2355 lines
65 KiB
C
2355 lines
65 KiB
C
/*
|
|
* Copyright (c) 2000-2022 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
|
|
*/
|
|
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/priv.h>
|
|
#include <kern/locks.h>
|
|
#include <sys/random.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
#include <net/route.h>
|
|
#include <net/restricted_in_port.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/scope6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
|
|
#include <net/net_osdep.h>
|
|
|
|
#include <net/sockaddr_utils.h>
|
|
|
|
#include "loop.h"
|
|
|
|
SYSCTL_DECL(_net_inet6_ip6);
|
|
|
|
static int ip6_select_srcif_debug = 0;
|
|
SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcif_debug,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcif_debug, 0,
|
|
"log source interface selection debug info");
|
|
|
|
static int ip6_select_srcaddr_debug = 0;
|
|
SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcaddr_debug,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcaddr_debug, 0,
|
|
"log source address selection debug info");
|
|
|
|
static int ip6_select_src_expensive_secondary_if = 0;
|
|
SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_src_expensive_secondary_if,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_src_expensive_secondary_if, 0,
|
|
"allow source interface selection to use expensive secondaries");
|
|
|
|
static int ip6_select_src_strong_end = 1;
|
|
SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_src_strong_end,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_src_strong_end, 0,
|
|
"limit source address selection to outgoing interface");
|
|
|
|
#define ADDR_LABEL_NOTAPP (-1)
|
|
struct in6_addrpolicy defaultaddrpolicy;
|
|
|
|
int ip6_prefer_tempaddr = 1;
|
|
|
|
int ip6_cga_conflict_retries = IPV6_CGA_CONFLICT_RETRIES_DEFAULT;
|
|
|
|
extern int udp_use_randomport;
|
|
extern int tcp_use_randomport;
|
|
|
|
static int selectroute(struct sockaddr_in6 *, struct sockaddr_in6 *,
|
|
struct ip6_pktopts *, struct ip6_moptions *, struct in6_ifaddr **,
|
|
struct route_in6 *, struct ifnet **, struct rtentry **, int, int,
|
|
struct ip6_out_args *ip6oa);
|
|
static int in6_selectif(struct sockaddr_in6 *, struct ip6_pktopts *,
|
|
struct ip6_moptions *, struct route_in6 *ro,
|
|
struct ip6_out_args *, struct ifnet **);
|
|
static void init_policy_queue(void);
|
|
static int add_addrsel_policyent(const struct in6_addrpolicy *);
|
|
static int walk_addrsel_policy(int (*)(const struct in6_addrpolicy *, void *),
|
|
void *);
|
|
static int dump_addrsel_policyent(const struct in6_addrpolicy *, void *);
|
|
static struct in6_addrpolicy *match_addrsel_policy(struct sockaddr_in6 *);
|
|
void addrsel_policy_init(void);
|
|
|
|
#define SASEL_DO_DBG(inp) \
|
|
(ip6_select_srcaddr_debug && (inp) != NULL && \
|
|
(inp)->inp_socket != NULL && \
|
|
((inp)->inp_socket->so_options & SO_DEBUG))
|
|
|
|
#define SASEL_LOG(fmt, ...) \
|
|
do { \
|
|
if (srcsel_debug) \
|
|
os_log(OS_LOG_DEFAULT, "%s:%d " fmt,\
|
|
__FUNCTION__, __LINE__, ##__VA_ARGS__); \
|
|
} while (0); \
|
|
|
|
/*
|
|
* Return an IPv6 address, which is the most appropriate for a given
|
|
* destination and user specified options.
|
|
* If necessary, this function lookups the routing table and returns
|
|
* an entry to the caller for later use.
|
|
*/
|
|
#define REPLACE(r) do {\
|
|
SASEL_LOG("REPLACE r %s ia %s ifp1 %s\n", \
|
|
(#r), s_src, ifp1->if_xname); \
|
|
srcrule = (r); \
|
|
goto replace; \
|
|
} while (0)
|
|
|
|
#define NEXTSRC(r) do {\
|
|
SASEL_LOG("NEXTSRC r %s ia %s ifp1 %s\n", \
|
|
(#r), s_src, ifp1->if_xname); \
|
|
goto next; /* XXX: we can't use 'continue' here */ \
|
|
} while (0)
|
|
|
|
#define BREAK(r) do { \
|
|
SASEL_LOG("BREAK r %s ia %s ifp1 %s\n", \
|
|
(#r), s_src, ifp1->if_xname); \
|
|
srcrule = (r); \
|
|
goto out; /* XXX: we can't use 'break' here */ \
|
|
} while (0)
|
|
|
|
|
|
struct ifaddr *
|
|
in6_selectsrc_core_ifa(struct sockaddr_in6 *addr, struct ifnet *ifp, int srcsel_debug)
|
|
{
|
|
int err = 0;
|
|
struct ifnet *src_ifp = NULL;
|
|
struct in6_addr src_storage = {};
|
|
struct in6_addr *in6 = NULL;
|
|
struct ifaddr *ifa = NULL;
|
|
|
|
if ((in6 = in6_selectsrc_core(addr,
|
|
(ip6_prefer_tempaddr ? IPV6_SRCSEL_HINT_PREFER_TMPADDR : 0),
|
|
ifp, 0, &src_storage, &src_ifp, &err, &ifa, NULL)) == NULL) {
|
|
if (err == 0) {
|
|
err = EADDRNOTAVAIL;
|
|
}
|
|
VERIFY(src_ifp == NULL);
|
|
if (ifa != NULL) {
|
|
ifa_remref(ifa);
|
|
ifa = NULL;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
if (src_ifp != ifp) {
|
|
if (err == 0) {
|
|
err = ENETUNREACH;
|
|
}
|
|
if (ifa != NULL) {
|
|
ifa_remref(ifa);
|
|
ifa = NULL;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
VERIFY(ifa != NULL);
|
|
ifnet_lock_shared(ifp);
|
|
if ((ifa->ifa_debug & IFD_DETACHING) != 0) {
|
|
err = EHOSTUNREACH;
|
|
ifnet_lock_done(ifp);
|
|
ifa_remref(ifa);
|
|
ifa = NULL;
|
|
goto done;
|
|
}
|
|
ifnet_lock_done(ifp);
|
|
|
|
done:
|
|
SASEL_LOG("Returned with error: %d", err);
|
|
if (src_ifp != NULL) {
|
|
ifnet_release(src_ifp);
|
|
}
|
|
return ifa;
|
|
}
|
|
|
|
struct in6_addr *
|
|
in6_selectsrc_core(struct sockaddr_in6 *dstsock, uint32_t hint_mask,
|
|
struct ifnet *ifp, int srcsel_debug, struct in6_addr *src_storage,
|
|
struct ifnet **sifp, int *errorp, struct ifaddr **ifapp, struct route_in6 *ro)
|
|
{
|
|
u_int32_t odstzone;
|
|
int bestrule = IP6S_SRCRULE_0;
|
|
struct in6_addrpolicy *dst_policy = NULL, *best_policy = NULL;
|
|
struct in6_addr dst;
|
|
struct in6_ifaddr *ia = NULL, *ia_best = NULL;
|
|
char s_src[MAX_IPv6_STR_LEN] = {0};
|
|
char s_dst[MAX_IPv6_STR_LEN] = {0};
|
|
const struct in6_addr *tmp = NULL;
|
|
int dst_scope = -1, best_scope = -1, best_matchlen = -1;
|
|
uint64_t secs = net_uptime();
|
|
struct nd_defrouter *dr = NULL;
|
|
uint32_t genid = in6_ifaddrlist_genid;
|
|
VERIFY(dstsock != NULL);
|
|
VERIFY(src_storage != NULL);
|
|
VERIFY(ifp != NULL);
|
|
|
|
if (sifp != NULL) {
|
|
*sifp = NULL;
|
|
}
|
|
|
|
if (ifapp != NULL) {
|
|
*ifapp = NULL;
|
|
}
|
|
|
|
dst = dstsock->sin6_addr; /* make a copy for local operation */
|
|
|
|
if (srcsel_debug) {
|
|
(void) inet_ntop(AF_INET6, &dst, s_dst, sizeof(s_src));
|
|
|
|
tmp = &in6addr_any;
|
|
(void) inet_ntop(AF_INET6, tmp, s_src, sizeof(s_src));
|
|
os_log(OS_LOG_DEFAULT, "%s out src %s dst %s ifp %s",
|
|
__func__, s_src, s_dst, ifp->if_xname);
|
|
}
|
|
|
|
*errorp = in6_setscope(&dst, ifp, &odstzone);
|
|
if (*errorp != 0) {
|
|
src_storage = NULL;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Determine if the route is an indirect here
|
|
* and if it is get the default router that would be
|
|
* used as next hop.
|
|
* Later in the function it is used to apply rule 5.5 of RFC 6724.
|
|
*/
|
|
if (ro != NULL && ro->ro_rt != NULL &&
|
|
(ro->ro_rt->rt_flags & RTF_GATEWAY) &&
|
|
ro->ro_rt->rt_gateway != NULL) {
|
|
struct rtentry *rt = ro->ro_rt;
|
|
lck_mtx_lock(nd6_mutex);
|
|
dr = defrouter_lookup(NULL,
|
|
&SIN6(rt->rt_gateway)->sin6_addr, rt->rt_ifp);
|
|
lck_mtx_unlock(nd6_mutex);
|
|
}
|
|
|
|
lck_rw_lock_shared(&in6_ifaddr_rwlock);
|
|
addrloop:
|
|
TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) {
|
|
int new_scope = -1, new_matchlen = -1;
|
|
struct in6_addrpolicy *new_policy = NULL;
|
|
u_int32_t srczone = 0, osrczone, dstzone;
|
|
struct in6_addr src;
|
|
struct ifnet *ifp1 = ia->ia_ifp;
|
|
int srcrule;
|
|
|
|
if (srcsel_debug) {
|
|
(void) inet_ntop(AF_INET6, &ia->ia_addr.sin6_addr,
|
|
s_src, sizeof(s_src));
|
|
}
|
|
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
|
|
/*
|
|
* Simply skip addresses reserved for CLAT46
|
|
*/
|
|
if (ia->ia6_flags & IN6_IFF_CLAT46) {
|
|
SASEL_LOG("NEXT ia %s address on ifp1 %s skipped as it is "
|
|
"reserved for CLAT46\n", s_src, ifp1->if_xname);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* XXX By default we are strong end system and will
|
|
* limit candidate set of source address to the ones
|
|
* configured on the outgoing interface.
|
|
*/
|
|
if (ip6_select_src_strong_end &&
|
|
ifp1 != ifp) {
|
|
SASEL_LOG("NEXT ia %s ifp1 %s address is not on outgoing "
|
|
"interface \n", s_src, ifp1->if_xname);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* We'll never take an address that breaks the scope zone
|
|
* of the destination. We also skip an address if its zone
|
|
* does not contain the outgoing interface.
|
|
* XXX: we should probably use sin6_scope_id here.
