969 lines
26 KiB
C
969 lines
26 KiB
C
/*-
|
|
* Copyright (c) 1999-2020 Apple Inc.
|
|
* Copyright (c) 2006-2007 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
/*
|
|
* NOTICE: This file was modified by McAfee Research in 2004 to introduce
|
|
* support for mandatory and extensible security protections. This notice
|
|
* is included in support of clause 2.2 (b) of the Apple Public License,
|
|
* Version 2.0.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/proc_internal.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/time.h>
|
|
#include <sys/ucred.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/file_internal.h>
|
|
#include <sys/vnode_internal.h>
|
|
#include <sys/user.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/un.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/vfs_context.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socketvar.h>
|
|
|
|
#include <bsm/audit.h>
|
|
#include <bsm/audit_internal.h>
|
|
#include <bsm/audit_kevents.h>
|
|
|
|
#include <security/audit/audit.h>
|
|
#include <security/audit/audit_bsd.h>
|
|
#include <security/audit/audit_private.h>
|
|
|
|
#include <mach/host_priv.h>
|
|
#include <mach/host_special_ports.h>
|
|
#include <mach/audit_triggers_server.h>
|
|
|
|
#include <kern/host.h>
|
|
#include <kern/zalloc.h>
|
|
#include <kern/sched_prim.h>
|
|
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
|
|
#if CONFIG_AUDIT
|
|
MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage");
|
|
MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage");
|
|
MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage");
|
|
|
|
/*
|
|
* Audit control settings that are set/read by system calls and are hence
|
|
* non-static.
|
|
*
|
|
* Define the audit control flags.
|
|
*/
|
|
int audit_enabled;
|
|
int audit_suspended;
|
|
|
|
int audit_syscalls;
|
|
au_class_t audit_kevent_mask;
|
|
|
|
/*
|
|
* The audit control mode is used to ensure configuration settings are only
|
|
* accepted from appropriate sources based on the current mode.
|
|
*/
|
|
au_ctlmode_t audit_ctl_mode;
|
|
au_expire_after_t audit_expire_after;
|
|
|
|
/*
|
|
* Flags controlling behavior in low storage situations. Should we panic if
|
|
* a write fails? Should we fail stop if we're out of disk space?
|
|
*/
|
|
int audit_panic_on_write_fail;
|
|
int audit_fail_stop;
|
|
int audit_argv;
|
|
int audit_arge;
|
|
|
|
/*
|
|
* Are we currently "failing stop" due to out of disk space?
|
|
*/
|
|
int audit_in_failure;
|
|
|
|
/*
|
|
* Global audit statistics.
|
|
*/
|
|
struct audit_fstat audit_fstat;
|
|
|
|
/*
|
|
* Preselection mask for non-attributable events.
|
|
*/
|
|
struct au_mask audit_nae_mask;
|
|
|
|
/*
|
|
* Mutex to protect global variables shared between various threads and
|
|
* processes.
|
|
*/
|
|
struct mtx audit_mtx;
|
|
|
|
/*
|
|
* Queue of audit records ready for delivery to disk. We insert new records
|
|
* at the tail, and remove records from the head. Also, a count of the
|
|
* number of records used for checking queue depth. In addition, a counter
|
|
* of records that we have allocated but are not yet in the queue, which is
|
|
* needed to estimate the total size of the combined set of records
|
|
* outstanding in the system.
|
|
*/
|
|
struct kaudit_queue audit_q;
|
|
int audit_q_len;
|
|
int audit_pre_q_len;
|
|
|
|
/*
|
|
* Audit queue control settings (minimum free, low/high water marks, etc.)
|
|
*/
|
|
struct au_qctrl audit_qctrl;
|
|
|
|
/*
|
|
* Condition variable to signal to the worker that it has work to do: either
|
|
* new records are in the queue, or a log replacement is taking place.
|
|
*/
|
|
struct cv audit_worker_cv;
|
|
|
|
/*
|
|
* Condition variable to signal when the worker is done draining the audit
|
|
* queue.
|
|
*/
|
|
struct cv audit_drain_cv;
|
|
|
|
/*
|
|
* Condition variable to flag when crossing the low watermark, meaning that
|
|
* threads blocked due to hitting the high watermark can wake up and continue
|
|
* to commit records.
|
|
*/
|
|
struct cv audit_watermark_cv;
|
|
|
|
/*
|
|
* Condition variable for auditing threads wait on when in fail-stop mode.
