeof(lt));
|
|
lt.ia6t_expire = (uint32_t)ia6_lt.ia6t_expire;
|
|
lt.ia6t_preferred = (uint32_t)ia6_lt.ia6t_preferred;
|
|
lt.ia6t_vltime = (uint32_t)ia6_lt.ia6t_vltime;
|
|
lt.ia6t_pltime = (uint32_t)ia6_lt.ia6t_pltime;
|
|
/*
|
|
* 32-bit userland expects a 32-bit in6_addrlifetime to
|
|
* come back:
|
|
*/
|
|
bcopy(<, &ifr->ifr_ifru.ifru_lifetime, sizeof(lt));
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
break;
|
|
|
|
case SIOCSIFALIFETIME_IN6: /* struct in6_ifreq */
|
|
getmicrotime(&caltime);
|
|
|
|
/* sanity for overflow - beware unsigned */
|
|
if (p64) {
|
|
struct in6_addrlifetime_64 lt;
|
|
|
|
bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof(lt));
|
|
if (lt.ia6t_vltime != ND6_INFINITE_LIFETIME &&
|
|
lt.ia6t_vltime + caltime.tv_sec < caltime.tv_sec) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (lt.ia6t_pltime != ND6_INFINITE_LIFETIME &&
|
|
lt.ia6t_pltime + caltime.tv_sec < caltime.tv_sec) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
} else {
|
|
struct in6_addrlifetime_32 lt;
|
|
|
|
bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof(lt));
|
|
if (lt.ia6t_vltime != ND6_INFINITE_LIFETIME &&
|
|
lt.ia6t_vltime + caltime.tv_sec < caltime.tv_sec) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (lt.ia6t_pltime != ND6_INFINITE_LIFETIME &&
|
|
lt.ia6t_pltime + caltime.tv_sec < caltime.tv_sec) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
if (p64) {
|
|
struct in6_addrlifetime_64 lt;
|
|
|
|
bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof(lt));
|
|
ia6_lt.ia6t_expire = (time_t)lt.ia6t_expire;
|
|
ia6_lt.ia6t_preferred = (time_t)lt.ia6t_preferred;
|
|
ia6_lt.ia6t_vltime = lt.ia6t_vltime;
|
|
ia6_lt.ia6t_pltime = lt.ia6t_pltime;
|
|
} else {
|
|
struct in6_addrlifetime_32 lt;
|
|
|
|
bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof(lt));
|
|
ia6_lt.ia6t_expire = (uint32_t)lt.ia6t_expire;
|
|
ia6_lt.ia6t_preferred = (uint32_t)lt.ia6t_preferred;
|
|
ia6_lt.ia6t_vltime = lt.ia6t_vltime;
|
|
ia6_lt.ia6t_pltime = lt.ia6t_pltime;
|
|
}
|
|
/* for sanity */
|
|
if (ia6_lt.ia6t_vltime != ND6_INFINITE_LIFETIME) {
|
|
ia6_lt.ia6t_expire = (time_t)(timenow + ia6_lt.ia6t_vltime);
|
|
} else {
|
|
ia6_lt.ia6t_expire = 0;
|
|
}
|
|
|
|
if (ia6_lt.ia6t_pltime != ND6_INFINITE_LIFETIME) {
|
|
ia6_lt.ia6t_preferred = (time_t)(timenow + ia6_lt.ia6t_pltime);
|
|
} else {
|
|
ia6_lt.ia6t_preferred = 0;
|
|
}
|
|
|
|
in6ifa_setlifetime(ia, &ia6_lt);
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
break;
|
|
|
|
default:
|
|
VERIFY(0);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
in6ctl_clat46start(struct ifnet *ifp)
|
|
{
|
|
struct nd_prefix *pr = NULL;
|
|
struct nd_prefix *next = NULL;
|
|
struct in6_ifaddr *ia6 = NULL;
|
|
int error = 0;
|
|
|
|
if (ifp == lo_ifp) {
|
|
return EINVAL;
|
|
}
|
|
/*
|
|
* Traverse the list of prefixes and find the first non-linklocal
|
|
* prefix on the interface.
|
|
* For that found eligible prefix, configure a CLAT46 reserved address.
|
|
*/
|
|
lck_mtx_lock(nd6_mutex);
|
|
for (pr = nd_prefix.lh_first; pr; pr = next) {
|
|
next = pr->ndpr_next;
|
|
|
|
NDPR_LOCK(pr);
|
|
if (pr->ndpr_ifp != ifp) {
|
|
NDPR_UNLOCK(pr);
|
|
continue;
|
|
}
|
|
|
|
if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) {
|
|
NDPR_UNLOCK(pr);
|
|
continue; /* XXX */
|
|
}
|
|
|
|
if (pr->ndpr_raf_auto == 0) {
|
|
NDPR_UNLOCK(pr);
|
|
continue;
|
|
}
|
|
|
|
if (pr->ndpr_stateflags & NDPRF_DEFUNCT) {
|
|
NDPR_UNLOCK(pr);
|
|
continue;
|
|
}
|
|
|
|
if ((pr->ndpr_stateflags & NDPRF_CLAT46) == 0
|
|
&& pr->ndpr_vltime != 0) {
|
|
NDPR_ADDREF(pr); /* Take reference for rest of the processing */
|
|
NDPR_UNLOCK(pr);
|
|
break;
|
|
} else {
|
|
NDPR_UNLOCK(pr);
|
|
continue;
|
|
}
|
|
}
|
|
lck_mtx_unlock(nd6_mutex);
|
|
|
|
if (pr != NULL) {
|
|
if ((ia6 = in6_pfx_newpersistaddr(pr, FALSE, &error,
|
|
TRUE, CLAT46_COLLISION_COUNT_OFFSET)) == NULL) {
|
|
nd6log0(error,
|
|
"Could not configure CLAT46 address on"
|
|
" interface %s.\n", ifp->if_xname);
|
|
} else {
|
|
IFA_LOCK(&ia6->ia_ifa);
|
|
NDPR_LOCK(pr);
|
|
ia6->ia6_ndpr = pr;
|
|
NDPR_ADDREF(pr); /* for addr reference */
|
|
pr->ndpr_stateflags |= NDPRF_CLAT46;
|
|
pr->ndpr_addrcnt++;
|
|
VERIFY(pr->ndpr_addrcnt != 0);
|
|
NDPR_UNLOCK(pr);
|
|
IFA_UNLOCK(&ia6->ia_ifa);
|
|
ifa_remref(&ia6->ia_ifa);
|
|
ia6 = NULL;
|
|
/*
|
|
* A newly added address might affect the status
|
|
* of other addresses, so we check and update it.
|
|
* XXX: what if address duplication happens?
|
|
*/
|
|
lck_mtx_lock(nd6_mutex);
|
|
pfxlist_onlink_check();
|
|
lck_mtx_unlock(nd6_mutex);
|
|
}
|
|
NDPR_REMREF(pr);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
in6ctl_clat46stop(struct ifnet *ifp)
|
|
{
|
|
int error = 0;
|
|
struct in6_ifaddr *ia = NULL;
|
|
|
|
if (ifp == lo_ifp) {
|
|
return EINVAL;
|
|
}
|
|
if ((ifp->if_eflags & IFEF_CLAT46) == 0) {
|
|
/* CLAT46 isn't enabled */
|
|
goto done;
|
|
}
|
|
if_clear_eflags(ifp, IFEF_CLAT46);
|
|
|
|
/* find CLAT46 address and remove it */
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) {
|
|
if (ia->ia_ifa.ifa_ifp != ifp) {
|
|
continue;
|
|
}
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
if ((ia->ia6_flags & IN6_IFF_CLAT46) != 0) {
|
|
ifa_addref(&ia->ia_ifa); /* for us */
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
in6_purgeaddr(&ia->ia_ifa);
|
|
ifa_remref(&ia->ia_ifa); /* for us */
|
|
goto done;
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
}
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
|
|
done:
|
|
return error;
|
|
}
|
|
|
|
#define ifa2ia6(ifa) ((struct in6_ifaddr *)(void *)(ifa))
|
|
|
|
/*
|
|
* Generic INET6 control operations (ioctl's).
|
|
*
|
|
* ifp is NULL if not an interface-specific ioctl.
|
|
*
|
|
* Most of the routines called to handle the ioctls would end up being
|
|
* tail-call optimized, which unfortunately causes this routine to
|
|
* consume too much stack space; this is the reason for the "noinline"
|
|
* attribute used on those routines.
|
|
*
|
|
* If called directly from within the networking stack (as opposed to via
|
|
* pru_control), the socket parameter may be NULL.
|
|
*/
|
|
int
|
|
in6_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp,
|
|
struct proc *p)
|
|
{
|
|
struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data;
|
|
struct in6_aliasreq sifra, *ifra = NULL;
|
|
struct in6_ifaddr *ia = NULL;
|
|
struct sockaddr_in6 sin6, *sa6 = NULL;
|
|
boolean_t privileged = (proc_suser(p) == 0);
|
|
boolean_t p64 = proc_is64bit(p);
|
|
boolean_t so_unlocked = FALSE;
|
|
int intval, error = 0;
|
|
|
|
/* In case it's NULL, make sure it came from the kernel */
|
|
VERIFY(so != NULL || p == kernproc);
|
|
|
|
/*
|
|
* ioctls which don't require ifp, may require socket.
|
|
*/
|
|
switch (cmd) {
|
|
case SIOCAADDRCTL_POLICY: /* struct in6_addrpolicy */
|
|
case SIOCDADDRCTL_POLICY: /* struct in6_addrpolicy */
|
|
if (!privileged) {
|
|
return EPERM;
|
|
}
|
|
return in6_src_ioctl(cmd, data);
|
|
/* NOTREACHED */
|
|
|
|
case SIOCDRADD_IN6_32: /* struct in6_defrouter_32 */
|
|
case SIOCDRADD_IN6_64: /* struct in6_defrouter_64 */
|
|
case SIOCDRDEL_IN6_32: /* struct in6_defrouter_32 */
|
|
case SIOCDRDEL_IN6_64: /* struct in6_defrouter_64 */
|
|
if (!privileged) {
|
|
return EPERM;
|
|
}
|
|
return defrtrlist_ioctl(cmd, data);
|
|
/* NOTREACHED */
|
|
|
|
case SIOCGASSOCIDS32: /* struct so_aidreq32 */
|
|
case SIOCGASSOCIDS64: /* struct so_aidreq64 */
|
|
return in6ctl_associd(so, cmd, data);
|
|
/* NOTREACHED */
|
|
|
|
case SIOCGCONNIDS32: /* struct so_cidreq32 */
|
|
case SIOCGCONNIDS64: /* struct so_cidreq64 */
|
|
return in6ctl_connid(so, cmd, data);
|
|
/* NOTREACHED */
|
|
|
|
case SIOCGCONNINFO32: /* struct so_cinforeq32 */
|
|
case SIOCGCONNINFO64: /* struct so_cinforeq64 */
|
|
return in6ctl_conninfo(so, cmd, data);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* The rest of ioctls require ifp; reject if we don't have one;
|
|
* return ENXIO to be consistent with ifioctl().
|
|
*/
|
|
if (ifp == NULL) {
|
|
return ENXIO;
|
|
}
|
|
|
|
/*
|
|
* Unlock the socket since ifnet_ioctl() may be invoked by
|
|
* one of the ioctl handlers below. Socket will be re-locked
|
|
* prior to returning.
|
|
*/
|
|
if (so != NULL) {
|
|
socket_unlock(so, 0);
|
|
so_unlocked = TRUE;
|
|
}
|
|
|
|
lck_mtx_lock(&ifp->if_inet6_ioctl_lock);
|
|
while (ifp->if_inet6_ioctl_busy) {
|
|
(void) msleep(&ifp->if_inet6_ioctl_busy, &ifp->if_inet6_ioctl_lock, (PZERO - 1),
|
|
__func__, NULL);
|
|
LCK_MTX_ASSERT(&ifp->if_inet6_ioctl_lock, LCK_MTX_ASSERT_OWNED);
|
|
}
|
|
ifp->if_inet6_ioctl_busy = TRUE;
|
|
lck_mtx_unlock(&ifp->if_inet6_ioctl_lock);
|
|
|
|
/*
|
|
* ioctls which require ifp but not interface address.
|
|
*/
|
|
switch (cmd) {
|
|
case SIOCAUTOCONF_START: /* struct in6_ifreq */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
error = in6_autoconf(ifp, TRUE);
|
|
goto done;
|
|
|
|
case SIOCAUTOCONF_STOP: /* struct in6_ifreq */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
error = in6_autoconf(ifp, FALSE);
|
|
goto done;
|
|
|
|
case SIOCLL_START_32: /* struct in6_aliasreq_32 */
|
|
case SIOCLL_START_64: /* struct in6_aliasreq_64 */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
error = in6ctl_llstart(ifp, cmd, data);
|
|
goto done;
|
|
|
|
case SIOCLL_STOP: /* struct in6_ifreq */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
error = in6ctl_llstop(ifp);
|
|
goto done;
|
|
|
|
case SIOCCLAT46_START: /* struct in6_ifreq */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
error = in6ctl_clat46start(ifp);
|
|
if (error == 0) {
|
|
if_set_eflags(ifp, IFEF_CLAT46);
|
|
}
|
|
goto done;
|
|
|
|
case SIOCCLAT46_STOP: /* struct in6_ifreq */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
error = in6ctl_clat46stop(ifp);
|
|
goto done;
|
|
case SIOCGETROUTERMODE_IN6: /* struct in6_ifreq */
|
|
intval = ifp->if_ipv6_router_mode;
|
|
bcopy(&intval, &((struct in6_ifreq *)(void *)data)->ifr_intval,
|
|
sizeof(intval));
|
|
goto done;
|
|
case SIOCSETROUTERMODE_IN6: /* struct in6_ifreq */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
bcopy(&((struct in6_ifreq *)(void *)data)->ifr_intval,
|
|
&intval, sizeof(intval));
|
|
switch (intval) {
|
|
case IPV6_ROUTER_MODE_DISABLED:
|
|
case IPV6_ROUTER_MODE_EXCLUSIVE:
|
|
case IPV6_ROUTER_MODE_HYBRID:
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
error = in6_setrouter(ifp, (ipv6_router_mode_t)intval);
|
|
goto done;
|
|
|
|
case SIOCPROTOATTACH_IN6_32: /* struct in6_aliasreq_32 */
|
|
case SIOCPROTOATTACH_IN6_64: /* struct in6_aliasreq_64 */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
error = in6_domifattach(ifp);
|
|
goto done;
|
|
|
|
case SIOCPROTODETACH_IN6: /* struct in6_ifreq */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
/* Cleanup interface routes and addresses */
|
|
in6_purgeif(ifp);
|
|
|
|
if ((error = proto_unplumb(PF_INET6, ifp))) {
|
|
log(LOG_ERR, "SIOCPROTODETACH_IN6: %s error=%d\n",
|
|
if_name(ifp), error);
|
|
}
|
|
goto done;
|
|
|
|
case SIOCSNDFLUSH_IN6: /* struct in6_ifreq */
|
|
case SIOCSPFXFLUSH_IN6: /* struct in6_ifreq */
|
|
case SIOCSRTRFLUSH_IN6: /* struct in6_ifreq */
|
|
case SIOCSDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */
|
|
case SIOCSDEFIFACE_IN6_64: /* struct in6_ndifreq_64 */
|
|
case SIOCSIFINFO_FLAGS: /* struct in6_ndireq */
|
|
case SIOCGIFCGAPREP_IN6_32: /* struct in6_cgareq_32 */
|
|
case SIOCGIFCGAPREP_IN6_64: /* struct in6_cgareq_64 */
|
|
case SIOCSIFCGAPREP_IN6_32: /* struct in6_cgareq_32 */
|
|
case SIOCSIFCGAPREP_IN6_64: /* struct in6_cgareq_32 */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
OS_FALLTHROUGH;
|
|
case OSIOCGIFINFO_IN6: /* struct in6_ondireq */
|
|
case SIOCGIFINFO_IN6: /* struct in6_ondireq */
|
|
case SIOCGDRLST_IN6_32: /* struct in6_drlist_32 */
|
|
case SIOCGDRLST_IN6_64: /* struct in6_drlist_64 */
|
|
case SIOCGPRLST_IN6_32: /* struct in6_prlist_32 */
|
|
case SIOCGPRLST_IN6_64: /* struct in6_prlist_64 */
|
|
case SIOCGNBRINFO_IN6_32: /* struct in6_nbrinfo_32 */
|
|
case SIOCGNBRINFO_IN6_64: /* struct in6_nbrinfo_64 */
|
|
case SIOCGDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */
|
|
case SIOCGDEFIFACE_IN6_64: /* struct in6_ndifreq_64 */
|
|
error = nd6_ioctl(cmd, data, ifp);
|
|
goto done;
|
|
|
|
case SIOCSIFPREFIX_IN6: /* struct in6_prefixreq (deprecated) */
|
|
case SIOCDIFPREFIX_IN6: /* struct in6_prefixreq (deprecated) */
|
|
case SIOCAIFPREFIX_IN6: /* struct in6_rrenumreq (deprecated) */
|
|
case SIOCCIFPREFIX_IN6: /* struct in6_rrenumreq (deprecated) */
|
|
case SIOCSGIFPREFIX_IN6: /* struct in6_rrenumreq (deprecated) */
|
|
case SIOCGIFPREFIX_IN6: /* struct in6_prefixreq (deprecated) */
|
|
log(LOG_NOTICE,
|
|
"prefix ioctls are now invalidated. "
|
|
"please use ifconfig.\n");
|
|
error = EOPNOTSUPP;
|
|
goto done;
|
|
|
|
case SIOCSSCOPE6: /* struct in6_ifreq (deprecated) */
|
|
case SIOCGSCOPE6: /* struct in6_ifreq (deprecated) */
|
|
case SIOCGSCOPE6DEF: /* struct in6_ifreq (deprecated) */
|
|
error = EOPNOTSUPP;
|
|
goto done;
|
|
|
|
case SIOCLL_CGASTART_32: /* struct in6_cgareq_32 */
|
|
case SIOCLL_CGASTART_64: /* struct in6_cgareq_64 */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
} else {
|
|
error = in6ctl_cgastart(ifp, cmd, data);
|
|
}
|
|
goto done;
|
|
|
|
case SIOCGIFSTAT_IN6: /* struct in6_ifreq */
|
|
case SIOCGIFSTAT_ICMP6: /* struct in6_ifreq */
|
|
error = in6ctl_gifstat(ifp, cmd, ifr);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* ioctls which require interface address; obtain sockaddr_in6.
