1125 lines
28 KiB
C
1125 lines
28 KiB
C
/*
|
|
* Copyright (c) 2018-2021 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
#include <skywalk/os_skywalk_private.h>
|
|
|
|
#include "cuckoo_hashtable.h"
|
|
|
|
#define CUCKOO_TAG "com.apple.skywalk.libcuckoo"
|
|
SKMEM_TAG_DEFINE(cuckoo_tag, CUCKOO_TAG);
|
|
|
|
|
|
SYSCTL_NODE(_kern_skywalk, OID_AUTO, libcuckoo, CTLFLAG_RW | CTLFLAG_LOCKED,
|
|
0, "Skywalk Cuckoo Hashtable Library");
|
|
|
|
uint32_t cuckoo_verbose = 0;
|
|
#if (DEVELOPMENT || DEBUG)
|
|
SYSCTL_UINT(_kern_skywalk_libcuckoo, OID_AUTO, verbose,
|
|
CTLFLAG_RW | CTLFLAG_LOCKED, &cuckoo_verbose, 0, "");
|
|
#endif /* DEVELOPMENT || DEBUG */
|
|
|
|
typedef enum cht_verb {
|
|
CHTV_ERR = 0,
|
|
CHTV_WARN = 1,
|
|
CHTV_INFO = 2,
|
|
CHTV_DEBUG = 3,
|
|
} cht_verb_t;
|
|
|
|
static LCK_GRP_DECLARE(cht_lock_group, "CHT_LOCK");
|
|
static LCK_ATTR_DECLARE(cht_lock_attr, 0, 0);
|
|
|
|
#if SK_LOG
|
|
#define cht_log(level, _fmt, ...) \
|
|
do { \
|
|
if (level <= cuckoo_verbose) { \
|
|
kprintf("Cuckoo: thread %p %-30s " _fmt "\n", \
|
|
current_thread(), __FUNCTION__, ##__VA_ARGS__); \
|
|
} \
|
|
} while (0);
|
|
#else /* !SK_LOG */
|
|
#define cht_log(_flag, _fmt, ...) do { ((void)0); } while (0)
|
|
#endif /* !SK_LOG */
|
|
|
|
#define cht_err(_fmt, ...) cht_log(CHTV_ERR, _fmt, ##__VA_ARGS__)
|
|
#define cht_warn(_fmt, ...) cht_log(CHTV_WARN, _fmt, ##__VA_ARGS__)
|
|
#define cht_info(_fmt, ...) cht_log(CHTV_INFO, _fmt, ##__VA_ARGS__)
|
|
#define cht_debug(_fmt, ...) cht_log(CHTV_DEBUG, _fmt, ##__VA_ARGS__)
|
|
|
|
static inline int
|
|
cuckoo_node_chain(struct cuckoo_node *node,
|
|
struct cuckoo_node *new_node)
|
|
{
|
|
struct cuckoo_node *prev_node = node;
|
|
|
|
/* new node must be zero initialized */
|
|
ASSERT(new_node->next == NULL);
|
|
|
|
/* use tail insert to check for duplicate along list */
|
|
while (__improbable(node != NULL)) {
|
|
if (node == new_node) {
|
|
return EEXIST;
|
|
}
|
|
prev_node = node;
|
|
node = node->next;
|
|
}
|
|
|
|
prev_node->next = new_node;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool
|
|
cuckoo_node_del(struct cuckoo_node **pnode,
|
|
struct cuckoo_node *del_node)
|
|
{
|
|
ASSERT(pnode != NULL);
|
|
|
|
struct cuckoo_node *node = *pnode;
|
|
while (node != NULL && node != del_node) {
|
|
pnode = &node->next;
|
|
node = node->next;
|
|
}
|
|
if (__probable(node != NULL)) {
|
|
*pnode = node->next;
|
|
node->next = NULL;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void
|
|
cuckoo_node_set_next(struct cuckoo_node *node, struct cuckoo_node *next_node)
|
|
{
|
|
node->next = next_node;
|
|
}
|
|
|
|
/* We probably won't add RCU soon so use simple pointer reference for now */
|
|
static inline struct cuckoo_node *
|
|
cuckoo_node_next(struct cuckoo_node *node)
|
|
{
|
|
return node->next;
|
|
}
|
|
|
|
#define _CHT_MAX_LOAD_SHRINK 40 /* at least below 40% load to shrink */
|
|
#define _CHT_MIN_LOAD_EXPAND 85 /* cuckoo could hold 85% full table */
|
|
|
|
enum cuckoo_resize_ops {
|
|
_CHT_RESIZE_EXPAND = 0,
|
|
_CHT_RESIZE_SHRINK = 1,
|
|
};
|
|
|
|
/*
|
|
* Following classic Cuckoo hash table design, cuckoo_hashtable use k hash
|
|
* functions to derive multiple candidate hash table bucket indexes.
|
|
* Here cuckoo_hashtable use k=2.
|
|
* prim_bkt_idx = bkt_idx[1] = hash[1](key) % N_BUCKETS
|
|
* alt_bkt_idx = bkt_idx[2] = hash[2](key) % N_BUCKETS
|
|
*
|
|
* Currently, we let the caller pass in the actual key's hash value, because
|
|
* in most of the use cases, caller probably have already calculated the hash
|
|
* value of actual key (e.g. using hardware offloading or copy+hash). This also
|
|
* save us from storing the key in the table (or any side data structure). So
|
|
*
|
|
* hash[1] = hash // hash(hash value) passed in from caller
|
|
* hash[2] = __alt_hash(hash[1])
|
|
*
|
|
* __alt_hash derives h2 using h1's high bits, since calculating primary
|
|
* bucket index uses its low bits. So alt_hash is still a uniformly distributed
|
|
* random variable (but not independent of h1, but is fine for hashtable usage).