|
|
* Threads wait on this CV forever (and ever), never seeing the light of day
|
|
* again.
|
|
*/
|
|
static struct cv audit_fail_cv;
|
|
|
|
static ZONE_DEFINE(audit_record_zone, "audit_zone",
|
|
sizeof(struct kaudit_record), ZC_NONE);
|
|
|
|
/*
|
|
* Kernel audit information. This will store the current audit address
|
|
* or host information that the kernel will use when it's generating
|
|
* audit records. This data is modified by the A_GET{SET}KAUDIT auditon(2)
|
|
* command.
|
|
*/
|
|
static struct auditinfo_addr audit_kinfo;
|
|
static struct rwlock audit_kinfo_lock;
|
|
|
|
#define KINFO_LOCK_INIT() rw_init(&audit_kinfo_lock, \
|
|
"audit_kinfo_lock")
|
|
#define KINFO_RLOCK() rw_rlock(&audit_kinfo_lock)
|
|
#define KINFO_WLOCK() rw_wlock(&audit_kinfo_lock)
|
|
#define KINFO_RUNLOCK() rw_runlock(&audit_kinfo_lock)
|
|
#define KINFO_WUNLOCK() rw_wunlock(&audit_kinfo_lock)
|
|
|
|
void
|
|
audit_set_kinfo(struct auditinfo_addr *ak)
|
|
{
|
|
KASSERT(ak->ai_termid.at_type == AU_IPv4 ||
|
|
ak->ai_termid.at_type == AU_IPv6,
|
|
("audit_set_kinfo: invalid address type"));
|
|
|
|
KINFO_WLOCK();
|
|
bcopy(ak, &audit_kinfo, sizeof(audit_kinfo));
|
|
KINFO_WUNLOCK();
|
|
}
|
|
|
|
void
|
|
audit_get_kinfo(struct auditinfo_addr *ak)
|
|
{
|
|
KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 ||
|
|
audit_kinfo.ai_termid.at_type == AU_IPv6,
|
|
("audit_set_kinfo: invalid address type"));
|
|
|
|
KINFO_RLOCK();
|
|
bcopy(&audit_kinfo, ak, sizeof(*ak));
|
|
KINFO_RUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Construct an audit record for the passed thread.
|
|
*/
|
|
static void
|
|
audit_record_ctor(proc_t p, struct kaudit_record *ar)
|
|
{
|
|
kauth_cred_t cred;
|
|
|
|
bzero(ar, sizeof(*ar));
|
|
ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC;
|
|
nanotime(&ar->k_ar.ar_starttime);
|
|
|
|
if (PROC_NULL != p) {
|
|
cred = kauth_cred_proc_ref(p);
|
|
|
|
/*
|
|
* Export the subject credential.
|
|
*/
|
|
cru2x(cred, &ar->k_ar.ar_subj_cred);
|
|
ar->k_ar.ar_subj_ruid = kauth_cred_getruid(cred);
|
|
ar->k_ar.ar_subj_rgid = kauth_cred_getrgid(cred);
|
|
ar->k_ar.ar_subj_egid = kauth_cred_getgid(cred);
|
|
ar->k_ar.ar_subj_pid = proc_getpid(p);
|
|
ar->k_ar.ar_subj_auid = cred->cr_audit.as_aia_p->ai_auid;
|
|
ar->k_ar.ar_subj_asid = cred->cr_audit.as_aia_p->ai_asid;
|
|
bcopy(&cred->cr_audit.as_mask, &ar->k_ar.ar_subj_amask,
|
|
sizeof(struct au_mask));
|
|
bcopy(&cred->cr_audit.as_aia_p->ai_termid,
|
|
&ar->k_ar.ar_subj_term_addr, sizeof(struct au_tid_addr));
|
|
kauth_cred_unref(&cred);
|
|
}
|
|
}
|
|
|
|
static void
|
|
audit_record_dtor(struct kaudit_record *ar)
|
|
{
|
|
if (ar->k_ar.ar_arg_upath1 != NULL) {
|
|
zfree(ZV_NAMEI, ar->k_ar.ar_arg_upath1);
|
|
}
|
|
if (ar->k_ar.ar_arg_upath2 != NULL) {
|
|
zfree(ZV_NAMEI, ar->k_ar.ar_arg_upath2);
|
|
}
|
|
if (ar->k_ar.ar_arg_kpath1 != NULL) {
|
|
zfree(ZV_NAMEI, ar->k_ar.ar_arg_kpath1);