|
|
*/
|
|
if (in6_setscope(&dst, ifp1, &dstzone) ||
|
|
odstzone != dstzone) {
|
|
SASEL_LOG("NEXT ia %s ifp1 %s odstzone %d != dstzone %d\n",
|
|
s_src, ifp1->if_xname, odstzone, dstzone);
|
|
goto next;
|
|
}
|
|
src = ia->ia_addr.sin6_addr;
|
|
if (in6_setscope(&src, ifp, &osrczone) ||
|
|
in6_setscope(&src, ifp1, &srczone) ||
|
|
osrczone != srczone) {
|
|
SASEL_LOG("NEXT ia %s ifp1 %s osrczone %d != srczone %d\n",
|
|
s_src, ifp1->if_xname, osrczone, srczone);
|
|
goto next;
|
|
}
|
|
/* avoid unusable addresses */
|
|
if ((ia->ia6_flags &
|
|
(IN6_IFF_NOTREADY | IN6_IFF_ANYCAST | IN6_IFF_DETACHED))) {
|
|
SASEL_LOG("NEXT ia %s ifp1 %s ia6_flags 0x%x\n",
|
|
s_src, ifp1->if_xname, ia->ia6_flags);
|
|
goto next;
|
|
}
|
|
if (!ip6_use_deprecated && IFA6_IS_DEPRECATED(ia, secs)) {
|
|
SASEL_LOG("NEXT ia %s ifp1 %s IFA6_IS_DEPRECATED\n",
|
|
s_src, ifp1->if_xname);
|
|
goto next;
|
|
}
|
|
if (!nd6_optimistic_dad &&
|
|
(ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0) {
|
|
SASEL_LOG("NEXT ia %s ifp1 %s IN6_IFF_OPTIMISTIC\n",
|
|
s_src, ifp1->if_xname);
|
|
goto next;
|
|
}
|
|
/* Rule 1: Prefer same address */
|
|
if (in6_are_addr_equal_scoped(&dst, &ia->ia_addr.sin6_addr, dstzone, srczone)) {
|
|
BREAK(IP6S_SRCRULE_1); /* there should be no better candidate */
|
|
}
|
|
if (ia_best == NULL) {
|
|
REPLACE(IP6S_SRCRULE_0);
|
|
}
|
|
|
|
/* Rule 2: Prefer appropriate scope */
|
|
if (dst_scope < 0) {
|
|
dst_scope = in6_addrscope(&dst);
|
|
}
|
|
new_scope = in6_addrscope(&ia->ia_addr.sin6_addr);
|
|
if (IN6_ARE_SCOPE_CMP(best_scope, new_scope) < 0) {
|
|
if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0) {
|
|
REPLACE(IP6S_SRCRULE_2);
|
|
}
|
|
NEXTSRC(IP6S_SRCRULE_2);
|
|
} else if (IN6_ARE_SCOPE_CMP(new_scope, best_scope) < 0) {
|
|
if (IN6_ARE_SCOPE_CMP(new_scope, dst_scope) < 0) {
|
|
NEXTSRC(IP6S_SRCRULE_2);
|
|
}
|
|
REPLACE(IP6S_SRCRULE_2);
|
|
}
|
|
|
|
/*
|
|
* Rule 3: Avoid deprecated addresses. Note that the case of
|
|
* !ip6_use_deprecated is already rejected above.
|
|
*/
|
|
if (!IFA6_IS_DEPRECATED(ia_best, secs) &&
|
|
IFA6_IS_DEPRECATED(ia, secs)) {
|
|
NEXTSRC(IP6S_SRCRULE_3);
|
|
}
|
|
if (IFA6_IS_DEPRECATED(ia_best, secs) &&
|
|
!IFA6_IS_DEPRECATED(ia, secs)) {
|
|
REPLACE(IP6S_SRCRULE_3);
|
|
}
|
|
|
|
/*
|
|
* RFC 4429 says that optimistic addresses are equivalent to
|
|
* deprecated addresses, so avoid them here.
|
|
*/
|
|
if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) == 0 &&
|
|
(ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0) {
|
|
NEXTSRC(IP6S_SRCRULE_3);
|
|
}
|
|
if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) != 0 &&
|
|
(ia->ia6_flags & IN6_IFF_OPTIMISTIC) == 0) {
|
|
REPLACE(IP6S_SRCRULE_3);
|
|
}
|
|
|
|
/* Rule 4: Prefer home addresses */
|
|
/*
|
|
* XXX: This is a TODO. We should probably merge the MIP6
|
|
* case above.
|
|
*/
|
|
|
|
/* Rule 5: Prefer outgoing interface */
|
|
/*
|
|
* XXX By default we are strong end with source address
|
|
* selection. That means all address selection candidate
|
|
* addresses will be the ones hosted on the outgoing interface
|
|
* making the following check redundant.
|
|
*/
|
|
if (ip6_select_src_strong_end == 0) {
|
|
if (ia_best->ia_ifp == ifp && ia->ia_ifp != ifp) {
|
|
NEXTSRC(IP6S_SRCRULE_5);
|
|
}
|
|
if (ia_best->ia_ifp != ifp && ia->ia_ifp == ifp) {
|
|
REPLACE(IP6S_SRCRULE_5);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Rule 5.5: Prefer addresses in a prefix advertised by the next-hop.
|
|
* If SA or SA's prefix is assigned by the selected next-hop that will
|
|
* be used to send to D and SB or SB's prefix is assigned by a different
|
|
* next-hop, then prefer SA. Similarly, if SB or SB's prefix is
|
|
* assigned by the next-hop that will be used to send to D and SA or
|
|
* SA's prefix is assigned by a different next-hop, then prefer SB.
|
|
*/
|
|
if (dr != NULL && ia_best->ia6_ndpr != ia->ia6_ndpr) {
|
|
boolean_t ia_best_has_prefix = FALSE;
|
|
boolean_t ia_has_prefix = FALSE;
|
|
struct nd_prefix ia_best_prefix = {};
|
|
struct nd_prefix ia_prefix = {};
|
|
struct nd_prefix *p_ia_best_prefix = NULL;
|
|
struct nd_prefix *p_ia_prefix = NULL;
|
|
|
|
if (ia_best->ia6_ndpr) {
|
|
ia_best_prefix = *ia_best->ia6_ndpr;
|
|
}
|
|
|
|
if (ia->ia6_ndpr) {
|
|
ia_prefix = *ia->ia6_ndpr;
|
|
}
|
|
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
|
|
p_ia_best_prefix = nd6_prefix_lookup(&ia_best_prefix, ND6_PREFIX_EXPIRY_UNSPEC);
|
|
p_ia_prefix = nd6_prefix_lookup(&ia_prefix, ND6_PREFIX_EXPIRY_UNSPEC);
|
|
|
|
lck_mtx_lock(nd6_mutex);
|
|
if (p_ia_best_prefix != NULL) {
|
|
NDPR_LOCK(p_ia_best_prefix);
|
|
ia_best_has_prefix = (pfxrtr_lookup(p_ia_best_prefix, dr) != NULL);
|
|
NDPR_UNLOCK(p_ia_best_prefix);
|
|
NDPR_REMREF(p_ia_best_prefix);
|
|
}
|
|
if (p_ia_prefix != NULL) {
|
|
NDPR_LOCK(p_ia_prefix);
|
|
ia_has_prefix = (pfxrtr_lookup(p_ia_prefix, dr) != NULL);
|
|
NDPR_UNLOCK(p_ia_prefix);
|
|
NDPR_REMREF(p_ia_prefix);
|
|
}
|
|
lck_mtx_unlock(nd6_mutex);
|
|
|
|
lck_rw_lock_shared(&in6_ifaddr_rwlock);
|
|
if (genid != os_atomic_load(&in6_ifaddrlist_genid, acquire)) {
|
|
SASEL_LOG("Address list seems to have changed. Restarting source "
|
|
"address selection.\n");
|
|
genid = in6_ifaddrlist_genid;
|
|
/*
|
|
* We are starting from scratch. Free up the reference
|
|
* on ia_best and also reset it to NULL.
|
|
*/
|
|
ifa_remref(&ia_best->ia_ifa);
|
|
ia_best = NULL;
|
|
goto addrloop;
|
|
}
|
|
IFA_LOCK(&ia->ia_ifa);
|
|
|
|
if (ia_best_has_prefix && !ia_has_prefix) {
|
|
NEXTSRC(IP6S_SRCRULE_5_5);
|
|
}
|
|
|
|
if (!ia_best_has_prefix && ia_has_prefix) {
|
|
REPLACE(IP6S_SRCRULE_5_5);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Rule 6: Prefer matching label
|
|
* Note that best_policy should be non-NULL here.
|
|
*/
|
|
if (dst_policy == NULL) {
|
|
dst_policy = in6_addrsel_lookup_policy(dstsock);
|
|
}
|
|
if (dst_policy->label != ADDR_LABEL_NOTAPP) {
|
|
new_policy = in6_addrsel_lookup_policy(&ia->ia_addr);
|
|
if (dst_policy->label == best_policy->label &&
|
|
dst_policy->label != new_policy->label) {
|
|
NEXTSRC(IP6S_SRCRULE_6);
|
|
}
|
|
if (dst_policy->label != best_policy->label &&
|
|
dst_policy->label == new_policy->label) {
|
|
REPLACE(IP6S_SRCRULE_6);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Rule 7: Prefer temporary addresses.
|
|
* We allow users to reverse the logic by configuring
|
|
* a sysctl variable, so that transparency conscious users can
|
|
* always prefer stable addresses.
|
|
*/
|
|
if (!(ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
|
|
(ia->ia6_flags & IN6_IFF_TEMPORARY)) {
|
|
if (hint_mask & IPV6_SRCSEL_HINT_PREFER_TMPADDR) {
|
|
REPLACE(IP6S_SRCRULE_7);
|
|
} else {
|
|
NEXTSRC(IP6S_SRCRULE_7);
|
|
}
|
|
}
|
|
if ((ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
|
|
!(ia->ia6_flags & IN6_IFF_TEMPORARY)) {
|
|
if (hint_mask & IPV6_SRCSEL_HINT_PREFER_TMPADDR) {
|
|
NEXTSRC(IP6S_SRCRULE_7);
|
|
} else {
|
|
REPLACE(IP6S_SRCRULE_7);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Rule 7x: prefer addresses on alive interfaces.
|
|
* This is a KAME specific rule.
|
|
*/
|
|
if ((ia_best->ia_ifp->if_flags & IFF_UP) &&
|
|
!(ia->ia_ifp->if_flags & IFF_UP)) {
|
|
NEXTSRC(IP6S_SRCRULE_7x);
|
|
}
|
|
if (!(ia_best->ia_ifp->if_flags & IFF_UP) &&
|
|
(ia->ia_ifp->if_flags & IFF_UP)) {
|
|
REPLACE(IP6S_SRCRULE_7x);
|
|
}
|
|
|
|
/*
|
|
* Rule 8: Use longest matching prefix.
