gems-kernel/source/THIRDPARTY/xnu/bsd/vfs/vfs_cache.c
2024-06-03 11:29:39 -05:00

3557 lines
88 KiB
C

/*
* Copyright (c) 2000-2015 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*
* Copyright (c) 1989, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Poul-Henning Kamp of the FreeBSD Project.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
* @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/mount_internal.h>
#include <sys/vnode_internal.h>
#include <miscfs/specfs/specdev.h>
#include <sys/namei.h>
#include <sys/errno.h>
#include <kern/kalloc.h>
#include <sys/kauth.h>
#include <sys/user.h>
#include <sys/paths.h>
#include <os/overflow.h>
#if CONFIG_MACF
#include <security/mac_framework.h>
#endif
/*
* Name caching works as follows:
*
* Names found by directory scans are retained in a cache
* for future reference. It is managed LRU, so frequently
* used names will hang around. Cache is indexed by hash value
* obtained from (vp, name) where vp refers to the directory
* containing name.
*
* If it is a "negative" entry, (i.e. for a name that is known NOT to
* exist) the vnode pointer will be NULL.
*
* Upon reaching the last segment of a path, if the reference
* is for DELETE, or NOCACHE is set (rewrite), and the
* name is located in the cache, it will be dropped.
*/
/*
* Structures associated with name cacheing.
*/
ZONE_DEFINE_TYPE(namecache_zone, "namecache", struct namecache, ZC_NONE);
struct smrq_list_head *nchashtbl; /* Hash Table */
u_long nchashmask;
u_long nchash; /* size of hash table - 1 */
long numcache; /* number of cache entries allocated */
int desiredNodes;
int desiredNegNodes;
int ncs_negtotal;
TUNABLE_WRITEABLE(int, nc_disabled, "-novfscache", 0);
__options_decl(nc_smr_level_t, uint32_t, {
NC_SMR_DISABLED = 0,
NC_SMR_LOOKUP = 1
});
TUNABLE(nc_smr_level_t, nc_smr_enabled, "ncsmr", NC_SMR_LOOKUP);
TAILQ_HEAD(, namecache) nchead; /* chain of all name cache entries */
TAILQ_HEAD(, namecache) neghead; /* chain of only negative cache entries */
#if COLLECT_STATS
struct nchstats nchstats; /* cache effectiveness statistics */
#define NCHSTAT(v) { \
nchstats.v++; \
}
#define NAME_CACHE_LOCK_SHARED() name_cache_lock()
#define NAME_CACHE_LOCK_SHARED_TO_EXCLUSIVE() TRUE
#else
#define NCHSTAT(v)
#define NAME_CACHE_LOCK_SHARED() name_cache_lock_shared()
#define NAME_CACHE_LOCK_SHARED_TO_EXCLUSIVE() name_cache_lock_shared_to_exclusive()
#endif
#define NAME_CACHE_LOCK() name_cache_lock()
#define NAME_CACHE_UNLOCK() name_cache_unlock()
/* vars for name cache list lock */
static LCK_GRP_DECLARE(namecache_lck_grp, "Name Cache");
static LCK_RW_DECLARE(namecache_rw_lock, &namecache_lck_grp);
typedef struct string_t {
LIST_ENTRY(string_t) hash_chain;
char *str;
uint32_t strbuflen;
uint32_t refcount;
} string_t;
ZONE_DEFINE_TYPE(stringcache_zone, "vfsstringcache", string_t, ZC_NONE);
static LCK_GRP_DECLARE(strcache_lck_grp, "String Cache");
static LCK_ATTR_DECLARE(strcache_lck_attr, 0, 0);
LCK_RW_DECLARE_ATTR(strtable_rw_lock, &strcache_lck_grp, &strcache_lck_attr);
static LCK_GRP_DECLARE(rootvnode_lck_grp, "rootvnode");
LCK_RW_DECLARE(rootvnode_rw_lock, &rootvnode_lck_grp);
#define NUM_STRCACHE_LOCKS 1024
lck_mtx_t strcache_mtx_locks[NUM_STRCACHE_LOCKS];
SYSCTL_NODE(_vfs, OID_AUTO, ncstats, CTLFLAG_RD | CTLFLAG_LOCKED, NULL, "vfs name cache stats");
SYSCTL_COMPAT_INT(_vfs_ncstats, OID_AUTO, nc_smr_enabled,
CTLFLAG_RD | CTLFLAG_LOCKED,
&nc_smr_enabled, 0, "");
#if COLLECT_NC_SMR_STATS
struct ncstats {
uint64_t cl_smr_hits;
uint64_t cl_smr_miss;
uint64_t cl_smr_negative_hits;
uint64_t cl_smr_fallback;
uint64_t cl_lock_hits;
uint64_t clp_next;
uint64_t clp_next_fail;
uint64_t clp_smr_next;
uint64_t clp_smr_next_fail;
uint64_t clp_smr_fallback;
uint64_t nc_lock_shared;
uint64_t nc_lock;
} ncstats = {0};