|
|
}
|
|
if (ar->k_ar.ar_arg_kpath2 != NULL) {
|
|
zfree(ZV_NAMEI, ar->k_ar.ar_arg_kpath2);
|
|
}
|
|
if (ar->k_ar.ar_arg_text != NULL) {
|
|
zfree(ZV_NAMEI, ar->k_ar.ar_arg_text);
|
|
}
|
|
if (ar->k_ar.ar_arg_opaque != NULL) {
|
|
kfree_data(ar->k_ar.ar_arg_opaque, ar->k_ar.ar_arg_opq_size);
|
|
}
|
|
if (ar->k_ar.ar_arg_data != NULL) {
|
|
kfree_data_addr(ar->k_ar.ar_arg_data);
|
|
}
|
|
if (ar->k_udata != NULL) {
|
|
kfree_data_addr(ar->k_udata);
|
|
}
|
|
if (ar->k_ar.ar_arg_argv != NULL) {
|
|
kfree_data_addr(ar->k_ar.ar_arg_argv);
|
|
}
|
|
if (ar->k_ar.ar_arg_envv != NULL) {
|
|
kfree_data_addr(ar->k_ar.ar_arg_envv);
|
|
}
|
|
audit_identity_info_destruct(&ar->k_ar.ar_arg_identity);
|
|
}
|
|
|
|
/*
|
|
* Initialize the Audit subsystem: configuration state, work queue,
|
|
* synchronization primitives, worker thread, and trigger device node. Also
|
|
* call into the BSM assembly code to initialize it.
|
|
*/
|
|
void
|
|
audit_init(void)
|
|
{
|
|
audit_enabled = 0;
|
|
audit_syscalls = 0;
|
|
audit_kevent_mask = 0;
|
|
audit_suspended = 0;
|
|
audit_panic_on_write_fail = 0;
|
|
audit_fail_stop = 0;
|
|
audit_in_failure = 0;
|
|
audit_argv = 0;
|
|
audit_arge = 0;
|
|
audit_ctl_mode = AUDIT_CTLMODE_NORMAL;
|
|
audit_expire_after.age = 0;
|
|
audit_expire_after.size = 0;
|
|
audit_expire_after.op_type = AUDIT_EXPIRE_OP_AND;
|
|
|
|
audit_fstat.af_filesz = 0; /* '0' means unset, unbounded. */
|
|
audit_fstat.af_currsz = 0;
|
|
audit_nae_mask.am_success = 0;
|
|
audit_nae_mask.am_failure = 0;
|
|
|
|
TAILQ_INIT(&audit_q);
|
|
audit_q_len = 0;
|
|
audit_pre_q_len = 0;
|
|
audit_qctrl.aq_hiwater = AQ_HIWATER;
|
|
audit_qctrl.aq_lowater = AQ_LOWATER;
|
|
audit_qctrl.aq_bufsz = AQ_BUFSZ;
|
|
audit_qctrl.aq_minfree = AU_FS_MINFREE;
|
|
|
|
audit_kinfo.ai_termid.at_type = AU_IPv4;
|
|
audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY;
|
|
|
|
mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF);
|
|
KINFO_LOCK_INIT();
|
|
cv_init(&audit_worker_cv, "audit_worker_cv");
|
|
cv_init(&audit_drain_cv, "audit_drain_cv");
|
|
cv_init(&audit_watermark_cv, "audit_watermark_cv");
|
|
cv_init(&audit_fail_cv, "audit_fail_cv");
|
|
|
|
/* Init audit session subsystem. */
|
|
audit_session_init();
|
|
|
|
/* Initialize the BSM audit subsystem. */
|
|
kau_init();
|
|
|
|
/* audit_trigger_init(); */
|
|
|
|
/* Start audit worker thread. */
|
|
(void) audit_pipe_init();
|
|
|
|
/* Start audit worker thread. */
|
|
audit_worker_init();
|
|
}
|
|
|
|
/*
|
|
* Drain the audit queue and close the log at shutdown. Note that this can
|
|
* be called both from the system shutdown path and also from audit
|
|
* configuration syscalls, so 'arg' and 'howto' are ignored.
|
|
*/
|
|
void
|
|
audit_shutdown(void)
|
|
{
|
|
audit_rotate_vnode(NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Return the current thread's audit record, if any.
