gems-kernel/source/THIRDPARTY/xnu/bsd/security/audit/audit_bsm.c
2024-06-03 11:29:39 -05:00

2130 lines
57 KiB
C

/*
* Copyright (c) 1999-2020 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include <sys/types.h>
#include <sys/vnode_internal.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <sys/fcntl.h>
#include <sys/user.h>
#include <sys/ipc.h>
#include <bsm/audit.h>
#include <bsm/audit_internal.h>
#include <bsm/audit_record.h>
#include <bsm/audit_kevents.h>
#include <security/audit/audit.h>
#include <security/audit/audit_bsd.h>
#include <security/audit/audit_private.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#if CONFIG_AUDIT
MALLOC_DEFINE(M_AUDITBSM, "audit_bsm", "Audit BSM data");
#if CONFIG_MACF
#include <security/mac_framework.h>
#endif
static void audit_sys_auditon(struct audit_record *ar,
struct au_record *rec);
static void audit_sys_fcntl(struct kaudit_record *kar,
struct au_record *rec);
/*
* Initialize the BSM auditing subsystem.
*/
void
kau_init(void)
{
au_evclassmap_init();
}
/*
* This call reserves memory for the audit record. Memory must be guaranteed
* before any auditable event can be generated. The au_record structure
* maintains a reference to the memory allocated above and also the list of
* tokens associated with this record.
*/
static struct au_record *
kau_open(void)
{
struct au_record *rec;
rec = kalloc_type(struct au_record, Z_WAITOK | Z_ZERO | Z_NOFAIL);
TAILQ_INIT(&rec->token_q);
rec->used = 1;
rec->data = NULL;
return rec;
}
/*
* Store the token with the record descriptor.
*/
static void
kau_write(struct au_record *rec, struct au_token *tok)
{
KASSERT(tok != NULL, ("kau_write: tok == NULL"));
TAILQ_INSERT_TAIL(&rec->token_q, tok, tokens);
rec->len += tok->len;
}
/*
* Close out the audit record by adding the header token, identifying any
* missing tokens. Write out the tokens to the record memory.
*/
static int
kau_close(struct au_record *rec, struct timespec *ctime, short event)
{
u_char *dptr;
size_t tot_rec_size;
token_t *cur, *hdr, *trail;
struct timeval tm;
size_t hdrsize;
struct auditinfo_addr ak;
struct in6_addr *ap;
audit_get_kinfo(&ak);
hdrsize = 0;
switch (ak.ai_termid.at_type) {
case AU_IPv4:
hdrsize = (ak.ai_termid.at_addr[0] == INADDR_ANY) ?
AUDIT_HEADER_SIZE : AUDIT_HEADER_EX_SIZE(&ak);
break;
case AU_IPv6:
ap = (struct in6_addr *)&ak.ai_termid.at_addr[0];
hdrsize = (IN6_IS_ADDR_UNSPECIFIED(ap)) ? AUDIT_HEADER_SIZE :
AUDIT_HEADER_EX_SIZE(&ak);
break;
default:
panic("kau_close: invalid address family");
}
tot_rec_size = rec->len + AUDIT_HEADER_SIZE + AUDIT_TRAILER_SIZE;
rec->data = kalloc_data(tot_rec_size, Z_WAITOK | Z_ZERO);
if (rec->data == NULL) {
return ENOMEM;
}
tm.tv_usec = ctime->tv_nsec / 1000;
tm.tv_sec = ctime->tv_sec;
if (hdrsize != AUDIT_HEADER_SIZE) {
hdr = au_to_header32_ex_tm(tot_rec_size, event, 0, tm, &ak);
} else {
hdr = au_to_header32_tm(tot_rec_size, event, 0, tm);
}
TAILQ_INSERT_HEAD(&rec->token_q, hdr, tokens);
trail = au_to_trailer(tot_rec_size);
TAILQ_INSERT_TAIL(&rec->token_q, trail, tokens);
rec->len = tot_rec_size;
dptr = rec->data;
TAILQ_FOREACH(cur, &rec->token_q, tokens) {
memcpy(dptr, cur->t_data, cur->len);
dptr += cur->len;
}
return 0;
}
/*
* Free a BSM audit record by releasing all the tokens and clearing the audit
* record information.
*/
void
kau_free(struct au_record *rec)
{
struct au_token *tok;
/* Free the token list. */
while ((tok = TAILQ_FIRST(&rec->token_q))) {
TAILQ_REMOVE(&rec->token_q, tok, tokens);
kfree_data(tok->t_data, tok->len);
kfree_type(token_t, tok);
}
if (rec->data != NULL) {
kfree_data(rec->data, rec->len);
}
kfree_type(struct au_record, rec);
}
/*
* XXX: May want turn some (or all) of these macros into functions in order
* to reduce the generated code size.
*
* XXXAUDIT: These macros assume that 'kar', 'ar', 'rec', and 'tok' in the
* caller are OK with this.
*/
#if CONFIG_MACF
#define MAC_VNODE1_LABEL_TOKEN do { \
if (ar->ar_vnode1_mac_labels != NULL && \
strlen(ar->ar_vnode1_mac_labels) != 0) { \
tok = au_to_text(ar->ar_vnode1_mac_labels); \
kau_write(rec, tok); \
} \
} while (0)
#define MAC_VNODE2_LABEL_TOKEN do { \
if (ar->ar_vnode2_mac_labels != NULL && \
strlen(ar->ar_vnode2_mac_labels) != 0) { \
tok = au_to_text(ar->ar_vnode2_mac_labels); \
kau_write(rec, tok); \
} \
} while (0)
#else
#define MAC_VNODE1_LABEL_TOKEN
#define MAC_VNODE2_LABEL_TOKEN
#endif
#define UPATH1_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_UPATH1)) { \
tok = au_to_path(ar->ar_arg_upath1); \
kau_write(rec, tok); \
} \
} while (0)
#define UPATH2_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_UPATH2)) { \
tok = au_to_path(ar->ar_arg_upath2); \
kau_write(rec, tok); \
} \
} while (0)
#define KPATH2_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_KPATH2)) { \
tok = au_to_path(ar->ar_arg_kpath2); \
kau_write(rec, tok); \
} \
} while (0)
#define VNODE1_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_KPATH1)) { \
tok = au_to_path(ar->ar_arg_kpath1); \
kau_write(rec, tok); \
} \
if (ARG_IS_VALID(kar, ARG_VNODE1)) { \
tok = au_to_attr32(&ar->ar_arg_vnode1); \
kau_write(rec, tok); \
MAC_VNODE1_LABEL_TOKEN; \
} \
} while (0)
#define UPATH1_VNODE1_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_UPATH1)) { \
tok = au_to_path(ar->ar_arg_upath1); \