|
|
*/
|
|
new_matchlen = in6_matchlen(&ia->ia_addr.sin6_addr, &dst);
|
|
if (best_matchlen < new_matchlen) {
|
|
REPLACE(IP6S_SRCRULE_8);
|
|
}
|
|
if (new_matchlen < best_matchlen) {
|
|
NEXTSRC(IP6S_SRCRULE_8);
|
|
}
|
|
|
|
/*
|
|
* Last resort: just keep the current candidate.
|
|
* Or, do we need more rules?
|
|
*/
|
|
if (ifp1 != ifp && (ifp1->if_eflags & IFEF_EXPENSIVE) &&
|
|
ip6_select_src_expensive_secondary_if == 0) {
|
|
SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n",
|
|
s_src, ifp1->if_xname);
|
|
ip6stat.ip6s_sources_skip_expensive_secondary_if++;
|
|
goto next;
|
|
}
|
|
SASEL_LOG("NEXT ia %s ifp1 %s last resort\n",
|
|
s_src, ifp1->if_xname);
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
continue;
|
|
|
|
replace:
|
|
/*
|
|
* Ignore addresses on secondary interfaces that are marked
|
|
* expensive
|
|
*/
|
|
if (ifp1 != ifp && (ifp1->if_eflags & IFEF_EXPENSIVE) &&
|
|
ip6_select_src_expensive_secondary_if == 0) {
|
|
SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n",
|
|
s_src, ifp1->if_xname);
|
|
ip6stat.ip6s_sources_skip_expensive_secondary_if++;
|
|
goto next;
|
|
}
|
|
bestrule = srcrule;
|
|
best_scope = (new_scope >= 0 ? new_scope :
|
|
in6_addrscope(&ia->ia_addr.sin6_addr));
|
|
best_policy = (new_policy ? new_policy :
|
|
in6_addrsel_lookup_policy(&ia->ia_addr));
|
|
best_matchlen = (new_matchlen >= 0 ? new_matchlen :
|
|
in6_matchlen(&ia->ia_addr.sin6_addr, &dst));
|
|
SASEL_LOG("NEXT ia %s ifp1 %s best_scope %d new_scope %d dst_scope %d\n",
|
|
s_src, ifp1->if_xname, best_scope, new_scope, dst_scope);
|
|
ifa_addref(&ia->ia_ifa); /* for ia_best */
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
if (ia_best != NULL) {
|
|
ifa_remref(&ia_best->ia_ifa);
|
|
}
|
|
ia_best = ia;
|
|
continue;
|
|
|
|
next:
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
continue;
|
|
|
|
out:
|
|
ifa_addref(&ia->ia_ifa); /* for ia_best */
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
if (ia_best != NULL) {
|
|
ifa_remref(&ia_best->ia_ifa);
|
|
}
|
|
ia_best = ia;
|
|
break;
|
|
}
|
|
|
|
lck_rw_done(&in6_ifaddr_rwlock);
|
|
|
|
if ((ia = ia_best) == NULL) {
|
|
if (*errorp == 0) {
|
|
*errorp = EADDRNOTAVAIL;
|
|
}
|
|
src_storage = NULL;
|
|
goto done;
|
|
}
|
|
|
|
if (sifp != NULL) {
|
|
*sifp = ia->ia_ifa.ifa_ifp;
|
|
ifnet_reference(*sifp);
|
|
}
|
|
|
|
IFA_LOCK_SPIN(&ia->ia_ifa);
|
|
if (bestrule < IP6S_SRCRULE_COUNT) {
|
|
ip6stat.ip6s_sources_rule[bestrule]++;
|
|
}
|
|
*src_storage = satosin6(&ia->ia_addr)->sin6_addr;
|
|
IFA_UNLOCK(&ia->ia_ifa);
|
|
|
|
if (ifapp != NULL) {
|
|
*ifapp = &ia->ia_ifa;
|
|
} else {
|
|
ifa_remref(&ia->ia_ifa);
|
|
}
|
|
|
|
done:
|
|
if (srcsel_debug) {
|
|
(void) inet_ntop(AF_INET6, &dst, s_dst, sizeof(s_src));
|
|
|
|
tmp = (src_storage != NULL) ? src_storage : &in6addr_any;
|
|
(void) inet_ntop(AF_INET6, tmp, s_src, sizeof(s_src));
|
|
|
|
os_log(OS_LOG_DEFAULT, "%s out src %s dst %s dst_scope %d best_scope %d",
|
|
__func__, s_src, s_dst, dst_scope, best_scope);
|
|
}
|
|
|
|
if (dr != NULL) {
|
|
NDDR_REMREF(dr);
|
|
}
|
|
|
|
return src_storage;
|
|
}
|
|
|
|
/*
|
|
* Regardless of error, it will return an ifp with a reference held if the
|
|
* caller provides a non-NULL ifpp. The caller is responsible for checking
|
|
* if the returned ifp is valid and release its reference at all times.
|
|
*/
|
|
struct in6_addr *
|
|
in6_selectsrc(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts,
|
|
struct inpcb *inp, struct route_in6 *ro,
|
|
struct ifnet **ifpp, struct in6_addr *src_storage, unsigned int ifscope,
|
|
int *errorp)
|
|
{
|
|
struct ifnet *ifp = NULL;
|
|
struct in6_pktinfo *pi = NULL;
|
|
struct ip6_moptions *mopts;
|
|
struct ip6_out_args ip6oa;
|
|
boolean_t inp_debug = FALSE;
|
|
uint32_t hint_mask = 0;
|
|
int prefer_tempaddr = 0;
|
|
struct ifnet *sifp = NULL;
|
|
|
|
bzero(&ip6oa, sizeof(ip6oa));
|
|
ip6oa.ip6oa_boundif = ifscope;
|
|
ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF;
|
|
ip6oa.ip6oa_sotc = SO_TC_UNSPEC;
|
|
ip6oa.ip6oa_netsvctype = _NET_SERVICE_TYPE_UNSPEC;
|
|
|
|
*errorp = 0;
|
|
if (ifpp != NULL) {
|
|
*ifpp = NULL;
|
|
}
|
|
|
|
if (inp != NULL) {
|
|
inp_debug = SASEL_DO_DBG(inp);
|
|
mopts = inp->in6p_moptions;
|
|
if (INP_NO_CELLULAR(inp)) {
|
|
ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR;
|
|
}
|
|
if (INP_NO_EXPENSIVE(inp)) {
|
|
ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE;
|
|
}
|
|
if (INP_NO_CONSTRAINED(inp)) {
|
|
ip6oa.ip6oa_flags |= IP6OAF_NO_CONSTRAINED;
|
|
}
|
|
if (INP_AWDL_UNRESTRICTED(inp)) {
|
|
ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED;
|
|
}
|
|
if (INP_INTCOPROC_ALLOWED(inp)) {
|
|
ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED;
|
|
}
|
|
if (INP_MANAGEMENT_ALLOWED(inp)) {
|
|
ip6oa.ip6oa_flags |= IP6OAF_MANAGEMENT_ALLOWED;
|
|
}
|
|
} else {
|
|
mopts = NULL;
|
|
/* Allow the kernel to retransmit packets. */
|
|
ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED |
|
|
IP6OAF_AWDL_UNRESTRICTED | IP6OAF_MANAGEMENT_ALLOWED;
|
|
}
|
|
|
|
if (ip6oa.ip6oa_boundif != IFSCOPE_NONE) {
|
|
ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
|
|
}
|
|
|
|
/*
|
|
* If the source address is explicitly specified by the caller,
|
|
* check if the requested source address is indeed a unicast address
|
|
* assigned to the node, and can be used as the packet's source
|
|
* address. If everything is okay, use the address as source.
|
|
*/
|
|
if (opts && (pi = opts->ip6po_pktinfo) &&
|
|
!IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) {
|
|
struct sockaddr_in6 srcsock;
|
|
struct in6_ifaddr *ia6;
|
|
|
|
/* get the outgoing interface */
|
|
if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa,
|
|
&ifp)) != 0) {
|
|
src_storage = NULL;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* determine the appropriate zone id of the source based on
|
|
* the zone of the destination and the outgoing interface.
|
|
* If the specified address is ambiguous wrt the scope zone,
|
|
* the interface must be specified; otherwise, ifa_ifwithaddr()
|
|
* will fail matching the address.
|
|
*/
|
|
SOCKADDR_ZERO(&srcsock, sizeof(srcsock));
|
|
srcsock.sin6_family = AF_INET6;
|
|
srcsock.sin6_len = sizeof(srcsock);
|
|
srcsock.sin6_addr = pi->ipi6_addr;
|
|
if (ifp != NULL) {
|
|
*errorp = in6_setscope(&srcsock.sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&srcsock.sin6_scope_id));
|
|
if (*errorp != 0) {
|
|
src_storage = NULL;
|
|
goto done;
|
|
}
|
|
}
|
|
ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(SA(&srcsock));
|
|
if (ia6 == NULL) {
|
|
*errorp = EADDRNOTAVAIL;
|
|
src_storage = NULL;
|
|
goto done;
|
|
}
|
|
IFA_LOCK_SPIN(&ia6->ia_ifa);
|
|
if ((ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_NOTREADY | IN6_IFF_CLAT46)) ||
|
|
(inp && inp_restricted_send(inp, ia6->ia_ifa.ifa_ifp))) {
|
|
IFA_UNLOCK(&ia6->ia_ifa);
|
|
ifa_remref(&ia6->ia_ifa);
|
|
*errorp = EHOSTUNREACH;
|
|
src_storage = NULL;
|
|
goto done;
|
|
}
|
|
|
|
*src_storage = satosin6(&ia6->ia_addr)->sin6_addr;
|
|
IFA_UNLOCK(&ia6->ia_ifa);
|
|
ifa_remref(&ia6->ia_ifa);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, if the socket has already bound the source, just use it.
|
|
*/
|
|
if (inp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
|
|
src_storage = &inp->in6p_laddr;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If the address is not specified, choose the best one based on
|
|
* the outgoing interface and the destination address.
|
|
*/
|
|
/* get the outgoing interface */
|
|
if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa,
|
|
&ifp)) != 0) {
|
|
src_storage = NULL;
|
|
goto done;
|
|
}
|
|
|
|
VERIFY(ifp != NULL);
|
|
|
|
if (opts == NULL ||
|
|
opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_SYSTEM) {
|
|
prefer_tempaddr = ip6_prefer_tempaddr;
|
|
} else if (opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_NOTPREFER) {
|
|
prefer_tempaddr = 0;
|
|
} else {
|
|
prefer_tempaddr = 1;
|
|
}
|
|
|
|
if (prefer_tempaddr) {
|
|
hint_mask |= IPV6_SRCSEL_HINT_PREFER_TMPADDR;
|
|
}
|
|
|
|
if (in6_selectsrc_core(dstsock, hint_mask, ifp, inp_debug, src_storage,
|
|
&sifp, errorp, NULL, ro) == NULL) {
|
|
src_storage = NULL;
|
|
goto done;
|
|
}
|
|
|
|
VERIFY(sifp != NULL);
|
|
|
|
if (inp && inp_restricted_send(inp, sifp)) {
|
|
src_storage = NULL;
|
|
*errorp = EHOSTUNREACH;
|
|
ifnet_release(sifp);
|
|
goto done;
|
|
} else {
|
|
ifnet_release(sifp);
|
|
}
|
|
|
|
done:
|
|
if (ifpp != NULL) {
|
|
/* if ifp is non-NULL, refcnt held in in6_selectif() */
|
|
*ifpp = ifp;
|
|
} else if (ifp != NULL) {
|
|
ifnet_release(ifp);
|
|
}
|
|
return src_storage;
|
|
}
|
|
|
|
/*
|
|
* Given a source IPv6 address (and route, if available), determine the best
|
|
* interface to send the packet from. Checking for (and updating) the
|
|
* ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
|
|
* without any locks, based on the assumption that in the event this is
|
|
* called from ip6_output(), the output operation is single-threaded per-pcb,
|
|
* i.e. for any given pcb there can only be one thread performing output at
|
|
* the IPv6 layer.