|
|
*
|
|
* There is option to store h2 in the table bucket as well but cuckoo_hashtable
|
|
* is not doing this to use less memory usage with the small price of a few
|
|
* more cpu cycles during add/del operation. Assuming that the hashtable is
|
|
* read-heavy rather than write-heavy, this is reasonable.
|
|
*
|
|
* In the rare case of full hash value collision, where
|
|
* hash[1] == hash[1]'
|
|
* , there is no way for the hash table to differentiate two objects, thus we
|
|
* need to chain the fully collided objects under the same bucket slot.
|
|
* The caller need to walk the chain to explicitly compare the full length key
|
|
* to find the correct object.
|
|
*
|
|
* Reference Counting
|
|
* The hashtable assumes all objects are reference counted. It takes function
|
|
* pointers that retain and release the object.
|
|
* Adding to the table will call its retain function.
|
|
* Deleting from the table will call its release function.
|
|
*
|
|
*/
|
|
|
|
/* hash might be zero, so always use _node == NULL to test empty slot */
|
|
struct _slot {
|
|
uint32_t _hash;
|
|
struct cuckoo_node *_node;
|
|
};
|
|
|
|
/*
|
|
* Cuckoo hashtable cache line awareness:
|
|
* - ARM platform has 128B CPU cache line.
|
|
* - Intel platform has 64B CPU cache line. However, hardware prefetcher
|
|
* treats cache lines as 128B chunk and prefetch the other 64B cache line.
|
|
*
|
|
* Thus cuckoo_hashtable use 128B as bucket size to make best use CPU cache
|
|
* resource.
|
|
*/
|
|
#define _CHT_CACHELINE_CHUNK 128
|
|
#define _CHT_SLOT_INVAL UINT8_MAX
|
|
static const uint8_t _CHT_BUCKET_SLOTS =
|
|
((_CHT_CACHELINE_CHUNK - sizeof(lck_mtx_t) - sizeof(uint8_t)) /
|
|
sizeof(struct _slot));
|
|
|
|
struct _bucket {
|
|
struct _slot _slots[_CHT_BUCKET_SLOTS];
|
|
decl_lck_mtx_data(, _lock);
|
|
uint8_t _inuse;
|
|
} __attribute__((aligned(_CHT_CACHELINE_CHUNK)));
|
|
|
|
struct cuckoo_hashtable {
|
|
uint32_t _bitmask; /* 1s' mask for quick MOD */
|
|
uint32_t _n_buckets; /* number of buckets */
|
|
|
|
volatile uint32_t _n_entries; /* number of entires in table */
|
|
uint32_t _capacity; /* max number of entires */
|
|
uint32_t _rcapacity; /* requested capacity */
|
|
|
|
bool _busy;
|
|
uint32_t _resize_waiters;
|
|
decl_lck_rw_data(, _resize_lock);
|
|
decl_lck_mtx_data(, _lock);
|
|
|
|
struct _bucket *_buckets;
|
|
|
|
int (*_obj_cmp)(struct cuckoo_node *node, void *key);
|
|
void (*_obj_retain)(struct cuckoo_node *);
|
|
void (*_obj_release)(struct cuckoo_node *);
|
|
} __attribute__((aligned(_CHT_CACHELINE_CHUNK)));
|
|
|
|
static_assert(sizeof(struct _bucket) <= _CHT_CACHELINE_CHUNK);
|
|
|
|
static inline void
|
|
__slot_set(struct _slot *slt, uint32_t hash, struct cuckoo_node *node)
|
|
{
|
|
slt->_hash = hash;
|
|
slt->_node = node;
|
|
}
|
|
|
|
static inline void
|
|
__slot_reset(struct _slot *slt)
|
|
{
|
|
slt->_hash = 0;
|
|
slt->_node = NULL;
|
|
}
|
|
|
|
static inline uint32_t
|
|
__alt_hash(uint32_t hash)
|
|
{
|
|
#define _CHT_ALT_HASH_MIX 0x5bd1e995 /* Murmur hash mix */
|
|
uint32_t tag = hash >> 16;
|
|
uint32_t alt_hash = hash ^ ((tag + 1) * _CHT_ALT_HASH_MIX);
|
|
return alt_hash;
|
|
}
|
|
|
|
static inline struct _bucket *
|
|
__get_bucket(struct cuckoo_hashtable *h, uint32_t b_i)
|
|
{
|
|
return &h->_buckets[b_i];
|
|
}
|
|
|
|
static inline struct _bucket *
|
|
__prim_bucket(struct cuckoo_hashtable *h, uint32_t hash)
|
|
{
|
|
return __get_bucket(h, hash & h->_bitmask);
|
|
}
|
|
|
|
static inline struct _bucket *
|
|
__alt_bucket(struct cuckoo_hashtable *h, uint32_t hash)
|
|
{
|
|
return __get_bucket(h, __alt_hash(hash) & h->_bitmask);
|
|
}
|
|
|
|
#if SK_LOG
|
|
static inline size_t
|
|
__bucket_idx(struct cuckoo_hashtable *h, struct _bucket *b)
|
|
{
|
|
return ((uintptr_t)b - (uintptr_t)&h->_buckets[0]) / sizeof(struct _bucket);
|
|
}
|
|
#endif /* SK_LOG */
|
|
|
|
static inline struct _slot *
|
|
__bucket_slot(struct _bucket *b, uint32_t slot_idx)
|
|
{
|
|
return &b->_slots[slot_idx];
|
|
}
|
|
|
|
static inline bool
|
|
__slot_empty(struct _slot *s)
|
|
{
|
|
return s->_node == NULL;
|
|
}
|
|
|
|
static inline uint32_t
|
|
__align32pow2(uint32_t v)
|
|
{
|
|
v--;
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v++;
|
|
|
|
return v;
|
|
}
|
|
|
|
uint32_t
|
|
cuckoo_hashtable_load_factor(struct cuckoo_hashtable *h)
|
|
{
|
|
return (100 * h->_n_entries) / (h->_n_buckets * _CHT_BUCKET_SLOTS);
|
|
}
|
|
|
|
/*
|
|
* Cuckoo hashtable uses regular mutex. Most operations(find/add) should
|
|
* finish faster than a context switch. It avoids using the spin lock since
|
|
* it might cause issues on certain platforms (e.g. x86_64) where the trap
|
|
* handler for dealing with FP/SIMD use would be invoked to perform thread-
|
|
* specific allocations; the use of FP/SIMD here is related to the memory
|
|
* compare with mask routines. Even in case of another thread holding a
|
|
* bucket lock and went asleep, cuckoo path search would try to find another
|
|
* path without blockers.