|
|
*/
|
|
switch (cmd) {
|
|
case SIOCSIFADDR_IN6: /* struct in6_ifreq (deprecated) */
|
|
case SIOCSIFDSTADDR_IN6: /* struct in6_ifreq (deprecated) */
|
|
case SIOCSIFNETMASK_IN6: /* struct in6_ifreq (deprecated) */
|
|
/*
|
|
* Since IPv6 allows a node to assign multiple addresses
|
|
* on a single interface, SIOCSIFxxx ioctls are deprecated.
|
|
*/
|
|
/* we decided to obsolete this command (20000704) */
|
|
error = EOPNOTSUPP;
|
|
goto done;
|
|
|
|
case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */
|
|
case SIOCAIFADDR_IN6_64: /* struct in6_aliasreq_64 */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
/*
|
|
* Convert user ifra to the kernel form, when appropriate.
|
|
* This allows the conversion between different data models
|
|
* to be centralized, so that it can be passed around to other
|
|
* routines that are expecting the kernel form.
|
|
*/
|
|
ifra = in6_aliasreq_to_native(data,
|
|
(cmd == SIOCAIFADDR_IN6_64), &sifra);
|
|
SOCKADDR_COPY(&ifra->ifra_addr, &sin6, sizeof(sin6));
|
|
sa6 = &sin6;
|
|
break;
|
|
|
|
case SIOCDIFADDR_IN6: /* struct in6_ifreq */
|
|
case SIOCSIFALIFETIME_IN6: /* struct in6_ifreq */
|
|
if (!privileged) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
OS_FALLTHROUGH;
|
|
case SIOCGIFADDR_IN6: /* struct in6_ifreq */
|
|
case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */
|
|
case SIOCGIFNETMASK_IN6: /* struct in6_ifreq */
|
|
case SIOCGIFAFLAG_IN6: /* struct in6_ifreq */
|
|
case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */
|
|
SOCKADDR_COPY(&ifr->ifr_addr, &sin6, sizeof(sin6));
|
|
sa6 = &sin6;
|
|
break;
|
|
case SIOCGIFDSTADDR:
|
|
case SIOCSIFDSTADDR:
|
|
case SIOCGIFBRDADDR:
|
|
case SIOCSIFBRDADDR:
|
|
case SIOCGIFNETMASK:
|
|
case SIOCSIFNETMASK:
|
|
case SIOCGIFADDR:
|
|
case SIOCSIFADDR:
|
|
case SIOCAIFADDR:
|
|
case SIOCDIFADDR:
|
|
/* Do not handle these AF_INET commands in AF_INET6 path */
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Find address for this interface, if it exists.
|
|
*
|
|
* In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
|
|
* only, and used the first interface address as the target of other
|
|
* operations (without checking ifra_addr). This was because netinet
|
|
* code/API assumed at most 1 interface address per interface.
|
|
* Since IPv6 allows a node to assign multiple addresses
|
|
* on a single interface, we almost always look and check the
|
|
* presence of ifra_addr, and reject invalid ones here.
|
|
* It also decreases duplicated code among SIOC*_IN6 operations.
|
|
*/
|
|
VERIFY(ia == NULL);
|
|
if (sa6 != NULL && sa6->sin6_family == AF_INET6) {
|
|
if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
|
|
if (in6_embedded_scope) {
|
|
if (sa6->sin6_addr.s6_addr16[1] == 0) {
|
|
/* link ID is not embedded by the user */
|
|
sa6->sin6_addr.s6_addr16[1] =
|
|
htons(ifp->if_index);
|
|
} else if (sa6->sin6_addr.s6_addr16[1] !=
|
|
htons(ifp->if_index)) {
|
|
error = EINVAL; /* link ID contradicts */
|
|
goto done;
|
|
}
|
|
if (sa6->sin6_scope_id) {
|
|
if (sa6->sin6_scope_id !=
|
|
(u_int32_t)ifp->if_index) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
sa6->sin6_scope_id = 0; /* XXX: good way? */
|
|
}
|
|
} else {
|
|
if (sa6->sin6_scope_id == IFSCOPE_NONE) {
|
|
sa6->sin6_scope_id = ifp->if_index;
|
|
} else if (sa6->sin6_scope_id != ifp->if_index) {
|
|
error = EINVAL; /* link ID contradicts */
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Any failures from this point on must take into account
|
|
* a non-NULL "ia" with an outstanding reference count, and
|
|
* therefore requires ifa_remref. Jump to "done" label
|
|
* instead of calling return if "ia" is valid.
|
|
*/
|
|
ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
|
|
}
|
|
|
|
/*
|
|
* SIOCDIFADDR_IN6/SIOCAIFADDR_IN6 specific tests.
|
|
*/
|
|
switch (cmd) {
|
|
case SIOCDIFADDR_IN6: /* struct in6_ifreq */
|
|
if (ia == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
goto done;
|
|
}
|
|
OS_FALLTHROUGH;
|
|
case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */
|
|
case SIOCAIFADDR_IN6_64: /* struct in6_aliasreq_64 */
|
|
VERIFY(sa6 != NULL);
|
|
/*
|
|
* We always require users to specify a valid IPv6 address for
|
|
* the corresponding operation. Use "sa6" instead of "ifra"
|
|
* since SIOCDIFADDR_IN6 falls thru above.
|
|
*/
|
|
if (sa6->sin6_family != AF_INET6 ||
|
|
sa6->sin6_len != sizeof(struct sockaddr_in6)) {
|
|
error = EAFNOSUPPORT;
|
|
goto done;
|
|
}
|
|
|
|
if ((cmd == SIOCAIFADDR_IN6_32 || cmd == SIOCAIFADDR_IN6_64) &&
|
|
(IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
|
|
IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr) ||
|
|
IN6_IS_ADDR_V4MAPPED(&sa6->sin6_addr) ||
|
|
IN6_IS_ADDR_V4COMPAT(&sa6->sin6_addr))) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* And finally process address-related ioctls.
|
|
*/
|
|
switch (cmd) {
|
|
case SIOCGIFADDR_IN6: /* struct in6_ifreq */
|
|
/* This interface is basically deprecated. use SIOCGIFCONF. */
|
|
/* FALLTHRU */
|
|
case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */
|
|
error = in6ctl_gifaddr(ifp, ia, cmd, ifr);
|
|
break;
|
|
|
|
case SIOCGIFNETMASK_IN6: /* struct in6_ifreq */
|
|
if (ia != NULL) {
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
SOCKADDR_COPY(&ia->ia_prefixmask, &ifr->ifr_addr,
|
|
sizeof(struct sockaddr_in6));
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
} else {
|
|
error = EADDRNOTAVAIL;
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFAFLAG_IN6: /* struct in6_ifreq */
|
|
if (ia != NULL) {
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
bcopy(&ia->ia6_flags, &ifr->ifr_ifru.ifru_flags6,
|
|
sizeof(ifr->ifr_ifru.ifru_flags6));
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
} else {
|
|
error = EADDRNOTAVAIL;
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */
|
|
case SIOCSIFALIFETIME_IN6: /* struct in6_ifreq */
|
|
error = in6ctl_alifetime(ia, cmd, ifr, p64);
|
|
break;
|
|
|
|
case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */
|
|
case SIOCAIFADDR_IN6_64: /* struct in6_aliasreq_64 */
|
|
error = in6ctl_aifaddr(ifp, ifra);
|
|
break;
|
|
|
|
case SIOCDIFADDR_IN6:
|
|
in6ctl_difaddr(ifp, ia);
|
|
break;
|
|
|
|
default:
|
|
error = ifnet_ioctl(ifp, PF_INET6, cmd, data);
|
|
break;
|
|
}
|
|
|
|
done:
|
|
if (ifp != NULL) {
|
|
lck_mtx_lock(&ifp->if_inet6_ioctl_lock);
|
|
ifp->if_inet6_ioctl_busy = FALSE;
|
|
lck_mtx_unlock(&ifp->if_inet6_ioctl_lock);
|
|
wakeup(&ifp->if_inet6_ioctl_busy);
|
|
}
|
|
|
|
if (ia != NULL) {
|
|
ifa_remref(&ia->ia_ifa);
|
|
}
|
|
if (so_unlocked) {
|
|
socket_lock(so, 0);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static __attribute__((noinline)) int
|
|
in6ctl_aifaddr(struct ifnet *ifp, struct in6_aliasreq *ifra)
|
|
{
|
|
int i, error, addtmp;
|
|
uint8_t plen;
|
|
struct nd_prefix pr0, *pr;
|
|
struct in6_ifaddr *ia;
|
|
|
|
VERIFY(ifp != NULL && ifra != NULL);
|
|
ia = NULL;
|
|
|
|
/*
|
|
* XXX This interface is not meant to be used for static LLA
|
|
* configuration.
|
|
* Instead one can use SIOCLL_START can be used to configure LLA
|
|
* statically.
|
|
* For bin-compat reasons though, allow it for now and only make
|
|
* sure that scope gets communicated correctly.
|
|
*/
|
|
if (IN6_IS_ADDR_LINKLOCAL(&ifra->ifra_addr.sin6_addr)) {
|
|
if (in6_embedded_scope) {
|
|
ifra->ifra_addr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
|
|
} else {
|
|
/*
|
|
* XXX May be we should rather also check if sin6_scope_id
|
|
* is already set or enforce if set that it is same
|
|
* as interface index?
|
|
* For now to avoid any unintended consequence, just use
|
|
* interface index and set sin6_scope_id.
|
|
* Also should we just prohibit this interface to configure
|
|
* additional link local and limti LLA configuration through
|
|
* other *_start ioctls?
|
|
*/
|
|
ifra->ifra_addr.sin6_addr.s6_addr16[1] = 0;
|
|
ifra->ifra_addr.sin6_scope_id = ifp->if_index;
|
|
}
|
|
}
|
|
|
|
/* Attempt to attach the protocol, in case it isn't attached */
|
|
error = in6_domifattach(ifp);
|
|
if (error == 0) {
|
|
/* PF_INET6 wasn't previously attached */
|
|
error = in6_ifattach_aliasreq(ifp, NULL, NULL);
|
|
if (error != 0) {
|
|
goto done;
|
|
}
|
|
|
|
in6_if_up_dad_start(ifp);
|
|
} else if (error != EEXIST) {
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* First, make or update the interface address structure, and link it
|
|
* to the list.
|
|
*/
|
|
error = in6_update_ifa(ifp, ifra, 0, &ia);
|
|
if (error != 0) {
|
|
goto done;
|
|
}
|
|
VERIFY(ia != NULL);
|
|
|
|
/* Now, make the prefix on-link on the interface. */
|
|
plen = (uint8_t)in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, NULL);
|
|
if (plen == 128) {
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* NOTE: We'd rather create the prefix before the address, but we need
|
|
* at least one address to install the corresponding interface route,
|
|
* so we configure the address first.
|
|
*/
|
|
|
|
/*
|
|
* Convert mask to prefix length (prefixmask has already been validated
|
|
* in in6_update_ifa().
|
|
*/
|
|
bzero(&pr0, sizeof(pr0));
|
|
pr0.ndpr_plen = plen;
|
|
pr0.ndpr_ifp = ifp;
|
|
pr0.ndpr_prefix = ifra->ifra_addr;
|
|
pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
|
|
|
|
/* apply the mask for safety. */
|
|
for (i = 0; i < 4; i++) {
|
|
pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
|
|
ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
|
|
}
|
|
|
|
/*
|
|
* Since we don't have an API to set prefix (not address) lifetimes, we
|
|
* just use the same lifetimes as addresses. The (temporarily)
|
|
* installed lifetimes can be overridden by later advertised RAs (when
|
|
* accept_rtadv is non 0), which is an intended behavior.
|
|
*/
|
|
pr0.ndpr_raf_onlink = 1; /* should be configurable? */
|
|
pr0.ndpr_raf_auto = !!(ifra->ifra_flags & IN6_IFF_AUTOCONF);
|
|
if (ifra->ifra_flags & (IN6_IFF_AUTOCONF | IN6_IFF_DYNAMIC)) {
|
|
pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
|
|
pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
|
|
} else {
|
|
pr0.ndpr_vltime = ND6_INFINITE_LIFETIME;
|
|
pr0.ndpr_pltime = ND6_INFINITE_LIFETIME;
|
|
}
|
|
pr0.ndpr_stateflags |= NDPRF_STATIC;
|
|
lck_mtx_init(&pr0.ndpr_lock, &ifa_mtx_grp, &ifa_mtx_attr);
|
|
|
|
/* add the prefix if there's none. */
|
|
if ((pr = nd6_prefix_lookup(&pr0, ND6_PREFIX_EXPIRY_NEVER)) == NULL) {
|
|
/*
|
|
* nd6_prelist_add will install the corresponding interface
|
|
* route.
|
|
*/
|
|
error = nd6_prelist_add(&pr0, NULL, &pr, FALSE);
|
|
if (error != 0) {
|
|
goto done;
|
|
}
|
|
|
|
if (pr == NULL) {
|
|
log(LOG_ERR, "%s: nd6_prelist_add okay, but"
|
|
" no prefix.\n", __func__);
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
|
|
/* if this is a new autoconfed addr */
|
|
addtmp = FALSE;
|
|
if (ia->ia6_ndpr == NULL) {
|
|
NDPR_LOCK(pr);
|
|
++pr->ndpr_addrcnt;
|
|
if (!(ia->ia6_flags & IN6_IFF_NOTMANUAL)) {
|
|
++pr->ndpr_manual_addrcnt;
|
|
VERIFY(pr->ndpr_manual_addrcnt != 0);
|
|
}
|
|
VERIFY(pr->ndpr_addrcnt != 0);
|
|
ia->ia6_ndpr = pr;
|
|
NDPR_ADDREF(pr); /* for addr reference */
|
|
|
|
/*
|
|
* If this is the first autoconf address from the prefix,
|
|
* create a temporary address as well (when specified).
|
|
*/
|
|
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
|
|
ip6_use_tempaddr &&
|
|
pr->ndpr_addrcnt == 1 &&
|
|
(!IN6_IS_ADDR_UNIQUE_LOCAL(&ia->ia_addr.sin6_addr)
|
|
|| ip6_ula_use_tempaddr)) {
|
|
addtmp = true;
|
|
}
|
|
NDPR_UNLOCK(pr);
|
|
}
|
|
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
|
|
if (addtmp) {
|
|
int e;
|
|
e = in6_tmpifadd(ia, 1);
|
|
if (e != 0) {
|
|
log(LOG_NOTICE, "%s: failed to create a"
|
|
" temporary address, error=%d\n",
|
|
__func__, e);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This might affect the status of autoconfigured addresses, that is,
|
|
* this address might make other addresses detached.
|
|
*/
|
|
lck_mtx_lock(nd6_mutex);
|
|
pfxlist_onlink_check();
|
|
lck_mtx_unlock(nd6_mutex);
|
|
|
|
/* Drop use count held above during lookup/add */
|
|
NDPR_REMREF(pr);
|
|
|
|
done:
|
|
if (ia != NULL) {
|
|
ifa_remref(&ia->ia_ifa);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static __attribute__((noinline)) void
|
|
in6ctl_difaddr(struct ifnet *ifp, struct in6_ifaddr *ia)
|
|
{
|
|
int i = 0;
|
|
struct nd_prefix pr0, *pr;
|
|
|
|
VERIFY(ifp != NULL && ia != NULL);
|
|
|
|
/*
|
|
* If the address being deleted is the only one that owns
|
|
* the corresponding prefix, expire the prefix as well.
|
|
* XXX: theoretically, we don't have to worry about such
|
|
* relationship, since we separate the address management
|
|
* and the prefix management. We do this, however, to provide
|
|
* as much backward compatibility as possible in terms of
|
|
* the ioctl operation.
|
|
* Note that in6_purgeaddr() will decrement ndpr_addrcnt.
|
|
*/
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
bzero(&pr0, sizeof(pr0));
|
|
pr0.ndpr_ifp = ifp;
|
|
pr0.ndpr_plen = (uint8_t)in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
|
|
if (pr0.ndpr_plen == 128) {
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
goto purgeaddr;
|
|
}
|
|
pr0.ndpr_prefix = ia->ia_addr;
|
|
pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
|
|
for (i = 0; i < 4; i++) {
|
|
pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
|
|
ia->ia_prefixmask.sin6_addr.s6_addr32[i];
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
|
|
if ((pr = nd6_prefix_lookup(&pr0, ND6_PREFIX_EXPIRY_UNSPEC)) != NULL) {
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
NDPR_LOCK(pr);
|
|
if (pr->ndpr_addrcnt == 1) {
|
|
/* XXX: just for expiration */
|
|
pr->ndpr_expire = 1;
|
|
}
|
|
NDPR_UNLOCK(pr);
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
|
|
/* Drop use count held above during lookup */
|
|
NDPR_REMREF(pr);
|
|
}
|
|
|
|
purgeaddr:
|
|
in6_purgeaddr(&ia->ia_ifa);
|
|
}
|
|
|
|
static __attribute__((noinline)) int
|
|
in6_autoconf(struct ifnet *ifp, int enable)
|
|
{
|
|
int error = 0;
|
|
|
|
VERIFY(ifp != NULL);
|
|
|
|
if (ifp->if_flags & IFF_LOOPBACK) {
|
|
return EINVAL;
|
|
}
|
|
|
|
if (enable) {
|
|
/*
|
|
* An interface in IPv6 router mode implies that it
|
|
* is either configured with a static IP address or
|
|
* autoconfigured via a locally-generated RA. Prevent
|
|
* SIOCAUTOCONF_START from being set in that mode.