kau_write(rec, tok); \
} \
if (ARG_IS_VALID(kar, ARG_KPATH1)) { \
tok = au_to_path(ar->ar_arg_kpath1); \
kau_write(rec, tok); \
} \
if (ARG_IS_VALID(kar, ARG_VNODE1)) { \
tok = au_to_attr32(&ar->ar_arg_vnode1); \
kau_write(rec, tok); \
MAC_VNODE1_LABEL_TOKEN; \
} \
} while (0)
#define VNODE2_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_VNODE2)) { \
tok = au_to_attr32(&ar->ar_arg_vnode2); \
kau_write(rec, tok); \
MAC_VNODE2_LABEL_TOKEN; \
} \
} while (0)
#define VNODE2_PATH_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_KPATH2)) { \
tok = au_to_path(ar->ar_arg_kpath2); \
kau_write(rec, tok); \
} \
if (ARG_IS_VALID(kar, ARG_VNODE2)) { \
tok = au_to_attr32(&ar->ar_arg_vnode2); \
kau_write(rec, tok); \
MAC_VNODE2_LABEL_TOKEN; \
} \
} while (0)
#define FD_VNODE1_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_VNODE1)) { \
if (ARG_IS_VALID(kar, ARG_KPATH1)) { \
tok = au_to_path(ar->ar_arg_kpath1); \
kau_write(rec, tok); \
} \
if (ARG_IS_VALID(kar, ARG_FD)) { \
tok = au_to_arg32(1, "fd", ar->ar_arg_fd); \
kau_write(rec, tok); \
MAC_VNODE1_LABEL_TOKEN; \
} \
tok = au_to_attr32(&ar->ar_arg_vnode1); \
kau_write(rec, tok); \
} else { \
if (ARG_IS_VALID(kar, ARG_FD)) { \
tok = au_to_arg32(1, "fd", \
ar->ar_arg_fd); \
kau_write(rec, tok); \
MAC_VNODE1_LABEL_TOKEN; \
} \
} \
} while (0)
#define PROCESS_PID_TOKENS(argn) do { \
if ((ar->ar_arg_pid > 0) /* Reference a single process */ \
&& (ARG_IS_VALID(kar, ARG_PROCESS))) { \
tok = au_to_process32_ex(ar->ar_arg_auid, \
ar->ar_arg_euid, ar->ar_arg_egid, \
ar->ar_arg_ruid, ar->ar_arg_rgid, \
ar->ar_arg_pid, ar->ar_arg_asid, \
&ar->ar_arg_termid_addr); \
kau_write(rec, tok); \
} else if (ARG_IS_VALID(kar, ARG_PID)) { \
tok = au_to_arg32(argn, "process", ar->ar_arg_pid); \
kau_write(rec, tok); \
} \
} while (0)
#define EXTATTR_TOKENS do { \
if (ARG_IS_VALID(kar, ARG_VALUE32)) { \
switch (ar->ar_arg_value32) { \
case EXTATTR_NAMESPACE_USER: \
tok = au_to_text(EXTATTR_NAMESPACE_USER_STRING);\
break; \
case EXTATTR_NAMESPACE_SYSTEM: \
tok = au_to_text(EXTATTR_NAMESPACE_SYSTEM_STRING);\
break; \
default: \
tok = au_to_arg32(3, "attrnamespace", \
ar->ar_arg_value32); \
break; \
} \
kau_write(rec, tok); \
} \
/* attrname is in the text field */ \
if (ARG_IS_VALID(kar, ARG_TEXT)) { \
tok = au_to_text(ar->ar_arg_text); \
kau_write(rec, tok); \
} \
} while (0)
#define EXTENDED_TOKENS(n) do { \
/* ACL data */ \
if (ARG_IS_VALID(kar, ARG_OPAQUE)) { \
tok = au_to_opaque(ar->ar_arg_opaque, \
ar->ar_arg_opq_size); \
kau_write(rec, tok); \
} \
if (ARG_IS_VALID(kar, ARG_MODE)) { \
tok = au_to_arg32(n+2, "mode", ar->ar_arg_mode);\
kau_write(rec, tok); \
} \
if (ARG_IS_VALID(kar, ARG_GID)) { \
tok = au_to_arg32(n+1, "gid", ar->ar_arg_gid); \
kau_write(rec, tok); \
} \
if (ARG_IS_VALID(kar, ARG_UID)) { \
tok = au_to_arg32(n, "uid", ar->ar_arg_uid); \
kau_write(rec, tok); \
} \
} while (0)
#define PROCESS_MAC_TOKENS do { \
if (ar->ar_valid_arg & ARG_MAC_STRING) { \
tok = au_to_text(ar->ar_arg_mac_string); \
kau_write(rec, tok); \
} \
} while (0)
/*
* Implement auditing for the auditon() system call. The audit tokens that
* are generated depend on the command that was sent into the auditon()
* system call.
*/
static void
audit_sys_auditon(struct audit_record *ar, struct au_record *rec)
{
struct au_token *tok;
switch (ar->ar_arg_cmd) {
case A_OLDSETPOLICY:
if (ar->ar_arg_len > sizeof(int)) {
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg64(2, "policy",
ar->ar_arg_auditon.au_policy64);
kau_write(rec, tok);
break;
}
OS_FALLTHROUGH;
case A_SETPOLICY:
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg32(2, "policy", ar->ar_arg_auditon.au_policy);
kau_write(rec, tok);
break;
case A_SETKMASK:
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg32(2, "setkmask:as_success",
ar->ar_arg_auditon.au_mask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(2, "setkmask:as_failure",
ar->ar_arg_auditon.au_mask.am_failure);
kau_write(rec, tok);
break;
case A_OLDSETQCTRL:
if (ar->ar_arg_len > sizeof(au_qctrl_t)) {
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg64(2, "setqctrl:aq_hiwater",
ar->ar_arg_auditon.au_qctrl64.aq64_hiwater);
kau_write(rec, tok);
tok = au_to_arg64(2, "setqctrl:aq_lowater",
ar->ar_arg_auditon.au_qctrl64.aq64_lowater);
kau_write(rec, tok);
tok = au_to_arg64(2, "setqctrl:aq_bufsz",
ar->ar_arg_auditon.au_qctrl64.aq64_bufsz);
kau_write(rec, tok);
tok = au_to_arg64(2, "setqctrl:aq_delay",
ar->ar_arg_auditon.au_qctrl64.aq64_delay);
kau_write(rec, tok);
tok = au_to_arg32(2, "setqctrl:aq_minfree",
ar->ar_arg_auditon.au_qctrl64.aq64_minfree);
kau_write(rec, tok);
break;
}
OS_FALLTHROUGH;
case A_SETQCTRL:
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg32(2, "setqctrl:aq_hiwater",
ar->ar_arg_auditon.au_qctrl.aq_hiwater);
kau_write(rec, tok);
tok = au_to_arg32(2, "setqctrl:aq_lowater",
ar->ar_arg_auditon.au_qctrl.aq_lowater);
kau_write(rec, tok);
tok = au_to_arg32(2, "setqctrl:aq_bufsz",
ar->ar_arg_auditon.au_qctrl.aq_bufsz);
kau_write(rec, tok);
tok = au_to_arg32(2, "setqctrl:aq_delay",
ar->ar_arg_auditon.au_qctrl.aq_delay);
kau_write(rec, tok);
tok = au_to_arg32(2, "setqctrl:aq_minfree",
ar->ar_arg_auditon.au_qctrl.aq_minfree);
kau_write(rec, tok);
break;
case A_SETUMASK:
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg32(2, "setumask:as_success",
ar->ar_arg_auditon.au_auinfo.ai_mask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(2, "setumask:as_failure",
ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure);
kau_write(rec, tok);
break;
case A_SETSMASK:
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg32(2, "setsmask:as_success",
ar->ar_arg_auditon.au_auinfo.ai_mask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(2, "setsmask:as_failure",
ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure);
kau_write(rec, tok);
break;
case A_OLDSETCOND:
if (ar->ar_arg_len > sizeof(int)) {
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg64(2, "setcond",
ar->ar_arg_auditon.au_cond64);
kau_write(rec, tok);
break;
}
OS_FALLTHROUGH;
case A_SETCOND:
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg32(2, "setcond", ar->ar_arg_auditon.au_cond);
kau_write(rec, tok);
break;
case A_SETCLASS:
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg32(2, "setclass:ec_event",
ar->ar_arg_auditon.au_evclass.ec_number);
kau_write(rec, tok);
tok = au_to_arg32(3, "setclass:ec_class",
ar->ar_arg_auditon.au_evclass.ec_class);
kau_write(rec, tok);
break;
case A_SETPMASK:
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg32(2, "setpmask:as_success",
ar->ar_arg_auditon.au_aupinfo.ap_mask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(2, "setpmask:as_failure",
ar->ar_arg_auditon.au_aupinfo.ap_mask.am_failure);
kau_write(rec, tok);
break;
case A_SETFSIZE:
tok = au_to_arg32(3, "length", ar->ar_arg_len);
kau_write(rec, tok);
tok = au_to_arg32(2, "setfsize:filesize",
ar->ar_arg_auditon.au_fstat.af_filesz);
kau_write(rec, tok);
break;
default:
break;
}
tok = au_to_arg32(1, "cmd", ar->ar_arg_cmd);
kau_write(rec, tok);
}
/*
* Implement auditing for the fcntl() system call. The audit tokens that
* are generated depend on the command that was sent into the fcntl()
* system call.
*/
static void
audit_sys_fcntl(struct kaudit_record *kar, struct au_record *rec)
{
struct au_token *tok;
struct audit_record *ar = &kar->k_ar;
switch (ar->ar_arg_cmd) {
case F_DUPFD:
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(3, "min fd", ar->ar_arg_value32);
kau_write(rec, tok);
}
break;
case F_SETFD:
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(3, "close-on-exec flag",
ar->ar_arg_value32);
kau_write(rec, tok);
}
break;
case F_SETFL:
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(3, "fd flags", ar->ar_arg_value32);
kau_write(rec, tok);
}
break;
case F_SETOWN:
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(3, "pid", ar->ar_arg_value32);
kau_write(rec, tok);
}
break;
#ifdef F_SETSIZE
case F_SETSIZE:
if (ARG_IS_VALID(kar, ARG_VALUE64)) {
tok = au_to_arg64(3, "offset", ar->ar_arg_value64);
kau_write(rec, tok);
}
break;
#endif /* F_SETSIZE */
#ifdef F_PATHPKG_CHECK
case F_PATHPKG_CHECK:
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
break;
#endif
default:
break;
}
tok = au_to_arg32(2, "cmd", au_fcntl_cmd_to_bsm(ar->ar_arg_cmd));
kau_write(rec, tok);
}
/*
* Convert an internal kernel audit record to a BSM record and return a
* success/failure indicator. The BSM record is passed as an out parameter to
* this function.
*
* Return conditions:
* BSM_SUCCESS: The BSM record is valid
* BSM_FAILURE: Failure; the BSM record is NULL.
* BSM_NOAUDIT: The event is not auditable for BSM; the BSM record is NULL.
*/
int
kaudit_to_bsm(struct kaudit_record *kar, struct au_record **pau)
{
struct au_token *tok = NULL, *subj_tok;
struct au_record *rec = NULL;
au_tid_t tid;
struct audit_record *ar;
int ctr;
u_int uctr;
int rv;
KASSERT(kar != NULL, ("kaudit_to_bsm: kar == NULL"));
*pau = NULL;
ar = &kar->k_ar;
rec = kau_open();
/*
* Create the subject token.
*/
switch (ar->ar_subj_term_addr.at_type) {
case AU_IPv4:
tid.port = ar->ar_subj_term_addr.at_port;
tid.machine = ar->ar_subj_term_addr.at_addr[0];
subj_tok = au_to_subject32(ar->ar_subj_auid, /* audit ID */
ar->ar_subj_cred.cr_uid, /* eff uid */
ar->ar_subj_egid, /* eff group id */
ar->ar_subj_ruid, /* real uid */
ar->ar_subj_rgid, /* real group id */
ar->ar_subj_pid, /* process id */
ar->ar_subj_asid, /* session ID */
&tid);
break;
case AU_IPv6:
subj_tok = au_to_subject32_ex(ar->ar_subj_auid,
ar->ar_subj_cred.cr_uid,
ar->ar_subj_egid,
ar->ar_subj_ruid,
ar->ar_subj_rgid,
ar->ar_subj_pid,
ar->ar_subj_asid,
&ar->ar_subj_term_addr);
break;
default:
bzero(&tid, sizeof(tid));
subj_tok = au_to_subject32(ar->ar_subj_auid,
ar->ar_subj_cred.cr_uid,
ar->ar_subj_egid,
ar->ar_subj_ruid,
ar->ar_subj_rgid,
ar->ar_subj_pid,
ar->ar_subj_asid,
&tid);
}
/*
* The logic inside each case fills in the tokens required for the
* event, except for the header, trailer, and return tokens. The
* header and trailer tokens are added by the kau_close() function.
* The return token is added outside of the switch statement.
*/
switch (ar->ar_event) {
case AUE_SENDFILE:
/* For sendfile the file and socket descriptor are both saved */
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(2, "sd", ar->ar_arg_value32);
kau_write(rec, tok);
}
OS_FALLTHROUGH;
case AUE_ACCEPT:
case AUE_BIND:
case AUE_LISTEN:
case AUE_CONNECT:
case AUE_RECVFROM:
case AUE_RECVMSG:
case AUE_SENDMSG:
case AUE_SENDTO:
/*
* Socket-related events.