|
|
*/
|
|
struct kaudit_record *
|
|
currecord(void)
|
|
{
|
|
return curthread()->uu_ar;
|
|
}
|
|
|
|
/*
|
|
* XXXAUDIT: There are a number of races present in the code below due to
|
|
* release and re-grab of the mutex. The code should be revised to become
|
|
* slightly less racy.
|
|
*
|
|
* XXXAUDIT: Shouldn't there be logic here to sleep waiting on available
|
|
* pre_q space, suspending the system call until there is room?
|
|
*/
|
|
struct kaudit_record *
|
|
audit_new(int event, proc_t p, __unused struct uthread *uthread)
|
|
{
|
|
struct kaudit_record *ar;
|
|
int no_record;
|
|
int audit_override;
|
|
|
|
/*
|
|
* Override the audit_suspended and audit_enabled if it always
|
|
* audits session events.
|
|
*
|
|
* XXXss - This really needs to be a generalized call to a filter
|
|
* interface so if other things that use the audit subsystem in the
|
|
* future can simply plugged in.
|
|
*/
|
|
audit_override = (AUE_SESSION_START == event ||
|
|
AUE_SESSION_UPDATE == event || AUE_SESSION_END == event ||
|
|
AUE_SESSION_CLOSE == event);
|
|
|
|
mtx_lock(&audit_mtx);
|
|
no_record = (audit_suspended || !audit_enabled);
|
|
mtx_unlock(&audit_mtx);
|
|
if (!audit_override && no_record) {
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize the audit record header.
|
|
* XXX: We may want to fail-stop if allocation fails.
|
|
*
|
|
* Note: the number of outstanding uncommitted audit records is
|
|
* limited to the number of concurrent threads servicing system calls
|
|
* in the kernel.
|
|
*/
|
|
ar = zalloc_flags(audit_record_zone, Z_WAITOK | Z_NOFAIL);
|
|
audit_record_ctor(p, ar);
|
|
ar->k_ar.ar_event = event;
|
|
|
|
#if CONFIG_MACF
|
|
if (PROC_NULL != p) {
|
|
if (audit_mac_new(p, ar) != 0) {
|
|
zfree(audit_record_zone, ar);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
ar->k_ar.ar_mac_records = NULL;
|
|
}
|
|
#endif
|
|
|
|
mtx_lock(&audit_mtx);
|
|
audit_pre_q_len++;
|
|
mtx_unlock(&audit_mtx);
|
|
|
|
return ar;
|
|
}
|
|
|
|
void
|
|
audit_free(struct kaudit_record *ar)
|
|
{
|
|
audit_record_dtor(ar);
|
|
#if CONFIG_MACF
|
|
if (NULL != ar->k_ar.ar_mac_records) {
|
|
audit_mac_free(ar);
|
|
}
|
|
#endif
|
|
zfree(audit_record_zone, ar);
|
|
}
|
|
|
|
void
|
|
audit_commit(struct kaudit_record *ar, int error, int retval)
|
|
{
|
|
au_event_t event;
|
|
au_class_t class;
|
|
au_id_t auid;
|
|
int sorf;
|
|
struct au_mask *aumask;
|
|
int audit_override;
|
|
|
|
if (ar == NULL) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Decide whether to commit the audit record by checking the error
|
|
* value from the system call and using the appropriate audit mask.
|
|
*/
|
|
if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) {
|
|
aumask = &audit_nae_mask;
|
|
} else {
|
|
aumask = &ar->k_ar.ar_subj_amask;
|
|
}
|
|
|
|
if (error) {
|
|
sorf = AU_PRS_FAILURE;
|
|
} else {
|
|
sorf = AU_PRS_SUCCESS;
|
|
}
|
|
|
|
switch (ar->k_ar.ar_event) {
|
|
case AUE_OPEN_RWTC:
|
|
/*
|
|
* The open syscall always writes a AUE_OPEN_RWTC event;
|
|
* change it to the proper type of event based on the flags
|
|
* and the error value.
|
|
*/
|
|
ar->k_ar.ar_event = audit_flags_and_error_to_openevent(
|
|
ar->k_ar.ar_arg_fflags, error);
|
|
break;
|
|
|
|
case AUE_OPEN_EXTENDED_RWTC:
|
|
/*
|
|
* The open_extended syscall always writes a
|
|
* AUE_OPEN_EXTENDEDRWTC event; change it to the proper type of
|
|
* event based on the flags and the error value.
