gems-kernel/source/THIRDPARTY/xnu/bsd/sys/queue.h
2024-06-03 11:29:39 -05:00

1022 lines
47 KiB
C

/*
* Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*-
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)queue.h 8.5 (Berkeley) 8/20/94
*/
#ifndef _SYS_QUEUE_H_
#define _SYS_QUEUE_H_
#ifdef KERNEL_PRIVATE
#include <kern/debug.h> /* panic function call */
#include <sys/cdefs.h> /* __improbable in kernelspace */
#else
#ifndef __improbable
#define __improbable(x) (x) /* noop in userspace */
#endif /* __improbable */
#endif /* KERNEL_PRIVATE */
/*
* This file defines five types of data structures: singly-linked lists,
* singly-linked tail queues, lists, tail queues, and circular queues.
*
* A singly-linked list is headed by a single forward pointer. The elements
* are singly linked for minimum space and pointer manipulation overhead at
* the expense of O(n) removal for arbitrary elements. New elements can be
* added to the list after an existing element or at the head of the list.
* Elements being removed from the head of the list should use the explicit
* macro for this purpose for optimum efficiency. A singly-linked list may
* only be traversed in the forward direction. Singly-linked lists are ideal
* for applications with large datasets and few or no removals or for
* implementing a LIFO queue.
*
* A singly-linked tail queue is headed by a pair of pointers, one to the
* head of the list and the other to the tail of the list. The elements are
* singly linked for minimum space and pointer manipulation overhead at the
* expense of O(n) removal for arbitrary elements. New elements can be added
* to the list after an existing element, at the head of the list, or at the
* end of the list. Elements being removed from the head of the tail queue
* should use the explicit macro for this purpose for optimum efficiency.
* A singly-linked tail queue may only be traversed in the forward direction.
* Singly-linked tail queues are ideal for applications with large datasets
* and few or no removals or for implementing a FIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
* so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before
* or after an existing element or at the head of the list. A list
* may only be traversed in the forward direction.
*
* A tail queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or
* after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction.
*
* A circle queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the list.
* A circle queue may be traversed in either direction, but has a more
* complex end of list detection.
* Note that circle queues are deprecated, because, as the removal log
* in FreeBSD states, "CIRCLEQs are a disgrace to everything Knuth taught
* us in Volume 1 Chapter 2. [...] Use TAILQ instead, it provides the same
* functionality." Code using them will continue to compile, but they
* are no longer documented on the man page.
*
* For details on the use of these macros, see the queue(3) manual page.
*
*
* SLIST LIST STAILQ TAILQ CIRCLEQ
* _HEAD + + + + +
* _HEAD_INITIALIZER + + + + -
* _ENTRY + + + + +
* _INIT + + + + +
* _EMPTY + + + + +
* _FIRST + + + + +
* _NEXT + + + + +
* _PREV - - - + +
* _LAST - - + + +
* _FOREACH + + + + +
* _FOREACH_SAFE + + + + -
* _FOREACH_REVERSE - - - + -
* _FOREACH_REVERSE_SAFE - - - + -
* _INSERT_HEAD + + + + +
* _INSERT_BEFORE - + - + +
* _INSERT_AFTER + + + + +
* _INSERT_TAIL - - + + +
* _CONCAT - - + + -
* _REMOVE_AFTER + - + - -
* _REMOVE_HEAD + - + - -
* _REMOVE_HEAD_UNTIL - - + - -
* _REMOVE + + + + +
* _SWAP - + + + -
*
*/
#ifdef QUEUE_MACRO_DEBUG
/* Store the last 2 places the queue element or head was altered */
struct qm_trace {
char * lastfile;
int lastline;
char * prevfile;
int prevline;
};
#define TRACEBUF struct qm_trace trace;
#define TRASHIT(x) do {(x) = (void *)-1;} while (0)
#define QMD_TRACE_HEAD(head) do { \
(head)->trace.prevline = (head)->trace.lastline; \
(head)->trace.prevfile = (head)->trace.lastfile; \
(head)->trace.lastline = __LINE__; \
(head)->trace.lastfile = __FILE__; \
} while (0)
#define QMD_TRACE_ELEM(elem) do { \
(elem)->trace.prevline = (elem)->trace.lastline; \
(elem)->trace.prevfile = (elem)->trace.lastfile; \
(elem)->trace.lastline = __LINE__; \
(elem)->trace.lastfile = __FILE__; \
} while (0)
#else
#define QMD_TRACE_ELEM(elem)
#define QMD_TRACE_HEAD(head)
#define TRACEBUF
#define TRASHIT(x)
#endif /* QUEUE_MACRO_DEBUG */
/*
* Horrible macros to enable use of code that was meant to be C-specific
* (and which push struct onto type) in C++; without these, C++ code
* that uses these macros in the context of a class will blow up
* due to "struct" being preprended to "type" by the macros, causing
* inconsistent use of tags.