|
|
*
|
|
* The only exception is table expansion, which could take a long time, we use
|
|
* read/write lock to protect the whole table against any read/write in that
|
|
* case.
|
|
*/
|
|
|
|
/* find/add only acquires table rlock, and serialize with bucket lock */
|
|
#define __lock_bucket(b) lck_mtx_lock(&b->_lock)
|
|
#define __unlock_bucket(b) lck_mtx_unlock(&b->_lock)
|
|
|
|
#define _CHT_DEADLOCK_THRESHOLD 20
|
|
static inline bool
|
|
__lock_bucket_with_backoff(struct _bucket *b)
|
|
{
|
|
uint32_t try_counter = 0;
|
|
while (!lck_mtx_try_lock(&b->_lock)) {
|
|
if (try_counter++ > _CHT_DEADLOCK_THRESHOLD) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#define __rlock_table(h) lck_rw_lock_shared(&h->_resize_lock)
|
|
#define __unrlock_table(h) lck_rw_unlock_shared(&h->_resize_lock)
|
|
#define __r2wlock_table(h) lck_rw_lock_shared_to_exclusive(&h->_resize_lock)
|
|
#define __wlock_table(h) lck_rw_lock_exclusive(&h->_resize_lock)
|
|
#define __unwlock_table(h) lck_rw_unlock_exclusive(&h->_resize_lock)
|
|
|
|
static inline int
|
|
__resize_begin(struct cuckoo_hashtable *h)
|
|
{
|
|
// takes care of concurrent resize
|
|
lck_mtx_lock(&h->_lock);
|
|
while (h->_busy) {
|
|
if (++(h->_resize_waiters) == 0) { /* wraparound */
|
|
h->_resize_waiters++;
|
|
}
|
|
int error = msleep(&h->_resize_waiters, &h->_lock,
|
|
(PZERO + 1), __FUNCTION__, NULL);
|
|
if (error == EINTR) {
|
|
cht_warn("resize waiter was interrupted");
|
|
ASSERT(h->_resize_waiters > 0);
|
|
h->_resize_waiters--;
|
|
lck_mtx_unlock(&h->_lock);
|
|
return EINTR;
|
|
}
|
|
// resizer finished
|
|
lck_mtx_unlock(&h->_lock);
|
|
return EAGAIN;
|
|
}
|
|
|
|
h->_busy = true;
|
|
lck_mtx_unlock(&h->_lock);
|
|
|
|
// takes other readers offline
|
|
__wlock_table(h);
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
__resize_end(struct cuckoo_hashtable *h)
|
|
{
|
|
__unwlock_table(h);
|
|
lck_mtx_lock(&h->_lock);
|
|
h->_busy = false;
|
|
if (__improbable(h->_resize_waiters > 0)) {
|
|
h->_resize_waiters = 0;
|
|
wakeup(&h->_resize_waiters);
|
|
}
|
|
lck_mtx_unlock(&h->_lock);
|
|
}
|
|
|
|
struct cuckoo_hashtable *
|
|
cuckoo_hashtable_create(struct cuckoo_hashtable_params *p)
|
|
{
|
|
struct cuckoo_hashtable *h = NULL;
|
|
uint32_t n = 0;
|
|
uint32_t n_buckets = 0;
|
|
struct _bucket *buckets = NULL;
|
|
uint32_t i;
|
|
|
|
if (p->cht_capacity > CUCKOO_HASHTABLE_ENTRIES_MAX ||
|
|
p->cht_capacity < _CHT_BUCKET_SLOTS) {
|
|
return NULL;
|
|
}
|
|
|
|
ASSERT(p->cht_capacity < UINT32_MAX);
|
|
n = (uint32_t)p->cht_capacity;
|
|
h = sk_alloc_type(struct cuckoo_hashtable, Z_WAITOK | Z_NOFAIL, cuckoo_tag);
|
|
|
|
n_buckets = __align32pow2(n / _CHT_BUCKET_SLOTS);
|
|
buckets = sk_alloc_type_array(struct _bucket, n_buckets, Z_WAITOK, cuckoo_tag);
|
|
if (buckets == NULL) {
|
|
sk_free_type(struct cuckoo_hashtable, h);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < n_buckets; i++) {
|
|
lck_mtx_init(&buckets[i]._lock, &cht_lock_group, &cht_lock_attr);
|
|
}
|
|
|
|
lck_mtx_init(&h->_lock, &cht_lock_group, &cht_lock_attr);
|
|
|
|
h->_n_entries = 0;
|
|
h->_n_buckets = n_buckets;
|
|