*/
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SADDRINET)) {
tok = au_to_sock_inet((struct sockaddr_in *)
&ar->ar_arg_sockaddr);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) {
tok = au_to_sock_unix((struct sockaddr_un *)
&ar->ar_arg_sockaddr);
kau_write(rec, tok);
UPATH1_TOKENS;
}
if (ARG_IS_VALID(kar, ARG_SADDRINET6)) {
tok = au_to_sock_inet128((struct sockaddr_in6 *)
&ar->ar_arg_sockaddr);
kau_write(rec, tok);
}
break;
case AUE_SOCKET:
case AUE_SOCKETPAIR:
if (ARG_IS_VALID(kar, ARG_SOCKINFO)) {
tok = au_to_arg32(1, "domain",
au_domain_to_bsm(ar->ar_arg_sockinfo.sai_domain));
kau_write(rec, tok);
tok = au_to_arg32(2, "type",
au_socket_type_to_bsm(ar->ar_arg_sockinfo.sai_type));
kau_write(rec, tok);
tok = au_to_arg32(3, "protocol",
ar->ar_arg_sockinfo.sai_protocol);
kau_write(rec, tok);
}
break;
case AUE_SETSOCKOPT:
case AUE_SHUTDOWN:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
break;
case AUE_ACCT:
if (ARG_IS_VALID(kar, (ARG_KPATH1 | ARG_UPATH1))) {
UPATH1_VNODE1_TOKENS;
} else {
tok = au_to_arg32(1, "accounting off", 0);
kau_write(rec, tok);
}
break;
case AUE_SETAUID:
if (ARG_IS_VALID(kar, ARG_AUID)) {
tok = au_to_arg32(2, "setauid", ar->ar_arg_auid);
kau_write(rec, tok);
}
break;
case AUE_SETAUDIT:
if (ARG_IS_VALID(kar, ARG_AUID) &&
ARG_IS_VALID(kar, ARG_ASID) &&
ARG_IS_VALID(kar, ARG_AMASK) &&
ARG_IS_VALID(kar, ARG_TERMID)) {
tok = au_to_arg32(1, "setaudit:auid",
ar->ar_arg_auid);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit:port",
ar->ar_arg_termid.port);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit:machine",
ar->ar_arg_termid.machine);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit:as_success",
ar->ar_arg_amask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit:as_failure",
ar->ar_arg_amask.am_failure);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit:asid",
ar->ar_arg_asid);
kau_write(rec, tok);
}
break;
case AUE_SETAUDIT_ADDR:
if (ARG_IS_VALID(kar, ARG_AUID) &&
ARG_IS_VALID(kar, ARG_ASID) &&
ARG_IS_VALID(kar, ARG_AMASK) &&
ARG_IS_VALID(kar, ARG_TERMID_ADDR)) {
tok = au_to_arg32(1, "setaudit_addr:auid",
ar->ar_arg_auid);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit_addr:as_success",
ar->ar_arg_amask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit_addr:as_failure",
ar->ar_arg_amask.am_failure);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit_addr:asid",
ar->ar_arg_asid);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit_addr:type",
ar->ar_arg_termid_addr.at_type);
kau_write(rec, tok);
tok = au_to_arg32(1, "setaudit_addr:port",
ar->ar_arg_termid_addr.at_port);
kau_write(rec, tok);
switch (ar->ar_arg_termid_addr.at_type) {
case AU_IPv6:
tok = au_to_in_addr_ex((struct in6_addr *)
&ar->ar_arg_termid_addr.at_addr[0]);
kau_write(rec, tok);
break;
case AU_IPv4:
tok = au_to_in_addr((struct in_addr *)
&ar->ar_arg_termid_addr.at_addr[0]);
kau_write(rec, tok);
break;
}
}
break;
case AUE_AUDITON:
/*
* For AUDITON commands without own event, audit the cmd.
*/
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(1, "cmd", ar->ar_arg_cmd);
kau_write(rec, tok);
}
OS_FALLTHROUGH;
case AUE_AUDITON_GETCAR:
case AUE_AUDITON_GETCLASS:
case AUE_AUDITON_GETCOND:
case AUE_AUDITON_GETCWD:
case AUE_AUDITON_GETKMASK:
case AUE_AUDITON_GETSTAT:
case AUE_AUDITON_GPOLICY:
case AUE_AUDITON_GQCTRL:
case AUE_AUDITON_SETCLASS:
case AUE_AUDITON_SETCOND:
case AUE_AUDITON_SETKMASK:
case AUE_AUDITON_SETSMASK:
case AUE_AUDITON_SETSTAT:
case AUE_AUDITON_SETUMASK:
case AUE_AUDITON_SPOLICY:
case AUE_AUDITON_SQCTRL:
if (ARG_IS_VALID(kar, ARG_AUDITON)) {
audit_sys_auditon(ar, rec);
}
break;
case AUE_AUDITCTL:
UPATH1_VNODE1_TOKENS;
break;
case AUE_EXIT:
if (ARG_IS_VALID(kar, ARG_EXIT)) {
tok = au_to_exit(ar->ar_arg_exitretval,
ar->ar_arg_exitstatus);
kau_write(rec, tok);
}
break;
case AUE_ADJTIME:
case AUE_AUDIT:
case AUE_DUP2:
case AUE_GETAUDIT:
case AUE_GETAUDIT_ADDR:
case AUE_GETAUID:
case AUE_GETFSSTAT:
case AUE_KQUEUE:
case AUE_LSEEK:
#if 0
/* XXXss replace with kext */
case AUE_MODLOAD:
case AUE_MODUNLOAD:
#endif
case AUE_MAC_GETFSSTAT:
case AUE_PIPE:
case AUE_PROFILE:
case AUE_SEMSYS:
case AUE_SHMSYS:
case AUE_SETPGRP:
case AUE_SETRLIMIT:
case AUE_SETSID:
case AUE_SETTIMEOFDAY:
case AUE_KDEBUGTRACE:
case AUE_PTHREADSIGMASK:
/*
* Header, subject, and return tokens added at end.
*/
break;
case AUE_MKFIFO:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_ACCESS_EXTENDED:
/*
* The access_extended() argument vector is stored in an
* opaque token.
*/
if (ARG_IS_VALID(kar, ARG_OPAQUE)) {
tok = au_to_opaque(ar->ar_arg_opaque,
ar->ar_arg_opq_size);
kau_write(rec, tok);
}
/*
* The access_extended() result vector is stored in an arbitrary
* data token.