*
* This approach is necessary because these are macros; we have to use
* these on a per-macro basis (because the queues are implemented as
* macros, disabling this warning in the scope of the header file is
* insufficient), whuch means we can't use #pragma, and have to use
* _Pragma. We only need to use these for the queue macros that
* prepend "struct" to "type" and will cause C++ to blow up.
*/
#if defined(__clang__) && defined(__cplusplus)
#define __MISMATCH_TAGS_PUSH \
_Pragma("clang diagnostic push") \
_Pragma("clang diagnostic ignored \"-Wmismatched-tags\"")
#define __MISMATCH_TAGS_POP \
_Pragma("clang diagnostic pop")
#else
#define __MISMATCH_TAGS_PUSH
#define __MISMATCH_TAGS_POP
#endif
/*!
* Ensures that these macros can safely be used in structs when compiling with
* clang. The macros do not allow for nullability attributes to be specified due
* to how they are expanded. For example:
*
* SLIST_HEAD(, foo _Nullable) bar;
*
* expands to
*
* struct {
* struct foo _Nullable *slh_first;
* }
*
* which is not valid because the nullability specifier has to apply to the
* pointer. So just ignore nullability completeness in all the places where this
* is an issue.
*/
#if defined(__clang__)
#define __NULLABILITY_COMPLETENESS_PUSH \
_Pragma("clang diagnostic push") \
_Pragma("clang diagnostic ignored \"-Wnullability-completeness\"")
#define __NULLABILITY_COMPLETENESS_POP \
_Pragma("clang diagnostic pop")
#else
#define __NULLABILITY_COMPLETENESS_PUSH
#define __NULLABILITY_COMPLETENESS_POP
#endif
/*
* Singly-linked List declarations.
*/
#define SLIST_HEAD(name, type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
struct name { \
struct type *slh_first; /* first element */ \
} \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
#define SLIST_HEAD_INITIALIZER(head) \
{ NULL }
#define SLIST_ENTRY(type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
struct { \
struct type *sle_next; /* next element */ \
} \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
/*
* Singly-linked List functions.