|
|
*
|
|
* This routine is analogous to in_selectsrcif() for IPv4. Regardless of
|
|
* error, it will return an ifp with a reference held if the caller provides
|
|
* a non-NULL retifp. The caller is responsible for checking if the
|
|
* returned ifp is valid and release its reference at all times.
|
|
*
|
|
* clone - meaningful only for bsdi and freebsd
|
|
*/
|
|
static int
|
|
selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock,
|
|
struct ip6_pktopts *opts, struct ip6_moptions *mopts,
|
|
struct in6_ifaddr **retsrcia, struct route_in6 *ro,
|
|
struct ifnet **retifp, struct rtentry **retrt, int clone,
|
|
int norouteok, struct ip6_out_args *ip6oa)
|
|
{
|
|
int error = 0;
|
|
struct ifnet *ifp = NULL, *ifp0 = NULL;
|
|
struct route_in6 *route = NULL;
|
|
struct sockaddr_in6 *sin6_next;
|
|
struct in6_pktinfo *pi = NULL;
|
|
struct in6_addr *dst = &dstsock->sin6_addr;
|
|
struct ifaddr *ifa = NULL;
|
|
char s_src[MAX_IPv6_STR_LEN], s_dst[MAX_IPv6_STR_LEN];
|
|
boolean_t select_srcif, proxied_ifa = FALSE, local_dst = FALSE;
|
|
unsigned int ifscope = ((ip6oa != NULL) ?
|
|
ip6oa->ip6oa_boundif : IFSCOPE_NONE);
|
|
boolean_t is_direct = FALSE;
|
|
|
|
if (retifp != NULL) {
|
|
*retifp = NULL;
|
|
}
|
|
|
|
if (retrt != NULL) {
|
|
*retrt = NULL;
|
|
}
|
|
|
|
if (ip6_select_srcif_debug) {
|
|
struct in6_addr src;
|
|
src = (srcsock != NULL) ? srcsock->sin6_addr : in6addr_any;
|
|
(void) inet_ntop(AF_INET6, &src, s_src, sizeof(s_src));
|
|
(void) inet_ntop(AF_INET6, dst, s_dst, sizeof(s_dst));
|
|
}
|
|
|
|
/*
|
|
* If the destination address is UNSPECIFIED addr, bail out.
|
|
*/
|
|
if (IN6_IS_ADDR_UNSPECIFIED(dst)) {
|
|
error = EHOSTUNREACH;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Perform source interface selection if Scoped Routing
|
|
* is enabled and a source address that isn't unspecified.
|
|
*/
|
|
select_srcif = (srcsock != NULL &&
|
|
!IN6_IS_ADDR_UNSPECIFIED(&srcsock->sin6_addr));
|
|
|
|
/*
|
|
* For scoped routing, if interface scope is 0 or src/dst addr is linklocal
|
|
* or dst addr is multicast, source interface selection should be performed even
|
|
* if the destination is directly reachable.
|
|
*/
|
|
if (ifscope != IFSCOPE_NONE &&
|
|
!(srcsock != NULL && IN6_IS_ADDR_LINKLOCAL(&srcsock->sin6_addr)) &&
|
|
!IN6_IS_ADDR_MULTICAST(dst) && !IN6_IS_ADDR_LINKLOCAL(dst)) {
|
|
struct rtentry *temp_rt = NULL;
|
|
|
|
lck_mtx_lock(rnh_lock);
|
|
temp_rt = rt_lookup(TRUE, SA(dstsock),
|
|
NULL, rt_tables[AF_INET6], ifscope);
|
|
lck_mtx_unlock(rnh_lock);
|
|
|
|
/*
|
|
* If the destination is directly reachable, relax
|
|
* the behavior around select_srcif, i.e. don't force
|
|
* the packet to go out from the interface that is hosting
|
|
* the source address.
|
|
* It happens when we share v6 with NAT66 and want
|
|
* the external interface's v6 address to be reachable
|
|
* to the clients we are sharing v6 connectivity with
|
|
* using NAT.
|
|
*/
|
|
if (temp_rt != NULL) {
|
|
if ((temp_rt->rt_flags & RTF_GATEWAY) == 0) {
|
|
select_srcif = FALSE;
|
|
is_direct = TRUE;
|
|
}
|
|
rtfree(temp_rt);
|
|
}
|
|
}
|
|
|
|
if (ip6_select_srcif_debug) {
|
|
os_log(OS_LOG_DEFAULT, "%s src %s dst %s ifscope %d "
|
|
"is_direct %d select_srcif %d",
|
|
__func__, s_src, s_dst, ifscope, is_direct, select_srcif);
|
|
}
|
|
|
|
/* If the caller specified the outgoing interface explicitly, use it */
|
|
if (opts != NULL && (pi = opts->ip6po_pktinfo) != NULL &&
|
|
pi->ipi6_ifindex != 0) {
|
|
/*
|
|
* If IPV6_PKTINFO takes precedence over IPV6_BOUND_IF.
|
|
*/
|
|
ifscope = pi->ipi6_ifindex;
|
|
ifnet_head_lock_shared();
|
|
/* ifp may be NULL if detached or out of range */
|
|
ifp = ifp0 =
|
|
((ifscope <= if_index) ? ifindex2ifnet[ifscope] : NULL);
|
|
ifnet_head_done();
|
|
if (norouteok || retrt == NULL || IN6_IS_ADDR_MC_LINKLOCAL(dst)) {
|
|
/*
|
|
* We do not have to check or get the route for
|
|
* multicast. If the caller didn't ask/care for
|
|
* the route and we have no interface to use,
|
|
* it's an error.
|
|
*/
|
|
if (ifp == NULL) {
|
|
error = EHOSTUNREACH;
|
|
}
|
|
goto done;
|
|
} else {
|
|
goto getsrcif;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the destination address is a multicast address and the outgoing
|
|
* interface for the address is specified by the caller, use it.
|
|
*/
|
|
if (IN6_IS_ADDR_MULTICAST(dst) && mopts != NULL) {
|
|
IM6O_LOCK(mopts);
|
|
ifp = ifp0 = mopts->im6o_multicast_ifp;
|
|
if (ifp != NULL && IN6_IS_ADDR_MC_LINKLOCAL(dst)) {
|
|
IM6O_UNLOCK(mopts);
|
|
goto done; /* we don't need a route for link-local multicast */
|
|
}
|
|
IM6O_UNLOCK(mopts);
|
|
}
|
|
|
|
getsrcif:
|
|
/*
|
|
* If the outgoing interface was not set via IPV6_BOUND_IF or
|
|
* IPV6_PKTINFO, use the scope ID in the destination address.
|
|
*/
|
|
if (ifscope == IFSCOPE_NONE) {
|
|
ifscope = dstsock->sin6_scope_id;
|
|
}
|
|
|
|
/*
|
|
* Perform source interface selection; the source IPv6 address
|
|
* must belong to one of the addresses of the interface used
|
|
* by the route. For performance reasons, do this only if
|
|
* there is no route, or if the routing table has changed,
|
|
* or if we haven't done source interface selection on this
|
|
* route (for this PCB instance) before.
|
|
*/
|
|
if (!select_srcif) {
|
|
goto getroute;
|
|
} else if (!ROUTE_UNUSABLE(ro) && ro->ro_srcia != NULL &&
|
|
(ro->ro_flags & ROF_SRCIF_SELECTED)) {
|
|
if (ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) {
|
|
local_dst = TRUE;
|
|
}
|
|
ifa = ro->ro_srcia;
|
|
ifa_addref(ifa); /* for caller */
|
|
goto getroute;
|
|
}
|
|
|
|
/*
|
|
* Given the source IPv6 address, find a suitable source interface
|
|
* to use for transmission; if a scope ID has been specified,
|
|
* optimize the search by looking at the addresses only for that
|
|
* interface. This is still suboptimal, however, as we need to
|
|
* traverse the per-interface list.
|
|
*/
|
|
if (ifscope != IFSCOPE_NONE || (ro != NULL && ro->ro_rt != NULL)) {
|
|
unsigned int scope = ifscope;
|
|
struct ifnet *rt_ifp;
|
|
|
|
rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL;
|
|
|
|
/*
|
|
* If no scope is specified and the route is stale (pointing
|
|
* to a defunct interface) use the current primary interface;
|
|
* this happens when switching between interfaces configured
|
|
* with the same IPv6 address. Otherwise pick up the scope
|
|
* information from the route; the ULP may have looked up a
|
|
* correct route and we just need to verify it here and mark
|
|
* it with the ROF_SRCIF_SELECTED flag below.
|
|
*/
|
|
if (scope == IFSCOPE_NONE) {
|
|
scope = rt_ifp->if_index;
|
|
if (scope != get_primary_ifscope(AF_INET6) &&
|
|
ROUTE_UNUSABLE(ro)) {
|
|
scope = get_primary_ifscope(AF_INET6);
|
|
}
|
|
}
|
|
|
|
ifa = (struct ifaddr *)
|
|
ifa_foraddr6_scoped(&srcsock->sin6_addr, scope);
|
|
|
|
/*
|
|
* If we are forwarding and proxying prefix(es), see if the
|
|
* source address is one of ours and is a proxied address;
|
|
* if so, use it.
|
|
*/
|
|
if (ifa == NULL && ip6_forwarding && nd6_prproxy) {
|
|
ifa = (struct ifaddr *)
|
|
ifa_foraddr6(&srcsock->sin6_addr);
|
|
if (ifa != NULL && !(proxied_ifa =
|
|
nd6_prproxy_ifaddr((struct in6_ifaddr *)ifa))) {
|
|
ifa_remref(ifa);
|
|
ifa = NULL;
|
|
}
|
|
}
|
|
|
|
if (ip6_select_srcif_debug && ifa != NULL) {
|
|
if (ro->ro_rt != NULL) {
|
|
os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d->%d ifa_if %s "
|
|
"ro_if %s",
|
|
__func__,
|
|
s_src, s_dst, ifscope,
|
|
scope, if_name(ifa->ifa_ifp),
|
|
if_name(rt_ifp));
|
|
} else {
|
|
os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d->%d ifa_if %s",
|
|
__func__,
|
|
s_src, s_dst, ifscope, scope,
|
|
if_name(ifa->ifa_ifp));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Slow path; search for an interface having the corresponding source
|
|
* IPv6 address if the scope was not specified by the caller, and:
|
|
*
|
|
* 1) There currently isn't any route, or,
|
|
* 2) The interface used by the route does not own that source
|
|
* IPv6 address; in this case, the route will get blown away
|
|
* and we'll do a more specific scoped search using the newly
|
|
* found interface.