h->_capacity = h->_rcapacity = h->_n_buckets * _CHT_BUCKET_SLOTS;
|
|
h->_bitmask = n_buckets - 1;
|
|
h->_buckets = buckets;
|
|
lck_rw_init(&h->_resize_lock, &cht_lock_group, &cht_lock_attr);
|
|
h->_busy = false;
|
|
h->_resize_waiters = 0;
|
|
|
|
ASSERT(p->cht_obj_retain != NULL);
|
|
ASSERT(p->cht_obj_release != NULL);
|
|
ASSERT(p->cht_obj_cmp != NULL);
|
|
h->_obj_cmp = p->cht_obj_cmp;
|
|
h->_obj_retain = p->cht_obj_retain;
|
|
h->_obj_release = p->cht_obj_release;
|
|
|
|
return h;
|
|
}
|
|
|
|
void
|
|
cuckoo_hashtable_free(struct cuckoo_hashtable *h)
|
|
{
|
|
uint32_t i;
|
|
|
|
if (h == NULL) {
|
|
return;
|
|
}
|
|
|
|
ASSERT(h->_n_entries == 0);
|
|
|
|
if (h->_buckets != NULL) {
|
|
for (i = 0; i < h->_n_buckets; i++) {
|
|
lck_mtx_destroy(&h->_buckets[i]._lock, &cht_lock_group);
|
|
}
|
|
sk_free_type_array(struct _bucket, h->_n_buckets, h->_buckets);
|
|
}
|
|
sk_free_type(struct cuckoo_hashtable, h);
|
|
}
|
|
|
|
size_t
|
|
cuckoo_hashtable_entries(struct cuckoo_hashtable *h)
|
|
{
|
|
return h->_n_entries;
|
|
}
|
|
|
|
size_t
|
|
cuckoo_hashtable_capacity(struct cuckoo_hashtable *h)
|
|
{
|
|
return h->_n_buckets * _CHT_BUCKET_SLOTS;
|
|
}
|
|
|
|
size_t
|
|
cuckoo_hashtable_memory_footprint(struct cuckoo_hashtable *h)
|
|
{
|
|
size_t total_meminuse = sizeof(struct cuckoo_hashtable) +
|
|
(h->_n_buckets * sizeof(struct _bucket));
|
|
return total_meminuse;
|
|
}
|
|
|
|
static inline struct cuckoo_node *
|
|
__find_in_bucket(struct cuckoo_hashtable *h, struct _bucket *b, void *key,
|
|
uint32_t hash)
|
|
{
|
|
uint32_t i;
|
|
struct cuckoo_node *node = NULL;
|
|
|
|
__lock_bucket(b);
|
|
if (b->_inuse == 0) {
|
|
goto done;
|
|
}
|
|
for (i = 0; i < _CHT_BUCKET_SLOTS; i++) {
|
|
if (b->_slots[i]._hash == hash) {
|
|
node = b->_slots[i]._node;
|
|
while (node != NULL) {
|
|
if (h->_obj_cmp(node, key) == 0) {
|
|
h->_obj_retain(node);
|
|
goto done;
|
|
}
|
|
node = cuckoo_node_next(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
__unlock_bucket(b);
|
|
return node;
|
|
}
|
|
|
|
/* will return node retained */
|
|
struct cuckoo_node *
|
|
cuckoo_hashtable_find_with_hash(struct cuckoo_hashtable *h, void *key,
|
|
uint32_t hash)
|
|
{
|
|
struct _bucket *b1, *b2;
|
|
struct cuckoo_node *node = NULL;
|
|
|
|
__rlock_table(h);
|
|
|
|
b1 = __prim_bucket(h, hash);
|
|
if ((node = __find_in_bucket(h, b1, key, hash)) != NULL) {
|
|
goto done;
|
|
}
|
|
|
|
b2 = __alt_bucket(h, hash);
|
|
if ((node = __find_in_bucket(h, b2, key, hash)) != NULL) {
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
__unrlock_table(h);
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
* To add a key into cuckoo_hashtable:
|
|
* 1. First it searches the key's two candidate buckets b1, b2
|
|
* 2. If there are slots available in b1 or b2, we place the key there
|
|
* 3. Otherwise cuckoo_hashtable will have to probe and make space
|
|
*
|
|
* To move keys around (open addressing hash table), cuckoo_hashtable needs to
|
|
* first find available slot via Cuckoo search. Here it uses bread-first-search
|
|
* to find the shorted path towards an empty bucket slot.