*/
#define SLIST_EMPTY(head) ((head)->slh_first == NULL)
#define SLIST_FIRST(head) ((head)->slh_first)
#define SLIST_FOREACH(var, head, field) \
for ((var) = SLIST_FIRST((head)); \
(var); \
(var) = SLIST_NEXT((var), field))
#define SLIST_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = SLIST_FIRST((head)); \
(var) && ((tvar) = SLIST_NEXT((var), field), 1); \
(var) = (tvar))
#define SLIST_FOREACH_PREVPTR(var, varp, head, field) \
for ((varp) = &SLIST_FIRST((head)); \
((var) = *(varp)) != NULL; \
(varp) = &SLIST_NEXT((var), field))
#define SLIST_INIT(head) do { \
SLIST_FIRST((head)) = NULL; \
} while (0)
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field); \
SLIST_NEXT((slistelm), field) = (elm); \
} while (0)
#define SLIST_INSERT_HEAD(head, elm, field) do { \
SLIST_NEXT((elm), field) = SLIST_FIRST((head)); \
SLIST_FIRST((head)) = (elm); \
} while (0)
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
#define SLIST_REMOVE(head, elm, type, field) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
do { \
if (SLIST_FIRST((head)) == (elm)) { \
SLIST_REMOVE_HEAD((head), field); \
} \
else { \
struct type *curelm = SLIST_FIRST((head)); \
while (SLIST_NEXT(curelm, field) != (elm)) \
curelm = SLIST_NEXT(curelm, field); \
SLIST_REMOVE_AFTER(curelm, field); \
} \
TRASHIT((elm)->field.sle_next); \
} while (0) \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
#define SLIST_REMOVE_AFTER(elm, field) do { \
SLIST_NEXT(elm, field) = \
SLIST_NEXT(SLIST_NEXT(elm, field), field); \
} while (0)
#define SLIST_REMOVE_HEAD(head, field) do { \
SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field); \
} while (0)
/*
* Singly-linked Tail queue declarations.
*/
#define STAILQ_HEAD(name, type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
struct name { \
struct type *stqh_first;/* first element */ \
struct type **stqh_last;/* addr of last next element */ \
} \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
#define STAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).stqh_first }
#define STAILQ_ENTRY(type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
struct { \
struct type *stqe_next; /* next element */ \
} \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
/*
* Singly-linked Tail queue functions.
*/
#define STAILQ_CONCAT(head1, head2) do { \
if (!STAILQ_EMPTY((head2))) { \
*(head1)->stqh_last = (head2)->stqh_first; \
(head1)->stqh_last = (head2)->stqh_last; \
STAILQ_INIT((head2)); \
} \
} while (0)
#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
#define STAILQ_FIRST(head) ((head)->stqh_first)
#define STAILQ_FOREACH(var, head, field) \
for((var) = STAILQ_FIRST((head)); \
(var); \
(var) = STAILQ_NEXT((var), field))
#define STAILQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = STAILQ_FIRST((head)); \
(var) && ((tvar) = STAILQ_NEXT((var), field), 1); \
(var) = (tvar))
#define STAILQ_INIT(head) do { \
STAILQ_FIRST((head)) = NULL; \
(head)->stqh_last = &STAILQ_FIRST((head)); \
} while (0)
#define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\
(head)->stqh_last = &STAILQ_NEXT((elm), field); \
STAILQ_NEXT((tqelm), field) = (elm); \
} while (0)
#define STAILQ_INSERT_HEAD(head, elm, field) do { \
if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL) \
(head)->stqh_last = &STAILQ_NEXT((elm), field); \
STAILQ_FIRST((head)) = (elm); \
} while (0)
#define STAILQ_INSERT_TAIL(head, elm, field) do { \
STAILQ_NEXT((elm), field) = NULL; \
*(head)->stqh_last = (elm); \
(head)->stqh_last = &STAILQ_NEXT((elm), field); \
} while (0)
#define STAILQ_LAST(head, type, field) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
(STAILQ_EMPTY((head)) ? \
NULL : \
((struct type *)(void *) \
((char *)((head)->stqh_last) - __offsetof(struct type, field))))\
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
#define STAILQ_REMOVE(head, elm, type, field) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
do { \