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, cl_smr_hits,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.cl_smr_hits, "");
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, cl_smr_misses,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.cl_smr_miss, "");
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, cl_smr_negative_hits,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.cl_smr_negative_hits, "");
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, cl_smr_fallback,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.cl_smr_fallback, "");
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, cl_lock_hits,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.cl_lock_hits, "");
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, clp_next,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.clp_next, "");
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, clp_next_fail,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.clp_next_fail, "");
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, clp_smr_next,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.clp_smr_next, "");
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, clp_smr_next_fail,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.clp_smr_next_fail, "");
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, nc_lock_shared,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.nc_lock_shared, "");
SYSCTL_LONG(_vfs_ncstats, OID_AUTO, nc_lock,
CTLFLAG_RD | CTLFLAG_LOCKED,
&ncstats.nc_lock, "");
#define NC_SMR_STATS(v) os_atomic_inc(&ncstats.v, relaxed)
#else
#define NC_SMR_STATS(v)
#endif /* COLLECT_NC_SMR_STATS */
static vnode_t cache_lookup_locked(vnode_t dvp, struct componentname *cnp, uint32_t *vidp);
static vnode_t cache_lookup_smr(vnode_t dvp, struct componentname *cnp, uint32_t *vidp);
static const char *add_name_internal(const char *, uint32_t, u_int, boolean_t, u_int);
static void init_string_table(void);
static void cache_delete(struct namecache *, int);
static void cache_enter_locked(vnode_t dvp, vnode_t vp, struct componentname *cnp, const char *strname);
static void cache_purge_locked(vnode_t vp, kauth_cred_t *credp);
static void namecache_smr_free(void *, size_t);
static void string_smr_free(void *, size_t);
#ifdef DUMP_STRING_TABLE
/*
* Internal dump function used for debugging
*/
void dump_string_table(void);
#endif /* DUMP_STRING_TABLE */
static void init_crc32(void);
static unsigned int crc32tab[256];
#define NCHHASH(dvp, hash_val) \
(&nchashtbl[(dvp->v_id ^ (hash_val)) & nchashmask])
/*
* This function tries to check if a directory vp is a subdirectory of dvp
* only from valid v_parent pointers. It is called with the name cache lock
* held and does not drop the lock anytime inside the function.
*
* It returns a boolean that indicates whether or not it was able to
* successfully infer the parent/descendent relationship via the v_parent
* pointers, or if it could not infer such relationship and that the decision
* must be delegated to the owning filesystem.
*
* If it does not defer the decision, i.e. it was successfuly able to determine
* the parent/descendent relationship, *is_subdir tells the caller if vp is a
* subdirectory of dvp.
*
* If the decision is deferred, *next_vp is where it stopped i.e. *next_vp
* is the vnode whose parent is to be determined from the filesystem.
* *is_subdir, in this case, is not indicative of anything and should be
* ignored.
*
* The return value and output args should be used as follows :
*
* defer = cache_check_vnode_issubdir(vp, dvp, is_subdir, next_vp);
* if (!defer) {
* if (*is_subdir)
* vp is subdirectory;
* else
* vp is not a subdirectory;
* } else {
* if (*next_vp)
* check this vnode's parent from the filesystem
* else
* error (likely because of forced unmount).