|
|
*
|
|
*/
|
|
static inline int
|
|
__add_to_bucket(struct cuckoo_hashtable *h, struct _bucket *b,
|
|
struct cuckoo_node *node, uint32_t hash)
|
|
{
|
|
int ret = -1;
|
|
uint8_t avail_i = _CHT_SLOT_INVAL;
|
|
|
|
__lock_bucket(b);
|
|
if (b->_inuse == _CHT_BUCKET_SLOTS) {
|
|
goto done;
|
|
}
|
|
for (uint8_t i = 0; i < _CHT_BUCKET_SLOTS; i++) {
|
|
struct _slot *s = __bucket_slot(b, i);
|
|
if (__slot_empty(s)) {
|
|
if (avail_i == _CHT_SLOT_INVAL) {
|
|
avail_i = i;
|
|
}
|
|
} else {
|
|
/* chain to existing slot with same hash */
|
|
if (__improbable(s->_hash == hash)) {
|
|
ASSERT(s->_node != NULL);
|
|
ret = cuckoo_node_chain(s->_node, node);
|
|
if (ret != 0) {
|
|
goto done;
|
|
}
|
|
cht_debug("hash %x node %p inserted [%zu][%d]",
|
|
hash, node, __bucket_idx(h, b), i);
|
|
OSAddAtomic(1, &h->_n_entries);
|
|
h->_obj_retain(node);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
if (avail_i != _CHT_SLOT_INVAL) {
|
|
h->_obj_retain(node);
|
|
b->_slots[avail_i]._hash = hash;
|
|
b->_slots[avail_i]._node = node;
|
|
b->_inuse++;
|
|
cht_debug("hash %x node %p inserted [%zu][%d]", hash, node,
|
|
__bucket_idx(h, b), avail_i);
|
|
OSAddAtomic(1, &h->_n_entries);
|
|
ret = 0;
|
|
}
|
|
done:
|
|
__unlock_bucket(b);
|
|
return ret;
|
|
}
|
|
|
|
#define _CHT_BFS_QUEUE_LEN UINT8_MAX
|
|
#define _CHT_BFS_QUEUE_END (_CHT_BFS_QUEUE_LEN - _CHT_BUCKET_SLOTS)
|
|
|
|
struct _bfs_node {
|
|
uint32_t bkt_idx;
|
|
uint8_t prev_node_idx;
|
|
uint8_t prev_slot_idx;
|
|
};
|
|
|
|
/*
|
|
* Move slots backwards on cuckoo path
|
|
*
|
|
* cuckoo_move would hold at most 2 locks at any time, moving from
|
|
* the end of cuckoo path toward the bucket where new keys should be
|
|
* stored. There could be chances of dead lock in case of multiple
|
|
* writers have overlapping cuckoo path. We could arrange the order of
|
|
* locking to avoid that but then we have to take all locks upfront,
|
|
* which is not friendly to concurrent readers. So instead, we try to
|
|
* take one by one(but still at most 2 locks holding at any time),
|
|
* with backoff in mind.
|
|
*/
|
|
static int
|
|
cuckoo_move(struct cuckoo_hashtable *h, struct cuckoo_node *node,
|
|
uint32_t hash, struct _bfs_node *queue, uint8_t leaf_node_idx,
|
|
uint8_t leaf_slot)
|
|
{
|
|
struct _bfs_node *prev_node, *curr_node;
|
|
struct _bucket *from_bkt, *to_bkt, *alt_bkt;
|
|
uint8_t from_slot, to_slot;
|
|
|
|
curr_node = &queue[leaf_node_idx];
|
|
to_bkt = __get_bucket(h, curr_node->bkt_idx);
|
|
to_slot = leaf_slot;
|
|
|
|
__lock_bucket(to_bkt);
|
|
|
|
while (__probable(curr_node->prev_node_idx != _CHT_BFS_QUEUE_LEN)) {
|
|
prev_node = &queue[curr_node->prev_node_idx];
|
|
from_bkt = __get_bucket(h, prev_node->bkt_idx);
|
|
from_slot = curr_node->prev_slot_idx;
|
|
|
|
if (!__lock_bucket_with_backoff(from_bkt)) {
|
|
/* a dead lock or a sleeping-thread holding the lock */
|
|
__unlock_bucket(to_bkt);
|
|
cht_warn("cuckoo move deadlock detected");
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Verify cuckoo path by checking:
|
|
* 1. from_bkt[from_slot]'s alternative bucket is still to_bkt
|
|
* 3. to_bkt[to_slot] is still vacant
|
|
*/
|
|
alt_bkt = __alt_bucket(h, from_bkt->_slots[from_slot]._hash);
|
|
if (alt_bkt != to_bkt ||
|
|
!__slot_empty(__bucket_slot(to_bkt, to_slot))) {
|
|
__unlock_bucket(from_bkt);
|
|
__unlock_bucket(to_bkt);
|
|
cht_warn("cuckoo move path invalid: %s %s",
|
|
alt_bkt != to_bkt ? "alt_bkt != to_bkt" : "",
|
|
!__slot_empty(__bucket_slot(to_bkt, to_slot)) ?