if (STAILQ_FIRST((head)) == (elm)) { \
STAILQ_REMOVE_HEAD((head), field); \
} \
else { \
struct type *curelm = STAILQ_FIRST((head)); \
while (STAILQ_NEXT(curelm, field) != (elm)) \
curelm = STAILQ_NEXT(curelm, field); \
STAILQ_REMOVE_AFTER(head, curelm, field); \
} \
TRASHIT((elm)->field.stqe_next); \
} while (0) \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
#define STAILQ_REMOVE_HEAD(head, field) do { \
if ((STAILQ_FIRST((head)) = \
STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL) \
(head)->stqh_last = &STAILQ_FIRST((head)); \
} while (0)
#define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \
if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL) \
(head)->stqh_last = &STAILQ_FIRST((head)); \
} while (0)
#define STAILQ_REMOVE_AFTER(head, elm, field) do { \
if ((STAILQ_NEXT(elm, field) = \
STAILQ_NEXT(STAILQ_NEXT(elm, field), field)) == NULL) \
(head)->stqh_last = &STAILQ_NEXT((elm), field); \
} while (0)
#define STAILQ_SWAP(head1, head2, type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
do { \
struct type *swap_first = STAILQ_FIRST(head1); \
struct type **swap_last = (head1)->stqh_last; \
STAILQ_FIRST(head1) = STAILQ_FIRST(head2); \
(head1)->stqh_last = (head2)->stqh_last; \
STAILQ_FIRST(head2) = swap_first; \
(head2)->stqh_last = swap_last; \
if (STAILQ_EMPTY(head1)) \
(head1)->stqh_last = &STAILQ_FIRST(head1); \
if (STAILQ_EMPTY(head2)) \
(head2)->stqh_last = &STAILQ_FIRST(head2); \
} while (0) \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
/*
* List declarations.
*/
#define LIST_HEAD(name, type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
struct name { \
struct type *lh_first; /* first element */ \
} \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
#define LIST_HEAD_INITIALIZER(head) \
{ NULL }
#define LIST_ENTRY(type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
struct { \
struct type *le_next; /* next element */ \
struct type **le_prev; /* address of previous next element */ \
} \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
/*
* List functions.
*/
#ifdef KERNEL_PRIVATE
#define LIST_CHECK_HEAD(head, field) do { \
if (__improbable( \
LIST_FIRST((head)) != NULL && \
LIST_FIRST((head))->field.le_prev != \
&LIST_FIRST((head)))) \
panic("Bad list head %p first->prev != head @%u", \
(head), __LINE__); \
} while (0)
#define LIST_CHECK_NEXT(elm, field) do { \
if (__improbable( \
LIST_NEXT((elm), field) != NULL && \
LIST_NEXT((elm), field)->field.le_prev != \
&((elm)->field.le_next))) \
panic("Bad link elm %p next->prev != elm @%u", \
(elm), __LINE__); \
} while (0)
#define LIST_CHECK_PREV(elm, field) do { \
if (__improbable(*(elm)->field.le_prev != (elm))) \
panic("Bad link elm %p prev->next != elm @%u", \
(elm), __LINE__); \
} while (0)
#else
#define LIST_CHECK_HEAD(head, field)
#define LIST_CHECK_NEXT(elm, field)
#define LIST_CHECK_PREV(elm, field)
#endif /* KERNEL_PRIVATE */
#define LIST_EMPTY(head) ((head)->lh_first == NULL)
#define LIST_FIRST(head) ((head)->lh_first)
#define LIST_FOREACH(var, head, field) \
for ((var) = LIST_FIRST((head)); \
(var); \
(var) = LIST_NEXT((var), field))
#define LIST_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = LIST_FIRST((head)); \
(var) && ((tvar) = LIST_NEXT((var), field), 1); \
(var) = (tvar))
#define LIST_INIT(head) do { \
LIST_FIRST((head)) = NULL; \
} while (0)
#define LIST_INSERT_AFTER(listelm, elm, field) do { \
LIST_CHECK_NEXT(listelm, field); \
if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\
LIST_NEXT((listelm), field)->field.le_prev = \
&LIST_NEXT((elm), field); \
LIST_NEXT((listelm), field) = (elm); \
(elm)->field.le_prev = &LIST_NEXT((listelm), field); \
} while (0)
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
LIST_CHECK_PREV(listelm, field); \
(elm)->field.le_prev = (listelm)->field.le_prev; \
LIST_NEXT((elm), field) = (listelm); \
*(listelm)->field.le_prev = (elm); \
(listelm)->field.le_prev = &LIST_NEXT((elm), field); \