|
|
*/
|
|
ar->k_ar.ar_event = audit_flags_and_error_to_openextendedevent(
|
|
ar->k_ar.ar_arg_fflags, error);
|
|
break;
|
|
|
|
case AUE_OPENAT_RWTC:
|
|
/*
|
|
* The openat syscall always writes a
|
|
* AUE_OPENAT_RWTC event; change it to the proper type of
|
|
* event based on the flags and the error value.
|
|
*/
|
|
ar->k_ar.ar_event = audit_flags_and_error_to_openatevent(
|
|
ar->k_ar.ar_arg_fflags, error);
|
|
break;
|
|
|
|
case AUE_OPENBYID_RWT:
|
|
/*
|
|
* The openbyid syscall always writes a
|
|
* AUE_OPENBYID_RWT event; change it to the proper type of
|
|
* event based on the flags and the error value.
|
|
*/
|
|
ar->k_ar.ar_event = audit_flags_and_error_to_openbyidevent(
|
|
ar->k_ar.ar_arg_fflags, error);
|
|
break;
|
|
|
|
case AUE_SYSCTL:
|
|
ar->k_ar.ar_event = audit_ctlname_to_sysctlevent(
|
|
ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg);
|
|
break;
|
|
|
|
case AUE_AUDITON:
|
|
/* Convert the auditon() command to an event. */
|
|
ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd);
|
|
break;
|
|
|
|
case AUE_FCNTL:
|
|
/* Convert some fcntl() commands to their own events. */
|
|
ar->k_ar.ar_event = audit_fcntl_command_event(
|
|
ar->k_ar.ar_arg_cmd, ar->k_ar.ar_arg_fflags, error);
|
|
break;
|
|
}
|
|
|
|
auid = ar->k_ar.ar_subj_auid;
|
|
event = ar->k_ar.ar_event;
|
|
class = au_event_class(event);
|
|
|
|
/*
|
|
* See if we need to override the audit_suspend and audit_enabled
|
|
* flags.
|
|
*
|
|
* XXXss - This check needs to be generalized so new filters can
|
|
* easily be added.
|
|
*/
|
|
audit_override = (AUE_SESSION_START == event ||
|
|
AUE_SESSION_UPDATE == event || AUE_SESSION_END == event ||
|
|
AUE_SESSION_CLOSE == event);
|
|
|
|
ar->k_ar_commit |= AR_COMMIT_KERNEL;
|
|
if (au_preselect(event, class, aumask, sorf) != 0) {
|
|
ar->k_ar_commit |= AR_PRESELECT_TRAIL;
|
|
}
|
|
if (audit_pipe_preselect(auid, event, class, sorf,
|
|
ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0) {
|
|
ar->k_ar_commit |= AR_PRESELECT_PIPE;
|
|
}
|
|
if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE |
|
|
AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE |
|
|
AR_PRESELECT_FILTER)) == 0) {
|
|
mtx_lock(&audit_mtx);
|
|
audit_pre_q_len--;
|
|
mtx_unlock(&audit_mtx);
|
|
audit_free(ar);
|
|
return;
|
|
}
|
|
|
|
ar->k_ar.ar_errno = error;
|
|
ar->k_ar.ar_retval = retval;
|
|
nanotime(&ar->k_ar.ar_endtime);
|
|
|
|
/*
|
|
* Note: it could be that some records initiated while audit was
|
|
* enabled should still be committed?
|
|
*/
|
|
mtx_lock(&audit_mtx);
|
|
if (!audit_override && (audit_suspended || !audit_enabled)) {
|
|
audit_pre_q_len--;
|
|
mtx_unlock(&audit_mtx);
|
|
audit_free(ar);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Constrain the number of committed audit records based on the
|
|
* configurable parameter.
|
|
*/
|
|
while (audit_q_len >= audit_qctrl.aq_hiwater) {
|
|
cv_wait(&audit_watermark_cv, &audit_mtx);
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&audit_q, ar, k_q);
|
|
audit_q_len++;
|
|
audit_pre_q_len--;
|
|
cv_signal(&audit_worker_cv);
|
|
mtx_unlock(&audit_mtx);
|
|
}
|
|
|
|
/*
|
|
* audit_syscall_enter() is called on entry to each system call. It is
|
|
* responsible for deciding whether or not to audit the call (preselection),
|
|
* and if so, allocating a per-thread audit record. audit_new() will fill in
|
|
* basic thread/credential properties.