|
|
*/
|
|
if (ifa == NULL && ifscope == IFSCOPE_NONE) {
|
|
struct ifaddr *ifadst;
|
|
|
|
/* Check if the destination address is one of ours */
|
|
ifadst = (struct ifaddr *)ifa_foraddr6(&dstsock->sin6_addr);
|
|
if (ifadst != NULL) {
|
|
local_dst = TRUE;
|
|
ifa_remref(ifadst);
|
|
}
|
|
|
|
ifa = (struct ifaddr *)ifa_foraddr6(&srcsock->sin6_addr);
|
|
|
|
if (ip6_select_srcif_debug && ifa != NULL) {
|
|
os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d ifa_if %s",
|
|
__func__,
|
|
s_src, s_dst, ifscope, if_name(ifa->ifa_ifp));
|
|
} else if (ip6_select_srcif_debug) {
|
|
os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d ifa_if NULL",
|
|
__func__,
|
|
s_src, s_dst, ifscope);
|
|
}
|
|
}
|
|
|
|
getroute:
|
|
if (ifa != NULL && !proxied_ifa && !local_dst) {
|
|
ifscope = ifa->ifa_ifp->if_index;
|
|
}
|
|
|
|
/*
|
|
* If the next hop address for the packet is specified by the caller,
|
|
* use it as the gateway.
|
|
*/
|
|
if (opts != NULL && opts->ip6po_nexthop != NULL) {
|
|
struct route_in6 *ron;
|
|
|
|
sin6_next = satosin6(opts->ip6po_nexthop);
|
|
|
|
/* at this moment, we only support AF_INET6 next hops */
|
|
if (sin6_next->sin6_family != AF_INET6) {
|
|
error = EAFNOSUPPORT; /* or should we proceed? */
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If the next hop is an IPv6 address, then the node identified
|
|
* by that address must be a neighbor of the sending host.
|
|
*/
|
|
ron = &opts->ip6po_nextroute;
|
|
if (ron->ro_rt != NULL) {
|
|
RT_LOCK(ron->ro_rt);
|
|
}
|
|
if (ROUTE_UNUSABLE(ron) || (ron->ro_rt != NULL &&
|
|
(!(ron->ro_rt->rt_flags & RTF_LLINFO) ||
|
|
(select_srcif && (ifa == NULL ||
|
|
(ifa->ifa_ifp != ron->ro_rt->rt_ifp && !proxied_ifa))))) ||
|
|
!in6_are_addr_equal_scoped(&satosin6(&ron->ro_dst)->sin6_addr,
|
|
&sin6_next->sin6_addr, ron->ro_rt->rt_ifp->if_index, sin6_next->sin6_scope_id)) {
|
|
if (ron->ro_rt != NULL) {
|
|
RT_UNLOCK(ron->ro_rt);
|
|
}
|
|
|
|
ROUTE_RELEASE(ron);
|
|
*satosin6(&ron->ro_dst) = *sin6_next;
|
|
}
|
|
if (ron->ro_rt == NULL) {
|
|
rtalloc_scoped((struct route *)ron, ifscope);
|
|
if (ron->ro_rt != NULL) {
|
|
RT_LOCK(ron->ro_rt);
|
|
}
|
|
if (ROUTE_UNUSABLE(ron) ||
|
|
!(ron->ro_rt->rt_flags & RTF_LLINFO) ||
|
|
!in6_are_addr_equal_scoped(&satosin6(rt_key(ron->ro_rt))->
|
|
sin6_addr, &sin6_next->sin6_addr, ron->ro_rt->rt_ifp->if_index, sin6_next->sin6_scope_id)) {
|
|
if (ron->ro_rt != NULL) {
|
|
RT_UNLOCK(ron->ro_rt);
|
|
}
|
|
|
|
ROUTE_RELEASE(ron);
|
|
error = EHOSTUNREACH;
|
|
goto done;
|
|
}
|
|
}
|
|
route = ron;
|
|
ifp = ifp0 = ron->ro_rt->rt_ifp;
|
|
|
|
/*
|
|
* When cloning is required, try to allocate a route to the
|
|
* destination so that the caller can store path MTU
|
|
* information.
|
|
*/
|
|
if (!clone) {
|
|
if (select_srcif) {
|
|
/* Keep the route locked */
|
|
goto validateroute;
|
|
}
|
|
RT_UNLOCK(ron->ro_rt);
|
|
goto done;
|
|
}
|
|
RT_UNLOCK(ron->ro_rt);
|
|
}
|
|
|
|
/*
|
|
* Use a cached route if it exists and is valid, else try to allocate
|
|
* a new one. Note that we should check the address family of the
|
|
* cached destination, in case of sharing the cache with IPv4.
|
|
*/
|
|
if (ro == NULL) {
|
|
goto done;
|
|
}
|
|
if (ro->ro_rt != NULL) {
|
|
RT_LOCK_SPIN(ro->ro_rt);
|
|
}
|
|
if (ROUTE_UNUSABLE(ro) || (ro->ro_rt != NULL &&
|
|
(satosin6(&ro->ro_dst)->sin6_family != AF_INET6 ||
|
|
!in6_are_addr_equal_scoped(&satosin6(&ro->ro_dst)->sin6_addr, dst, ro->ro_rt->rt_ifp->if_index, dstsock->sin6_scope_id) ||
|
|
(select_srcif && (ifa == NULL ||
|
|
(ifa->ifa_ifp != ro->ro_rt->rt_ifp && !proxied_ifa)))))) {
|
|
if (ro->ro_rt != NULL) {
|
|
RT_UNLOCK(ro->ro_rt);
|
|
}
|
|
|
|
ROUTE_RELEASE(ro);
|
|
}
|
|
if (ro->ro_rt == NULL) {
|
|
struct sockaddr_in6 *sa6;
|
|
|
|
/* No route yet, so try to acquire one */
|
|
SOCKADDR_ZERO(&ro->ro_dst, sizeof(struct sockaddr_in6));
|
|
sa6 = SIN6(&ro->ro_dst);
|
|
sa6->sin6_family = AF_INET6;
|
|
sa6->sin6_len = sizeof(struct sockaddr_in6);
|
|
sa6->sin6_addr = *dst;
|
|
if (IN6_IS_ADDR_MC_LINKLOCAL(dst)) {
|
|
ro->ro_rt = rtalloc1_scoped(
|
|
SA(&((struct route *)ro)->ro_dst), 0, 0, ifscope);
|
|
} else {
|
|
rtalloc_scoped((struct route *)ro, ifscope);
|
|
}
|
|
if (ro->ro_rt != NULL) {
|
|
RT_LOCK_SPIN(ro->ro_rt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do not care about the result if we have the nexthop
|
|
* explicitly specified (in case we're asked to clone.)
|
|
*/
|
|
if (opts != NULL && opts->ip6po_nexthop != NULL) {
|
|
if (ro->ro_rt != NULL) {
|
|
RT_UNLOCK(ro->ro_rt);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
if (ro->ro_rt != NULL) {
|
|
RT_LOCK_ASSERT_HELD(ro->ro_rt);
|
|
ifp = ifp0 = ro->ro_rt->rt_ifp;
|
|
} else {
|
|
error = EHOSTUNREACH;
|
|
}
|
|
route = ro;
|
|
|
|
validateroute:
|
|
if (select_srcif) {
|
|
boolean_t has_route = (route != NULL && route->ro_rt != NULL);
|
|
boolean_t srcif_selected = FALSE;
|
|
|
|
if (has_route) {
|
|
RT_LOCK_ASSERT_HELD(route->ro_rt);
|
|
}
|
|
/*
|
|
* If there is a non-loopback route with the wrong interface,
|
|
* or if there is no interface configured with such an address,
|
|
* blow it away. Except for local/loopback, we look for one
|
|
* with a matching interface scope/index.
|
|
*/
|
|
if (has_route && (ifa == NULL ||
|
|
(ifa->ifa_ifp != ifp && ifp != lo_ifp) ||
|
|
!(route->ro_rt->rt_flags & RTF_UP))) {
|
|
/*
|
|
* If the destination address belongs to a proxied
|
|
* prefix, relax the requirement and allow the packet
|
|
* to come out of the proxy interface with the source
|
|
* address of the real interface.
|
|
*/
|
|
if (ifa != NULL && proxied_ifa &&
|
|
(route->ro_rt->rt_flags & (RTF_UP | RTF_PROXY)) ==
|
|
(RTF_UP | RTF_PROXY)) {
|
|
srcif_selected = TRUE;
|
|
} else {
|
|
if (ip6_select_srcif_debug) {
|
|
if (ifa != NULL) {
|
|
os_log(OS_LOG_DEFAULT,
|
|
"%s->%s ifscope %d "
|
|
"ro_if %s != ifa_if %s "
|
|
"(cached route cleared)",
|
|
s_src, s_dst,
|
|
ifscope, if_name(ifp),
|
|
if_name(ifa->ifa_ifp));
|
|
} else {
|
|
os_log(OS_LOG_DEFAULT,
|
|
"%s->%s ifscope %d "
|
|
"ro_if %s (no ifa_if "
|
|
"found)", s_src, s_dst,
|
|
ifscope, if_name(ifp));
|
|
}
|
|
}
|
|
RT_UNLOCK(route->ro_rt);
|
|
ROUTE_RELEASE(route);
|
|
error = EHOSTUNREACH;
|
|
/* Undo the settings done above */
|
|
route = NULL;
|
|
ifp = NULL; /* ditch ifp; keep ifp0 */
|
|
has_route = FALSE;
|
|
}
|
|
} else if (has_route) {
|
|
srcif_selected = TRUE;
|
|
}
|
|
|
|
if (srcif_selected) {
|
|
VERIFY(has_route);
|
|
if (ifa != route->ro_srcia ||
|
|
!(route->ro_flags & ROF_SRCIF_SELECTED)) {
|
|
RT_CONVERT_LOCK(route->ro_rt);
|
|
if (ifa != NULL) {
|
|
ifa_addref(ifa); /* for route_in6 */
|
|
}
|
|
if (route->ro_srcia != NULL) {
|
|
ifa_remref(route->ro_srcia);
|
|
}
|
|
route->ro_srcia = ifa;
|
|
route->ro_flags |= ROF_SRCIF_SELECTED;
|
|
RT_GENID_SYNC(route->ro_rt);
|
|
}
|
|
RT_UNLOCK(route->ro_rt);
|
|
}
|
|
} else {
|
|
if (ro->ro_rt != NULL) {
|
|
RT_UNLOCK(ro->ro_rt);
|
|
}
|
|
if (ifp != NULL && opts != NULL &&
|
|
opts->ip6po_pktinfo != NULL &&
|
|
opts->ip6po_pktinfo->ipi6_ifindex != 0) {
|
|
/*
|
|
* Check if the outgoing interface conflicts with the
|
|
* interface specified by ipi6_ifindex (if specified).