} while (0)
#define LIST_INSERT_HEAD(head, elm, field) do { \
LIST_CHECK_HEAD((head), field); \
if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL) \
LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\
LIST_FIRST((head)) = (elm); \
(elm)->field.le_prev = &LIST_FIRST((head)); \
} while (0)
#define LIST_NEXT(elm, field) ((elm)->field.le_next)
#define LIST_REMOVE(elm, field) do { \
LIST_CHECK_NEXT(elm, field); \
LIST_CHECK_PREV(elm, field); \
if (LIST_NEXT((elm), field) != NULL) \
LIST_NEXT((elm), field)->field.le_prev = \
(elm)->field.le_prev; \
*(elm)->field.le_prev = LIST_NEXT((elm), field); \
TRASHIT((elm)->field.le_next); \
TRASHIT((elm)->field.le_prev); \
} while (0)
#define LIST_SWAP(head1, head2, type, field) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
do { \
struct type *swap_tmp = LIST_FIRST((head1)); \
LIST_FIRST((head1)) = LIST_FIRST((head2)); \
LIST_FIRST((head2)) = swap_tmp; \
if ((swap_tmp = LIST_FIRST((head1))) != NULL) \
swap_tmp->field.le_prev = &LIST_FIRST((head1)); \
if ((swap_tmp = LIST_FIRST((head2))) != NULL) \
swap_tmp->field.le_prev = &LIST_FIRST((head2)); \
} while (0) \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
/*
* Tail queue declarations.
*/
#define TAILQ_HEAD(name, type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
struct name { \
struct type *tqh_first; /* first element */ \
struct type **tqh_last; /* addr of last next element */ \
TRACEBUF \
} \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
#define TAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).tqh_first }
#define TAILQ_ENTRY(type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
struct { \
struct type *tqe_next; /* next element */ \
struct type **tqe_prev; /* address of previous next element */ \
TRACEBUF \
} \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
/*
* Tail queue functions.
*/
#ifdef KERNEL_PRIVATE
#define TAILQ_CHECK_HEAD(head, field) do { \
if (__improbable( \
TAILQ_FIRST((head)) != NULL && \
TAILQ_FIRST((head))->field.tqe_prev != \
&TAILQ_FIRST((head)))) \
panic("Bad tailq head %p first->prev != head @%u", \
(head), __LINE__); \
} while (0)
#define TAILQ_CHECK_NEXT(elm, field) do { \
if (__improbable( \
TAILQ_NEXT((elm), field) != NULL && \
TAILQ_NEXT((elm), field)->field.tqe_prev != \
&((elm)->field.tqe_next))) \
panic("Bad tailq elm %p next->prev != elm @%u", \
(elm), __LINE__); \
} while(0)
#define TAILQ_CHECK_PREV(elm, field) do { \
if (__improbable(*(elm)->field.tqe_prev != (elm))) \
panic("Bad tailq elm %p prev->next != elm @%u", \
(elm), __LINE__); \
} while(0)
#else
#define TAILQ_CHECK_HEAD(head, field)
#define TAILQ_CHECK_NEXT(elm, field)
#define TAILQ_CHECK_PREV(elm, field)
#endif /* KERNEL_PRIVATE */
#define TAILQ_CONCAT(head1, head2, field) do { \
if (!TAILQ_EMPTY(head2)) { \
*(head1)->tqh_last = (head2)->tqh_first; \
(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
(head1)->tqh_last = (head2)->tqh_last; \
TAILQ_INIT((head2)); \
QMD_TRACE_HEAD(head1); \
QMD_TRACE_HEAD(head2); \
} \
} while (0)
#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
#define TAILQ_FIRST(head) ((head)->tqh_first)
#define TAILQ_FOREACH(var, head, field) \
for ((var) = TAILQ_FIRST((head)); \
(var); \
(var) = TAILQ_NEXT((var), field))
#define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = TAILQ_FIRST((head)); \
(var) && ((tvar) = TAILQ_NEXT((var), field), 1); \
(var) = (tvar))
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
for ((var) = TAILQ_LAST((head), headname); \
(var); \
(var) = TAILQ_PREV((var), headname, field))
#define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
for ((var) = TAILQ_LAST((head), headname); \
(var) && ((tvar) = TAILQ_PREV((var), headname, field), 1); \
(var) = (tvar))
#if XNU_KERNEL_PRIVATE
/*
* Can be used when the initialized HEAD was just bzeroed
* Works around deficiencies in clang analysis of initialization patterns.