|
|
*/
|
|
ifnet_lock_exclusive(ifp);
|
|
if (ifp->if_ipv6_router_mode == IPV6_ROUTER_MODE_EXCLUSIVE) {
|
|
if_clear_eflags(ifp, IFEF_ACCEPT_RTADV);
|
|
error = EBUSY;
|
|
} else {
|
|
if_set_eflags(ifp, IFEF_ACCEPT_RTADV);
|
|
}
|
|
ifnet_lock_done(ifp);
|
|
} else {
|
|
struct in6_ifaddr *ia = NULL;
|
|
|
|
if_clear_eflags(ifp, IFEF_ACCEPT_RTADV);
|
|
|
|
/* Remove autoconfigured address from interface */
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
boolean_t from_begining = TRUE;
|
|
while (from_begining) {
|
|
from_begining = FALSE;
|
|
TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) {
|
|
if (ia->ia_ifa.ifa_ifp != ifp) {
|
|
continue;
|
|
}
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
if (ia->ia6_flags & IN6_IFF_AUTOCONF) {
|
|
ifa_addref(&ia->ia_ifa); /* for us */
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
in6_purgeaddr(&ia->ia_ifa);
|
|
ifa_remref(&ia->ia_ifa); /* for us */
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
/*
|
|
* Purging the address caused in6_ifaddr_rwlock
|
|
* to be dropped and reacquired;
|
|
* therefore search again from the beginning
|
|
* of in6_ifaddrs list.
|
|
*/
|
|
from_begining = TRUE;
|
|
break;
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
}
|
|
}
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Handle SIOCSETROUTERMODE_IN6 to set the IPv6 router mode on the interface
|
|
* Entering or exiting IPV6_ROUTER_MODE_EXCLUSIVE will result in the removal of
|
|
* autoconfigured IPv6 addresses on the interface.
|
|
*/
|
|
static __attribute__((noinline)) int
|
|
in6_setrouter(struct ifnet *ifp, ipv6_router_mode_t mode)
|
|
{
|
|
int error = 0;
|
|
ipv6_router_mode_t prev_mode;
|
|
|
|
VERIFY(ifp != NULL);
|
|
|
|
if (ifp->if_flags & IFF_LOOPBACK) {
|
|
return ENODEV;
|
|
}
|
|
|
|
prev_mode = ifp->if_ipv6_router_mode;
|
|
if (prev_mode == mode) {
|
|
/* no mode change, there's nothing to do */
|
|
return 0;
|
|
}
|
|
if (mode == IPV6_ROUTER_MODE_EXCLUSIVE) {
|
|
struct nd_ifinfo *ndi = NULL;
|
|
|
|
ndi = ND_IFINFO(ifp);
|
|
if (ndi != NULL && ndi->initialized) {
|
|
lck_mtx_lock(&ndi->lock);
|
|
if (ndi->flags & ND6_IFF_PROXY_PREFIXES) {
|
|
/* No proxy if we are an advertising router */
|
|
ndi->flags &= ~ND6_IFF_PROXY_PREFIXES;
|
|
lck_mtx_unlock(&ndi->lock);
|
|
(void) nd6_if_prproxy(ifp, FALSE);
|
|
} else {
|
|
lck_mtx_unlock(&ndi->lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
ifp->if_ipv6_router_mode = mode;
|
|
lck_mtx_lock(nd6_mutex);
|
|
defrouter_select(ifp, NULL);
|
|
lck_mtx_unlock(nd6_mutex);
|
|
if_allmulti(ifp, (mode == IPV6_ROUTER_MODE_EXCLUSIVE));
|
|
if (mode == IPV6_ROUTER_MODE_EXCLUSIVE ||
|
|
(prev_mode == IPV6_ROUTER_MODE_EXCLUSIVE
|
|
&& mode == IPV6_ROUTER_MODE_DISABLED)) {
|
|
error = in6_autoconf(ifp, FALSE);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
in6_to_kamescope(struct sockaddr_in6 *sin6, struct ifnet *ifp)
|
|
{
|
|
struct sockaddr_in6 tmp;
|
|
int error, id;
|
|
|
|
VERIFY(sin6 != NULL);
|
|
tmp = *sin6;
|
|
|
|
error = in6_recoverscope(&tmp, &sin6->sin6_addr, ifp);
|
|
if (error != 0) {
|
|
return error;
|
|
}
|
|
|
|
id = in6_addr2scopeid(ifp, &tmp.sin6_addr);
|
|
if (tmp.sin6_scope_id == 0) {
|
|
tmp.sin6_scope_id = id;
|
|
} else if (tmp.sin6_scope_id != id) {
|
|
return EINVAL; /* scope ID mismatch. */
|
|
}
|
|
error = in6_embedscope(&tmp.sin6_addr, &tmp, NULL, NULL, NULL, IN6_NULL_IF_EMBEDDED_SCOPE(&tmp.sin6_scope_id));
|
|
if (error != 0) {
|
|
return error;
|
|
}
|
|
|
|
if (in6_embedded_scope || !IN6_IS_SCOPE_EMBED(&tmp.sin6_addr)) {
|
|
tmp.sin6_scope_id = 0;
|
|
}
|
|
*sin6 = tmp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When the address is being configured we should clear out certain flags
|
|
* coming in from the caller.
|
|
*/
|
|
#define IN6_IFF_CLR_ADDR_FLAG_MASK (~(IN6_IFF_DEPRECATED | IN6_IFF_DETACHED | IN6_IFF_DUPLICATED))
|
|
|
|
static int
|
|
in6_ifaupdate_aux(struct in6_ifaddr *ia, struct ifnet *ifp, int ifaupflags)
|
|
{
|
|
struct sockaddr_in6 mltaddr, mltmask;
|
|
struct in6_addr llsol;
|
|
struct ifaddr *ifa;
|
|
struct in6_multi *in6m_sol;
|
|
struct in6_multi_mship *imm;
|
|
struct rtentry *rt;
|
|
int delay, error = 0;
|
|
|
|
VERIFY(ifp != NULL && ia != NULL);
|
|
ifa = &ia->ia_ifa;
|
|
in6m_sol = NULL;
|
|
|
|
nd6log2(debug, "%s - %s ifp %s ia6_flags 0x%x ifaupflags 0x%x\n",
|
|
__func__,
|
|
ip6_sprintf(&ia->ia_addr.sin6_addr),
|
|
if_name(ia->ia_ifp),
|
|
ia->ia6_flags,
|
|
ifaupflags);
|
|
|
|
/*
|
|
* Just to be safe, always clear certain flags when address
|
|
* is being configured
|
|
*/
|
|
ia->ia6_flags &= IN6_IFF_CLR_ADDR_FLAG_MASK;
|
|
|
|
/*
|
|
* Mark the address as tentative before joining multicast addresses,
|
|
* so that corresponding MLD responses would not have a tentative
|
|
* source address.
|
|
*/
|
|
if (in6if_do_dad(ifp)) {
|
|
in6_ifaddr_set_dadprogress(ia);
|
|
/*
|
|
* Do not delay sending neighbor solicitations when using optimistic
|
|
* duplicate address detection, c.f. RFC 4429.
|
|
*/
|
|
if (ia->ia6_flags & IN6_IFF_OPTIMISTIC) {
|
|
ifaupflags &= ~IN6_IFAUPDATE_DADDELAY;
|
|
} else {
|
|
ifaupflags |= IN6_IFAUPDATE_DADDELAY;
|
|
}
|
|
} else {
|
|
/*
|
|
* If the interface has been marked to not perform
|
|
* DAD, make sure to reset DAD in progress flags
|
|
* that may come in from the caller.
|
|
*/
|
|
ia->ia6_flags &= ~IN6_IFF_DADPROGRESS;
|
|
}
|
|
|
|
/* Join necessary multicast groups */
|
|
if ((ifp->if_flags & IFF_MULTICAST) != 0) {
|
|
/* join solicited multicast addr for new host id */
|
|
bzero(&llsol, sizeof(struct in6_addr));
|
|
llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
|
|
llsol.s6_addr32[1] = 0;
|
|
llsol.s6_addr32[2] = htonl(1);
|
|
llsol.s6_addr32[3] = ia->ia_addr.sin6_addr.s6_addr32[3];
|
|
llsol.s6_addr8[12] = 0xff;
|
|
if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
|
|
/* XXX: should not happen */
|
|
log(LOG_ERR, "%s: in6_setscope failed\n", __func__);
|
|
goto unwind;
|
|
}
|
|
delay = 0;
|
|
if ((ifaupflags & IN6_IFAUPDATE_DADDELAY)) {
|
|
/*
|
|
* We need a random delay for DAD on the address
|
|
* being configured. It also means delaying
|
|
* transmission of the corresponding MLD report to
|
|
* avoid report collision. [RFC 4862]
|
|
*/
|
|
delay = random() % MAX_RTR_SOLICITATION_DELAY;
|
|
}
|
|
imm = in6_joingroup(ifp, &llsol, &error, delay);
|
|
if (imm == NULL) {
|
|
nd6log(info,
|
|
"%s: addmulti failed for %s on %s (errno=%d)\n",
|
|
__func__, ip6_sprintf(&llsol), if_name(ifp),
|
|
error);
|
|
VERIFY(error != 0);
|
|
goto unwind;
|
|
}
|
|
in6m_sol = imm->i6mm_maddr;
|
|
/* take a refcount for this routine */
|
|
IN6M_ADDREF(in6m_sol);
|
|
|
|
IFA_LOCK_SPIN(ifa);
|
|
LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
|
|
IFA_UNLOCK(ifa);
|
|
|
|
SOCKADDR_ZERO(&mltmask, sizeof(mltmask));
|
|
mltmask.sin6_len = sizeof(struct sockaddr_in6);
|
|
mltmask.sin6_family = AF_INET6;
|
|
mltmask.sin6_addr = in6mask32;
|
|
#define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */
|
|
|
|
/*
|
|
* join link-local all-nodes address
|
|
*/
|
|
SOCKADDR_ZERO(&mltaddr, sizeof(mltaddr));
|
|
mltaddr.sin6_len = sizeof(struct sockaddr_in6);
|
|
mltaddr.sin6_family = AF_INET6;
|
|
mltaddr.sin6_addr = in6addr_linklocal_allnodes;
|
|
if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&mltaddr.sin6_scope_id))) != 0) {
|
|
goto unwind; /* XXX: should not fail */
|
|
}
|
|
/*
|
|
* XXX: do we really need this automatic routes?
|
|
* We should probably reconsider this stuff. Most applications
|
|
* actually do not need the routes, since they usually specify
|
|
* the outgoing interface.
|
|
*/
|
|
rt = rtalloc1_scoped(SA(&mltaddr), 0, 0UL,
|
|
ia->ia_ifp->if_index);
|
|
if (rt) {
|
|
if (memcmp(&mltaddr.sin6_addr, &SIN6(rt_key(rt))->sin6_addr, MLTMASK_LEN)) {
|
|
rtfree(rt);
|
|
rt = NULL;
|
|
}
|
|
}
|
|
if (!rt) {
|
|
error = rtrequest_scoped(RTM_ADD,
|
|
SA(&mltaddr),
|
|
SA(&ia->ia_addr),
|
|
SA(&mltmask), RTF_UP | RTF_CLONING,
|
|
NULL, ia->ia_ifp->if_index);
|
|
if (error) {
|
|
goto unwind;
|
|
}
|
|
} else {
|
|
rtfree(rt);
|
|
}
|
|
|
|
imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
|
|
if (!imm) {
|
|
nd6log(info,
|
|
"%s: addmulti failed for %s on %s (errno=%d)\n",
|
|
__func__, ip6_sprintf(&mltaddr.sin6_addr),
|
|
if_name(ifp), error);
|
|
VERIFY(error != 0);
|
|
goto unwind;
|
|
}
|
|
IFA_LOCK_SPIN(ifa);
|
|
LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
|
|
IFA_UNLOCK(ifa);
|
|
|
|
/*
|
|
* join node information group address
|
|
*/
|
|
#define hostnamelen strlen(hostname)
|
|
delay = 0;
|
|
if ((ifaupflags & IN6_IFAUPDATE_DADDELAY)) {
|
|
/*
|
|
* The spec doesn't say anything about delay for this
|
|
* group, but the same logic should apply.
|
|
*/
|
|
delay = random() % MAX_RTR_SOLICITATION_DELAY;
|
|
}
|
|
lck_mtx_lock(&hostname_lock);
|
|
int n = in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr, IN6_NULL_IF_EMBEDDED_SCOPE(&mltaddr.sin6_scope_id));
|
|
lck_mtx_unlock(&hostname_lock);
|
|
if (n == 0) {
|
|
imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
|
|
delay); /* XXX jinmei */
|
|
if (!imm) {
|
|
nd6log(info,
|
|
"%s: addmulti failed for %s on %s "
|
|
"(errno=%d)\n",
|
|
__func__, ip6_sprintf(&mltaddr.sin6_addr),
|
|
if_name(ifp), error);
|
|
/* XXX not very fatal, go on... */
|
|
error = 0;
|
|
} else {
|
|
IFA_LOCK_SPIN(ifa);
|
|
LIST_INSERT_HEAD(&ia->ia6_memberships,
|
|
imm, i6mm_chain);
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
}
|
|
#undef hostnamelen
|
|
|
|
/*
|
|
* join interface-local all-nodes address.
|
|
* (ff01::1%ifN, and ff01::%ifN/32)
|
|
*/
|
|
mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
|
|
if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&mltaddr.sin6_scope_id))) != 0) {
|
|
goto unwind; /* XXX: should not fail */
|
|
}
|
|
/* XXX: again, do we really need the route? */
|
|
rt = rtalloc1_scoped(SA(&mltaddr), 0, 0UL,
|
|
ia->ia_ifp->if_index);
|
|
if (rt) {
|
|
if (memcmp(&mltaddr.sin6_addr, &(SIN6(rt_key(rt)))->sin6_addr, MLTMASK_LEN)) {
|
|
rtfree(rt);
|
|
rt = NULL;
|
|
}
|
|
}
|
|
if (!rt) {
|
|
error = rtrequest_scoped(RTM_ADD,
|
|
SA(&mltaddr),
|
|
SA(&ia->ia_addr),
|
|
SA(&mltmask), RTF_UP | RTF_CLONING,
|
|
NULL, ia->ia_ifp->if_index);
|
|
if (error) {
|
|
goto unwind;
|
|
}
|
|
} else {
|
|
rtfree(rt);
|
|
}
|
|
|
|
imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
|
|
if (!imm) {
|
|
nd6log(info,
|
|
"%s: addmulti failed for %s on %s (errno=%d)\n",
|
|
__func__, ip6_sprintf(&mltaddr.sin6_addr),
|
|
if_name(ifp), error);
|
|
VERIFY(error != 0);
|
|
goto unwind;
|
|
}
|
|
IFA_LOCK(ifa);
|
|
LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
|
|
IFA_UNLOCK(ifa);
|
|
#undef MLTMASK_LEN
|
|
|
|
/*
|
|
* create a ff00::/8 route
|
|
*/
|
|
SOCKADDR_ZERO(&mltmask, sizeof(mltmask));
|
|
mltmask.sin6_len = sizeof(struct sockaddr_in6);
|
|
mltmask.sin6_family = AF_INET6;
|
|
mltmask.sin6_addr = in6mask8;
|
|
#define MLTMASK_LEN_8_BITS 1 /* ff00::/8 mltmask's masklen (=8bit=1octet) */
|
|
|
|
SOCKADDR_ZERO(&mltaddr, sizeof(mltaddr));
|
|
mltaddr.sin6_len = sizeof(struct sockaddr_in6);
|
|
mltaddr.sin6_family = AF_INET6;
|
|
mltaddr.sin6_addr = in6addr_multicast_prefix;
|
|
|
|
rt = rtalloc1_scoped(SA(&mltaddr), 0, 0UL,
|
|
ia->ia_ifp->if_index);
|
|
if (rt) {
|
|
if (memcmp(&mltaddr.sin6_addr, &(SIN6(rt_key(rt)))->sin6_addr, MLTMASK_LEN_8_BITS)) {
|
|
rtfree(rt);
|
|
rt = NULL;
|
|
}
|
|
}
|
|
if (!rt) {
|
|
error = rtrequest_scoped(RTM_ADD,
|
|
SA(&mltaddr),
|
|
SA(&ia->ia_addr),
|
|
SA(&mltmask), RTF_UP | RTF_CLONING,
|
|
NULL, ia->ia_ifp->if_index);
|
|
if (error) {
|
|
goto unwind;
|
|
}
|
|
} else {
|
|
rtfree(rt);
|
|
}
|
|
}
|
|
#undef MLTMASK_LEN_8_BITS
|
|
|
|
/* Ensure nd6_service() is scheduled as soon as it's convenient */
|
|
++nd6_sched_timeout_want;
|
|
|
|
/*
|
|
* Perform DAD, if:
|
|
* * Interface is marked to perform DAD, AND
|
|
* * Address is not marked to skip DAD, AND
|
|
* * Address is in a pre-DAD state (Tentative or Optimistic)
|
|
*/
|
|
IFA_LOCK_SPIN(ifa);
|
|
if (in6if_do_dad(ifp) && (ia->ia6_flags & IN6_IFF_NODAD) == 0 &&
|
|
(ia->ia6_flags & IN6_IFF_DADPROGRESS) != 0) {
|
|
int mindelay, maxdelay;
|
|
int *delayptr, delayval;
|
|
|
|
IFA_UNLOCK(ifa);
|
|
delayptr = NULL;
|
|
/*
|
|
* Avoid the DAD delay if the caller wants us to skip it.
|
|
* This is not compliant with RFC 2461, but it's only being
|
|
* used for signalling and not for actual DAD.
|
|
*/
|
|
if ((ifaupflags & IN6_IFAUPDATE_DADDELAY) &&
|
|
!(ia->ia6_flags & IN6_IFF_SWIFTDAD)) {
|
|
/*
|
|
* We need to impose a delay before sending an NS
|
|
* for DAD. Check if we also needed a delay for the
|
|
* corresponding MLD message. If we did, the delay
|
|
* should be larger than the MLD delay (this could be
|
|
* relaxed a bit, but this simple logic is at least
|
|
* safe).