*/
if (ARG_IS_VALID(kar, ARG_DATA)) {
tok = au_to_data(AUP_DECIMAL, ar->ar_arg_data_type,
ar->ar_arg_data_count, ar->ar_arg_data);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_LSTAT_EXTENDED:
case AUE_STAT_EXTENDED:
case AUE_ACCESS:
case AUE_CHDIR:
case AUE_CHROOT:
case AUE_GETATTRLIST:
case AUE_NFS_GETFH:
case AUE_LSTAT:
case AUE_PATHCONF:
case AUE_READLINK:
case AUE_REVOKE:
case AUE_RMDIR:
case AUE_SEARCHFS:
case AUE_SETATTRLIST:
case AUE_STAT:
case AUE_STATFS:
case AUE_TRUNCATE:
case AUE_UNDELETE:
case AUE_UNLINK:
case AUE_UTIMES:
UPATH1_VNODE1_TOKENS;
break;
case AUE_FHOPEN:
break;
case AUE_CHFLAGS:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_CHMOD:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(2, "new file mode",
ar->ar_arg_mode);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_CHOWN:
case AUE_LCHOWN:
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_GID)) {
tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_EXCHANGEDATA:
UPATH1_VNODE1_TOKENS;
UPATH2_TOKENS;
break;
case AUE_CLOSE:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(2, "fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_CORE:
if (ARG_IS_VALID(kar, ARG_SIGNUM)) {
tok = au_to_arg32(0, "signal", ar->ar_arg_signum);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_POSIX_SPAWN:
if (ARG_IS_VALID(kar, ARG_PID)) {
tok = au_to_arg32(0, "child PID", ar->ar_arg_pid);
kau_write(rec, tok);
}
OS_FALLTHROUGH;
case AUE_EXECVE:
if (ARG_IS_VALID(kar, ARG_ARGV)) {
tok = au_to_exec_args(ar->ar_arg_argv,
ar->ar_arg_argc);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_ENVV)) {
tok = au_to_exec_env(ar->ar_arg_envv,
ar->ar_arg_envc);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
VNODE2_PATH_TOKENS;
if (ARG_IS_VALID(kar, ARG_DATA)) {
tok = au_to_data(AUP_HEX, ar->ar_arg_data_type,
ar->ar_arg_data_count, ar->ar_arg_data);
kau_write(rec, tok);
}
break;
case AUE_FCHMOD_EXTENDED:
EXTENDED_TOKENS(2);
FD_VNODE1_TOKENS;
break;
case AUE_FCHMOD:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(2, "new file mode",
ar->ar_arg_mode);
kau_write(rec, tok);
}
FD_VNODE1_TOKENS;
break;
case AUE_NFS_SVC:
tok = au_to_arg32(1, "request", ar->ar_arg_cmd);
kau_write(rec, tok);
if (ar->ar_valid_arg & (ARG_KPATH1 | ARG_UPATH1)) {
UPATH1_VNODE1_TOKENS;
}
break;
/*
* XXXRW: Some of these need to handle non-vnode cases as well.
*/
case AUE_FSTAT_EXTENDED:
case AUE_FCHDIR:
case AUE_FPATHCONF:
case AUE_FSTAT: /* XXX Need to handle sockets and shm */
case AUE_FSTATFS:
case AUE_FSYNC:
case AUE_FTRUNCATE:
case AUE_FUTIMES:
case AUE_GETDIRENTRIES:
case AUE_GETDIRENTRIESATTR:
case AUE_GETATTRLISTBULK:
#if 0 /* XXXss new */
case AUE_POLL:
#endif
case AUE_READ:
case AUE_READV:
case AUE_PREAD:
case AUE_PREADV:
case AUE_WRITE:
case AUE_WRITEV:
case AUE_PWRITE:
case AUE_PWRITEV:
FD_VNODE1_TOKENS;
break;
case AUE_FCHOWN:
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_GID)) {
tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid);
kau_write(rec, tok);
}
FD_VNODE1_TOKENS;
break;
case AUE_FCNTL:
if (ARG_IS_VALID(kar, ARG_CMD)) {
audit_sys_fcntl(kar, rec);
}
FD_VNODE1_TOKENS;
break;
case AUE_FSCTL:
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(4, "options", ar->ar_arg_value32);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_FFSCTL:
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(4, "options", ar->ar_arg_value32);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
kau_write(rec, tok);
}
FD_VNODE1_TOKENS;
break;
case AUE_FCHFLAGS:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
FD_VNODE1_TOKENS;
break;
case AUE_FLOCK:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "operation", ar->ar_arg_cmd);
kau_write(rec, tok);
}
FD_VNODE1_TOKENS;
break;
case AUE_FORK:
case AUE_VFORK:
if (ARG_IS_VALID(kar, ARG_PID)) {
tok = au_to_arg32(0, "child PID", ar->ar_arg_pid);
kau_write(rec, tok);
}
break;
case AUE_GETLCID:
if (ARG_IS_VALID(kar, ARG_PID)) {
tok = au_to_arg32(1, "pid", (u_int32_t)ar->ar_arg_pid);
kau_write(rec, tok);
}
break;
case AUE_SETLCID:
if (ARG_IS_VALID(kar, ARG_PID)) {
tok = au_to_arg32(1, "pid", (u_int32_t)ar->ar_arg_pid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(2, "lcid",
(u_int32_t)ar->ar_arg_value32);
kau_write(rec, tok);
}
break;
case AUE_IOCTL:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE64)) {
tok = au_to_arg64(2, "cmd", ar->ar_arg_value64);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_ADDR64)) {
tok = au_to_arg64(3, "arg", ar->ar_arg_addr);
kau_write(rec, tok);
} else if (ARG_IS_VALID(kar, ARG_ADDR32)) {
tok = au_to_arg32(3, "arg",
(u_int32_t)ar->ar_arg_addr);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VNODE1)) {
FD_VNODE1_TOKENS;
} else {
if (ARG_IS_VALID(kar, ARG_SOCKINFO)) {
tok = au_to_socket_ex(
ar->ar_arg_sockinfo.sai_domain,
ar->ar_arg_sockinfo.sai_type,
(struct sockaddr *)
&ar->ar_arg_sockinfo.sai_laddr,
(struct sockaddr *)
&ar->ar_arg_sockinfo.sai_faddr);
kau_write(rec, tok);
} else {
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "fd",
ar->ar_arg_fd);
kau_write(rec, tok);
}
}
}
break;
case AUE_KILL:
if (ARG_IS_VALID(kar, ARG_SIGNUM)) {
tok = au_to_arg32(2, "signal", ar->ar_arg_signum);
kau_write(rec, tok);
}
PROCESS_PID_TOKENS(1);
break;
case AUE_LINK:
case AUE_RENAME:
UPATH1_VNODE1_TOKENS;
UPATH2_TOKENS;
KPATH2_TOKENS;
break;
case AUE_MKDIR_EXTENDED:
case AUE_CHMOD_EXTENDED:
case AUE_MKFIFO_EXTENDED:
EXTENDED_TOKENS(2);
UPATH1_VNODE1_TOKENS;
break;
case AUE_MKDIR:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_MKNOD:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(3, "dev", ar->ar_arg_value32);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_MMAP:
case AUE_MUNMAP:
case AUE_MPROTECT:
case AUE_MLOCK:
case AUE_MUNLOCK:
case AUE_MINHERIT:
if (ARG_IS_VALID(kar, ARG_ADDR64)) {
tok = au_to_arg64(1, "addr", ar->ar_arg_addr);
kau_write(rec, tok);
} else if (ARG_IS_VALID(kar, ARG_ADDR32)) {
tok = au_to_arg32(1, "addr",
(u_int32_t)ar->ar_arg_addr);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_LEN)) {
tok = au_to_arg64(2, "len", ar->ar_arg_len);
kau_write(rec, tok);
}
if (ar->ar_event == AUE_MMAP) {
FD_VNODE1_TOKENS;
}
if (ar->ar_event == AUE_MPROTECT) {
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(3, "protection",
ar->ar_arg_value32);
kau_write(rec, tok);
}
}
if (ar->ar_event == AUE_MINHERIT) {
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(3, "inherit",
ar->ar_arg_value32);
kau_write(rec, tok);
}
}
break;
#if CONFIG_MACF
case AUE_MAC_MOUNT:
PROCESS_MAC_TOKENS;
OS_FALLTHROUGH;
#endif
case AUE_MOUNT:
/* XXX Need to handle NFS mounts */
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(3, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
OS_FALLTHROUGH;
case AUE_UMOUNT:
case AUE_UNMOUNT:
UPATH1_VNODE1_TOKENS;
break;
case AUE_FMOUNT:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(2, "dir fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(3, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
break;
case AUE_MSGCTL:
ar->ar_event = audit_msgctl_to_event(ar->ar_arg_svipc_cmd);
OS_FALLTHROUGH;
case AUE_MSGRCV:
case AUE_MSGSND:
tok = au_to_arg32(1, "msg ID", ar->ar_arg_svipc_id);
kau_write(rec, tok);
if (ar->ar_errno != EINVAL) {
tok = au_to_ipc(AT_IPC_MSG, ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
break;
case AUE_MSGGET:
if (ar->ar_errno == 0) {
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_ipc(AT_IPC_MSG,
ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
}
break;
case AUE_OPEN:
case AUE_OPEN_R:
case AUE_OPEN_RT:
case AUE_OPEN_RW:
case AUE_OPEN_RWT:
case AUE_OPEN_W:
case AUE_OPEN_WT:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_OPEN_RC:
case AUE_OPEN_RTC:
case AUE_OPEN_RWC:
case AUE_OPEN_RWTC:
case AUE_OPEN_WC:
case AUE_OPEN_WTC:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_OPEN_EXTENDED:
case AUE_OPEN_EXTENDED_R:
case AUE_OPEN_EXTENDED_RT:
case AUE_OPEN_EXTENDED_RW:
case AUE_OPEN_EXTENDED_RWT:
case AUE_OPEN_EXTENDED_W:
case AUE_OPEN_EXTENDED_WT:
EXTENDED_TOKENS(3);
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_OPEN_EXTENDED_RC:
case AUE_OPEN_EXTENDED_RTC:
case AUE_OPEN_EXTENDED_RWC:
case AUE_OPEN_EXTENDED_RWTC:
case AUE_OPEN_EXTENDED_WC:
case AUE_OPEN_EXTENDED_WTC:
EXTENDED_TOKENS(3);
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_OPENAT:
case AUE_OPENAT_R:
case AUE_OPENAT_RT:
case AUE_OPENAT_RW:
case AUE_OPENAT_RWT:
case AUE_OPENAT_W:
case AUE_OPENAT_WT:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(3, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "dir fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_OPENAT_RC:
case AUE_OPENAT_RTC:
case AUE_OPENAT_RWC:
case AUE_OPENAT_RWTC:
case AUE_OPENAT_WC:
case AUE_OPENAT_WTC:
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(4, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(3, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "dir fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_OPENBYID:
case AUE_OPENBYID_R:
case AUE_OPENBYID_RT:
case AUE_OPENBYID_RW:
case AUE_OPENBYID_RWT:
case AUE_OPENBYID_W:
case AUE_OPENBYID_WT:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(3, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(1, "volfsid", ar->ar_arg_value32);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE64)) {
tok = au_to_arg64(2, "objid", ar->ar_arg_value64);
kau_write(rec, tok);
}
break;
case AUE_RENAMEAT:
case AUE_FACCESSAT:
case AUE_FCHMODAT:
case AUE_FCHOWNAT:
case AUE_FSTATAT:
case AUE_LINKAT:
case AUE_UNLINKAT:
case AUE_READLINKAT:
case AUE_SYMLINKAT:
case AUE_MKDIRAT:
case AUE_GETATTRLISTAT:
case AUE_SETATTRLISTAT:
case AUE_MKFIFOAT:
case AUE_MKNODAT:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "dir fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_CLONEFILEAT:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "src dir fd", ar->ar_arg_fd);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
if (ARG_IS_VALID(kar, ARG_FD2)) {
tok = au_to_arg32(1, "dst dir fd", ar->ar_arg_fd2);
kau_write(rec, tok);
}
UPATH2_TOKENS;
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(1, "flags", ar->ar_arg_value32);
kau_write(rec, tok);
}
break;
case AUE_FCLONEFILEAT:
FD_VNODE1_TOKENS;
if (ARG_IS_VALID(kar, ARG_FD2)) {
tok = au_to_arg32(1, "dst dir fd", ar->ar_arg_fd2);
kau_write(rec, tok);
}
UPATH2_TOKENS;
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(1, "flags", ar->ar_arg_value32);
kau_write(rec, tok);
}
break;
case AUE_PTRACE:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(1, "request", ar->ar_arg_cmd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_ADDR64)) {
tok = au_to_arg64(3, "addr", ar->ar_arg_addr);
kau_write(rec, tok);
} else if (ARG_IS_VALID(kar, ARG_ADDR32)) {
tok = au_to_arg32(3, "addr",
(u_int32_t)ar->ar_arg_addr);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(4, "data", ar->ar_arg_value32);
kau_write(rec, tok);
}
PROCESS_PID_TOKENS(2);
break;
case AUE_QUOTACTL:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(2, "command", ar->ar_arg_cmd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(3, "uid", ar->ar_arg_uid);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_REBOOT:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(1, "howto", ar->ar_arg_cmd);
kau_write(rec, tok);
}
break;
case AUE_SEMCTL:
ar->ar_event = audit_semctl_to_event(ar->ar_arg_svipc_cmd);
OS_FALLTHROUGH;
case AUE_SEMOP:
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_arg32(1, "sem ID", ar->ar_arg_svipc_id);
kau_write(rec, tok);
if (ar->ar_errno != EINVAL) {