* See: <rdar://problem/47939050>
*/
#define TAILQ_INIT_AFTER_BZERO(head) do { \
(head)->tqh_last = &TAILQ_FIRST((head)); \
} while (0)
#endif /* XNU_KERNEL_PRIVATE */
#define TAILQ_INIT(head) do { \
TAILQ_FIRST((head)) = NULL; \
(head)->tqh_last = &TAILQ_FIRST((head)); \
QMD_TRACE_HEAD(head); \
} while (0)
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
TAILQ_CHECK_NEXT(listelm, field); \
if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\
TAILQ_NEXT((elm), field)->field.tqe_prev = \
&TAILQ_NEXT((elm), field); \
else { \
(head)->tqh_last = &TAILQ_NEXT((elm), field); \
QMD_TRACE_HEAD(head); \
} \
TAILQ_NEXT((listelm), field) = (elm); \
(elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field); \
QMD_TRACE_ELEM(&(elm)->field); \
QMD_TRACE_ELEM(&listelm->field); \
} while (0)
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
TAILQ_CHECK_PREV(listelm, field); \
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
TAILQ_NEXT((elm), field) = (listelm); \
*(listelm)->field.tqe_prev = (elm); \
(listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field); \
QMD_TRACE_ELEM(&(elm)->field); \
QMD_TRACE_ELEM(&listelm->field); \
} while (0)
#define TAILQ_INSERT_HEAD(head, elm, field) do { \
TAILQ_CHECK_HEAD(head, field); \
if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL) \
TAILQ_FIRST((head))->field.tqe_prev = \
&TAILQ_NEXT((elm), field); \
else \
(head)->tqh_last = &TAILQ_NEXT((elm), field); \
TAILQ_FIRST((head)) = (elm); \
(elm)->field.tqe_prev = &TAILQ_FIRST((head)); \
QMD_TRACE_HEAD(head); \
QMD_TRACE_ELEM(&(elm)->field); \
} while (0)
#define TAILQ_INSERT_TAIL(head, elm, field) do { \
TAILQ_NEXT((elm), field) = NULL; \
(elm)->field.tqe_prev = (head)->tqh_last; \
*(head)->tqh_last = (elm); \
(head)->tqh_last = &TAILQ_NEXT((elm), field); \
QMD_TRACE_HEAD(head); \
QMD_TRACE_ELEM(&(elm)->field); \
} while (0)
#define TAILQ_LAST(head, headname) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
(*(((struct headname *)((head)->tqh_last))->tqh_last)) \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
#define TAILQ_PREV(elm, headname, field) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
#define TAILQ_REMOVE(head, elm, field) do { \
TAILQ_CHECK_NEXT(elm, field); \
TAILQ_CHECK_PREV(elm, field); \
if ((TAILQ_NEXT((elm), field)) != NULL) \
TAILQ_NEXT((elm), field)->field.tqe_prev = \
(elm)->field.tqe_prev; \
else { \
(head)->tqh_last = (elm)->field.tqe_prev; \
QMD_TRACE_HEAD(head); \
} \
*(elm)->field.tqe_prev = TAILQ_NEXT((elm), field); \
TRASHIT((elm)->field.tqe_next); \
TRASHIT((elm)->field.tqe_prev); \
QMD_TRACE_ELEM(&(elm)->field); \
} while (0)
/*
* Why did they switch to spaces for this one macro?