|
|
* Note that loopback interface is always okay.
|
|
* (this may happen when we are sending a packet to
|
|
* one of our own addresses.)
|
|
*/
|
|
if (!(ifp->if_flags & IFF_LOOPBACK) && ifp->if_index !=
|
|
opts->ip6po_pktinfo->ipi6_ifindex) {
|
|
error = EHOSTUNREACH;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* Check for interface restrictions.
|
|
*/
|
|
#define CHECK_RESTRICTIONS(_ip6oa, _ifp) \
|
|
((((_ip6oa)->ip6oa_flags & IP6OAF_NO_CELLULAR) && \
|
|
IFNET_IS_CELLULAR(_ifp)) || \
|
|
(((_ip6oa)->ip6oa_flags & IP6OAF_NO_EXPENSIVE) && \
|
|
IFNET_IS_EXPENSIVE(_ifp)) || \
|
|
(((_ip6oa)->ip6oa_flags & IP6OAF_NO_CONSTRAINED) && \
|
|
IFNET_IS_CONSTRAINED(_ifp)) || \
|
|
(!((_ip6oa)->ip6oa_flags & IP6OAF_INTCOPROC_ALLOWED) && \
|
|
IFNET_IS_INTCOPROC(_ifp)) || \
|
|
(!((_ip6oa)->ip6oa_flags & IP6OAF_AWDL_UNRESTRICTED) && \
|
|
IFNET_IS_AWDL_RESTRICTED(_ifp)) && \
|
|
(!((_ip6oa)->ip6oa_flags & IP6OAF_MANAGEMENT_ALLOWED) && \
|
|
IFNET_IS_MANAGEMENT(_ifp)))
|
|
|
|
if (error == 0 && ip6oa != NULL &&
|
|
((ifp && CHECK_RESTRICTIONS(ip6oa, ifp)) ||
|
|
(route && route->ro_rt &&
|
|
CHECK_RESTRICTIONS(ip6oa, route->ro_rt->rt_ifp)))) {
|
|
if (route != NULL && route->ro_rt != NULL) {
|
|
ROUTE_RELEASE(route);
|
|
route = NULL;
|
|
}
|
|
ifp = NULL; /* ditch ifp; keep ifp0 */
|
|
error = EHOSTUNREACH;
|
|
ip6oa->ip6oa_flags |= IP6OAF_R_IFDENIED;
|
|
}
|
|
#undef CHECK_RESTRICTIONS
|
|
|
|
/*
|
|
* If the interface is disabled for IPv6, then ENETDOWN error.
|
|
*/
|
|
if (error == 0 &&
|
|
ifp != NULL && (ifp->if_eflags & IFEF_IPV6_DISABLED)) {
|
|
error = ENETDOWN;
|
|
}
|
|
|
|
if (ifp == NULL && (route == NULL || route->ro_rt == NULL)) {
|
|
/*
|
|
* This can happen if the caller did not pass a cached route
|
|
* nor any other hints. We treat this case an error.
|
|
*/
|
|
error = EHOSTUNREACH;
|
|
}
|
|
if (error == EHOSTUNREACH || error == ENETDOWN) {
|
|
ip6stat.ip6s_noroute++;
|
|
}
|
|
|
|
/*
|
|
* We'll return ifp regardless of error, so pick it up from ifp0
|
|
* in case it was nullified above. Caller is responsible for
|
|
* releasing the ifp if it is non-NULL.
|
|
*/
|
|
ifp = ifp0;
|
|
if (retifp != NULL) {
|
|
if (ifp != NULL) {
|
|
ifnet_reference(ifp); /* for caller */
|
|
}
|
|
*retifp = ifp;
|
|
}
|
|
|
|
if (retsrcia != NULL) {
|
|
if (ifa != NULL) {
|
|
ifa_addref(ifa); /* for caller */
|
|
}
|
|
*retsrcia = (struct in6_ifaddr *)ifa;
|
|
}
|
|
|
|
if (error == 0) {
|
|
if (retrt != NULL && route != NULL) {
|
|
*retrt = route->ro_rt; /* ro_rt may be NULL */
|
|
}
|
|
}
|
|
if (ip6_select_srcif_debug) {
|
|
os_log(OS_LOG_DEFAULT,
|
|
"%s %s->%s ifscope %d ifa_if %s ro_if %s (error=%d)",
|
|
__func__,
|
|
s_src, s_dst, ifscope,
|
|
(ifa != NULL) ? if_name(ifa->ifa_ifp) : "NONE",
|
|
(ifp != NULL) ? if_name(ifp) : "NONE", error);
|
|
}
|
|
|
|
if (ifa != NULL) {
|
|
ifa_remref(ifa);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Regardless of error, it will return an ifp with a reference held if the
|
|
* caller provides a non-NULL retifp. The caller is responsible for checking
|
|
* if the returned ifp is valid and release its reference at all times.
|
|
*/
|
|
int
|
|
in6_selectif(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts,
|
|
struct ip6_moptions *mopts, struct route_in6 *ro,
|
|
struct ip6_out_args *ip6oa, struct ifnet **retifp)
|
|
{
|
|
int err = 0;
|
|
struct route_in6 sro;
|
|
struct rtentry *rt = NULL;
|
|
|
|
if (ro == NULL) {
|
|
bzero(&sro, sizeof(sro));
|
|
ro = &sro;
|
|
}
|
|
|
|
if ((err = selectroute(NULL, dstsock, opts, mopts, NULL, ro, retifp,
|
|
&rt, 0, 1, ip6oa)) != 0) {
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* do not use a rejected or black hole route.
|
|
* XXX: this check should be done in the L2 output routine.
|
|
* However, if we skipped this check here, we'd see the following
|
|
* scenario:
|
|
* - install a rejected route for a scoped address prefix
|
|
* (like fe80::/10)
|
|
* - send a packet to a destination that matches the scoped prefix,
|
|
* with ambiguity about the scope zone.
|
|
* - pick the outgoing interface from the route, and disambiguate the
|
|
* scope zone with the interface.
|
|
* - ip6_output() would try to get another route with the "new"
|
|
* destination, which may be valid.
|
|
* - we'd see no error on output.
|
|
* Although this may not be very harmful, it should still be confusing.
|
|
* We thus reject the case here.
|
|
*/
|
|
if (rt && (rt->rt_flags & (RTF_REJECT | RTF_BLACKHOLE))) {
|
|
err = ((rt->rt_flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Adjust the "outgoing" interface. If we're going to loop the packet
|
|
* back to ourselves, the ifp would be the loopback interface.
|
|
* However, we'd rather know the interface associated to the
|
|
* destination address (which should probably be one of our own
|
|
* addresses.)
|
|
*/
|
|
if (rt != NULL && rt->rt_ifa != NULL && rt->rt_ifa->ifa_ifp != NULL &&
|
|
retifp != NULL) {
|
|
ifnet_reference(rt->rt_ifa->ifa_ifp);
|
|
if (*retifp != NULL) {
|
|
ifnet_release(*retifp);
|
|
}
|
|
*retifp = rt->rt_ifa->ifa_ifp;
|
|
}
|
|
|
|
done:
|
|
if (ro == &sro) {
|
|
VERIFY(rt == NULL || rt == ro->ro_rt);
|
|
ROUTE_RELEASE(ro);
|
|
}
|
|
|
|
/*
|
|
* retifp might point to a valid ifp with a reference held;
|
|
* caller is responsible for releasing it if non-NULL.
|
|
*/
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Regardless of error, it will return an ifp with a reference held if the
|
|
* caller provides a non-NULL retifp. The caller is responsible for checking
|
|
* if the returned ifp is valid and release its reference at all times.
|
|
*
|
|
* clone - meaningful only for bsdi and freebsd
|
|
*/
|
|
int
|
|
in6_selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock,
|
|
struct ip6_pktopts *opts, struct ip6_moptions *mopts,
|
|
struct in6_ifaddr **retsrcia, struct route_in6 *ro, struct ifnet **retifp,
|
|
struct rtentry **retrt, int clone, struct ip6_out_args *ip6oa)
|
|
{
|
|
return selectroute(srcsock, dstsock, opts, mopts, retsrcia, ro, retifp,
|
|
retrt, clone, 0, ip6oa);
|
|
}
|
|
|
|
/*
|
|
* Default hop limit selection. The precedence is as follows:
|
|
* 1. Hoplimit value specified via socket option.
|
|
* 2. (If the outgoing interface is detected) the current
|
|
* hop limit of the interface specified by router advertisement.
|
|
* 3. The system default hoplimit.
|
|
*/
|
|
uint8_t
|
|
in6_selecthlim(struct in6pcb *in6p, struct ifnet *ifp)
|
|
{
|
|
if (in6p && in6p->in6p_hops >= 0) {
|
|
return (uint8_t)in6p->in6p_hops;
|
|
} else if (NULL != ifp) {
|
|
uint8_t chlim;
|
|
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
|
|
if (ndi && ndi->initialized) {
|
|
/* access chlim without lock, for performance */
|
|
chlim = ndi->chlim;
|
|
} else {
|
|
chlim = (uint8_t)ip6_defhlim;
|
|
}
|
|
return chlim;
|
|
}
|
|
|
|
return (uint8_t)ip6_defhlim;
|
|
}
|
|
|
|
/*
|
|
* XXX: this is borrowed from in6_pcbbind(). If possible, we should
|
|
* share this function by all *bsd*...