|
|
"!slot_empty(to_bkt, to_slot)" : "");
|
|
return EINVAL;
|
|
}
|
|
|
|
cht_log(CHTV_DEBUG, "Move [0x%lx][%d] to [0x%lx][%d]",
|
|
from_bkt - h->_buckets, from_slot, to_bkt - h->_buckets,
|
|
to_slot);
|
|
|
|
ASSERT(to_bkt->_slots[to_slot]._node == NULL);
|
|
ASSERT(to_bkt->_slots[to_slot]._hash == 0);
|
|
|
|
/* move entry backward */
|
|
to_bkt->_slots[to_slot] = from_bkt->_slots[from_slot];
|
|
to_bkt->_inuse++;
|
|
__slot_reset(&from_bkt->_slots[from_slot]);
|
|
from_bkt->_inuse--;
|
|
|
|
__unlock_bucket(to_bkt);
|
|
|
|
curr_node = prev_node;
|
|
to_bkt = from_bkt;
|
|
to_slot = from_slot;
|
|
}
|
|
|
|
ASSERT(curr_node->prev_node_idx == _CHT_BFS_QUEUE_LEN);
|
|
ASSERT(curr_node->prev_slot_idx == _CHT_SLOT_INVAL);
|
|
|
|
/* if root slot is no longer valid */
|
|
if (to_bkt->_slots[to_slot]._node != NULL) {
|
|
__unlock_bucket(to_bkt);
|
|
return EINVAL;
|
|
}
|
|
|
|
to_bkt->_inuse++;
|
|
__slot_set(&to_bkt->_slots[to_slot], hash, node);
|
|
h->_obj_retain(node);
|
|
__unlock_bucket(to_bkt);
|
|
|
|
OSAddAtomic(1, &h->_n_entries);
|
|
|
|
cht_debug("hash %x node %p inserted at [%zu][%d]", hash, node,
|
|
__bucket_idx(h, to_bkt), to_slot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cuckoo_probe(struct cuckoo_hashtable *h, struct cuckoo_node *node,
|
|
uint32_t hash)
|
|
{
|
|
struct _bfs_node queue[_CHT_BFS_QUEUE_LEN];
|
|
uint8_t head, tail;
|
|
struct _bucket *b;
|
|
uint8_t avail_i;
|
|
int ret = ENOMEM;
|
|
|
|
/* probe starts from its primary bucket */
|
|
queue[0].bkt_idx = hash & h->_bitmask;
|
|
queue[0].prev_node_idx = _CHT_BFS_QUEUE_LEN;
|
|
queue[0].prev_slot_idx = _CHT_SLOT_INVAL;
|
|
|
|
head = 0;
|
|
tail = 1;
|
|
|
|
while (__probable(tail != head && tail < _CHT_BFS_QUEUE_END)) {
|
|
b = __get_bucket(h, queue[head].bkt_idx);
|
|
avail_i = _CHT_SLOT_INVAL;
|
|
for (uint8_t i = 0; i < _CHT_BUCKET_SLOTS; i++) {
|
|
struct _slot *s = __bucket_slot(b, i);
|
|
if (__slot_empty(s)) {
|
|
if (avail_i == _CHT_SLOT_INVAL) {
|
|
avail_i = i;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Another node with same hash could have been probed
|
|
* into this bucket, chain to it.
|
|
*/
|
|
if (__improbable(s->_hash == hash)) {
|
|
ASSERT(s->_node != NULL);
|
|
ret = cuckoo_node_chain(s->_node, node);
|
|
if (ret != 0) {
|
|
goto done;
|
|
}
|
|
cht_debug("hash %x node %p inserted [%zu][%d]",
|
|
hash, node, __bucket_idx(h, b), i);
|
|
OSAddAtomic(1, &h->_n_entries);
|
|
h->_obj_retain(node);
|
|
goto done;
|
|
}
|
|
|
|
queue[tail].bkt_idx = __alt_hash(s->_hash) & h->_bitmask;
|
|
queue[tail].prev_node_idx = head;
|
|
queue[tail].prev_slot_idx = i;
|
|
tail++;
|
|
}
|
|
|
|
if (avail_i != _CHT_SLOT_INVAL) {
|
|
ret = cuckoo_move(h, node, hash, queue, head, avail_i);
|
|
if (ret == 0) {
|
|
goto done;
|
|
} else if (ret == EINVAL) {
|
|
cht_warn("cukoo path invalidated");
|
|
goto skip;
|
|
} else {
|
|
cht_err("faild: unknown err %d", ret);
|
|
goto done;
|
|
}
|
|
}
|
|
skip:
|
|
head++;
|
|
}
|
|
|
|
if (tail == head || tail >= _CHT_BFS_QUEUE_END) {
|
|
cht_warn("failed: cuckoo probe out of search space "
|
|
"head %d tail %d (%d/%d, load factor %d%%)", head, tail,
|
|
h->_n_entries, h->_capacity,
|
|
cuckoo_hashtable_load_factor(h));
|
|
ret = ENOSPC;
|
|
} else {
|
|
cht_warn("failed: cuckoo probe path invalidated "
|
|
" (%d/%d, load factor %d%%)", h->_n_entries, h->_capacity,
|
|
cuckoo_hashtable_load_factor(h));
|
|
ret = EAGAIN;
|
|
}
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
static inline void
|
|
__foreach_node(struct cuckoo_hashtable *h, bool wlocked,
|
|
void (^node_handler)(struct cuckoo_node *, uint32_t hash))
|
|
{
|
|
if (!wlocked) {
|
|
__rlock_table(h);
|
|
}
|
|
for (uint32_t i = 0; i < h->_n_buckets; i++) {
|
|
struct _bucket *b = &h->_buckets[i];
|
|
if (b->_inuse == 0) {
|
|
continue;
|
|
}
|
|
if (!wlocked) {
|
|
__lock_bucket(b);
|
|
}
|
|
for (uint32_t j = 0; j < _CHT_BUCKET_SLOTS; j++) {
|
|