|
|
*/
|
|
void
|
|
audit_syscall_enter(unsigned int code, proc_t proc, struct uthread *uthread)
|
|
{
|
|
struct au_mask *aumask;
|
|
au_class_t class;
|
|
au_event_t event;
|
|
au_id_t auid;
|
|
kauth_cred_t cred;
|
|
|
|
/*
|
|
* In FreeBSD, each ABI has its own system call table, and hence
|
|
* mapping of system call codes to audit events. Convert the code to
|
|
* an audit event identifier using the process system call table
|
|
* reference. In Darwin, there's only one, so we use the global
|
|
* symbol for the system call table. No audit record is generated
|
|
* for bad system calls, as no operation has been performed.
|
|
*
|
|
* In Mac OS X, the audit events are stored in a table seperate from
|
|
* the syscall table(s). This table is generated by makesyscalls.sh
|
|
* from syscalls.master and stored in audit_kevents.c.
|
|
*/
|
|
if (code >= nsysent) {
|
|
return;
|
|
}
|
|
event = sys_au_event[code];
|
|
if (event == AUE_NULL) {
|
|
return;
|
|
}
|
|
|
|
KASSERT(uthread->uu_ar == NULL,
|
|
("audit_syscall_enter: uthread->uu_ar != NULL"));
|
|
|
|
/*
|
|
* Check which audit mask to use; either the kernel non-attributable
|
|
* event mask or the process audit mask.
|
|
*/
|
|
cred = kauth_cred_proc_ref(proc);
|
|
auid = cred->cr_audit.as_aia_p->ai_auid;
|
|
if (auid == AU_DEFAUDITID) {
|
|
aumask = &audit_nae_mask;
|
|
} else {
|
|
aumask = &cred->cr_audit.as_mask;
|
|
}
|
|
|
|
/*
|
|
* Allocate an audit record, if preselection allows it, and store in
|
|
* the thread for later use.
|
|
*/
|
|
class = au_event_class(event);
|
|
#if CONFIG_MACF
|
|
/*
|
|
* Note: audit_mac_syscall_enter() may call audit_new() and allocate
|
|
* memory for the audit record (uu_ar).
|
|
*/
|
|
if (audit_mac_syscall_enter(code, proc, uthread, cred, event) == 0) {
|
|
goto out;
|
|
}
|
|
#endif
|
|
if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
|
|
/*
|
|
* If we're out of space and need to suspend unprivileged
|
|
* processes, do that here rather than trying to allocate
|
|
* another audit record.
|
|
*
|
|
* Note: we might wish to be able to continue here in the
|
|
* future, if the system recovers. That should be possible
|
|
* by means of checking the condition in a loop around
|
|
* cv_wait(). It might be desirable to reevaluate whether an
|
|
* audit record is still required for this event by
|
|
* re-calling au_preselect().
|
|
*/
|
|
if (audit_in_failure &&
|
|
suser(cred, &proc->p_acflag) != 0) {
|
|
cv_wait(&audit_fail_cv, &audit_mtx);
|
|
panic("audit_failing_stop: thread continued");
|
|
}
|
|
if (uthread->uu_ar == NULL) {
|
|
uthread->uu_ar = audit_new(event, proc, uthread);
|
|
}
|
|
} else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) {
|
|
if (uthread->uu_ar == NULL) {
|
|
uthread->uu_ar = audit_new(event, proc, uthread);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* All audited events will contain an identity
|
|
*
|
|
* Note: Identity should be obtained prior to the syscall implementation
|
|
* being called to handle cases like execve(2) where the process changes
|
|
*/
|
|
AUDIT_ARG(identity);
|
|
|
|
out:
|
|
kauth_cred_unref(&cred);
|
|
}
|
|
|
|
/*
|
|
* audit_syscall_exit() is called from the return of every system call, or in
|
|
* the event of exit1(), during the execution of exit1(). It is responsible
|
|
* for committing the audit record, if any, along with return condition.
|
|
*
|
|
* Note: The audit_syscall_exit() parameter list was modified to support
|
|
* mac_audit_check_postselect(), which requires the syscall number.
|
|
*/
|
|
#if CONFIG_MACF
|
|
void
|
|
audit_syscall_exit(unsigned int code, int error, __unused proc_t proc,
|
|
struct uthread *uthread)
|
|
#else
|
|
void
|
|
audit_syscall_exit(int error, __unsed proc_t proc, struct uthread *uthread)
|
|
#endif
|
|
{
|
|
int retval;
|
|
|
|
/*
|
|
* Commit the audit record as desired; once we pass the record into
|
|
* audit_commit(), the memory is owned by the audit subsystem. The
|
|
* return value from the system call is stored on the user thread.