|
|
*/
|
|
mindelay = 0;
|
|
if (in6m_sol != NULL) {
|
|
IN6M_LOCK(in6m_sol);
|
|
if (in6m_sol->in6m_state ==
|
|
MLD_REPORTING_MEMBER) {
|
|
mindelay = in6m_sol->in6m_timer;
|
|
}
|
|
IN6M_UNLOCK(in6m_sol);
|
|
}
|
|
maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
|
|
if (maxdelay - mindelay == 0) {
|
|
delayval = 0;
|
|
} else {
|
|
delayval =
|
|
(random() % (maxdelay - mindelay)) +
|
|
mindelay;
|
|
}
|
|
delayptr = &delayval;
|
|
}
|
|
|
|
nd6_dad_start((struct ifaddr *)ia, delayptr);
|
|
} else {
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
|
|
goto done;
|
|
|
|
unwind:
|
|
VERIFY(error != 0);
|
|
in6_purgeaddr(&ia->ia_ifa);
|
|
|
|
done:
|
|
/* release reference held for this routine */
|
|
if (in6m_sol != NULL) {
|
|
IN6M_REMREF(in6m_sol);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Request an IPv6 interface address. If the address is new, then it will be
|
|
* constructed and appended to the interface address chains. The interface
|
|
* address structure is optionally returned with a reference for the caller.
|
|
*/
|
|
int
|
|
in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, int ifaupflags,
|
|
struct in6_ifaddr **iar)
|
|
{
|
|
struct in6_addrlifetime ia6_lt;
|
|
struct in6_ifaddr *ia;
|
|
struct ifaddr *ifa;
|
|
struct ifaddr *xifa;
|
|
struct in6_addrlifetime *lt;
|
|
uint64_t timenow;
|
|
int plen, error;
|
|
|
|
/* Sanity check parameters and initialize locals */
|
|
VERIFY(ifp != NULL && ifra != NULL && iar != NULL);
|
|
ia = NULL;
|
|
ifa = NULL;
|
|
error = 0;
|
|
|
|
/*
|
|
* We always require users to specify a valid IPv6 address for
|
|
* the corresponding operation.
|
|
*/
|
|
if (ifra->ifra_addr.sin6_family != AF_INET6 ||
|
|
ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) {
|
|
error = EAFNOSUPPORT;
|
|
goto unwind;
|
|
}
|
|
|
|
/* Validate ifra_prefixmask.sin6_len is properly bounded. */
|
|
if (ifra->ifra_prefixmask.sin6_len == 0 ||
|
|
ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) {
|
|
error = EINVAL;
|
|
goto unwind;
|
|
}
|
|
|
|
/* Validate prefix length extracted from ifra_prefixmask structure. */
|
|
plen = (uint8_t)in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
|
|
(u_char *)&ifra->ifra_prefixmask + ifra->ifra_prefixmask.sin6_len);
|
|
if (plen <= 0) {
|
|
error = EINVAL;
|
|
goto unwind;
|
|
}
|
|
|
|
/* Validate lifetimes */
|
|
lt = &ifra->ifra_lifetime;
|
|
if (lt->ia6t_pltime > lt->ia6t_vltime) {
|
|
log(LOG_INFO,
|
|
"%s: pltime 0x%x > vltime 0x%x for %s\n", __func__,
|
|
lt->ia6t_pltime, lt->ia6t_vltime,
|
|
ip6_sprintf(&ifra->ifra_addr.sin6_addr));
|
|
error = EINVAL;
|
|
goto unwind;
|
|
}
|
|
if (lt->ia6t_vltime == 0) {
|
|
/*
|
|
* the following log might be noisy, but this is a typical
|
|
* configuration mistake or a tool's bug.
|
|
*/
|
|
log(LOG_INFO, "%s: valid lifetime is 0 for %s\n", __func__,
|
|
ip6_sprintf(&ifra->ifra_addr.sin6_addr));
|
|
}
|
|
|
|
/*
|
|
* Before we lock the ifnet structure, we first check to see if the
|
|
* address already exists. If so, then we don't allocate and link a
|
|
* new one here.
|
|
*/
|
|
struct sockaddr_in6 lookup_address = ifra->ifra_addr;
|
|
if (IN6_IS_ADDR_LINKLOCAL(&lookup_address.sin6_addr)) {
|
|
if (in6_embedded_scope) {
|
|
if (lookup_address.sin6_addr.s6_addr16[1] == 0) {
|
|
/* link ID is not embedded by the user */
|
|
lookup_address.sin6_addr.s6_addr16[1] =
|
|
htons(ifp->if_index);
|
|
} else if (lookup_address.sin6_addr.s6_addr16[1] !=
|
|
htons(ifp->if_index)) {
|
|
error = EINVAL; /* link ID contradicts */
|
|
goto done;
|
|
}
|
|
} else {
|
|
if (lookup_address.sin6_scope_id == IFSCOPE_NONE) {
|
|
lookup_address.sin6_scope_id = ifp->if_index;
|
|
}
|
|
}
|
|
if (lookup_address.sin6_scope_id != 0 &&
|
|
lookup_address.sin6_scope_id !=
|
|
(u_int32_t)ifp->if_index) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
ia = in6ifa_ifpwithaddr(ifp, &lookup_address.sin6_addr);
|
|
if (ia != NULL) {
|
|
ifa = &ia->ia_ifa;
|
|
}
|
|
|
|
/*
|
|
* Validate destination address on interface types that require it.
|
|
*/
|
|
if ((ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) {
|
|
switch (ifra->ifra_dstaddr.sin6_family) {
|
|
case AF_INET6:
|
|
if (plen != 128) {
|
|
/* noisy message for diagnostic purposes */
|
|
log(LOG_INFO,
|
|
"%s: prefix length < 128 with"
|
|
" explicit dstaddr.\n", __func__);
|
|
error = EINVAL;
|
|
goto unwind;
|
|
}
|
|
break;
|
|
|
|
case AF_UNSPEC:
|
|
break;
|
|
|
|
default:
|
|
error = EAFNOSUPPORT;
|
|
goto unwind;
|
|
}
|
|
} else if (ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) {
|
|
log(LOG_INFO,
|
|
"%s: dstaddr valid only on p2p and loopback interfaces.\n",
|
|
__func__);
|
|
error = EINVAL;
|
|
goto unwind;
|
|
}
|
|
|
|
timenow = net_uptime();
|
|
|
|
if (ia == NULL) {
|
|
zalloc_flags_t how;
|
|
|
|
/* Is this the first new IPv6 address for the interface? */
|
|
ifaupflags |= IN6_IFAUPDATE_NEWADDR;
|
|
|
|
/* Allocate memory for IPv6 interface address structure. */
|
|
how = (ifaupflags & IN6_IFAUPDATE_NOWAIT) ? Z_NOWAIT : Z_WAITOK;
|
|
ia = in6_ifaddr_alloc(how);
|
|
if (ia == NULL) {
|
|
error = ENOBUFS;
|
|
goto unwind;
|
|
}
|
|
|
|
ifa = &ia->ia_ifa;
|
|
|
|
/*
|
|
* Initialize interface address structure.
|
|
*
|
|
* Note well: none of these sockaddr_in6 structures contain a
|
|
* valid sin6_port, sin6_flowinfo or even a sin6_scope_id field.
|
|
* We still embed link-local scope identifiers at the end of an
|
|
* arbitrary fe80::/32 prefix, for historical reasons. Also, the
|
|
* ifa_dstaddr field is always non-NULL on point-to-point and
|
|
* loopback interfaces, and conventionally points to a socket
|
|
* address of AF_UNSPEC family when there is no destination.
|
|
*
|
|
* Please enjoy the dancing sea turtle.
|
|
*/
|
|
IA6_HASH_INIT(ia);
|
|
ifa->ifa_addr = SA(&ia->ia_addr);
|
|
if (ifra->ifra_dstaddr.sin6_family == AF_INET6 ||
|
|
(ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
|
|
ifa->ifa_dstaddr = SA(&ia->ia_dstaddr);
|
|
}
|
|
ifa->ifa_netmask = SA(&ia->ia_prefixmask);
|
|
ifa->ifa_ifp = ifp;
|
|
ifa->ifa_metric = ifp->if_metric;
|
|
ifa->ifa_rtrequest = nd6_rtrequest;
|
|
|
|
LIST_INIT(&ia->ia6_memberships);
|
|
ia->ia_addr.sin6_family = AF_INET6;
|
|
ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
|
|
ia->ia_addr.sin6_addr = ifra->ifra_addr.sin6_addr;
|
|
ia->ia_prefixmask.sin6_family = AF_INET6;
|
|
ia->ia_prefixmask.sin6_len = sizeof(ia->ia_prefixmask);
|
|
ia->ia_prefixmask.sin6_addr = ifra->ifra_prefixmask.sin6_addr;
|
|
error = in6_to_kamescope(&ia->ia_addr, ifp);
|
|
if (error != 0) {
|
|
goto unwind;
|
|
}
|
|
if (ifa->ifa_dstaddr != NULL) {
|
|
ia->ia_dstaddr = ifra->ifra_dstaddr;
|
|
error = in6_to_kamescope(&ia->ia_dstaddr, ifp);
|
|
if (error != 0) {
|
|
goto unwind;
|
|
}
|
|
}
|
|
|
|
/* Append to address chains */
|
|
ifnet_lock_exclusive(ifp);
|
|
ifaupflags |= IN6_IFAUPDATE_1STADDR;
|
|
TAILQ_FOREACH(xifa, &ifp->if_addrlist, ifa_list) {
|
|
IFA_LOCK_SPIN(xifa);
|
|
if (xifa->ifa_addr->sa_family != AF_INET6) {
|
|
IFA_UNLOCK(xifa);
|
|
ifaupflags &= ~IN6_IFAUPDATE_1STADDR;
|
|
break;
|
|
}
|
|
IFA_UNLOCK(xifa);
|
|
}
|
|
|
|
IFA_LOCK_SPIN(ifa);
|
|
if_attach_ifa(ifp, ifa); /* holds reference for ifnet link */
|
|
IFA_UNLOCK(ifa);
|
|
ifnet_lock_done(ifp);
|
|
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
TAILQ_INSERT_TAIL(&in6_ifaddrhead, ia, ia6_link);
|
|
ifa_addref(ifa); /* hold for in6_ifaddrs link */
|
|
os_atomic_inc(&in6_ifaddrlist_genid, relaxed);
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
} else {
|
|
ifa = &ia->ia_ifa;
|
|
ifaupflags &= ~(IN6_IFAUPDATE_NEWADDR | IN6_IFAUPDATE_1STADDR);
|
|
}
|
|
|
|
VERIFY(ia != NULL && ifa == &ia->ia_ifa);
|
|
|
|
if (!(ifaupflags & IN6_IFAUPDATE_NEWADDR) && ia->ia6_ndpr != NULL) {
|
|
/* If we're flopping between address configuration methods, adjust the counts. */
|
|
struct nd_prefix *pr = ia->ia6_ndpr;
|
|
NDPR_LOCK(pr);
|
|
if ((ia->ia6_flags & IN6_IFF_NOTMANUAL) && !(ifra->ifra_flags & IN6_IFF_NOTMANUAL)) {
|
|
log(LOG_DEBUG, "address %s already exists in automatic form", ip6_sprintf(&ia->ia_addr.sin6_addr));
|
|
pr->ndpr_manual_addrcnt--;
|
|
} else if (!(ia->ia6_flags & IN6_IFF_NOTMANUAL) && (ifra->ifra_flags & IN6_IFF_NOTMANUAL)) {
|
|
log(LOG_DEBUG, "address %s already exists in manual form", ip6_sprintf(&ia->ia_addr.sin6_addr));
|
|
/* no need to adjust counts here as npdr_addrcnt is always adjusted no matter the interface type */
|
|
}
|
|
NDPR_UNLOCK(pr);
|
|
}
|
|
|
|
IFA_LOCK(ifa);
|
|
|
|
/*
|
|
* Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred
|
|
* to see if the address is deprecated or invalidated, but initialize
|
|
* these members for applications.
|
|
*/
|
|
ia->ia6_updatetime = ia->ia6_createtime = timenow;
|
|
ia6_lt = *lt;
|
|
if (ia6_lt.ia6t_vltime != ND6_INFINITE_LIFETIME) {
|
|
ia6_lt.ia6t_expire = (time_t)(timenow + ia6_lt.ia6t_vltime);
|
|
} else {
|
|
ia6_lt.ia6t_expire = 0;
|
|
}
|
|
if (ia6_lt.ia6t_pltime != ND6_INFINITE_LIFETIME) {
|
|
ia6_lt.ia6t_preferred = (time_t)(timenow + ia6_lt.ia6t_pltime);
|
|
} else {
|
|
ia6_lt.ia6t_preferred = 0;
|
|
}
|
|
in6ifa_setlifetime(ia, &ia6_lt);
|
|
|
|
/*
|
|
* Backward compatibility - if IN6_IFF_DEPRECATED is set from the
|
|
* userland, make it deprecated.
|
|
*/
|
|
if ((ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) {
|
|
ia->ia6_lifetime.ia6ti_pltime = 0;
|
|
ia->ia6_lifetime.ia6ti_preferred = timenow;
|
|
}
|
|
|
|
/*
|
|
* Update flag or prefix length
|
|
*/
|
|
ia->ia_plen = plen;
|
|
ia->ia6_flags = ifra->ifra_flags;
|
|
|
|
/* Release locks (new address available to concurrent tasks) */
|
|
IFA_UNLOCK(ifa);
|
|
|
|
/* Further initialization of the interface address */
|
|
error = in6_ifinit(ifp, ia, ifaupflags);
|
|
if (error != 0) {
|
|
goto unwind;
|
|
}
|
|
|
|
/* Finish updating the address while other tasks are working with it */
|
|
error = in6_ifaupdate_aux(ia, ifp, ifaupflags);
|
|
if (error != 0) {
|
|
goto unwind;
|
|
}
|
|
|
|
/* Return success (optionally w/ address for caller). */
|
|
VERIFY(error == 0);
|
|
(void) ifnet_notify_address(ifp, AF_INET6);
|
|
|
|
goto done;
|
|
|
|
unwind:
|
|
VERIFY(error != 0);
|
|
if (ia != NULL) {
|
|
VERIFY(ifa == &ia->ia_ifa);
|
|
ifa_remref(ifa);
|
|
ia = NULL;
|
|
}
|
|
|
|
done:
|
|
*iar = ia;
|
|
return error;
|
|
}
|
|
|
|
void
|
|
in6_purgeaddr(struct ifaddr *ifa)
|
|
{
|
|
struct ifnet *ifp = ifa->ifa_ifp;
|
|
struct in6_ifaddr *ia = (struct in6_ifaddr *)ifa;
|
|
struct in6_multi_mship *imm;
|
|
|
|
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
|
|
|
|
/* stop DAD processing */
|
|
nd6_dad_stop(ifa);
|
|
|
|
/*
|
|
* delete route to the destination of the address being purged.
|
|
* The interface must be p2p or loopback in this case.
|
|
*/
|
|
IFA_LOCK(ifa);
|
|
if ((ia->ia_flags & IFA_ROUTE) && ia->ia_plen == 128) {
|
|
int error, rtf;
|
|
|
|
IFA_UNLOCK(ifa);
|
|
rtf = (ia->ia_dstaddr.sin6_family == AF_INET6) ? RTF_HOST : 0;
|
|
error = rtinit(&(ia->ia_ifa), RTM_DELETE, rtf);
|
|
if (error != 0) {
|
|
log(LOG_ERR, "in6_purgeaddr: failed to remove "
|
|
"a route to the p2p destination: %s on %s, "
|
|
"errno=%d\n",
|
|
ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
|
|
error);
|
|
/* proceed anyway... */
|
|
}
|
|
IFA_LOCK_SPIN(ifa);
|
|
ia->ia_flags &= ~IFA_ROUTE;
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
|
|
/* Remove ownaddr's loopback rtentry, if it exists. */
|
|
in6_ifremloop(&(ia->ia_ifa));
|
|
|
|
/*
|
|
* leave from multicast groups we have joined for the interface
|
|
*/
|
|
IFA_LOCK(ifa);
|
|
while ((imm = ia->ia6_memberships.lh_first) != NULL) {
|
|
LIST_REMOVE(imm, i6mm_chain);
|
|
IFA_UNLOCK(ifa);
|
|
in6_leavegroup(imm);
|
|
IFA_LOCK(ifa);
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
|
|
/* in6_unlink_ifa() will need exclusive access */
|
|
in6_unlink_ifa(ia, ifp);
|
|
in6_post_msg(ifp, KEV_INET6_ADDR_DELETED, ia, NULL);
|
|
|
|
(void) ifnet_notify_address(ifp, AF_INET6);
|
|
}
|
|
|
|
static void
|
|
in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp)
|
|
{
|
|
struct in6_ifaddr *nia;
|
|
struct ifaddr *ifa;
|
|
int unlinked;
|
|
|
|
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
|
|
|
|
ifa = &ia->ia_ifa;
|
|
ifa_addref(ifa);
|
|
|
|
ifnet_lock_exclusive(ifp);
|
|
IFA_LOCK(ifa);
|
|
if (ifa->ifa_debug & IFD_ATTACHED) {
|
|
if_detach_ifa(ifp, ifa);
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
ifnet_lock_done(ifp);
|
|
|
|
unlinked = 0;
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
TAILQ_FOREACH(nia, &in6_ifaddrhead, ia6_link) {
|
|
if (ia == nia) {
|
|
TAILQ_REMOVE(&in6_ifaddrhead, ia, ia6_link);
|
|
os_atomic_inc(&in6_ifaddrlist_genid, relaxed);
|
|
IFA_LOCK(ifa);
|
|
if (IA6_IS_HASHED(ia)) {
|
|
in6_iahash_remove(ia);
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
unlinked = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When IPv6 address is being removed, release the
|
|
* reference to the base prefix.
|
|
* Also, since the release might, affect the status
|
|
* of other (detached) addresses, call
|
|
* pfxlist_onlink_check().
|
|
*/
|
|
IFA_LOCK(ifa);
|
|
/*
|
|
* Only log the below message for addresses other than
|
|
* link local.
|
|
* Only one LLA (auto-configured or statically) is allowed
|
|
* on an interface.