*/
#define TAILQ_SWAP(head1, head2, type, field) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
do { \
struct type *swap_first = (head1)->tqh_first; \
struct type **swap_last = (head1)->tqh_last; \
(head1)->tqh_first = (head2)->tqh_first; \
(head1)->tqh_last = (head2)->tqh_last; \
(head2)->tqh_first = swap_first; \
(head2)->tqh_last = swap_last; \
if ((swap_first = (head1)->tqh_first) != NULL) \
swap_first->field.tqe_prev = &(head1)->tqh_first; \
else \
(head1)->tqh_last = &(head1)->tqh_first; \
if ((swap_first = (head2)->tqh_first) != NULL) \
swap_first->field.tqe_prev = &(head2)->tqh_first; \
else \
(head2)->tqh_last = &(head2)->tqh_first; \
} while (0) \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
/*
* Circular queue definitions.
*/
#define CIRCLEQ_HEAD(name, type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
struct name { \
struct type *cqh_first; /* first element */ \
struct type *cqh_last; /* last element */ \
} \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
#define CIRCLEQ_ENTRY(type) \
__MISMATCH_TAGS_PUSH \
__NULLABILITY_COMPLETENESS_PUSH \
struct { \
struct type *cqe_next; /* next element */ \
struct type *cqe_prev; /* previous element */ \
} \
__NULLABILITY_COMPLETENESS_POP \
__MISMATCH_TAGS_POP
/*
* Circular queue functions.
*/
#ifdef KERNEL_PRIVATE
#define CIRCLEQ_CHECK_HEAD(head, field) do { \
if (__improbable( \
CIRCLEQ_FIRST((head)) != ((void*)(head)) && \
CIRCLEQ_FIRST((head))->field.cqe_prev != ((void*)(head))))\
panic("Bad circleq head %p first->prev != head @%u", \
(head), __LINE__); \
} while(0)
#define CIRCLEQ_CHECK_NEXT(head, elm, field) do { \
if (__improbable( \
CIRCLEQ_NEXT((elm), field) != ((void*)(head)) && \
CIRCLEQ_NEXT((elm), field)->field.cqe_prev != (elm))) \
panic("Bad circleq elm %p next->prev != elm @%u", \
(elm), __LINE__); \
} while(0)
#define CIRCLEQ_CHECK_PREV(head, elm, field) do { \
if (__improbable( \
CIRCLEQ_PREV((elm), field) != ((void*)(head)) && \
CIRCLEQ_PREV((elm), field)->field.cqe_next != (elm))) \
panic("Bad circleq elm %p prev->next != elm @%u", \
(elm), __LINE__); \
} while(0)
#else
#define CIRCLEQ_CHECK_HEAD(head, field)
#define CIRCLEQ_CHECK_NEXT(head, elm, field)
#define CIRCLEQ_CHECK_PREV(head, elm, field)
#endif /* KERNEL_PRIVATE */
#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
#define CIRCLEQ_FOREACH(var, head, field) \
for((var) = (head)->cqh_first; \
(var) != (void *)(head); \
(var) = (var)->field.cqe_next)
#define CIRCLEQ_INIT(head) do { \
(head)->cqh_first = (void *)(head); \
(head)->cqh_last = (void *)(head); \
} while (0)
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
CIRCLEQ_CHECK_NEXT(head, listelm, field); \
(elm)->field.cqe_next = (listelm)->field.cqe_next; \
(elm)->field.cqe_prev = (listelm); \
if ((listelm)->field.cqe_next == (void *)(head)) \
(head)->cqh_last = (elm); \
else \
(listelm)->field.cqe_next->field.cqe_prev = (elm); \
(listelm)->field.cqe_next = (elm); \
} while (0)
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