|
|
*/
|
|
int
|
|
in6_pcbsetport(struct in6_addr *laddr, struct inpcb *inp, struct proc *p,
|
|
int locked)
|
|
{
|
|
struct socket *so = inp->inp_socket;
|
|
uint16_t lport = 0, first, last, *lastport, rand_port;
|
|
int count, error = 0, wild = 0;
|
|
boolean_t counting_down;
|
|
bool found, randomport;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
kauth_cred_t cred;
|
|
#if SKYWALK
|
|
bool laddr_unspecified = IN6_IS_ADDR_UNSPECIFIED(laddr);
|
|
#else
|
|
#pragma unused(laddr)
|
|
#endif
|
|
if (!locked) { /* Make sure we don't run into a deadlock: 4052373 */
|
|
if (!lck_rw_try_lock_exclusive(&pcbinfo->ipi_lock)) {
|
|
socket_unlock(inp->inp_socket, 0);
|
|
lck_rw_lock_exclusive(&pcbinfo->ipi_lock);
|
|
socket_lock(inp->inp_socket, 0);
|
|
}
|
|
|
|
/*
|
|
* Check if a local port was assigned to the inp while
|
|
* this thread was waiting for the pcbinfo lock
|
|
*/
|
|
if (inp->inp_lport != 0) {
|
|
VERIFY(inp->inp_flags2 & INP2_INHASHLIST);
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
|
|
/*
|
|
* It is not an error if another thread allocated
|
|
* a port
|
|
*/
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* XXX: this is redundant when called from in6_pcbbind */
|
|
if ((so->so_options & (SO_REUSEADDR | SO_REUSEPORT)) == 0) {
|
|
wild = INPLOOKUP_WILDCARD;
|
|
}
|
|
|
|
randomport = (so->so_flags & SOF_BINDRANDOMPORT) > 0 ||
|
|
(so->so_type == SOCK_STREAM ? tcp_use_randomport :
|
|
udp_use_randomport) > 0;
|
|
|
|
if (inp->inp_flags & INP_HIGHPORT) {
|
|
first = (uint16_t)ipport_hifirstauto; /* sysctl */
|
|
last = (uint16_t)ipport_hilastauto;
|
|
lastport = &pcbinfo->ipi_lasthi;
|
|
} else if (inp->inp_flags & INP_LOWPORT) {
|
|
cred = kauth_cred_proc_ref(p);
|
|
error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
|
|
kauth_cred_unref(&cred);
|
|
if (error != 0) {
|
|
if (!locked) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
}
|
|
return error;
|
|
}
|
|
first = (uint16_t)ipport_lowfirstauto; /* 1023 */
|
|
last = (uint16_t)ipport_lowlastauto; /* 600 */
|
|
lastport = &pcbinfo->ipi_lastlow;
|
|
} else {
|
|
first = (uint16_t)ipport_firstauto; /* sysctl */
|
|
last = (uint16_t)ipport_lastauto;
|
|
lastport = &pcbinfo->ipi_lastport;
|
|
}
|
|
|
|
if (first == last) {
|
|
randomport = false;
|
|
}
|
|
/*
|
|
* Simple check to ensure all ports are not used up causing
|
|
* a deadlock here.
|
|
*/
|
|
found = false;
|
|
if (first > last) {
|
|
/* counting down */
|
|
if (randomport) {
|
|
read_frandom(&rand_port, sizeof(rand_port));
|
|
*lastport = first - (rand_port % (first - last));
|
|
}
|
|
count = first - last;
|
|
counting_down = TRUE;
|
|
} else {
|
|
/* counting up */
|
|
if (randomport) {
|
|
read_frandom(&rand_port, sizeof(rand_port));
|
|
*lastport = first + (rand_port % (first - last));
|
|
}
|
|
count = last - first;
|
|
counting_down = FALSE;
|
|
}
|
|
do {
|
|
if (count-- < 0) { /* completely used? */
|
|
/*
|
|
* Undo any address bind that may have
|
|
* occurred above.
|
|
*/
|
|
inp->in6p_laddr = in6addr_any;
|
|
inp->in6p_last_outifp = NULL;
|
|
inp->inp_lifscope = IFSCOPE_NONE;
|
|
#if SKYWALK
|
|
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
|
|
netns_set_ifnet(&inp->inp_netns_token,
|
|
NULL);
|
|
}
|
|
#endif /* SKYWALK */
|
|
if (!locked) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
}
|
|
return EAGAIN;
|
|
}
|
|
if (counting_down) {
|
|
--*lastport;
|
|
if (*lastport > first || *lastport < last) {
|
|
*lastport = first;
|
|
}
|
|
} else {
|
|
++*lastport;
|
|
if (*lastport < first || *lastport > last) {
|
|
*lastport = first;
|
|
}
|
|
}
|
|
lport = htons(*lastport);
|
|
|
|
/*
|
|
* Skip if this is a restricted port as we do not want to
|
|
* restricted ports as ephemeral
|
|
*/
|
|
if (IS_RESTRICTED_IN_PORT(lport)) {
|
|
continue;
|
|
}
|
|
|
|
found = (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr,
|
|
lport, inp->inp_lifscope, wild) == NULL);
|
|
#if SKYWALK
|
|
if (found &&
|
|
(SOCK_PROTO(so) == IPPROTO_TCP ||
|
|
SOCK_PROTO(so) == IPPROTO_UDP) &&
|
|
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
|
|
if (laddr_unspecified &&
|
|
(inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
|
|
struct in_addr ip_zero = { .s_addr = 0 };
|
|
|
|
netns_release(&inp->inp_wildcard_netns_token);
|
|
if (netns_reserve_in(
|
|
&inp->inp_wildcard_netns_token,
|
|
ip_zero,
|
|
(uint8_t)SOCK_PROTO(so), lport,
|
|
NETNS_BSD, NULL) != 0) {
|
|
/* port in use in IPv4 namespace */
|
|
found = false;
|
|
}
|
|
}
|
|
if (found &&
|
|
netns_reserve_in6(&inp->inp_netns_token,
|
|
inp->in6p_laddr, (uint8_t)SOCK_PROTO(so), lport,
|
|
NETNS_BSD, NULL) != 0) {
|
|
netns_release(&inp->inp_wildcard_netns_token);
|
|
found = false;
|
|
}
|
|
}
|
|
#endif /* SKYWALK */
|
|
} while (!found);
|
|
|
|
inp->inp_lport = lport;
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
|
|
if (in_pcbinshash(inp, 1) != 0) {
|
|
inp->in6p_laddr = in6addr_any;
|
|
inp->in6p_last_outifp = NULL;
|
|
inp->inp_lifscope = IFSCOPE_NONE;
|
|
#if SKYWALK
|
|
netns_release(&inp->inp_netns_token);
|
|
#endif /* SKYWALK */
|
|
inp->inp_lport = 0;
|
|
inp->inp_flags &= ~INP_ANONPORT;
|
|
if (!locked) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
}
|
|
return EAGAIN;
|
|
}
|
|
|
|
if (!locked) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The followings are implementation of the policy table using a
|
|
* simple tail queue.
|
|
* XXX such details should be hidden.
|
|
* XXX implementation using binary tree should be more efficient.
|
|
*/
|
|
struct addrsel_policyent {
|
|
TAILQ_ENTRY(addrsel_policyent) ape_entry;
|
|
struct in6_addrpolicy ape_policy;
|
|
};
|
|
|
|
TAILQ_HEAD(addrsel_policyhead, addrsel_policyent);
|
|
|
|
struct addrsel_policyhead addrsel_policytab;
|
|
|
|
static void
|
|
init_policy_queue(void)
|
|
{
|
|
TAILQ_INIT(&addrsel_policytab);
|
|
}
|
|
|
|
void
|
|
addrsel_policy_init(void)
|
|
{
|
|
/*
|
|
* Default address selection policy based on RFC 6724.
|
|
*/
|
|
static const struct in6_addrpolicy defaddrsel[] = {
|
|
/* Loopback -- prefix=::1/128, precedence=50, label=0 */
|
|
{
|
|
.addr = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6ADDR_LOOPBACK_INIT,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.addrmask = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6MASK128,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.preced = 50,
|
|
.label = 0
|
|
},
|
|
|
|
/* Unspecified -- prefix=::/0, precedence=40, label=1 */
|
|
{
|
|
.addr = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6ADDR_ANY_INIT,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.addrmask = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6MASK0,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.preced = 40,
|
|
.label = 1
|
|
},
|
|
|
|
/* IPv4 Mapped -- prefix=::ffff:0:0/96, precedence=35, label=4 */
|
|
{
|
|
.addr = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6ADDR_V4MAPPED_INIT,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.addrmask = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6MASK96,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.preced = 35,
|
|
.label = 4
|
|
},
|
|
|
|
/* 6to4 -- prefix=2002::/16, precedence=30, label=2 */
|
|
{
|
|
.addr = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = {{{ 0x20, 0x02 }}},
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.addrmask = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6MASK16,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.preced = 30,
|
|
.label = 2
|
|
},
|
|
|
|
/* Teredo -- prefix=2001::/32, precedence=5, label=5 */
|
|
{
|
|
.addr = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = {{{ 0x20, 0x01 }}},
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.addrmask = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6MASK32,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.preced = 5,
|
|
.label = 5
|
|
},
|
|
|
|
/* Unique Local (ULA) -- prefix=fc00::/7, precedence=3, label=13 */
|
|
{
|
|
.addr = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = {{{ 0xfc }}},
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.addrmask = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6MASK7,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.preced = 3,
|
|
.label = 13
|
|
},
|
|
|
|
/* IPv4 Compatible -- prefix=::/96, precedence=1, label=3 */
|
|
{
|
|
.addr = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6ADDR_ANY_INIT,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.addrmask = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6MASK96,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.preced = 1,
|
|
.label = 3
|
|
},
|
|
|
|
/* Site-local (deprecated) -- prefix=fec0::/10, precedence=1, label=11 */
|
|
{
|
|
.addr = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = {{{ 0xfe, 0xc0 }}},
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.addrmask = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6MASK16,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.preced = 1,
|
|
.label = 11
|
|
},
|
|
|
|
/* 6bone (deprecated) -- prefix=3ffe::/16, precedence=1, label=12 */
|
|
{
|
|
.addr = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = {{{ 0x3f, 0xfe }}},
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.addrmask = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6MASK16,
|
|
.sin6_len = sizeof(struct sockaddr_in6)
|
|
},
|
|
.preced = 1,
|
|
.label = 12
|
|
},
|
|
};
|
|
int i;
|
|
|
|
init_policy_queue();
|
|
|
|
/* initialize the "last resort" policy */
|
|
bzero(&defaultaddrpolicy, sizeof(defaultaddrpolicy));
|
|
defaultaddrpolicy.label = ADDR_LABEL_NOTAPP;
|
|
|
|
for (i = 0; i < sizeof(defaddrsel) / sizeof(defaddrsel[0]); i++) {
|
|
add_addrsel_policyent(&defaddrsel[i]);
|
|
}
|
|
}
|
|
|
|
struct in6_addrpolicy *
|
|
in6_addrsel_lookup_policy(struct sockaddr_in6 *key)
|
|
{
|
|
struct in6_addrpolicy *match = NULL;
|
|
|
|
match = match_addrsel_policy(key);
|
|
|
|
if (match == NULL) {
|
|
match = &defaultaddrpolicy;
|
|
} else {
|
|
match->use++;
|
|
}
|
|
|
|
return match;
|
|
}
|
|
|
|
static struct in6_addrpolicy *
|
|
match_addrsel_policy(struct sockaddr_in6 *key)
|
|
{
|
|
struct addrsel_policyent *pent;
|
|
struct in6_addrpolicy *bestpol = NULL, *pol;
|
|
int matchlen, bestmatchlen = -1;
|
|
u_char *mp, *ep, *k, *p, m;
|
|
|
|
TAILQ_FOREACH(pent, &addrsel_policytab, ape_entry) {
|
|
matchlen = 0;
|
|
|
|
pol = &pent->ape_policy;
|
|
mp = (u_char *)&pol->addrmask.sin6_addr;
|
|
ep = mp + 16; /* XXX: scope field? */
|
|
k = (u_char *)&key->sin6_addr;
|
|
p = (u_char *)&pol->addr.sin6_addr;
|
|
for (; mp < ep && *mp; mp++, k++, p++) {
|
|
m = *mp;
|
|
if ((*k & m) != *p) {
|
|
goto next; /* not match */
|
|
}
|
|
if (m == 0xff) { /* short cut for a typical case */
|
|
matchlen += 8;
|
|
} else {
|
|
while (m >= 0x80) {
|
|
matchlen++;
|
|
m = (u_char)(m << 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* matched. check if this is better than the current best. */
|
|
if (bestpol == NULL ||
|
|
matchlen > bestmatchlen) {
|
|
bestpol = pol;
|
|
bestmatchlen = matchlen;
|
|
}
|
|
|
|
next:
|
|
continue;
|
|
}
|
|
|
|
return bestpol;
|
|
}
|
|
|
|
static int
|
|
add_addrsel_policyent(const struct in6_addrpolicy *newpolicy)
|
|
{
|
|
struct addrsel_policyent *new, *pol;
|
|
|
|
new = kalloc_type(struct addrsel_policyent, Z_WAITOK | Z_ZERO);
|
|
|
|
/* duplication check */
|
|
TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
|
|
if (IN6_ARE_ADDR_EQUAL(&newpolicy->addr.sin6_addr,
|
|
&pol->ape_policy.addr.sin6_addr) &&
|
|
IN6_ARE_ADDR_EQUAL(&newpolicy->addrmask.sin6_addr,
|
|
&pol->ape_policy.addrmask.sin6_addr)) {
|
|
kfree_type(struct addrsel_policyent, new);
|
|
return EEXIST; /* or override it? */
|
|
}
|
|
}
|
|
|
|
/* XXX: should validate entry */
|
|
new->ape_policy = *newpolicy;
|
|
|
|
TAILQ_INSERT_TAIL(&addrsel_policytab, new, ape_entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
walk_addrsel_policy(int (*callback)(const struct in6_addrpolicy *, void *),
|
|
void *w)
|
|
{
|
|
struct addrsel_policyent *pol;
|
|
int error = 0;
|
|
|
|
TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
|
|
if ((error = (*callback)(&pol->ape_policy, w)) != 0) {
|
|
return error;
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
/*
|
|
* Subroutines to manage the address selection policy table via sysctl.