|
|
* LLA prefix, while added to the prefix list, is not
|
|
* reference countedi (as it is the only one).
|
|
* The prefix also never expires on its own as LLAs
|
|
* have infinite lifetime.
|
|
*
|
|
* For now quiece down the log message for LLAs.
|
|
*/
|
|
if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) {
|
|
if (ia->ia6_ndpr == NULL) {
|
|
log(LOG_NOTICE, "in6_unlink_ifa: IPv6 address "
|
|
"0x%llx has no prefix\n",
|
|
(uint64_t)VM_KERNEL_ADDRPERM(ia));
|
|
} else {
|
|
struct nd_prefix *pr = ia->ia6_ndpr;
|
|
|
|
NDPR_LOCK(pr);
|
|
if (!(ia->ia6_flags & IN6_IFF_NOTMANUAL)) {
|
|
VERIFY(pr->ndpr_manual_addrcnt != 0);
|
|
pr->ndpr_manual_addrcnt--;
|
|
}
|
|
ia->ia6_flags &= ~IN6_IFF_AUTOCONF;
|
|
ia->ia6_ndpr = NULL;
|
|
VERIFY(pr->ndpr_addrcnt != 0);
|
|
pr->ndpr_addrcnt--;
|
|
if (ia->ia6_flags & IN6_IFF_CLAT46) {
|
|
pr->ndpr_stateflags &= ~NDPRF_CLAT46;
|
|
}
|
|
NDPR_UNLOCK(pr);
|
|
NDPR_REMREF(pr); /* release addr reference */
|
|
}
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
|
|
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
|
|
lck_mtx_lock(nd6_mutex);
|
|
pfxlist_onlink_check();
|
|
lck_mtx_unlock(nd6_mutex);
|
|
}
|
|
/*
|
|
* release another refcnt for the link from in6_ifaddrs.
|
|
* Do this only if it's not already unlinked in the event that we lost
|
|
* the race, since in6_ifaddr_rwlock was momentarily dropped above.
|
|
*/
|
|
if (unlinked) {
|
|
ifa_remref(ifa);
|
|
}
|
|
|
|
/* release reference held for this routine */
|
|
ifa_remref(ifa);
|
|
|
|
/* invalidate route caches */
|
|
routegenid_inet6_update();
|
|
}
|
|
|
|
void
|
|
in6_purgeif(struct ifnet *ifp)
|
|
{
|
|
struct in6_ifaddr *ia;
|
|
|
|
if (ifp == NULL) {
|
|
return;
|
|
}
|
|
|
|
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
|
|
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
boolean_t from_begining = TRUE;
|
|
while (from_begining) {
|
|
from_begining = FALSE;
|
|
TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) {
|
|
if (ia->ia_ifa.ifa_ifp != ifp) {
|
|
continue;
|
|
}
|
|
ifa_addref(&ia->ia_ifa); /* for us */
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
in6_purgeaddr(&ia->ia_ifa);
|
|
ifa_remref(&ia->ia_ifa); /* for us */
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
/*
|
|
* Purging the address would have caused
|
|
* in6_ifaddr_rwlock to be dropped and reacquired;
|
|
* therefore search again from the beginning
|
|
* of in6_ifaddrs list.
|
|
*/
|
|
from_begining = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
|
|
in6_ifdetach(ifp);
|
|
}
|
|
|
|
/*
|
|
* Initialize an interface's internet6 address and routing table entry.
|
|
*/
|
|
static int
|
|
in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, int ifaupflags)
|
|
{
|
|
int error;
|
|
struct ifaddr *ifa;
|
|
|
|
error = 0;
|
|
ifa = &ia->ia_ifa;
|
|
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
if (IA6_IS_HASHED(ia)) {
|
|
in6_iahash_remove(ia);
|
|
}
|
|
if ((ifp->if_flags & IFF_POINTOPOINT)) {
|
|
in6_iahash_insert_ptp(ia);
|
|
} else {
|
|
in6_iahash_insert(ia);
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
|
|
/*
|
|
* NOTE: SIOCSIFADDR is defined with struct ifreq as parameter,
|
|
* but here we are sending it down to the interface with a pointer
|
|
* to struct ifaddr, for legacy reasons.
|
|
*/
|
|
if ((ifaupflags & IN6_IFAUPDATE_1STADDR) != 0) {
|
|
error = ifnet_ioctl(ifp, PF_INET6, SIOCSIFADDR, ia);
|
|
if (error != 0) {
|
|
if (error != EOPNOTSUPP) {
|
|
goto failed;
|
|
}
|
|
error = 0;
|
|
}
|
|
}
|
|
|
|
IFA_LOCK(ifa);
|
|
|
|
/*
|
|
* Special case:
|
|
* If the destination address is specified for a point-to-point
|
|
* interface, install a route to the destination as an interface
|
|
* direct route.
|
|
*/
|
|
if (!(ia->ia_flags & IFA_ROUTE) && ia->ia_plen == 128 &&
|
|
ia->ia_dstaddr.sin6_family == AF_INET6) {
|
|
IFA_UNLOCK(ifa);
|
|
error = rtinit(ifa, RTM_ADD, RTF_UP | RTF_HOST);
|
|
if (error != 0) {
|
|
goto failed;
|
|
}
|
|
IFA_LOCK(ifa);
|
|
ia->ia_flags |= IFA_ROUTE;
|
|
}
|
|
IFA_LOCK_ASSERT_HELD(ifa);
|
|
if (ia->ia_plen < 128) {
|
|
/*
|
|
* The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
|
|
*/
|
|
ia->ia_flags |= RTF_CLONING;
|
|
}
|
|
|
|
IFA_UNLOCK(ifa);
|
|
|
|
/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
|
|
if ((ifaupflags & IN6_IFAUPDATE_NEWADDR) != 0) {
|
|
in6_ifaddloop(ifa);
|
|
}
|
|
|
|
/* invalidate route caches */
|
|
routegenid_inet6_update();
|
|
|
|
VERIFY(error == 0);
|
|
return 0;
|
|
failed:
|
|
VERIFY(error != 0);
|
|
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
if (IA6_IS_HASHED(ia)) {
|
|
in6_iahash_remove(ia);
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
|
|
return error;
|
|
}
|
|
|
|
void
|
|
in6_purgeaddrs(struct ifnet *ifp)
|
|
{
|
|
in6_purgeif(ifp);
|
|
}
|
|
|
|
/*
|
|
* Find an IPv6 interface link-local address specific to an interface.
|
|
*/
|
|
struct in6_ifaddr *
|
|
in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
ifnet_lock_shared(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
IFA_LOCK_SPIN(ifa);
|
|
if (ifa->ifa_addr->sa_family != AF_INET6) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
|
|
if ((((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
ignoreflags) != 0) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
ifa_addref(ifa); /* for caller */
|
|
IFA_UNLOCK(ifa);
|
|
break;
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
ifnet_lock_done(ifp);
|
|
|
|
return (struct in6_ifaddr *)ifa;
|
|
}
|
|
|
|
struct in6_ifaddr *
|
|
in6ifa_ifpwithflag(struct ifnet * ifp, int flag)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
ifnet_lock_shared(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
IFA_LOCK_SPIN(ifa);
|
|
if (ifa->ifa_addr->sa_family != AF_INET6) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
if ((((struct in6_ifaddr *)ifa)->ia6_flags & flag) == flag) {
|
|
ifa_addref(ifa);
|
|
IFA_UNLOCK(ifa);
|
|
break;
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
ifnet_lock_done(ifp);
|
|
|
|
return (struct in6_ifaddr *)ifa;
|
|
}
|
|
|
|
/*
|
|
* find the internet address corresponding to a given interface and address.
|
|
*/
|
|
struct in6_ifaddr *
|
|
in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
ifnet_lock_shared(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
IFA_LOCK_SPIN(ifa);
|
|
if (ifa->ifa_addr->sa_family != AF_INET6) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) {
|
|
ifa_addref(ifa); /* for caller */
|
|
IFA_UNLOCK(ifa);
|
|
break;
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
ifnet_lock_done(ifp);
|
|
|
|
return (struct in6_ifaddr *)ifa;
|
|
}
|
|
|
|
struct in6_ifaddr *
|
|
in6ifa_prproxyaddr(struct in6_addr *addr, uint32_t ifscope)
|
|
{
|
|
struct in6_ifaddr *ia;
|
|
|
|
lck_rw_lock_shared(&in6_ifaddr_rwlock);
|
|
TAILQ_FOREACH(ia, IN6ADDR_HASH(addr), ia6_hash) {
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
if (in6_are_addr_equal_scoped(addr, IFA_IN6(&ia->ia_ifa), ifscope, ia->ia_ifp->if_index)) {
|
|
ifa_addref(&ia->ia_ifa); /* for caller */
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
break;
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
}
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
|
|
if (ia != NULL && !nd6_prproxy_ifaddr(ia)) {
|
|
ifa_remref(&ia->ia_ifa);
|
|
ia = NULL;
|
|
}
|
|
|
|
return ia;
|
|
}
|
|
|
|
void
|
|
in6ifa_getlifetime(struct in6_ifaddr *ia6, struct in6_addrlifetime *t_dst,
|
|
int iscalendar)
|
|
{
|
|
struct in6_addrlifetime_i *t_src = &ia6->ia6_lifetime;
|
|
struct timeval caltime;
|
|
|
|
t_dst->ia6t_vltime = t_src->ia6ti_vltime;
|
|
t_dst->ia6t_pltime = t_src->ia6ti_pltime;
|
|
t_dst->ia6t_expire = 0;
|
|
t_dst->ia6t_preferred = 0;
|
|
|
|
/* account for system time change */
|
|
getmicrotime(&caltime);
|
|
t_src->ia6ti_base_calendartime +=
|
|
NET_CALCULATE_CLOCKSKEW(caltime,
|
|
t_src->ia6ti_base_calendartime, net_uptime(),
|
|
t_src->ia6ti_base_uptime);
|
|
|
|
if (iscalendar) {
|
|
if (t_src->ia6ti_expire != 0 &&
|
|
t_src->ia6ti_vltime != ND6_INFINITE_LIFETIME) {
|
|
t_dst->ia6t_expire = (time_t)(t_src->ia6ti_base_calendartime +
|
|
t_src->ia6ti_expire - t_src->ia6ti_base_uptime);
|
|
}
|
|
|
|
if (t_src->ia6ti_preferred != 0 &&
|
|
t_src->ia6ti_pltime != ND6_INFINITE_LIFETIME) {
|
|
t_dst->ia6t_preferred = (time_t)(t_src->ia6ti_base_calendartime +
|
|
t_src->ia6ti_preferred - t_src->ia6ti_base_uptime);
|
|
}
|
|
} else {
|
|
if (t_src->ia6ti_expire != 0 &&
|
|
t_src->ia6ti_vltime != ND6_INFINITE_LIFETIME) {
|
|
t_dst->ia6t_expire = (time_t)t_src->ia6ti_expire;
|
|
}
|
|
|
|
if (t_src->ia6ti_preferred != 0 &&
|
|
t_src->ia6ti_pltime != ND6_INFINITE_LIFETIME) {
|
|
t_dst->ia6t_preferred = (time_t)t_src->ia6ti_preferred;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
in6ifa_setlifetime(struct in6_ifaddr *ia6, struct in6_addrlifetime *t_src)
|
|
{
|
|
struct in6_addrlifetime_i *t_dst = &ia6->ia6_lifetime;
|
|
struct timeval caltime;
|
|
|
|
/* account for system time change */
|
|
getmicrotime(&caltime);
|
|
t_dst->ia6ti_base_calendartime +=
|
|
NET_CALCULATE_CLOCKSKEW(caltime,
|
|
t_dst->ia6ti_base_calendartime, net_uptime(),
|
|
t_dst->ia6ti_base_uptime);
|
|
|
|
/* trust the caller for the values */
|
|
t_dst->ia6ti_expire = t_src->ia6t_expire;
|
|
t_dst->ia6ti_preferred = t_src->ia6t_preferred;
|
|
t_dst->ia6ti_vltime = t_src->ia6t_vltime;
|
|
t_dst->ia6ti_pltime = t_src->ia6t_pltime;
|
|
}
|
|
|
|
/*
|
|
* Convert IP6 address to printable (loggable) representation.
|
|
*/
|
|
char *
|
|
ip6_sprintf(const struct in6_addr *addr)
|
|
{
|
|
static const char digits[] = "0123456789abcdef";
|
|
static int ip6round = 0;
|
|
static char ip6buf[8][48];
|
|
|
|
int i;
|
|
char *cp;
|
|
const u_short *a = (const u_short *)addr;
|
|
const u_char *d;
|
|
u_char n;
|
|
int dcolon = 0;
|
|
int zpad = 0;
|
|
|
|
ip6round = (ip6round + 1) & 7;
|
|
cp = ip6buf[ip6round];
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (dcolon == 1) {
|
|
if (*a == 0) {
|
|
if (i == 7) {
|
|
*cp++ = ':';
|
|
}
|
|
a++;
|
|
continue;
|
|
} else {
|
|
dcolon = 2;
|
|
}
|
|
}
|
|
if (*a == 0) {
|
|
if (dcolon == 0 && *(a + 1) == 0) {
|
|
if (i == 0) {
|
|
*cp++ = ':';
|
|
}
|
|
*cp++ = ':';
|
|
dcolon = 1;
|
|
} else {
|
|
*cp++ = '0';
|
|
*cp++ = ':';
|
|
}
|
|
a++;
|
|
continue;
|
|
}
|
|
d = (const u_char *)a;
|
|
zpad = 0;
|
|
if ((n = *d >> 4) != 0) {
|
|
*cp++ = digits[n];
|
|
zpad = 1;
|
|
}
|
|
if ((n = *d++ & 0xf) != 0 || zpad) {
|
|
*cp++ = digits[n];
|
|
zpad = 1;
|
|
}
|
|
if ((n = *d >> 4) != 0 || zpad) {
|
|
*cp++ = digits[n];
|
|
zpad = 1;
|
|
}
|
|
if ((n = *d & 0xf) != 0 || zpad) {
|
|
*cp++ = digits[n];
|
|
}
|
|
*cp++ = ':';
|
|
a++;
|
|
}
|
|
*--cp = 0;
|
|
return ip6buf[ip6round];
|
|
}
|
|
|
|
int
|
|
in6addr_local(struct in6_addr *in6)
|
|
{
|
|
struct rtentry *rt;
|
|
struct sockaddr_in6 sin6;
|
|
int local = 0;
|
|
|
|
if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_SCOPE_LINKLOCAL(in6)) {
|
|
return 1;
|
|
}
|
|
|
|
sin6.sin6_family = AF_INET6;
|
|
sin6.sin6_len = sizeof(sin6);
|
|
bcopy(in6, &sin6.sin6_addr, sizeof(*in6));
|
|
rt = rtalloc1(SA(&sin6), 0, 0);
|
|
|
|
if (rt != NULL) {
|
|
RT_LOCK_SPIN(rt);
|
|
if (rt->rt_gateway->sa_family == AF_LINK) {
|
|
local = 1;
|
|
}
|
|
RT_UNLOCK(rt);
|
|
rtfree(rt);
|
|
} else {
|
|
local = in6_localaddr(in6);
|
|
}
|
|
return local;
|
|
}
|
|
|
|
int
|
|
in6_localaddr(struct in6_addr *in6)
|
|
{
|
|
struct in6_ifaddr *ia;
|
|
|
|
if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6) || IN6_IS_ADDR_MC_UNICAST_BASED_LINKLOCAL(in6)) {
|
|
return 1;
|
|
}
|
|
|
|
lck_rw_lock_shared(&in6_ifaddr_rwlock);
|
|
TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) {
|
|
IFA_LOCK_SPIN(&ia->ia_ifa);
|
|
if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
|
|
&ia->ia_prefixmask.sin6_addr)) {
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
return 1;
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
}
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* return length of part which dst and src are equal
|
|
* hard coding...
|
|
*/
|
|
int
|
|
in6_matchlen(struct in6_addr *src, struct in6_addr *dst)
|
|
{
|
|
int match = 0;
|
|
u_char *s = (u_char *)src, *d = (u_char *)dst;
|
|
u_char *lim = s + 16, r;
|
|
|
|
while (s < lim) {
|
|
if ((r = (*d++ ^ *s++)) != 0) {
|
|
while (r < 128) {
|
|
match++;
|
|
r = (u_char)(r << 1);
|
|
}
|
|
break;
|
|
} else {
|
|
match += 8;
|
|
}
|
|
}
|
|
return match;
|
|
}
|
|
|
|
/* XXX: to be scope conscious */
|
|
int
|
|
in6_are_prefix_equal(struct in6_addr *p1, uint32_t ifscope1, struct in6_addr *p2, uint32_t ifscope2, int len)
|
|
{
|
|
int bytelen, bitlen;
|
|
|
|
/* sanity check */
|
|
if (0 > len || len > 128) {
|
|
log(LOG_ERR, "%s: invalid prefix length(%d)\n", __func__, len);
|
|
return 0;
|
|
}
|
|
|
|
bytelen = len / 8;
|
|
bitlen = len % 8;
|
|
|
|
if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) {
|
|
return 0;
|
|
}
|
|
if (bitlen != 0 &&
|
|
p1->s6_addr[bytelen] >> (8 - bitlen) !=
|
|
p2->s6_addr[bytelen] >> (8 - bitlen)) {
|
|
return 0;
|
|
}
|
|
|
|
if (IN6_IS_SCOPE_EMBED(p1) && !in6_embedded_scope) {
|
|
return ifscope1 == ifscope2;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
in6_prefixlen2mask(struct in6_addr *maskp, int len)
|
|
{
|
|
u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
|
|
int bytelen, bitlen, i;
|
|
|
|
/* sanity check */
|
|
if (0 > len || len > 128) {
|
|
log(LOG_ERR, "%s: invalid prefix length(%d)\n", __func__, len);
|
|
return;
|
|
}
|
|
|
|
bzero(maskp, sizeof(*maskp));
|
|
bytelen = len / 8;
|
|
bitlen = len % 8;
|
|
for (i = 0; i < bytelen; i++) {
|
|
maskp->s6_addr[i] = 0xff;
|
|
}
|
|
if (bitlen) {
|
|
maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* return the best address out of the same scope
|
|
*/
|
|
struct in6_ifaddr *
|
|
in6_ifawithscope(struct ifnet *oifp, struct in6_addr *dst)
|
|
{
|
|
int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0;
|
|
int blen = -1;
|
|
struct ifaddr *ifa;
|
|
struct ifnet *ifp;
|
|
struct in6_ifaddr *ifa_best = NULL;
|
|
|
|
if (oifp == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* We search for all addresses on all interfaces from the beginning.