CIRCLEQ_CHECK_PREV(head, listelm, field); \
(elm)->field.cqe_next = (listelm); \
(elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
if ((listelm)->field.cqe_prev == (void *)(head)) \
(head)->cqh_first = (elm); \
else \
(listelm)->field.cqe_prev->field.cqe_next = (elm); \
(listelm)->field.cqe_prev = (elm); \
} while (0)
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
CIRCLEQ_CHECK_HEAD(head, field); \
(elm)->field.cqe_next = (head)->cqh_first; \
(elm)->field.cqe_prev = (void *)(head); \
if ((head)->cqh_last == (void *)(head)) \
(head)->cqh_last = (elm); \
else \
(head)->cqh_first->field.cqe_prev = (elm); \
(head)->cqh_first = (elm); \
} while (0)
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.cqe_next = (void *)(head); \
(elm)->field.cqe_prev = (head)->cqh_last; \
if ((head)->cqh_first == (void *)(head)) \
(head)->cqh_first = (elm); \
else \
(head)->cqh_last->field.cqe_next = (elm); \
(head)->cqh_last = (elm); \
} while (0)
#define CIRCLEQ_LAST(head) ((head)->cqh_last)
#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
#define CIRCLEQ_REMOVE(head, elm, field) do { \
CIRCLEQ_CHECK_NEXT(head, elm, field); \
CIRCLEQ_CHECK_PREV(head, elm, field); \
if ((elm)->field.cqe_next == (void *)(head)) \
(head)->cqh_last = (elm)->field.cqe_prev; \
else \
(elm)->field.cqe_next->field.cqe_prev = \
(elm)->field.cqe_prev; \
if ((elm)->field.cqe_prev == (void *)(head)) \
(head)->cqh_first = (elm)->field.cqe_next; \
else \
(elm)->field.cqe_prev->field.cqe_next = \
(elm)->field.cqe_next; \
} while (0)
#ifdef _KERNEL
#if NOTFB31
/*
* XXX insque() and remque() are an old way of handling certain queues.
* They bogusly assumes that all queue heads look alike.
*/
struct quehead {
struct quehead *qh_link;
struct quehead *qh_rlink;
};
#ifdef __GNUC__
#ifdef KERNEL_PRIVATE
static __inline void
chkquenext(void *a)
{
struct quehead *element = (struct quehead *)a;
if (__improbable(element->qh_link != NULL &&
element->qh_link->qh_rlink != element)) {
panic("Bad que elm %p next->prev != elm", a);
}
}
static __inline void
chkqueprev(void *a)
{
struct quehead *element = (struct quehead *)a;
if (__improbable(element->qh_rlink != NULL &&
element->qh_rlink->qh_link != element)) {
panic("Bad que elm %p prev->next != elm", a);
}
}
#else /* !KERNEL_PRIVATE */
#define chkquenext(a)
#define chkqueprev(a)
#endif /* KERNEL_PRIVATE */
static __inline void
insque(void *a, void *b)
{
struct quehead *element = (struct quehead *)a,
*head = (struct quehead *)b;
chkquenext(head);
element->qh_link = head->qh_link;
element->qh_rlink = head;
head->qh_link = element;
element->qh_link->qh_rlink = element;
}
static __inline void
remque(void *a)
{
struct quehead *element = (struct quehead *)a;
chkquenext(element);
chkqueprev(element);
element->qh_link->qh_rlink = element->qh_rlink;
element->qh_rlink->qh_link = element->qh_link;
element->qh_rlink = 0;
}
#else /* !__GNUC__ */
void insque(void *a, void *b);
void remque(void *a);
#endif /* __GNUC__ */
#endif /* NOTFB31 */
#endif /* _KERNEL */
#endif /* !_SYS_QUEUE_H_ */