* }
*
*/
static boolean_t
cache_check_vnode_issubdir(vnode_t vp, vnode_t dvp, boolean_t *is_subdir,
vnode_t *next_vp)
{
vnode_t tvp = vp;
int defer = FALSE;
*is_subdir = FALSE;
*next_vp = NULLVP;
while (1) {
mount_t tmp;
if (tvp == dvp) {
*is_subdir = TRUE;
break;
} else if (tvp == rootvnode) {
/* *is_subdir = FALSE */
break;
}
tmp = tvp->v_mount;
while ((tvp->v_flag & VROOT) && tmp && tmp->mnt_vnodecovered &&
tvp != dvp && tvp != rootvnode) {
tvp = tmp->mnt_vnodecovered;
tmp = tvp->v_mount;
}
/*
* If dvp is not at the top of a mount "stack" then
* vp is not a subdirectory of dvp either.
*/
if (tvp == dvp || tvp == rootvnode) {
/* *is_subdir = FALSE */
break;
}
if (!tmp) {
defer = TRUE;
*next_vp = NULLVP;
break;
}
if ((tvp->v_flag & VISHARDLINK) || !(tvp->v_parent)) {
defer = TRUE;
*next_vp = tvp;
break;
}
tvp = tvp->v_parent;
}
return defer;
}
/* maximum times retry from potentially transient errors in vnode_issubdir */
#define MAX_ERROR_RETRY 3
/*
* This function checks if a given directory (vp) is a subdirectory of dvp.
* It walks backwards from vp and if it hits dvp in its parent chain,
* it is a subdirectory. If it encounters the root directory, it is not
* a subdirectory.
*
* This function returns an error if it is unsuccessful and 0 on success.
*
* On entry (and exit) vp has an iocount and if this function has to take
* any iocounts on other vnodes in the parent chain traversal, it releases them.
*/
int
vnode_issubdir(vnode_t vp, vnode_t dvp, int *is_subdir, vfs_context_t ctx)
{
vnode_t start_vp, tvp;
vnode_t vp_with_iocount;
int error = 0;
char dotdotbuf[] = "..";
int error_retry_count = 0; /* retry count for potentially transient
* errors */
*is_subdir = FALSE;
tvp = start_vp = vp;
/*
* Anytime we acquire an iocount in this function, we save the vnode
* in this variable and release it before exiting.
*/
vp_with_iocount = NULLVP;
while (1) {
boolean_t defer;
vnode_t pvp;
uint32_t vid = 0;
struct componentname cn;
boolean_t is_subdir_locked = FALSE;
if (tvp == dvp) {
*is_subdir = TRUE;
break;
} else if (tvp == rootvnode) {
/* *is_subdir = FALSE */
break;
}
NAME_CACHE_LOCK_SHARED();
defer = cache_check_vnode_issubdir(tvp, dvp, &is_subdir_locked,
&tvp);
if (defer && tvp) {
vid = vnode_vid(tvp);
vnode_hold(tvp);
}
NAME_CACHE_UNLOCK();
if (!defer) {
*is_subdir = is_subdir_locked;
break;
}
if (!tvp) {
if (error_retry_count++ < MAX_ERROR_RETRY) {
tvp = vp;
continue;
}
error = ENOENT;
break;
}
if (tvp != start_vp) {
if (vp_with_iocount) {
vnode_put(vp_with_iocount);
vp_with_iocount = NULLVP;
}
error = vnode_getwithvid(tvp, vid);
vnode_drop(tvp);
if (error) {
if (error_retry_count++ < MAX_ERROR_RETRY) {
tvp = vp;
error = 0;
continue;
}
break;
}
vp_with_iocount = tvp;
} else {
tvp = vnode_drop(tvp);
}
bzero(&cn, sizeof(cn));
cn.cn_nameiop = LOOKUP;
cn.cn_flags = ISLASTCN | ISDOTDOT;
cn.cn_context = ctx;
cn.cn_pnbuf = &dotdotbuf[0];
cn.cn_pnlen = sizeof(dotdotbuf);
cn.cn_nameptr = cn.cn_pnbuf;
cn.cn_namelen = 2;
pvp = NULLVP;
if ((error = VNOP_LOOKUP(tvp, &pvp, &cn, ctx))) {
break;
}
if (!(tvp->v_flag & VISHARDLINK) && tvp->v_parent != pvp) {
(void)vnode_update_identity(tvp, pvp, NULL, 0, 0,
VNODE_UPDATE_PARENT);
}
if (vp_with_iocount) {
vnode_put(vp_with_iocount);
}
vp_with_iocount = tvp = pvp;
}
if (vp_with_iocount) {
vnode_put(vp_with_iocount);
}
return error;
}
/*
* This function builds the path in "buff" from the supplied vnode.