|
|
* Comparing an interface with the outgoing interface will be done
|
|
* only at the final stage of tiebreaking.
|
|
*/
|
|
ifnet_head_lock_shared();
|
|
TAILQ_FOREACH(ifp, &ifnet_head, if_list) {
|
|
/*
|
|
* We can never take an address that breaks the scope zone
|
|
* of the destination.
|
|
*/
|
|
if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) {
|
|
continue;
|
|
}
|
|
|
|
ifnet_lock_shared(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
|
|
int tlen = -1, dscopecmp, bscopecmp, matchcmp;
|
|
|
|
IFA_LOCK(ifa);
|
|
if (ifa->ifa_addr->sa_family != AF_INET6) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
src_scope = in6_addrscope(IFA_IN6(ifa));
|
|
|
|
/*
|
|
* Don't use an address before completing DAD
|
|
* nor a duplicated address.
|
|
*/
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
(IN6_IFF_NOTREADY | IN6_IFF_CLAT46)) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
/* XXX: is there any case to allow anycasts? */
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
IN6_IFF_ANYCAST) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
IN6_IFF_DETACHED) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
/*
|
|
* If this is the first address we find,
|
|
* keep it anyway.
|
|
*/
|
|
if (ifa_best == NULL) {
|
|
goto replace;
|
|
}
|
|
|
|
/*
|
|
* ifa_best is never NULL beyond this line except
|
|
* within the block labeled "replace".
|
|
*/
|
|
|
|
/*
|
|
* If ifa_best has a smaller scope than dst and
|
|
* the current address has a larger one than
|
|
* (or equal to) dst, always replace ifa_best.
|
|
* Also, if the current address has a smaller scope
|
|
* than dst, ignore it unless ifa_best also has a
|
|
* smaller scope.
|
|
* Consequently, after the two if-clause below,
|
|
* the followings must be satisfied:
|
|
* (scope(src) < scope(dst) &&
|
|
* scope(best) < scope(dst))
|
|
* OR
|
|
* (scope(best) >= scope(dst) &&
|
|
* scope(src) >= scope(dst))
|
|
*/
|
|
if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
|
|
IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) {
|
|
goto replace; /* (A) */
|
|
}
|
|
if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
|
|
IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) {
|
|
IFA_UNLOCK(ifa);
|
|
continue; /* (B) */
|
|
}
|
|
/*
|
|
* A deprecated address SHOULD NOT be used in new
|
|
* communications if an alternate (non-deprecated)
|
|
* address is available and has sufficient scope.
|
|
* RFC 4862, Section 5.5.4.
|
|
*/
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
IN6_IFF_DEPRECATED) {
|
|
/*
|
|
* Ignore any deprecated addresses if
|
|
* specified by configuration.
|
|
*/
|
|
if (!ip6_use_deprecated) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
/*
|
|
* If we have already found a non-deprecated
|
|
* candidate, just ignore deprecated addresses.
|
|
*/
|
|
if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
|
|
== 0) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A non-deprecated address is always preferred
|
|
* to a deprecated one regardless of scopes and
|
|
* address matching (Note invariants ensured by the
|
|
* conditions (A) and (B) above.)
|
|
*/
|
|
if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
|
|
(((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
IN6_IFF_DEPRECATED) == 0) {
|
|
goto replace;
|
|
}
|
|
|
|
/*
|
|
* When we use temporary addresses described in
|
|
* RFC 4941, we prefer temporary addresses to
|
|
* public autoconf addresses. Again, note the
|
|
* invariants from (A) and (B). Also note that we
|
|
* don't have any preference between static addresses
|
|
* and autoconf addresses (despite of whether or not
|
|
* the latter is temporary or public.)
|
|
*/
|
|
if (ip6_use_tempaddr) {
|
|
struct in6_ifaddr *ifat;
|
|
|
|
ifat = (struct in6_ifaddr *)ifa;
|
|
if ((ifa_best->ia6_flags &
|
|
(IN6_IFF_AUTOCONF | IN6_IFF_TEMPORARY))
|
|
== IN6_IFF_AUTOCONF &&
|
|
(ifat->ia6_flags &
|
|
(IN6_IFF_AUTOCONF | IN6_IFF_TEMPORARY))
|
|
== (IN6_IFF_AUTOCONF | IN6_IFF_TEMPORARY)) {
|
|
goto replace;
|
|
}
|
|
if ((ifa_best->ia6_flags &
|
|
(IN6_IFF_AUTOCONF | IN6_IFF_TEMPORARY))
|
|
== (IN6_IFF_AUTOCONF | IN6_IFF_TEMPORARY) &&
|
|
(ifat->ia6_flags &
|
|
(IN6_IFF_AUTOCONF | IN6_IFF_TEMPORARY))
|
|
== IN6_IFF_AUTOCONF) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point, we have two cases:
|
|
* 1. we are looking at a non-deprecated address,
|
|
* and ifa_best is also non-deprecated.
|
|
* 2. we are looking at a deprecated address,
|
|
* and ifa_best is also deprecated.
|
|
* Also, we do not have to consider a case where
|
|
* the scope of if_best is larger(smaller) than dst and
|
|
* the scope of the current address is smaller(larger)
|
|
* than dst. Such a case has already been covered.
|
|
* Tiebreaking is done according to the following
|
|
* items:
|
|
* - the scope comparison between the address and
|
|
* dst (dscopecmp)
|
|
* - the scope comparison between the address and
|
|
* ifa_best (bscopecmp)
|
|
* - if the address match dst longer than ifa_best
|
|
* (matchcmp)
|
|
* - if the address is on the outgoing I/F (outI/F)
|
|
*
|
|
* Roughly speaking, the selection policy is
|
|
* - the most important item is scope. The same scope
|
|
* is best. Then search for a larger scope.
|
|
* Smaller scopes are the last resort.
|
|
* - A deprecated address is chosen only when we have
|
|
* no address that has an enough scope, but is
|
|
* prefered to any addresses of smaller scopes
|
|
* (this must be already done above.)
|
|
* - addresses on the outgoing I/F are preferred to
|
|
* ones on other interfaces if none of above
|
|
* tiebreaks. In the table below, the column "bI"
|
|
* means if the best_ifa is on the outgoing
|
|
* interface, and the column "sI" means if the ifa
|
|
* is on the outgoing interface.
|
|
* - If there is no other reasons to choose one,
|
|
* longest address match against dst is considered.
|
|
*
|
|
* The precise decision table is as follows:
|
|
* dscopecmp bscopecmp match bI oI | replace?
|
|
* N/A equal N/A Y N | No (1)
|
|
* N/A equal N/A N Y | Yes (2)
|
|
* N/A equal larger N/A | Yes (3)
|
|
* N/A equal !larger N/A | No (4)
|
|
* larger larger N/A N/A | No (5)
|
|
* larger smaller N/A N/A | Yes (6)
|
|
* smaller larger N/A N/A | Yes (7)
|
|
* smaller smaller N/A N/A | No (8)
|
|
* equal smaller N/A N/A | Yes (9)
|
|
* equal larger (already done at A above)
|
|
*/
|
|
dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
|
|
bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
|
|
|
|
if (bscopecmp == 0) {
|
|
struct ifnet *bifp = ifa_best->ia_ifp;
|
|
|
|
if (bifp == oifp && ifp != oifp) { /* (1) */
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
if (bifp != oifp && ifp == oifp) { /* (2) */
|
|
goto replace;
|
|
}
|
|
|
|
/*
|
|
* Both bifp and ifp are on the outgoing
|
|
* interface, or both two are on a different
|
|
* interface from the outgoing I/F.
|
|
* now we need address matching against dst
|
|
* for tiebreaking.
|
|
*/
|
|
tlen = in6_matchlen(IFA_IN6(ifa), dst);
|
|
matchcmp = tlen - blen;
|
|
if (matchcmp > 0) { /* (3) */
|
|
goto replace;
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
continue; /* (4) */
|
|
}
|
|
if (dscopecmp > 0) {
|
|
if (bscopecmp > 0) { /* (5) */
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
goto replace; /* (6) */
|
|
}
|
|
if (dscopecmp < 0) {
|
|
if (bscopecmp > 0) { /* (7) */
|
|
goto replace;
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
continue; /* (8) */
|
|
}
|
|
|
|
/* now dscopecmp must be 0 */
|
|
if (bscopecmp < 0) {
|
|
goto replace; /* (9) */
|
|
}
|
|
replace:
|
|
ifa_addref(ifa); /* for ifa_best */
|
|
blen = tlen >= 0 ? tlen :
|
|
in6_matchlen(IFA_IN6(ifa), dst);
|
|
best_scope =
|
|
in6_addrscope(&ifa2ia6(ifa)->ia_addr.sin6_addr);
|
|
IFA_UNLOCK(ifa);
|
|
if (ifa_best) {
|
|
ifa_remref(&ifa_best->ia_ifa);
|
|
}
|
|
ifa_best = (struct in6_ifaddr *)ifa;
|
|
}
|
|
ifnet_lock_done(ifp);
|
|
}
|
|
ifnet_head_done();
|
|
|
|
/* count statistics for future improvements */
|
|
if (ifa_best == NULL) {
|
|
ip6stat.ip6s_sources_none++;
|
|
} else {
|
|
IFA_LOCK_SPIN(&ifa_best->ia_ifa);
|
|
if (oifp == ifa_best->ia_ifp) {
|
|
ip6stat.ip6s_sources_sameif[best_scope]++;
|
|
} else {
|
|
ip6stat.ip6s_sources_otherif[best_scope]++;
|
|
}
|
|
|
|
if (best_scope == dst_scope) {
|
|
ip6stat.ip6s_sources_samescope[best_scope]++;
|
|
} else {
|
|
ip6stat.ip6s_sources_otherscope[best_scope]++;
|
|
}
|
|
|
|
if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) {
|
|
ip6stat.ip6s_sources_deprecated[best_scope]++;
|
|
}
|
|
IFA_UNLOCK(&ifa_best->ia_ifa);
|
|
}
|
|
|
|
return ifa_best;
|
|
}
|
|
|
|
/*
|
|
* return the best address out of the same scope. if no address was
|
|
* found, return the first valid address from designated IF.
|
|
*/
|
|
struct in6_ifaddr *
|
|
in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst)
|
|
{
|
|
int dst_scope = in6_addrscope(dst), blen = -1, tlen;
|
|
struct ifaddr *ifa;
|
|
struct in6_ifaddr *besta = NULL;
|
|
struct in6_ifaddr *dep[2]; /* last-resort: deprecated */
|
|
|
|
dep[0] = dep[1] = NULL;
|
|
|
|
/*
|
|
* We first look for addresses in the same scope.
|
|
* If there is one, return it.
|
|
* If two or more, return one which matches the dst longest.
|
|
* If none, return one of global addresses assigned other ifs.
|
|
*/
|
|
ifnet_lock_shared(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
|
|
IFA_LOCK(ifa);
|
|
if (ifa->ifa_addr->sa_family != AF_INET6) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_ANYCAST) {
|
|
IFA_UNLOCK(ifa);
|
|
continue; /* XXX: is there any case to allow anycast? */
|
|
}
|
|
if (ifa2ia6(ifa)->ia6_flags & (IN6_IFF_NOTREADY | IN6_IFF_CLAT46)) {
|
|
IFA_UNLOCK(ifa);
|
|
continue; /* don't use this interface */
|
|
}
|
|
if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DETACHED) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
|
|
if (ip6_use_deprecated) {
|
|
ifa_addref(ifa); /* for dep[0] */
|
|
IFA_UNLOCK(ifa);
|
|
if (dep[0] != NULL) {
|
|
ifa_remref(&dep[0]->ia_ifa);
|
|
}
|
|
dep[0] = (struct in6_ifaddr *)ifa;
|
|
} else {
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
|
|
/*
|
|
* call in6_matchlen() as few as possible
|
|
*/
|
|
if (besta) {
|
|
if (blen == -1) {
|
|
IFA_UNLOCK(ifa);
|
|
IFA_LOCK(&besta->ia_ifa);
|
|
blen = in6_matchlen(
|
|
&besta->ia_addr.sin6_addr, dst);
|
|
IFA_UNLOCK(&besta->ia_ifa);
|
|
IFA_LOCK(ifa);
|
|
}
|
|
tlen = in6_matchlen(IFA_IN6(ifa), dst);
|
|
if (tlen > blen) {
|
|
blen = tlen;
|
|
ifa_addref(ifa); /* for besta */
|
|
IFA_UNLOCK(ifa);
|
|
ifa_remref(&besta->ia_ifa);
|
|
besta = (struct in6_ifaddr *)ifa;
|
|
} else {
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
} else {
|
|
besta = (struct in6_ifaddr *)ifa;
|
|
ifa_addref(ifa); /* for besta */
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
} else {
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
}
|
|
if (besta) {
|
|
ifnet_lock_done(ifp);
|
|
if (dep[0] != NULL) {
|
|
ifa_remref(&dep[0]->ia_ifa);
|
|
}
|
|
return besta;
|
|
}
|
|
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
|
|
IFA_LOCK(ifa);
|
|
if (ifa->ifa_addr->sa_family != AF_INET6) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_ANYCAST) {
|
|
IFA_UNLOCK(ifa);
|
|
continue; /* XXX: is there any case to allow anycast? */
|
|
}
|
|
if (ifa2ia6(ifa)->ia6_flags & (IN6_IFF_NOTREADY | IN6_IFF_CLAT46)) {
|
|
IFA_UNLOCK(ifa);
|
|
continue; /* don't use this interface */
|
|
}
|
|
if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DETACHED) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
|
|
if (ip6_use_deprecated) {
|
|
ifa_addref(ifa); /* for dep[1] */
|
|
IFA_UNLOCK(ifa);
|
|
if (dep[1] != NULL) {
|
|
ifa_remref(&dep[1]->ia_ifa);
|
|
}
|
|
dep[1] = (struct in6_ifaddr *)ifa;
|
|
} else {
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
continue;
|
|
}
|
|
ifa_addref(ifa); /* for caller */
|
|
IFA_UNLOCK(ifa);
|
|
ifnet_lock_done(ifp);
|
|
if (dep[0] != NULL) {
|
|
ifa_remref(&dep[0]->ia_ifa);
|
|
}
|
|
if (dep[1] != NULL) {
|
|
ifa_remref(&dep[1]->ia_ifa);
|
|
}
|
|
return (struct in6_ifaddr *)ifa;
|
|
}
|
|
ifnet_lock_done(ifp);
|
|
|
|
/* use the last-resort values, that are, deprecated addresses */
|
|
if (dep[0]) {
|
|
if (dep[1] != NULL) {
|
|
ifa_remref(&dep[1]->ia_ifa);
|
|
}
|
|
return dep[0];
|
|
}
|
|
if (dep[1]) {
|
|
return dep[1];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* perform DAD when interface becomes IFF_UP.
|
|
*/
|
|
static void
|
|
in6_if_up_dad_start(struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct nd_ifinfo *ndi = NULL;
|
|
|
|
ndi = ND_IFINFO(ifp);
|
|
VERIFY((NULL != ndi) && (TRUE == ndi->initialized));
|
|
if (!(ndi->flags & ND6_IFF_DAD)) {
|
|
return;
|
|
}
|
|
|
|
/* start DAD on all the interface addresses */
|
|
ifnet_lock_exclusive(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
|
|
struct in6_ifaddr *ia6;
|
|
|
|
IFA_LOCK_SPIN(ifa);
|
|
if (ifa->ifa_addr->sa_family != AF_INET6) {
|
|
IFA_UNLOCK(ifa);
|
|
continue;
|
|
}
|
|
ia6 = (struct in6_ifaddr *)ifa;
|
|
if (ia6->ia6_flags & IN6_IFF_DADPROGRESS) {
|
|
int delay = 0; /* delay ticks before DAD output */
|
|
IFA_UNLOCK(ifa);
|
|
nd6_dad_start(ifa, &delay);
|
|
} else {
|
|
IFA_UNLOCK(ifa);
|
|
}
|
|
}
|
|
ifnet_lock_done(ifp);
|
|
}
|
|
|
|
int
|
|
in6if_do_dad(
|
|
struct ifnet *ifp)
|
|
{
|
|
struct nd_ifinfo *ndi = NULL;
|
|
|
|
if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
|
|
return 0;
|
|
}
|
|
|
|
ndi = ND_IFINFO(ifp);
|
|
VERIFY((NULL != ndi) && (TRUE == ndi->initialized));
|
|
if (!(ndi->flags & ND6_IFF_DAD)) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we are using the alternative neighbor discovery
|
|
* interface on this interface, then skip DAD.
|
|
*
|
|
* Also, skip it for interfaces marked "local private"
|
|
* for now, even when not marked as using the alternative
|
|
* interface. This is for historical reasons.
|
|
*/
|
|
if (ifp->if_eflags &
|
|
(IFEF_IPV6_ND6ALT | IFEF_LOCALNET_PRIVATE | IFEF_DIRECTLINK)) {
|
|
return 0;
|
|
}
|
|
|
|
if (ifp->if_family == IFNET_FAMILY_IPSEC ||
|
|
ifp->if_family == IFNET_FAMILY_UTUN) {
|
|
/*
|
|
* Ignore DAD for tunneling virtual interfaces, which get
|
|
* their IPv6 address explicitly assigned.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
switch (ifp->if_type) {
|
|
#if IFT_DUMMY
|
|
case IFT_DUMMY:
|
|
#endif
|
|
case IFT_FAITH:
|
|
/*
|
|
* These interfaces do not have the IFF_LOOPBACK flag,
|
|
* but loop packets back. We do not have to do DAD on such
|
|
* interfaces. We should even omit it, because loop-backed
|
|
* NS would confuse the DAD procedure.