struct _slot *s = __bucket_slot(b, j);
|
|
struct cuckoo_node *node = NULL, *next_node = NULL;
|
|
node = s->_node;
|
|
while (node != NULL) {
|
|
next_node = cuckoo_node_next(node);
|
|
node_handler(node, s->_hash);
|
|
node = next_node;
|
|
}
|
|
}
|
|
if (!wlocked) {
|
|
__unlock_bucket(b);
|
|
}
|
|
}
|
|
if (!wlocked) {
|
|
__unrlock_table(h);
|
|
}
|
|
}
|
|
|
|
void
|
|
cuckoo_hashtable_foreach(struct cuckoo_hashtable *h,
|
|
void (^node_handler)(struct cuckoo_node *, uint32_t hash))
|
|
{
|
|
__foreach_node(h, false, node_handler);
|
|
}
|
|
|
|
static void
|
|
cuckoo_dummy_retain(struct cuckoo_node *node)
|
|
{
|
|
#pragma unused(node)
|
|
}
|
|
|
|
static void
|
|
cuckoo_dummy_release(struct cuckoo_node *node)
|
|
{
|
|
#pragma unused(node)
|
|
}
|
|
|
|
static int
|
|
cuckoo_resize(struct cuckoo_hashtable *h, enum cuckoo_resize_ops option)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* backoff from concurrent expansion */
|
|
do {
|
|
ret = __resize_begin(h);
|
|
if (ret == EAGAIN) {
|
|
cht_info("resize done by peer");
|
|
return EAGAIN;
|
|
}
|
|
} while (ret == EINTR);
|
|
|
|
uint32_t curr_capacity = h->_n_buckets * _CHT_BUCKET_SLOTS;
|
|
uint32_t curr_load = (100 * h->_n_entries) / curr_capacity;
|
|
uint32_t curr_buckets = h->_n_buckets;
|
|
uint32_t new_capacity;
|
|
__block size_t add_called = 0;
|
|
|
|
/* check load factor to ensure we are not hitting something else */
|
|
if (option == _CHT_RESIZE_EXPAND) {
|
|
if (curr_load < _CHT_MIN_LOAD_EXPAND) {
|
|
cht_warn("Warning: early expand at %d load", curr_load);
|
|
}
|
|
new_capacity = curr_capacity * 2;
|
|
} else {
|
|
if (curr_load > _CHT_MAX_LOAD_SHRINK ||
|
|
curr_capacity == h->_rcapacity) {
|
|
goto done;
|
|
}
|
|
new_capacity = curr_capacity / 2;
|
|
}
|
|
|
|
cht_info("resize %d/(%d -> %d)", h->_n_entries,
|
|
curr_capacity, new_capacity);
|
|
|
|
struct cuckoo_hashtable_params new_p = {
|
|
.cht_capacity = new_capacity,
|
|
.cht_obj_cmp = h->_obj_cmp,
|
|
.cht_obj_retain = cuckoo_dummy_retain,
|
|
.cht_obj_release = cuckoo_dummy_release,
|
|
};
|
|
struct cuckoo_hashtable *tmp_h;
|
|
tmp_h = cuckoo_hashtable_create(&new_p);
|
|
if (tmp_h == NULL) {
|
|
ret = ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
__foreach_node(h, true, ^(struct cuckoo_node *node, uint32_t hash) {
|
|
int error = 0;
|
|
cuckoo_node_set_next(node, NULL);
|
|
error = cuckoo_hashtable_add_with_hash(tmp_h, node, hash);
|
|
ASSERT(error == 0);
|
|
add_called++;
|
|
});
|
|
|
|
if (__improbable(cuckoo_hashtable_entries(h) !=
|
|
cuckoo_hashtable_entries(tmp_h))) {
|
|
panic("h %zu add_called %zu tmp_h %zu",
|
|
cuckoo_hashtable_entries(h), add_called,
|
|
cuckoo_hashtable_entries(tmp_h));
|
|
}
|
|
|
|
for (uint32_t i = 0; i < h->_n_buckets; i++) {
|
|
lck_mtx_destroy(&h->_buckets[i]._lock, &cht_lock_group);
|
|
}
|
|
h->_n_buckets = tmp_h->_n_buckets;
|
|
h->_capacity = h->_n_buckets * _CHT_BUCKET_SLOTS;
|
|
h->_bitmask = tmp_h->_bitmask;
|
|
sk_free_type_array(struct _bucket, curr_buckets, h->_buckets);
|
|
|
|
h->_buckets = tmp_h->_buckets;
|
|
lck_rw_destroy(&tmp_h->_resize_lock, &cht_lock_group);
|
|
lck_mtx_destroy(&tmp_h->_lock, &cht_lock_group);
|
|
sk_free_type(struct cuckoo_hashtable, tmp_h);
|
|
|
|
done:
|
|
__resize_end(h);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int
|
|
cuckoo_add_no_expand(struct cuckoo_hashtable *h,
|
|
struct cuckoo_node *node, uint32_t hash)
|
|
{
|
|
struct _bucket *b1, *b2;
|
|
int ret = -1;
|
|
|
|
__rlock_table(h);
|
|
|
|
b1 = __prim_bucket(h, hash);
|
|
if ((ret = __add_to_bucket(h, b1, node, hash)) == 0) {
|
|
goto done;
|
|
}
|
|
|
|
b2 = __alt_bucket(h, hash);
|
|
if ((ret = __add_to_bucket(h, b2, node, hash)) == 0) {
|
|
goto done;
|
|
}
|
|
|
|
ret = cuckoo_probe(h, node, hash);
|
|
done:
|
|
__unrlock_table(h);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
cuckoo_hashtable_add_with_hash(struct cuckoo_hashtable *h,
|
|
struct cuckoo_node *node, uint32_t hash)