|
|
* If there was an error, the return value is set to -1, imitating
|
|
* the behavior of the cerror routine.
|
|
*/
|
|
if (error) {
|
|
retval = -1;
|
|
} else {
|
|
retval = uthread->uu_rval[0];
|
|
}
|
|
|
|
#if CONFIG_MACF
|
|
if (audit_mac_syscall_exit(code, uthread, error, retval) != 0) {
|
|
goto out;
|
|
}
|
|
#endif
|
|
audit_commit(uthread->uu_ar, error, retval);
|
|
|
|
out:
|
|
uthread->uu_ar = NULL;
|
|
}
|
|
|
|
/*
|
|
* For system calls such as posix_spawn(2) the sub operations (i.e., file actions
|
|
* and port actions) need to be audited as their own events. Like with system
|
|
* calls we need to determine if the sub operation needs to be audited by
|
|
* examining preselection masks.
|
|
*/
|
|
void
|
|
audit_subcall_enter(au_event_t event, proc_t proc, struct uthread *uthread)
|
|
{
|
|
struct au_mask *aumask;
|
|
au_class_t class;
|
|
au_id_t auid;
|
|
kauth_cred_t cred;
|
|
|
|
/*
|
|
* Check which audit mask to use; either the kernel non-attributable
|
|
* event mask or the process audit mask.
|
|
*/
|
|
cred = kauth_cred_proc_ref(proc);
|
|
auid = cred->cr_audit.as_aia_p->ai_auid;
|
|
if (auid == AU_DEFAUDITID) {
|
|
aumask = &audit_nae_mask;
|
|
} else {
|
|
aumask = &cred->cr_audit.as_mask;
|
|
}
|
|
|
|
/*
|
|
* Allocate an audit record, if preselection allows it, and store in
|
|
* the thread for later use.
|
|
*/
|
|
class = au_event_class(event);
|
|
|
|
if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
|
|
/*
|
|
* If we're out of space and need to suspend unprivileged
|
|
* processes, do that here rather than trying to allocate
|
|
* another audit record.
|
|
*
|
|
* Note: we might wish to be able to continue here in the
|
|
* future, if the system recovers. That should be possible
|
|
* by means of checking the condition in a loop around
|
|
* cv_wait(). It might be desirable to reevaluate whether an
|
|
* audit record is still required for this event by
|
|
* re-calling au_preselect().
|
|
*/
|
|
if (audit_in_failure &&
|
|
suser(cred, &proc->p_acflag) != 0) {
|
|
cv_wait(&audit_fail_cv, &audit_mtx);
|
|
panic("audit_failing_stop: thread continued");
|
|
}
|
|
if (uthread->uu_ar == NULL) {
|
|
uthread->uu_ar = audit_new(event, proc, uthread);
|
|
}
|
|
} else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) {
|
|
if (uthread->uu_ar == NULL) {
|
|
uthread->uu_ar = audit_new(event, proc, uthread);
|
|
}
|
|
}
|
|
|
|
kauth_cred_unref(&cred);
|
|
}
|
|
|
|
void
|
|
audit_subcall_exit(int error, struct uthread *uthread)
|
|
{
|
|
/* A subcall doesn't have a return value so always zero. */
|
|
audit_commit(uthread->uu_ar, error, 0 /* retval */);
|
|
|
|
uthread->uu_ar = NULL;
|
|
}
|
|
|
|
/*
|
|
* Calls to set up and tear down audit structures used during Mach system
|
|
* calls.
|
|
*/
|
|
void
|
|
audit_mach_syscall_enter(unsigned short event)
|
|
{
|
|
struct uthread *uthread;
|
|
proc_t proc;
|
|
struct au_mask *aumask;
|
|
kauth_cred_t cred;
|
|
au_class_t class;
|
|
au_id_t auid;
|
|
|
|
if (event == AUE_NULL) {
|
|
return;
|
|
}
|
|
|
|
uthread = curthread();
|
|
if (uthread == NULL) {
|
|
return;
|
|
}
|
|
|
|
proc = current_proc();
|
|
if (proc == NULL) {
|
|
return;
|
|
}
|
|
|
|
KASSERT(uthread->uu_ar == NULL,
|
|
("audit_mach_syscall_enter: uthread->uu_ar != NULL"));
|
|
|
|
cred = kauth_cred_proc_ref(proc);
|
|
auid = cred->cr_audit.as_aia_p->ai_auid;
|
|
|
|
/*
|
|
* Check which audit mask to use; either the kernel non-attributable
|
|
* event mask or the process audit mask.