|
|
*/
|
|
return 0;
|
|
default:
|
|
/*
|
|
* Our DAD routine requires the interface up and running.
|
|
* However, some interfaces can be up before the RUNNING
|
|
* status. Additionaly, users may try to assign addresses
|
|
* before the interface becomes up (or running).
|
|
* We simply skip DAD in such a case as a work around.
|
|
* XXX: we should rather mark "tentative" on such addresses,
|
|
* and do DAD after the interface becomes ready.
|
|
*/
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate max IPv6 MTU through all the interfaces and store it
|
|
* to in6_maxmtu.
|
|
*/
|
|
void
|
|
in6_setmaxmtu(void)
|
|
{
|
|
u_int32_t maxmtu = 0;
|
|
struct ifnet *ifp;
|
|
|
|
ifnet_head_lock_shared();
|
|
TAILQ_FOREACH(ifp, &ifnet_head, if_list) {
|
|
struct nd_ifinfo *ndi = NULL;
|
|
|
|
if ((ndi = ND_IFINFO(ifp)) != NULL && !ndi->initialized) {
|
|
ndi = NULL;
|
|
}
|
|
if (ndi != NULL) {
|
|
lck_mtx_lock(&ndi->lock);
|
|
}
|
|
if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
|
|
IN6_LINKMTU(ifp) > maxmtu) {
|
|
maxmtu = IN6_LINKMTU(ifp);
|
|
}
|
|
if (ndi != NULL) {
|
|
lck_mtx_unlock(&ndi->lock);
|
|
}
|
|
}
|
|
ifnet_head_done();
|
|
if (maxmtu) { /* update only when maxmtu is positive */
|
|
in6_maxmtu = maxmtu;
|
|
}
|
|
}
|
|
/*
|
|
* Provide the length of interface identifiers to be used for the link attached
|
|
* to the given interface. The length should be defined in "IPv6 over
|
|
* xxx-link" document. Note that address architecture might also define
|
|
* the length for a particular set of address prefixes, regardless of the
|
|
* link type. Also see RFC 4862 for additional background.
|
|
*/
|
|
int
|
|
in6_if2idlen(struct ifnet *ifp)
|
|
{
|
|
switch (ifp->if_type) {
|
|
case IFT_ETHER: /* RFC2464 */
|
|
case IFT_IEEE8023ADLAG: /* IEEE802.3ad Link Aggregate */
|
|
#ifdef IFT_PROPVIRTUAL
|
|
case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */
|
|
#endif
|
|
#ifdef IFT_L2VLAN
|
|
case IFT_L2VLAN: /* ditto */
|
|
#endif
|
|
#ifdef IFT_IEEE80211
|
|
case IFT_IEEE80211: /* ditto */
|
|
#endif
|
|
#ifdef IFT_MIP
|
|
case IFT_MIP: /* ditto */
|
|
#endif
|
|
return 64;
|
|
case IFT_FDDI: /* RFC2467 */
|
|
return 64;
|
|
case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */
|
|
return 64;
|
|
case IFT_PPP: /* RFC2472 */
|
|
return 64;
|
|
case IFT_ARCNET: /* RFC2497 */
|
|
return 64;
|
|
case IFT_FRELAY: /* RFC2590 */
|
|
return 64;
|
|
case IFT_IEEE1394: /* RFC3146 */
|
|
return 64;
|
|
case IFT_GIF:
|
|
return 64; /* draft-ietf-v6ops-mech-v2-07 */
|
|
case IFT_LOOP:
|
|
return 64; /* XXX: is this really correct? */
|
|
case IFT_OTHER:
|
|
return 64; /* for utun interfaces */
|
|
case IFT_CELLULAR:
|
|
return 64; /* Packet Data over Cellular */
|
|
case IFT_BRIDGE:
|
|
return 64; /* Transparent bridge interface */
|
|
default:
|
|
/*
|
|
* Unknown link type:
|
|
* It might be controversial to use the today's common constant
|
|
* of 64 for these cases unconditionally. For full compliance,
|
|
* we should return an error in this case. On the other hand,
|
|
* if we simply miss the standard for the link type or a new
|
|
* standard is defined for a new link type, the IFID length
|
|
* is very likely to be the common constant. As a compromise,
|
|
* we always use the constant, but make an explicit notice
|
|
* indicating the "unknown" case.
|
|
*/
|
|
log(LOG_NOTICE, "%s: unknown link type (%d)\n", __func__,
|
|
ifp->if_type);
|
|
return 64;
|
|
}
|
|
}
|
|
/*
|
|
* Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
|
|
* v4 mapped addr or v4 compat addr
|
|
*/
|
|
void
|
|
in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
|
|
{
|
|
SOCKADDR_ZERO(sin, sizeof(*sin));
|
|
sin->sin_len = sizeof(struct sockaddr_in);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_port = sin6->sin6_port;
|
|
sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
|
|
}
|
|
|
|
/* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
|
|
void
|
|
in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
|
|
{
|
|
SOCKADDR_ZERO(sin6, sizeof(*sin6));
|
|
sin6->sin6_len = sizeof(struct sockaddr_in6);
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_port = sin->sin_port;
|
|
sin6->sin6_addr.s6_addr32[0] = 0;
|
|
sin6->sin6_addr.s6_addr32[1] = 0;
|
|
if (sin->sin_addr.s_addr) {
|
|
sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
|
|
sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
|
|
} else {
|
|
sin6->sin6_addr.s6_addr32[2] = 0;
|
|
sin6->sin6_addr.s6_addr32[3] = 0;
|
|
}
|
|
}
|
|
|
|
/* Convert sockaddr_in6 into sockaddr_in. */
|
|
void
|
|
in6_sin6_2_sin_in_sock(struct sockaddr *nam)
|
|
{
|
|
struct sockaddr_in *sin_p;
|
|
struct sockaddr_in6 sin6;
|
|
|
|
/*
|
|
* Save original sockaddr_in6 addr and convert it
|
|
* to sockaddr_in.
|
|
*/
|
|
sin6 = *SIN6(nam);
|
|
sin_p = SIN(nam);
|
|
in6_sin6_2_sin(sin_p, &sin6);
|
|
}
|
|
|
|
/* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
|
|
int
|
|
in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
|
|
{
|
|
struct sockaddr_in *sin_p;
|
|
struct sockaddr_in6 *sin6_p;
|
|
|
|
sin6_p = SIN6(alloc_sockaddr(sizeof(*sin6_p),
|
|
Z_WAITOK | Z_NOFAIL));
|
|
|
|
sin_p = SIN(*nam);
|
|
in6_sin_2_v4mapsin6(sin_p, sin6_p);
|
|
free_sockaddr(*nam);
|
|
*nam = SA(sin6_p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Posts in6_event_data message kernel events.
|
|
*
|
|
* To get the same size of kev_in6_data between ILP32 and LP64 data models
|
|
* we are using a special version of the in6_addrlifetime structure that
|
|
* uses only 32 bits fields to be compatible with Leopard, and that
|
|
* are large enough to span 68 years.
|
|
*/
|
|
void
|
|
in6_post_msg(struct ifnet *ifp, u_int32_t event_code, struct in6_ifaddr *ifa,
|
|
uint8_t *mac)
|
|
{
|
|
struct kev_msg ev_msg;
|
|
struct kev_in6_data in6_event_data;
|
|
struct in6_addrlifetime ia6_lt;
|
|
|
|
bzero(&in6_event_data, sizeof(struct kev_in6_data));
|
|
bzero(&ev_msg, sizeof(struct kev_msg));
|
|
ev_msg.vendor_code = KEV_VENDOR_APPLE;
|
|
ev_msg.kev_class = KEV_NETWORK_CLASS;
|
|
ev_msg.kev_subclass = KEV_INET6_SUBCLASS;
|
|
ev_msg.event_code = event_code;
|
|
|
|
if (ifa) {
|
|
IFA_LOCK(&ifa->ia_ifa);
|
|
in6_event_data.ia_addr = ifa->ia_addr;
|
|
in6_event_data.ia_net = ifa->ia_net;
|
|
in6_event_data.ia_dstaddr = ifa->ia_dstaddr;
|
|
in6_event_data.ia_prefixmask = ifa->ia_prefixmask;
|
|
in6_event_data.ia_plen = ifa->ia_plen;
|
|
in6_event_data.ia6_flags = (u_int32_t)ifa->ia6_flags;
|
|
|
|
/* retrieve time as calendar time (last arg is 1) */
|
|
in6ifa_getlifetime(ifa, &ia6_lt, 1);
|
|
in6_event_data.ia_lifetime.ia6t_expire = (u_int32_t)ia6_lt.ia6t_expire;
|
|
in6_event_data.ia_lifetime.ia6t_preferred = (u_int32_t)ia6_lt.ia6t_preferred;
|
|
in6_event_data.ia_lifetime.ia6t_vltime = ia6_lt.ia6t_vltime;
|
|
in6_event_data.ia_lifetime.ia6t_pltime = ia6_lt.ia6t_pltime;
|
|
IFA_UNLOCK(&ifa->ia_ifa);
|
|
}
|
|
|
|
if (ifp != NULL) {
|
|
(void) strlcpy(&in6_event_data.link_data.if_name[0],
|
|
ifp->if_name, IFNAMSIZ);
|
|
in6_event_data.link_data.if_family = ifp->if_family;
|
|
in6_event_data.link_data.if_unit = (u_int32_t)ifp->if_unit;
|
|
}
|
|
|
|
if (mac != NULL) {
|
|
memcpy(&in6_event_data.ia_mac, mac,
|
|
sizeof(in6_event_data.ia_mac));
|
|
}
|
|
|
|
ev_msg.dv[0].data_ptr = &in6_event_data;
|
|
ev_msg.dv[0].data_length = sizeof(in6_event_data);
|
|
ev_msg.dv[1].data_length = 0;
|
|
|
|
dlil_post_complete_msg(NULL, &ev_msg);
|
|
}
|
|
|
|
/*
|
|
* Called as part of ip6_init
|
|
*/
|
|
void
|
|
in6_ifaddr_init(void)
|
|
{
|
|
in6_cga_init();
|
|
}
|
|
|
|
static struct in6_ifaddr *
|
|
in6_ifaddr_alloc(zalloc_flags_t how)
|
|
{
|
|
struct in6_ifaddr *in6ifa;
|
|
|
|
in6ifa = kalloc_type(struct in6_ifaddr, Z_ZERO | how);
|
|
if (in6ifa == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
in6ifa->ia_ifa.ifa_free = in6_ifaddr_free;
|
|
in6ifa->ia_ifa.ifa_debug |= IFD_ALLOC;
|
|
in6ifa->ia_ifa.ifa_del_wc = &in6ifa->ia_ifa.ifa_debug;
|
|
in6ifa->ia_ifa.ifa_del_waiters = 0;
|
|
ifa_lock_init(&in6ifa->ia_ifa);
|
|
ifa_initref(&in6ifa->ia_ifa);
|
|
|
|
return in6ifa;
|
|
}
|
|
|
|
static void
|
|
in6_ifaddr_free(struct ifaddr *ifa)
|
|
{
|
|
struct in6_ifaddr *in6ifa = (struct in6_ifaddr *)ifa;
|
|
|
|
IFA_LOCK_ASSERT_HELD(ifa);
|
|
|
|
if (!(ifa->ifa_debug & IFD_ALLOC)) {
|
|
panic("%s: ifa %p cannot be freed", __func__, ifa);
|
|
/* NOTREACHED */
|
|
}
|
|
IFA_UNLOCK(ifa);
|
|
ifa_lock_destroy(ifa);
|
|
|
|
kfree_type(struct in6_ifaddr, in6ifa);
|
|
}
|
|
|
|
/*
|
|
* Handle SIOCGASSOCIDS ioctl for PF_INET6 domain.
|
|
*/
|
|
static int
|
|
in6_getassocids(struct socket *so, uint32_t *cnt, user_addr_t aidp)
|
|
{
|
|
struct in6pcb *in6p = sotoin6pcb(so);
|
|
sae_associd_t aid;
|
|
|
|
if (in6p == NULL || in6p->inp_state == INPCB_STATE_DEAD) {
|
|
return EINVAL;
|
|
}
|
|
|
|
/* IN6PCB has no concept of association */
|
|
aid = SAE_ASSOCID_ANY;
|
|
*cnt = 0;
|
|
|
|
/* just asking how many there are? */
|
|
if (aidp == USER_ADDR_NULL) {
|
|
return 0;
|
|
}
|
|
|
|
return copyout(&aid, aidp, sizeof(aid));
|
|
}
|
|
|
|
/*
|
|
* Handle SIOCGCONNIDS ioctl for PF_INET6 domain.
|
|
*/
|
|
static int
|
|
in6_getconnids(struct socket *so, sae_associd_t aid, uint32_t *cnt,
|
|
user_addr_t cidp)
|
|
{
|
|
struct in6pcb *in6p = sotoin6pcb(so);
|
|
sae_connid_t cid;
|
|
|
|
if (in6p == NULL || in6p->inp_state == INPCB_STATE_DEAD) {
|
|
return EINVAL;
|
|
}
|
|
|
|
if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) {
|
|
return EINVAL;
|
|
}
|
|
|
|
/* if connected, return 1 connection count */
|
|
*cnt = ((so->so_state & SS_ISCONNECTED) ? 1 : 0);
|
|
|
|
/* just asking how many there are? */
|
|
if (cidp == USER_ADDR_NULL) {
|
|
return 0;
|
|
}
|
|
|
|
/* if IN6PCB is connected, assign it connid 1 */
|
|
cid = ((*cnt != 0) ? 1 : SAE_CONNID_ANY);
|
|
|
|
return copyout(&cid, cidp, sizeof(cid));
|
|
}
|
|
|
|
/*
|
|
* Handle SIOCGCONNINFO ioctl for PF_INET6 domain.
|
|
*/
|
|
int
|
|
in6_getconninfo(struct socket *so, sae_connid_t cid, uint32_t *flags,
|
|
uint32_t *ifindex, int32_t *soerror, user_addr_t src, socklen_t *src_len,
|
|
user_addr_t dst, socklen_t *dst_len, uint32_t *aux_type,
|
|
user_addr_t aux_data, uint32_t *aux_len)
|
|
{
|
|
struct in6pcb *in6p = sotoin6pcb(so);
|
|
struct sockaddr_in6 sin6;
|
|
struct ifnet *ifp = NULL;
|
|
int error = 0;
|
|
u_int32_t copy_len = 0;
|
|
|
|
/*
|
|
* Don't test for INPCB_STATE_DEAD since this may be called
|
|
* after SOF_PCBCLEARING is set, e.g. after tcp_close().
|
|
*/
|
|
if (in6p == NULL) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (cid != SAE_CONNID_ANY && cid != SAE_CONNID_ALL && cid != 1) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ifp = in6p->in6p_last_outifp;
|
|
*ifindex = ((ifp != NULL) ? ifp->if_index : 0);
|
|
*soerror = so->so_error;
|
|
*flags = 0;
|
|
if (so->so_state & SS_ISCONNECTED) {
|
|
*flags |= (CIF_CONNECTED | CIF_PREFERRED);
|
|
}
|
|
if (in6p->in6p_flags & INP_BOUND_IF) {
|
|
*flags |= CIF_BOUND_IF;
|
|
}
|
|
if (!(in6p->in6p_flags & INP_IN6ADDR_ANY)) {
|
|
*flags |= CIF_BOUND_IP;
|
|
}
|
|
if (!(in6p->in6p_flags & INP_ANONPORT)) {
|
|
*flags |= CIF_BOUND_PORT;
|
|
}
|
|
|
|
SOCKADDR_ZERO(&sin6, sizeof(sin6));
|
|
sin6.sin6_len = sizeof(sin6);
|
|
sin6.sin6_family = AF_INET6;
|
|
|
|
/* source address and port */
|
|
sin6.sin6_port = in6p->in6p_lport;
|
|
if (!in6_embedded_scope) {
|
|
sin6.sin6_scope_id = in6p->inp_lifscope;
|
|
}
|
|
in6_recoverscope(&sin6, &in6p->in6p_laddr, NULL);
|
|
if (*src_len == 0) {
|
|
*src_len = sin6.sin6_len;
|
|
} else {
|
|
if (src != USER_ADDR_NULL) {
|
|
copy_len = min(*src_len, sizeof(sin6));
|
|
error = copyout(&sin6, src, copy_len);
|
|
if (error != 0) {
|
|
goto out;
|
|
}
|
|
*src_len = copy_len;
|
|
}
|
|
}
|
|
|
|
/* destination address and port */
|
|
sin6.sin6_port = in6p->in6p_fport;
|
|
if (!in6_embedded_scope) {
|
|
sin6.sin6_scope_id = in6p->inp_fifscope;
|
|
}
|
|
in6_recoverscope(&sin6, &in6p->in6p_faddr, NULL);
|
|
if (*dst_len == 0) {
|
|
*dst_len = sin6.sin6_len;
|
|
} else {
|
|
if (dst != USER_ADDR_NULL) {
|
|
copy_len = min(*dst_len, sizeof(sin6));
|
|
error = copyout(&sin6, dst, copy_len);
|
|
if (error != 0) {
|
|
goto out;
|
|
}
|
|
*dst_len = copy_len;
|
|
}
|
|
}
|
|
|
|
if (SOCK_PROTO(so) == IPPROTO_TCP) {
|
|
struct conninfo_tcp tcp_ci;
|
|
|
|
*aux_type = CIAUX_TCP;
|
|
if (*aux_len == 0) {
|
|
*aux_len = sizeof(tcp_ci);
|
|
} else {
|
|
if (aux_data != USER_ADDR_NULL) {
|
|
copy_len = min(*aux_len, sizeof(tcp_ci));
|
|
bzero(&tcp_ci, sizeof(tcp_ci));
|
|
tcp_getconninfo(so, &tcp_ci);
|
|
error = copyout(&tcp_ci, aux_data, copy_len);
|
|
if (error != 0) {
|
|
goto out;
|
|
}
|
|
*aux_len = copy_len;
|
|
}
|
|
}
|
|
} else {
|
|
*aux_type = 0;
|
|
*aux_len = 0;
|
|
}
|
|
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* 'u' group ioctls.