|
|
{
|
|
int ret;
|
|
|
|
/* neutralize node to avoid non-terminating tail */
|
|
ASSERT(cuckoo_node_next(node) == NULL);
|
|
|
|
ret = cuckoo_add_no_expand(h, node, hash);
|
|
if (ret == ENOSPC) {
|
|
do {
|
|
ret = cuckoo_resize(h, _CHT_RESIZE_EXPAND);
|
|
if (ret != 0 && ret != EAGAIN) {
|
|
break;
|
|
}
|
|
// this could still fail, when other threads added
|
|
// enough objs that another resize is needed
|
|
ret = cuckoo_add_no_expand(h, node, hash);
|
|
} while (ret == ENOSPC);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int
|
|
__del_from_bucket(struct cuckoo_hashtable *h, struct _bucket *b,
|
|
struct cuckoo_node *node, uint32_t hash)
|
|
{
|
|
uint32_t i;
|
|
|
|
__lock_bucket(b);
|
|
for (i = 0; i < _CHT_BUCKET_SLOTS; i++) {
|
|
if (b->_slots[i]._hash == hash) {
|
|
if (cuckoo_node_del(&b->_slots[i]._node, node)) {
|
|
h->_obj_release(node);
|
|
OSAddAtomic(-1, &h->_n_entries);
|
|
if (__slot_empty(__bucket_slot(b, i))) {
|
|
b->_slots[i]._hash = 0;
|
|
b->_inuse--;
|
|
}
|
|
__unlock_bucket(b);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
__unlock_bucket(b);
|
|
return ENOENT;
|
|
}
|
|
|
|
int
|
|
cuckoo_hashtable_del(struct cuckoo_hashtable *h,
|
|
struct cuckoo_node *node, uint32_t hash)
|
|
{
|
|
struct _bucket *b1, *b2;
|
|
int ret = -1;
|
|
|
|
__rlock_table(h);
|
|
|
|
b1 = __prim_bucket(h, hash);
|
|
if ((ret = __del_from_bucket(h, b1, node, hash)) == 0) {
|
|
goto done;
|
|
}
|
|
|
|
b2 = __alt_bucket(h, hash);
|
|
if ((ret = __del_from_bucket(h, b2, node, hash)) == 0) {
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
if (ret == 0) {
|
|
cuckoo_node_set_next(node, NULL);
|
|
}
|
|
__unrlock_table(h);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
cuckoo_hashtable_try_shrink(struct cuckoo_hashtable *h)
|
|
{
|
|
cuckoo_resize(h, _CHT_RESIZE_SHRINK);
|
|
}
|
|
|
|
#if (DEVELOPMENT || DEBUG)
|
|
|
|
static inline bool
|
|
cuckoo_node_looped(struct cuckoo_node *node)
|
|
{
|
|
struct cuckoo_node *runner = node;
|
|
|
|
if (node == NULL) {
|
|
return false;
|
|
}
|
|
|
|
while (runner->next && runner->next->next) {
|
|
runner = runner->next->next;
|
|
node = node->next;
|
|
|
|
if (runner == node) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int
|
|
cuckoo_hashtable_health_check(struct cuckoo_hashtable *h)
|
|
{
|
|
uint32_t hash;
|
|
uint32_t i, j;
|
|
struct _bucket *b;
|
|
struct cuckoo_node *node;
|
|
bool healthy = true;
|
|
uint32_t seen = 0;
|
|
|
|
__wlock_table(h);
|
|
|
|
for (i = 0; i < h->_n_buckets; i++) {
|
|
b = &h->_buckets[i];
|
|
uint8_t inuse = 0;
|
|
for (j = 0; j < _CHT_BUCKET_SLOTS; j++) {
|
|
hash = b->_slots[j]._hash;
|
|
node = b->_slots[j]._node;
|
|
if (node != NULL) {
|
|
inuse++;
|
|
}
|
|
while (node != NULL) {
|
|
seen++;
|
|
if ((__prim_bucket(h, hash) != b) &&
|
|
(__alt_bucket(h, hash) != b)) {
|
|
panic("[%d][%d] stray hash %x node %p",
|
|
i, j, hash, node);
|
|
healthy = false;
|
|
}
|
|
|
|
if (cuckoo_node_looped(node)) {
|
|
panic("[%d][%d] looped hash %x node %p",
|
|
i, j, hash, node);
|
|
healthy = false;
|
|
}
|
|
node = cuckoo_node_next(node);
|
|
}
|
|
}
|
|
ASSERT(inuse == b->_inuse);
|
|
}
|
|
|
|
if (seen != h->_n_entries) {
|
|
panic("seen %d != n_entries %d", seen, h->_n_entries);
|
|
}
|
|
|
|
__unwlock_table(h);
|
|
|
|
if (!healthy) {
|
|
cht_err("table unhealthy");
|
|
return -1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
cuckoo_hashtable_dump(struct cuckoo_hashtable *h)
|
|
{
|
|
uint32_t hash;
|
|
struct cuckoo_node *node;
|
|
uint32_t i, j;
|
|
struct _bucket *b;
|
|
|
|
cuckoo_hashtable_health_check(h);
|
|
|
|
for (i = 0; i < h->_n_buckets; i++) {
|
|
printf("%d\t", i);
|
|
b = &h->_buckets[i];
|
|
for (j = 0; j < _CHT_BUCKET_SLOTS; j++) {
|
|
hash = b->_slots[j]._hash;
|
|
node = b->_slots[j]._node;
|
|
printf("0x%08x(%p) ", hash, node);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif /* !DEVELOPMENT && !DEBUG */
|