|
|
*/
|
|
struct walkarg {
|
|
struct sysctl_req *w_req;
|
|
};
|
|
|
|
|
|
static int
|
|
dump_addrsel_policyent(const struct in6_addrpolicy *pol, void *arg)
|
|
{
|
|
int error = 0;
|
|
struct walkarg *w = arg;
|
|
|
|
error = SYSCTL_OUT(w->w_req, pol, sizeof(*pol));
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
in6_src_sysctl SYSCTL_HANDLER_ARGS
|
|
{
|
|
#pragma unused(oidp, arg1, arg2)
|
|
struct walkarg w;
|
|
|
|
if (req->newptr) {
|
|
return EPERM;
|
|
}
|
|
bzero(&w, sizeof(w));
|
|
w.w_req = req;
|
|
|
|
return walk_addrsel_policy(dump_addrsel_policyent, &w);
|
|
}
|
|
|
|
|
|
SYSCTL_NODE(_net_inet6_ip6, IPV6CTL_ADDRCTLPOLICY, addrctlpolicy,
|
|
CTLFLAG_RD | CTLFLAG_LOCKED, in6_src_sysctl, "");
|
|
int
|
|
in6_src_ioctl(u_long cmd, caddr_t data)
|
|
{
|
|
int i;
|
|
struct in6_addrpolicy ent0;
|
|
|
|
if (cmd != SIOCAADDRCTL_POLICY && cmd != SIOCDADDRCTL_POLICY) {
|
|
return EOPNOTSUPP; /* check for safety */
|
|
}
|
|
bcopy(data, &ent0, sizeof(ent0));
|
|
|
|
if (ent0.label == ADDR_LABEL_NOTAPP) {
|
|
return EINVAL;
|
|
}
|
|
/* check if the prefix mask is consecutive. */
|
|
if (in6_mask2len(&ent0.addrmask.sin6_addr, NULL) < 0) {
|
|
return EINVAL;
|
|
}
|
|
/* clear trailing garbages (if any) of the prefix address. */
|
|
for (i = 0; i < 4; i++) {
|
|
ent0.addr.sin6_addr.s6_addr32[i] &=
|
|
ent0.addrmask.sin6_addr.s6_addr32[i];
|
|
}
|
|
ent0.use = 0;
|
|
|
|
switch (cmd) {
|
|
case SIOCAADDRCTL_POLICY:
|
|
return ENOTSUP;
|
|
case SIOCDADDRCTL_POLICY:
|
|
return ENOTSUP;
|
|
}
|
|
|
|
return 0; /* XXX: compromise compilers */
|
|
}
|
|
|
|
/*
|
|
* generate kernel-internal form (scopeid embedded into s6_addr16[1]).
|
|
* If the address scope of is link-local, embed the interface index in the
|
|
* address. The routine determines our precedence
|
|
* between advanced API scope/interface specification and basic API
|
|
* specification.
|
|
*
|
|
* this function should be nuked in the future, when we get rid of
|
|
* embedded scopeid thing.
|
|
*
|
|
* XXX actually, it is over-specification to return ifp against sin6_scope_id.
|
|
* there can be multiple interfaces that belong to a particular scope zone
|
|
* (in specification, we have 1:N mapping between a scope zone and interfaces).
|
|
* we may want to change the function to return something other than ifp.
|
|
*/
|
|
int
|
|
in6_embedscope(struct in6_addr *in6, const struct sockaddr_in6 *sin6,
|
|
struct in6pcb *in6p, struct ifnet **ifpp, struct ip6_pktopts *opt, uint32_t *ret_ifscope)
|
|
{
|
|
struct ifnet *ifp = NULL;
|
|
u_int32_t scopeid;
|
|
struct ip6_pktopts *optp = NULL;
|
|
|
|
*in6 = sin6->sin6_addr;
|
|
scopeid = sin6->sin6_scope_id;
|
|
if (ifpp != NULL) {
|
|
*ifpp = NULL;
|
|
}
|
|
|
|
/*
|
|
* don't try to read sin6->sin6_addr beyond here, since the caller may
|
|
* ask us to overwrite existing sockaddr_in6
|
|
*/
|
|
|
|
#ifdef ENABLE_DEFAULT_SCOPE
|
|
if (scopeid == 0) {
|
|
scopeid = scope6_addr2default(in6);
|
|
}
|
|
#endif
|
|
|
|
if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) {
|
|
struct in6_pktinfo *pi;
|
|
struct ifnet *im6o_multicast_ifp = NULL;
|
|
|
|
if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) &&
|
|
in6p->in6p_moptions != NULL) {
|
|
IM6O_LOCK(in6p->in6p_moptions);
|
|
im6o_multicast_ifp =
|
|
in6p->in6p_moptions->im6o_multicast_ifp;
|
|
IM6O_UNLOCK(in6p->in6p_moptions);
|
|
}
|
|
|
|
if (opt != NULL) {
|
|
optp = opt;
|
|
} else if (in6p != NULL) {
|
|
optp = in6p->in6p_outputopts;
|
|
}
|
|
/*
|
|
* KAME assumption: link id == interface id
|
|
*/
|
|
if (in6p != NULL && optp != NULL &&
|
|
(pi = optp->ip6po_pktinfo) != NULL &&
|
|
pi->ipi6_ifindex != 0) {
|
|
/* ifp is needed here if only we're returning it */
|
|
if (ifpp != NULL) {
|
|
ifnet_head_lock_shared();
|
|
ifp = ifindex2ifnet[pi->ipi6_ifindex];
|
|
ifnet_head_done();
|
|
}
|
|
|
|
if (in6_embedded_scope) {
|
|
in6->s6_addr16[1] = htons((uint16_t)pi->ipi6_ifindex);
|
|
}
|
|
if (ret_ifscope != NULL) {
|
|
*ret_ifscope = pi->ipi6_ifindex;
|
|
}
|
|
} else if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) &&
|
|
in6p->in6p_moptions != NULL && im6o_multicast_ifp != NULL) {
|
|
ifp = im6o_multicast_ifp;
|
|
if (in6_embedded_scope) {
|
|
in6->s6_addr16[1] = htons(ifp->if_index);
|
|
}
|
|
if (ret_ifscope != NULL) {
|
|
*ret_ifscope = ifp->if_index;
|
|
}
|
|
} else if (scopeid != 0) {
|
|
/*
|
|
* Since scopeid is unsigned, we only have to check it
|
|
* against if_index (ifnet_head_lock not needed since
|
|
* if_index is an ever-increasing integer.)
|
|
*/
|
|
if (!IF_INDEX_IN_RANGE(scopeid)) {
|
|
return ENXIO; /* XXX EINVAL? */
|
|
}
|
|
/* ifp is needed here only if we're returning it */
|
|
if (ifpp != NULL) {
|
|
ifnet_head_lock_shared();
|
|
ifp = ifindex2ifnet[scopeid];
|
|
ifnet_head_done();
|
|
}
|
|
if (in6_embedded_scope) {
|
|
/* XXX assignment to 16bit from 32bit variable */
|
|
in6->s6_addr16[1] = htons(scopeid & 0xffff);
|
|
}
|
|
if (ret_ifscope != NULL) {
|
|
*ret_ifscope = scopeid;
|
|
}
|
|
}
|
|
|
|
if (ifpp != NULL) {
|
|
if (ifp != NULL) {
|
|
ifnet_reference(ifp); /* for caller */
|
|
}
|
|
*ifpp = ifp;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* generate standard sockaddr_in6 from embedded form.
|
|
* touches sin6_addr and sin6_scope_id only.
|
|
*
|
|
* this function should be nuked in the future, when we get rid of
|
|
* embedded scopeid thing.
|
|
*/
|
|
int
|
|
in6_recoverscope(
|
|
struct sockaddr_in6 *sin6,
|
|
const struct in6_addr *in6,
|
|
struct ifnet *ifp)
|
|
{
|
|
u_int32_t scopeid;
|
|
|
|
sin6->sin6_addr = *in6;
|
|
|
|
if (!in6_embedded_scope) {
|
|
if (ifp != NULL && IN6_IS_SCOPE_EMBED(in6)) {
|
|
sin6->sin6_scope_id = ifp->if_index;
|
|
}
|
|
return 0;
|
|
}
|
|
/*
|
|
* don't try to read *in6 beyond here, since the caller may
|
|
* ask us to overwrite existing sockaddr_in6
|
|
*/
|
|
|
|
sin6->sin6_scope_id = 0;
|
|
if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) {
|
|
/*
|
|
* KAME assumption: link id == interface id
|
|
*/
|
|
scopeid = ntohs(sin6->sin6_addr.s6_addr16[1]);
|
|
if (scopeid) {
|
|
/*
|
|
* sanity check
|
|
*
|
|
* Since scopeid is unsigned, we only have to check it
|
|
* against if_index
|
|
*/
|
|
if (!IF_INDEX_IN_RANGE(scopeid)) {
|
|
return ENXIO;
|
|
}
|
|
if (ifp && ifp->if_index != scopeid) {
|
|
return ENXIO;
|
|
}
|
|
sin6->sin6_addr.s6_addr16[1] = 0;
|
|
sin6->sin6_scope_id = scopeid;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|