tok = au_to_ipc(AT_IPC_SEM,
ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
}
break;
case AUE_SEMGET:
if (ar->ar_errno == 0) {
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_ipc(AT_IPC_SEM,
ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
}
break;
case AUE_SETEGID:
if (ARG_IS_VALID(kar, ARG_EGID)) {
tok = au_to_arg32(1, "gid", ar->ar_arg_egid);
kau_write(rec, tok);
}
break;
case AUE_SETEUID:
if (ARG_IS_VALID(kar, ARG_EUID)) {
tok = au_to_arg32(1, "uid", ar->ar_arg_euid);
kau_write(rec, tok);
}
break;
case AUE_SETREGID:
if (ARG_IS_VALID(kar, ARG_RGID)) {
tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_EGID)) {
tok = au_to_arg32(2, "egid", ar->ar_arg_egid);
kau_write(rec, tok);
}
break;
case AUE_SETREUID:
if (ARG_IS_VALID(kar, ARG_RUID)) {
tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_EUID)) {
tok = au_to_arg32(2, "euid", ar->ar_arg_euid);
kau_write(rec, tok);
}
break;
case AUE_SETGID:
if (ARG_IS_VALID(kar, ARG_GID)) {
tok = au_to_arg32(1, "gid", ar->ar_arg_gid);
kau_write(rec, tok);
}
break;
case AUE_SETUID:
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(1, "uid", ar->ar_arg_uid);
kau_write(rec, tok);
}
break;
case AUE_SETGROUPS:
if (ARG_IS_VALID(kar, ARG_GROUPSET)) {
for (uctr = 0; uctr < ar->ar_arg_groups.gidset_size;
uctr++) {
tok = au_to_arg32(1, "setgroups",
ar->ar_arg_groups.gidset[uctr]);
kau_write(rec, tok);
}
}
break;
case AUE_SETLOGIN:
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
break;
case AUE_SETPRIORITY:
if (ARG_IS_VALID(kar, ARG_CMD)) {
tok = au_to_arg32(1, "which", ar->ar_arg_cmd);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_UID)) {
tok = au_to_arg32(2, "who", ar->ar_arg_uid);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(2, "priority", ar->ar_arg_value32);
kau_write(rec, tok);
}
break;
case AUE_SETPRIVEXEC:
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(1, "flag", ar->ar_arg_value32);
kau_write(rec, tok);
}
break;
/* AUE_SHMAT, AUE_SHMCTL, AUE_SHMDT and AUE_SHMGET are SysV IPC */
case AUE_SHMAT:
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id);
kau_write(rec, tok);
/* XXXAUDIT: Does having the ipc token make sense? */
tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
tok = au_to_arg64(2, "shmaddr", ar->ar_arg_svipc_addr);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
kau_write(rec, tok);
}
break;
case AUE_SHMCTL:
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id);
kau_write(rec, tok);
/* XXXAUDIT: Does having the ipc token make sense? */
tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
switch (ar->ar_arg_svipc_cmd) {
case IPC_STAT:
ar->ar_event = AUE_SHMCTL_STAT;
break;
case IPC_RMID:
ar->ar_event = AUE_SHMCTL_RMID;
break;
case IPC_SET:
ar->ar_event = AUE_SHMCTL_SET;
if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
kau_write(rec, tok);
}
break;
default:
break; /* We will audit a bad command */
}
break;
case AUE_SHMDT:
if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
tok = au_to_arg64(1, "shmaddr",
(int)(uintptr_t)ar->ar_arg_svipc_addr);
kau_write(rec, tok);
}
break;
case AUE_SHMGET:
/* This is unusual; the return value is in an argument token */
if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
tok = au_to_arg32(0, "shmid", ar->ar_arg_svipc_id);
kau_write(rec, tok);
tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
kau_write(rec, tok);
}
break;
/* AUE_SHMOPEN, AUE_SHMUNLINK, AUE_SEMOPEN, AUE_SEMCLOSE
* and AUE_SEMUNLINK are Posix IPC */
case AUE_SHMOPEN:
if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
OS_FALLTHROUGH;
case AUE_SHMUNLINK:
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) {
struct ipc_perm perm;
perm.uid = ar->ar_arg_pipc_perm.pipc_uid;
perm.gid = ar->ar_arg_pipc_perm.pipc_gid;
perm.cuid = ar->ar_arg_pipc_perm.pipc_uid;
perm.cgid = ar->ar_arg_pipc_perm.pipc_gid;
perm.mode = ar->ar_arg_pipc_perm.pipc_mode;
perm._seq = 0;
perm._key = 0;
tok = au_to_ipc_perm(&perm);
kau_write(rec, tok);
}
break;
case AUE_SEMOPEN:
if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_MODE)) {
tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(4, "value", ar->ar_arg_value32);
kau_write(rec, tok);
}
OS_FALLTHROUGH;
case AUE_SEMUNLINK:
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) {
struct ipc_perm perm;
perm.uid = ar->ar_arg_pipc_perm.pipc_uid;
perm.gid = ar->ar_arg_pipc_perm.pipc_gid;
perm.cuid = ar->ar_arg_pipc_perm.pipc_uid;
perm.cgid = ar->ar_arg_pipc_perm.pipc_gid;
perm.mode = ar->ar_arg_pipc_perm.pipc_mode;
perm._seq = 0;
perm._key = 0;
tok = au_to_ipc_perm(&perm);
kau_write(rec, tok);
}
break;
case AUE_SEMCLOSE:
if (ARG_IS_VALID(kar, ARG_FD)) {
tok = au_to_arg32(1, "sem", ar->ar_arg_fd);
kau_write(rec, tok);
}
break;
case AUE_SYMLINK:
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_SYSCTL:
case AUE_SYSCTL_NONADMIN:
if (ARG_IS_VALID(kar, ARG_CTLNAME | ARG_LEN)) {
for (ctr = 0; ctr < (int)ar->ar_arg_len; ctr++) {
tok = au_to_arg32(1, "name",
ar->ar_arg_ctlname[ctr]);
kau_write(rec, tok);
}
}
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(5, "newval", ar->ar_arg_value32);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
break;
case AUE_UMASK_EXTENDED:
/* ACL data */
if (ARG_IS_VALID(kar, ARG_OPAQUE)) {
tok = au_to_opaque(ar->ar_arg_opaque,
ar->ar_arg_opq_size);
kau_write(rec, tok);
}
OS_FALLTHROUGH;
case AUE_UMASK:
if (ARG_IS_VALID(kar, ARG_MASK)) {
tok = au_to_arg32(1, "new mask", ar->ar_arg_mask);
kau_write(rec, tok);
}
tok = au_to_arg32(0, "prev mask", ar->ar_retval);
kau_write(rec, tok);
break;
case AUE_WAIT4:
#if 0 /* XXXss - new */
case AUE_WAITID:
#endif
if (ARG_IS_VALID(kar, ARG_PID)) {
tok = au_to_arg32(0, "pid", ar->ar_arg_pid);
kau_write(rec, tok);
}
break;
case AUE_FSGETPATH_EXTENDED:
case AUE_FSGETPATH:
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(3, "volfsid", ar->ar_arg_value32);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_VALUE64)) {
tok = au_to_arg64(4, "objid", ar->ar_arg_value64);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_TEXT)) {
tok = au_to_text(ar->ar_arg_text);
kau_write(rec, tok);
}
break;
case AUE_SESSION_START:
case AUE_SESSION_UPDATE:
case AUE_SESSION_END:
case AUE_SESSION_CLOSE:
if (ARG_IS_VALID(kar, ARG_VALUE64)) {
tok = au_to_arg64(1, "sflags", ar->ar_arg_value64);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_AMASK)) {
tok = au_to_arg32(2, "am_success",
ar->ar_arg_amask.am_success);
kau_write(rec, tok);
tok = au_to_arg32(3, "am_failure",
ar->ar_arg_amask.am_failure);
kau_write(rec, tok);
}
break;
/************************
* Mach system calls *
************************/
case AUE_INITPROCESS:
break;
case AUE_PIDFORTASK:
if (ARG_IS_VALID(kar, ARG_MACHPORT1)) {
tok = au_to_arg32(1, "port",
(u_int32_t)ar->ar_arg_mach_port1);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_PID)) {
tok = au_to_arg32(2, "pid", (u_int32_t)ar->ar_arg_pid);
kau_write(rec, tok);
}
break;
case AUE_TASKFORPID:
case AUE_TASKNAMEFORPID:
if (ARG_IS_VALID(kar, ARG_MACHPORT1)) {
tok = au_to_arg32(1, "target port",
(u_int32_t)ar->ar_arg_mach_port1);
kau_write(rec, tok);
}
if (ARG_IS_VALID(kar, ARG_MACHPORT2)) {
tok = au_to_arg32(3, "task port",
(u_int32_t)ar->ar_arg_mach_port2);
kau_write(rec, tok);
}
PROCESS_PID_TOKENS(2);
break;
case AUE_SWAPON:
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(4, "priority",
(u_int32_t)ar->ar_arg_value32);
kau_write(rec, tok);
}
UPATH1_VNODE1_TOKENS;
break;
case AUE_SWAPOFF:
UPATH1_VNODE1_TOKENS;
break;
case AUE_MAPFD:
if (ARG_IS_VALID(kar, ARG_ADDR64)) {
tok = au_to_arg64(3, "va", ar->ar_arg_addr);
kau_write(rec, tok);
} else if (ARG_IS_VALID(kar, ARG_ADDR32)) {
tok = au_to_arg32(3, "va",
(u_int32_t)ar->ar_arg_addr);
kau_write(rec, tok);
}
FD_VNODE1_TOKENS;
break;
#if CONFIG_MACF
case AUE_MAC_GET_FILE:
case AUE_MAC_SET_FILE:
case AUE_MAC_GET_LINK:
case AUE_MAC_SET_LINK:
case AUE_MAC_GET_MOUNT:
UPATH1_VNODE1_TOKENS;
PROCESS_MAC_TOKENS;
break;
case AUE_MAC_GET_FD:
case AUE_MAC_SET_FD:
FD_VNODE1_TOKENS;
PROCESS_MAC_TOKENS;
break;
case AUE_MAC_SYSCALL:
PROCESS_MAC_TOKENS;
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(3, "call", ar->ar_arg_value32);
kau_write(rec, tok);
}
break;
case AUE_MAC_EXECVE:
UPATH1_VNODE1_TOKENS;
PROCESS_MAC_TOKENS;
break;
case AUE_MAC_GET_PID:
if (ARG_IS_VALID(kar, ARG_PID)) {
tok = au_to_arg32(1, "pid", (u_int32_t)ar->ar_arg_pid);
kau_write(rec, tok);
}
PROCESS_MAC_TOKENS;
break;
case AUE_MAC_GET_LCID:
if (ARG_IS_VALID(kar, ARG_VALUE32)) {
tok = au_to_arg32(1, "lcid",
(u_int32_t)ar->ar_arg_value32);
kau_write(rec, tok);
}
PROCESS_MAC_TOKENS;
break;
case AUE_MAC_GET_PROC:
case AUE_MAC_SET_PROC:
PROCESS_MAC_TOKENS;
break;
#endif
case AUE_NULL:
default:
#if DIAGNOSTIC
printf("BSM conversion requested for unknown event %d\n",
ar->ar_event);
#endif
/*
* Write the subject token so it is properly freed here.
*/
kau_write(rec, subj_tok);
kau_free(rec);
return BSM_NOAUDIT;
}
#if CONFIG_MACF
if (NULL != ar->ar_mac_records) {
/* Convert the audit data from the MAC policies */
struct mac_audit_record *mar;
LIST_FOREACH(mar, ar->ar_mac_records, records) {
switch (mar->type) {
case MAC_AUDIT_DATA_TYPE:
tok = au_to_data(AUP_BINARY, AUR_BYTE,
mar->length,
(const char *)mar->data);
break;
case MAC_AUDIT_TEXT_TYPE:
tok = au_to_text((char*) mar->data);
break;
default:
/*
* XXX: we can either continue,
* skipping this particular entry,
* or we can pre-verify the list and
* abort before writing any records
*/
printf("kaudit_to_bsm(): "
"BSM conversion requested for"
"unknown mac_audit data type %d\n",
mar->type);
}
kau_write(rec, tok);
}
}
#endif
kau_write(rec, subj_tok);
#if CONFIG_MACF
if (ar->ar_cred_mac_labels != NULL &&
strlen(ar->ar_cred_mac_labels) != 0) {
tok = au_to_text(ar->ar_cred_mac_labels);
kau_write(rec, tok);
}
#endif
tok = au_to_return32(au_errno_to_bsm(ar->ar_errno), ar->ar_retval);
kau_write(rec, tok); /* Every record gets a return token */
if (ARG_IS_VALID(kar, ARG_IDENTITY)) {
struct au_identity_info *id = &ar->ar_arg_identity;
tok = au_to_identity(id->signer_type, id->signing_id,
id->signing_id_trunc, id->team_id, id->team_id_trunc,
id->cdhash, id->cdhash_len);
kau_write(rec, tok);
}
rv = kau_close(rec, &ar->ar_endtime, ar->ar_event);
if (rv != 0) {
kau_free(rec);
return BSM_FAILURE;
}
*pau = rec;
return BSM_SUCCESS;
}
/*
* Verify that a record is a valid BSM record. Return 1 if the
* record is good, 0 otherwise.
*/
int
bsm_rec_verify(void *rec, int length, boolean_t kern_events_allowed)
{
/* Used to partially deserialize the buffer */
struct hdr_tok_partial *hdr;
struct trl_tok_partial *trl;
/* A record requires a complete header and trailer token */
if (length < (AUDIT_HEADER_SIZE + AUDIT_TRAILER_SIZE)) {
return 0;
}
hdr = (struct hdr_tok_partial*)rec;
/* Ensure the provided length matches what the record shows */
if ((uint32_t)length != ntohl(hdr->len)) {
return 0;
}
trl = (struct trl_tok_partial*)((uintptr_t)rec + (length - AUDIT_TRAILER_SIZE));
/* Ensure the buffer contains what look like header and trailer tokens */
if (((hdr->type != AUT_HEADER32) && (hdr->type != AUT_HEADER32_EX) &&
(hdr->type != AUT_HEADER64) && (hdr->type != AUT_HEADER64_EX)) ||
(trl->type != AUT_TRAILER)) {
return 0;
}
/* Ensure the header and trailer agree on the length */
if (hdr->len != trl->len) {
return 0;
}
/* Ensure the trailer token has a proper magic value */
if (ntohs(trl->magic) != AUT_TRAILER_MAGIC) {
return 0;
}
if (!kern_events_allowed && AUE_IS_A_KEVENT(ntohs(hdr->e_type))) {
return 0;
}
return 1;
}
#endif /* CONFIG_AUDIT */