|
|
*/
|
|
if (auid == AU_DEFAUDITID) {
|
|
aumask = &audit_nae_mask;
|
|
} else {
|
|
aumask = &cred->cr_audit.as_mask;
|
|
}
|
|
|
|
/*
|
|
* Allocate an audit record, if desired, and store in the BSD thread
|
|
* for later use.
|
|
*/
|
|
class = au_event_class(event);
|
|
if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
|
|
uthread->uu_ar = audit_new(event, proc, uthread);
|
|
} else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) {
|
|
uthread->uu_ar = audit_new(event, proc, uthread);
|
|
} else {
|
|
uthread->uu_ar = NULL;
|
|
}
|
|
|
|
kauth_cred_unref(&cred);
|
|
}
|
|
|
|
void
|
|
audit_mach_syscall_exit(int retval, struct uthread *uthread)
|
|
{
|
|
/*
|
|
* The error code from Mach system calls is the same as the
|
|
* return value
|
|
*/
|
|
/* XXX Is the above statement always true? */
|
|
audit_commit(uthread->uu_ar, retval, retval);
|
|
uthread->uu_ar = NULL;
|
|
}
|
|
|
|
/*
|
|
* kau_will_audit can be used by a security policy to determine
|
|
* if an audit record will be stored, reducing wasted memory allocation
|
|
* and string handling.
|
|
*/
|
|
int
|
|
kau_will_audit(void)
|
|
{
|
|
return audit_enabled && currecord() != NULL;
|
|
}
|
|
|
|
#if CONFIG_COREDUMP
|
|
void
|
|
audit_proc_coredump(proc_t proc, const char *path, int errcode)
|
|
{
|
|
struct kaudit_record *ar;
|
|
struct au_mask *aumask;
|
|
au_class_t class;
|
|
int ret, sorf;
|
|
char **pathp;
|
|
au_id_t auid;
|
|
kauth_cred_t my_cred;
|
|
struct uthread *uthread;
|
|
|
|
ret = 0;
|
|
|
|
/*
|
|
* Make sure we are using the correct preselection mask.
|
|
*/
|
|
my_cred = kauth_cred_proc_ref(proc);
|
|
auid = my_cred->cr_audit.as_aia_p->ai_auid;
|
|
if (auid == AU_DEFAUDITID) {
|
|
aumask = &audit_nae_mask;
|
|
} else {
|
|
aumask = &my_cred->cr_audit.as_mask;
|
|
}
|
|
kauth_cred_unref(&my_cred);
|
|
/*
|
|
* It's possible for coredump(9) generation to fail. Make sure that
|
|
* we handle this case correctly for preselection.
|
|
*/
|
|
if (errcode != 0) {
|
|
sorf = AU_PRS_FAILURE;
|
|
} else {
|
|
sorf = AU_PRS_SUCCESS;
|
|
}
|
|
class = au_event_class(AUE_CORE);
|
|
if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 &&
|
|
audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0) {
|
|
return;
|
|
}
|
|
/*
|
|
* If we are interested in seeing this audit record, allocate it.
|
|
* Where possible coredump records should contain a pathname and arg32
|
|
* (signal) tokens.
|
|
*/
|
|
uthread = curthread();
|
|
ar = audit_new(AUE_CORE, proc, uthread);
|
|
if (ar == NULL) {
|
|
return;
|
|
}
|
|
if (path != NULL) {
|
|
pathp = &ar->k_ar.ar_arg_upath1;
|
|
*pathp = zalloc(ZV_NAMEI);
|
|
if (audit_canon_path(vfs_context_cwd(vfs_context_current()), path,
|
|
*pathp)) {
|
|
zfree(ZV_NAMEI, *pathp);
|
|
} else {
|
|
ARG_SET_VALID(ar, ARG_UPATH1);
|
|
}
|
|
}
|
|
ar->k_ar.ar_arg_signum = proc->p_sigacts.ps_sig;
|
|
ARG_SET_VALID(ar, ARG_SIGNUM);
|
|
if (errcode != 0) {
|
|
ret = 1;
|
|
}
|
|
audit_commit(ar, errcode, ret);
|
|
}
|
|
#endif /* CONFIG_COREDUMP */
|
|
#endif /* CONFIG_AUDIT */
|