|
|
*
|
|
* The switch statement below does nothing at runtime, as it serves as a
|
|
* compile time check to ensure that all of the socket 'u' ioctls (those
|
|
* in the 'u' group going thru soo_ioctl) that are made available by the
|
|
* networking stack is unique. This works as long as this routine gets
|
|
* updated each time a new interface ioctl gets added.
|
|
*
|
|
* Any failures at compile time indicates duplicated ioctl values.
|
|
*/
|
|
static __attribute__((unused)) void
|
|
in6ioctl_cassert(void)
|
|
{
|
|
/*
|
|
* This is equivalent to _CASSERT() and the compiler wouldn't
|
|
* generate any instructions, thus for compile time only.
|
|
*/
|
|
switch ((u_long)0) {
|
|
case 0:
|
|
|
|
/* bsd/netinet6/in6_var.h */
|
|
case SIOCAADDRCTL_POLICY:
|
|
case SIOCDADDRCTL_POLICY:
|
|
case SIOCDRADD_IN6_32:
|
|
case SIOCDRADD_IN6_64:
|
|
case SIOCDRDEL_IN6_32:
|
|
case SIOCDRDEL_IN6_64:
|
|
;
|
|
}
|
|
}
|
|
|
|
void
|
|
in6_ip6_to_sockaddr(const struct in6_addr *ip6, u_int16_t port, uint32_t ifscope,
|
|
struct sockaddr_in6 *sin6, u_int32_t maxlen)
|
|
{
|
|
if (maxlen < sizeof(struct sockaddr_in6)) {
|
|
return;
|
|
}
|
|
|
|
*sin6 = (struct sockaddr_in6) {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_len = sizeof(*sin6),
|
|
.sin6_port = port,
|
|
.sin6_addr = *ip6,
|
|
.sin6_scope_id = IN6_IS_SCOPE_EMBED(ip6) ? ifscope : IFSCOPE_NONE,
|
|
};
|
|
|
|
if (IN6_IS_SCOPE_EMBED(&sin6->sin6_addr)) {
|
|
in6_verify_ifscope(&sin6->sin6_addr, ifscope);
|
|
if (in6_embedded_scope) {
|
|
sin6->sin6_scope_id = ntohs(sin6->sin6_addr.s6_addr16[1]);
|
|
sin6->sin6_addr.s6_addr16[1] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* IPv6 events */
|
|
struct in6_event {
|
|
in6_evhdlr_code_t in6_event_code;
|
|
struct ifnet *in6_ifp;
|
|
struct in6_addr in6_address;
|
|
uint32_t val;
|
|
};
|
|
|
|
struct in6_event2kev in6_event2kev_array[IN6_EVENT_MAX] = {
|
|
{
|
|
.in6_event_code = IN6_ADDR_MARKED_DUPLICATED,
|
|
.in6_event_kev_subclass = KEV_ND6_SUBCLASS,
|
|
.in6_event_kev_code = KEV_ND6_DAD_FAILURE,
|
|
.in6_event_str = "IN6_ADDR_MARKED_DUPLICATED",
|
|
},
|
|
{
|
|
.in6_event_code = IN6_ADDR_MARKED_DETACHED,
|
|
.in6_event_kev_subclass = KEV_ND6_SUBCLASS,
|
|
.in6_event_kev_code = KEV_ND6_ADDR_DETACHED,
|
|
.in6_event_str = "IN6_ADDR_MARKED_DETACHED",
|
|
},
|
|
{
|
|
.in6_event_code = IN6_ADDR_MARKED_DEPRECATED,
|
|
.in6_event_kev_subclass = KEV_ND6_SUBCLASS,
|
|
.in6_event_kev_code = KEV_ND6_ADDR_DEPRECATED,
|
|
.in6_event_str = "IN6_ADDR_MARKED_DEPRECATED",
|
|
},
|
|
{
|
|
.in6_event_code = IN6_NDP_RTR_EXPIRY,
|
|
.in6_event_kev_subclass = KEV_ND6_SUBCLASS,
|
|
.in6_event_kev_code = KEV_ND6_RTR_EXPIRED,
|
|
.in6_event_str = "IN6_NDP_RTR_EXPIRY",
|
|
},
|
|
{
|
|
.in6_event_code = IN6_NDP_PFX_EXPIRY,
|
|
.in6_event_kev_subclass = KEV_ND6_SUBCLASS,
|
|
.in6_event_kev_code = KEV_ND6_PFX_EXPIRED,
|
|
.in6_event_str = "IN6_NDP_PFX_EXPIRY",
|
|
},
|
|
{
|
|
.in6_event_code = IN6_NDP_ADDR_EXPIRY,
|
|
.in6_event_kev_subclass = KEV_ND6_SUBCLASS,
|
|
.in6_event_kev_code = KEV_ND6_ADDR_EXPIRED,
|
|
.in6_event_str = "IN6_NDP_ADDR_EXPIRY",
|
|
},
|
|
};
|
|
|
|
void
|
|
in6_eventhdlr_callback(struct eventhandler_entry_arg arg0 __unused,
|
|
in6_evhdlr_code_t in6_ev_code, struct ifnet *ifp,
|
|
struct in6_addr *p_addr6, uint32_t val)
|
|
{
|
|
struct kev_msg ev_msg;
|
|
struct kev_nd6_event nd6_event;
|
|
|
|
bzero(&ev_msg, sizeof(ev_msg));
|
|
bzero(&nd6_event, sizeof(nd6_event));
|
|
|
|
nd6log0(info, "%s Event %s received for %s\n",
|
|
__func__, in6_event2kev_array[in6_ev_code].in6_event_str,
|
|
ip6_sprintf(p_addr6));
|
|
|
|
ev_msg.vendor_code = KEV_VENDOR_APPLE;
|
|
ev_msg.kev_class = KEV_NETWORK_CLASS;
|
|
ev_msg.kev_subclass =
|
|
in6_event2kev_array[in6_ev_code].in6_event_kev_subclass;
|
|
ev_msg.event_code =
|
|
in6_event2kev_array[in6_ev_code].in6_event_kev_code;
|
|
|
|
nd6_event.link_data.if_family = ifp->if_family;
|
|
nd6_event.link_data.if_unit = ifp->if_unit;
|
|
strlcpy(nd6_event.link_data.if_name, ifp->if_name,
|
|
sizeof(nd6_event.link_data.if_name));
|
|
|
|
VERIFY(p_addr6 != NULL);
|
|
bcopy(p_addr6, &nd6_event.in6_address,
|
|
sizeof(nd6_event.in6_address));
|
|
nd6_event.val = val;
|
|
|
|
ev_msg.dv[0].data_ptr = &nd6_event;
|
|
ev_msg.dv[0].data_length = sizeof(nd6_event);
|
|
|
|
kev_post_msg(&ev_msg);
|
|
}
|
|
|
|
struct in6_event_nwk_wq_entry {
|
|
struct nwk_wq_entry nwk_wqe;
|
|
struct in6_event in6_ev_arg;
|
|
};
|
|
|
|
static void
|
|
in6_event_callback(struct nwk_wq_entry *nwk_item)
|
|
{
|
|
struct in6_event_nwk_wq_entry *p_ev;
|
|
|
|
p_ev = __container_of(nwk_item, struct in6_event_nwk_wq_entry, nwk_wqe);
|
|
|
|
EVENTHANDLER_INVOKE(&in6_evhdlr_ctxt, in6_event,
|
|
p_ev->in6_ev_arg.in6_event_code, p_ev->in6_ev_arg.in6_ifp,
|
|
&p_ev->in6_ev_arg.in6_address, p_ev->in6_ev_arg.val);
|
|
|
|
kfree_type(struct in6_event_nwk_wq_entry, p_ev);
|
|
}
|
|
|
|
void
|
|
in6_event_enqueue_nwk_wq_entry(in6_evhdlr_code_t in6_event_code,
|
|
struct ifnet *ifp, struct in6_addr *p_addr6,
|
|
uint32_t val)
|
|
{
|
|
struct in6_event_nwk_wq_entry *p_in6_ev = NULL;
|
|
|
|
p_in6_ev = kalloc_type(struct in6_event_nwk_wq_entry,
|
|
Z_WAITOK | Z_ZERO | Z_NOFAIL);
|
|
|
|
p_in6_ev->nwk_wqe.func = in6_event_callback;
|
|
p_in6_ev->in6_ev_arg.in6_event_code = in6_event_code;
|
|
p_in6_ev->in6_ev_arg.in6_ifp = ifp;
|
|
if (p_addr6 != NULL) {
|
|
bcopy(p_addr6, &p_in6_ev->in6_ev_arg.in6_address,
|
|
sizeof(p_in6_ev->in6_ev_arg.in6_address));
|
|
}
|
|
p_in6_ev->in6_ev_arg.val = val;
|
|
|
|
nwk_wq_enqueue(&p_in6_ev->nwk_wqe);
|
|
}
|
|
|
|
/*
|
|
* Caller must hold in6_ifaddr_rwlock as writer.
|
|
*/
|
|
static void
|
|
in6_iahash_remove(struct in6_ifaddr *ia)
|
|
{
|
|
LCK_RW_ASSERT(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE);
|
|
IFA_LOCK_ASSERT_HELD(&ia->ia_ifa);
|
|
|
|
if (!IA6_IS_HASHED(ia)) {
|
|
panic("%s: attempt to remove wrong ia %p from ipv6 hash table", __func__, ia);
|
|
/* NOTREACHED */
|
|
}
|
|
TAILQ_REMOVE(IN6ADDR_HASH(&ia->ia_addr.sin6_addr), ia, ia6_hash);
|
|
IA6_HASH_INIT(ia);
|
|
ifa_remref(&ia->ia_ifa);
|
|
}
|
|
|
|
/*
|
|
* Caller must hold in6_ifaddr_rwlock as writer.
|
|
*/
|
|
static void
|
|
in6_iahash_insert(struct in6_ifaddr *ia)
|
|
{
|
|
LCK_RW_ASSERT(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE);
|
|
IFA_LOCK_ASSERT_HELD(&ia->ia_ifa);
|
|
|
|
if (ia->ia_addr.sin6_family != AF_INET6) {
|
|
panic("%s: attempt to insert wrong ia %p into hash table", __func__, ia);
|
|
/* NOTREACHED */
|
|
} else if (IA6_IS_HASHED(ia)) {
|
|
panic("%s: attempt to double-insert ia %p into hash table", __func__, ia);
|
|
/* NOTREACHED */
|
|
}
|
|
TAILQ_INSERT_HEAD(IN6ADDR_HASH(&ia->ia_addr.sin6_addr),
|
|
ia, ia6_hash);
|
|
ifa_addref(&ia->ia_ifa);
|
|
}
|
|
|
|
/*
|
|
* Some point to point interfaces that are tunnels borrow the address from
|
|
* an underlying interface (e.g. VPN server). In order for source address
|
|
* selection logic to find the underlying interface first, we add the address
|
|
* of borrowing point to point interfaces at the end of the list.
|
|
* (see rdar://6733789)
|
|
*
|
|
* Caller must hold in6_ifaddr_rwlock as writer.
|
|
*/
|
|
static void
|
|
in6_iahash_insert_ptp(struct in6_ifaddr *ia)
|
|
{
|
|
struct in6_ifaddr *tmp_ifa;
|
|
struct ifnet *tmp_ifp;
|
|
|
|
LCK_RW_ASSERT(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE);
|
|
IFA_LOCK_ASSERT_HELD(&ia->ia_ifa);
|
|
|
|
if (ia->ia_addr.sin6_family != AF_INET6) {
|
|
panic("%s: attempt to insert wrong ia %p into hash table", __func__, ia);
|
|
/* NOTREACHED */
|
|
} else if (IA6_IS_HASHED(ia)) {
|
|
panic("%s: attempt to double-insert ia %p into hash table", __func__, ia);
|
|
/* NOTREACHED */
|
|
}
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
TAILQ_FOREACH(tmp_ifa, IN6ADDR_HASH(&ia->ia_addr.sin6_addr), ia6_hash) {
|
|
IFA_LOCK(&tmp_ifa->ia_ifa);
|
|
/* ia->ia_addr won't change, so check without lock */
|
|
if (in6_are_addr_equal_scoped(&tmp_ifa->ia_addr.sin6_addr, &ia->ia_addr.sin6_addr, tmp_ifa->ia_addr.sin6_scope_id, ia->ia_addr.sin6_scope_id)) {
|
|
IFA_UNLOCK(&tmp_ifa->ia_ifa);
|
|
break;
|
|
}
|
|
IFA_UNLOCK(&tmp_ifa->ia_ifa);
|
|
}
|
|
tmp_ifp = (tmp_ifa == NULL) ? NULL : tmp_ifa->ia_ifp;
|
|
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
if (tmp_ifp == NULL) {
|
|
TAILQ_INSERT_HEAD(IN6ADDR_HASH(&ia->ia_addr.sin6_addr),
|
|
ia, ia6_hash);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(IN6ADDR_HASH(&ia->ia_addr.sin6_addr),
|
|
ia, ia6_hash);
|
|
}
|
|
ifa_addref(&ia->ia_ifa);
|
|
}
|
|
|
|
/*
|
|
* ipv6 socket options.
|
|
*
|
|
* The switch statement below does nothing at runtime, as it serves as a
|
|
* compile time check to ensure that all of the ipv6 socket options are
|
|
* unique. This works as long as this routine gets updated each time a
|
|
* new ipv6 socket option gets added.
|
|
*
|
|
* Any failures at compile time indicates duplicated ipv6 socket option
|
|
* values.
|
|
*/
|
|
static __attribute__((unused)) void
|
|
tcpsockopt_cassert(void)
|
|
{
|
|
/*
|
|
* This is equivalent to _CASSERT() and the compiler wouldn't
|
|
* generate any instructions, thus for compile time only.
|
|
*/
|
|
switch ((int)0) {
|
|
case 0:
|
|
|
|
/* bsd/netinet6/in6.h */
|
|
case IPV6_SOCKOPT_RESERVED1:
|
|
case IPV6_UNICAST_HOPS:
|
|
case IPV6_MULTICAST_IF:
|
|
case IPV6_MULTICAST_HOPS:
|
|
case IPV6_MULTICAST_LOOP:
|
|
case IPV6_JOIN_GROUP:
|
|
case IPV6_LEAVE_GROUP:
|
|
case IPV6_PORTRANGE:
|
|
case ICMP6_FILTER:
|
|
case IPV6_2292PKTINFO:
|
|
case IPV6_2292HOPLIMIT:
|
|
case IPV6_2292NEXTHOP:
|
|
case IPV6_2292HOPOPTS:
|
|
case IPV6_2292DSTOPTS:
|
|
case IPV6_2292RTHDR:
|
|
case IPV6_2292PKTOPTIONS:
|
|
#ifdef __APPLE_USE_RFC_2292
|
|
// #define IPV6_PKTINFO IPV6_3542PKTINFO
|
|
// #define IPV6_HOPLIMIT IPV6_3542HOPLIMIT
|
|
// #define IPV6_NEXTHOP IPV6_3542NEXTHOP
|
|
// #define IPV6_HOPOPTS IPV6_3542HOPOPTS
|
|
// #define IPV6_DSTOPTS IPV6_3542DSTOPTS
|
|
// #define IPV6_RTHDR IPV6_3542RTHDR
|
|
case IPV6_PKTOPTIONS:
|
|
#endif /* __APPLE_USE_RFC_2292 */
|
|
case IPV6_CHECKSUM:
|
|
case IPV6_V6ONLY:
|
|
#ifndef KERNEL
|
|
// #define IPV6_BINDV6ONLY IPV6_V6ONLY
|
|
#endif /* KERNEL */
|
|
case IPV6_IPSEC_POLICY:
|
|
case IPV6_FAITH:
|
|
case IPV6_FW_ADD:
|
|
case IPV6_FW_DEL:
|
|
case IPV6_FW_FLUSH:
|
|
case IPV6_FW_ZERO:
|
|
case IPV6_FW_GET:
|
|
case IPV6_RECVTCLASS:
|
|
case IPV6_TCLASS:
|
|
#ifdef __APPLE_USE_RFC_3542
|
|
case IPV6_RTHDRDSTOPTS:
|
|
case IPV6_RECVPKTINFO:
|
|
case IPV6_RECVHOPLIMIT:
|
|
case IPV6_RECVRTHDR:
|
|
case IPV6_RECVHOPOPTS:
|
|
case IPV6_RECVDSTOPTS:
|
|
#ifdef KERNEL
|
|
case IPV6_RECVRTHDRDSTOPTS:
|
|
#endif
|
|
case IPV6_USE_MIN_MTU:
|
|
case IPV6_RECVPATHMTU:
|
|
case IPV6_PATHMTU:
|
|
case IPV6_3542PKTINFO:
|
|
case IPV6_3542HOPLIMIT:
|
|
case IPV6_3542NEXTHOP:
|
|
case IPV6_3542HOPOPTS:
|
|
case IPV6_3542DSTOPTS:
|
|
case IPV6_3542RTHDR:
|
|
// #define IPV6_PKTINFO IPV6_3542PKTINFO
|
|
// #define IPV6_HOPLIMIT IPV6_3542HOPLIMIT
|
|
// #define IPV6_NEXTHOP IPV6_3542NEXTHOP
|
|
// #define IPV6_HOPOPTS IPV6_3542HOPOPTS
|
|
// #define IPV6_DSTOPTS IPV6_3542DSTOPTS
|
|
// #define IPV6_RTHDR IPV6_3542RTHDR
|
|
case IPV6_AUTOFLOWLABEL:
|
|
case IPV6_DONTFRAG:
|
|
case IPV6_PREFER_TEMPADDR:
|
|
case IPV6_MSFILTER:
|
|
#endif /* __APPLE_USE_RFC_3542 */
|
|
case IPV6_BOUND_IF:
|
|
|
|
/* bsd/netinet6/in6_private.h */
|
|
case IPV6_NO_IFT_CELLULAR:
|
|
case IPV6_OUT_IF:
|
|
;
|
|
}
|
|
}
|