* The length of the buffer *INCLUDING* the trailing zero byte is
* returned in outlen. NOTE: the length includes the trailing zero
* byte and thus the length is one greater than what strlen would
* return. This is important and lots of code elsewhere in the kernel
* assumes this behavior.
*
* This function can call vnop in file system if the parent vnode
* does not exist or when called for hardlinks via volfs path.
* If BUILDPATH_NO_FS_ENTER is set in flags, it only uses values present
* in the name cache and does not enter the file system.
*
* If BUILDPATH_CHECK_MOVED is set in flags, we return EAGAIN when
* we encounter ENOENT during path reconstruction. ENOENT means that
* one of the parents moved while we were building the path. The
* caller can special handle this case by calling build_path again.
*
* If BUILDPATH_VOLUME_RELATIVE is set in flags, we return path
* that is relative to the nearest mount point, i.e. do not
* cross over mount points during building the path.
*
* passed in vp must have a valid io_count reference
*
* If parent vnode is non-NULL it also must have an io count. This
* allows build_path_with_parent to be safely called for operations
* unlink, rmdir and rename that already have io counts on the target
* and the directory. In this way build_path_with_parent does not have
* to try and obtain an additional io count on the parent. Taking an
* io count ont the parent can lead to dead lock if a forced unmount
* occures at the right moment. For a fuller explaination on how this
* can occur see the comment for vn_getpath_with_parent.
*
*/
int
build_path_with_parent(vnode_t first_vp, vnode_t parent_vp, char *buff, int buflen,
int *outlen, size_t *mntpt_outlen, int flags, vfs_context_t ctx)
{
vnode_t vp, tvp;
vnode_t vp_with_iocount;
vnode_t proc_root_dir_vp;
char *end;
char *mntpt_end;
const char *str;
unsigned int len;
int ret = 0;
int fixhardlink;
if (first_vp == NULLVP) {
return EINVAL;
}
if (buflen <= 1) {
return ENOSPC;
}
/*
* Grab the process fd so we can evaluate fd_rdir.
*/
if (!(flags & BUILDPATH_NO_PROCROOT)) {
proc_root_dir_vp = vfs_context_proc(ctx)->p_fd.fd_rdir;
} else {
proc_root_dir_vp = NULL;
}
vp_with_iocount = NULLVP;
again:
vp = first_vp;
end = &buff[buflen - 1];
*end = '\0';
mntpt_end = NULL;
/*
* Catch a special corner case here: chroot to /full/path/to/dir, chdir to
* it, then open it. Without this check, the path to it will be
* /full/path/to/dir instead of "/".
*/
if (proc_root_dir_vp == first_vp) {
*--end = '/';
goto out;
}
/*
* holding the NAME_CACHE_LOCK in shared mode is
* sufficient to stabilize both the vp->v_parent chain
* and the 'vp->v_mount->mnt_vnodecovered' chain
*
* if we need to drop this lock, we must first grab the v_id
* from the vnode we're currently working with... if that
* vnode doesn't already have an io_count reference (the vp
* passed in comes with one), we must grab a reference
* after we drop the NAME_CACHE_LOCK via vnode_getwithvid...
* deadlocks may result if you call vnode_get while holding
* the NAME_CACHE_LOCK... we lazily release the reference
* we pick up the next time we encounter a need to drop
* the NAME_CACHE_LOCK or before we return from this routine
*/
NAME_CACHE_LOCK_SHARED();
#if CONFIG_FIRMLINKS
if (!(flags & BUILDPATH_NO_FIRMLINK) &&
(vp->v_flag & VFMLINKTARGET) && vp->v_fmlink && (vp->v_fmlink->v_type == VDIR)) {
vp = vp->v_fmlink;
}
#endif
/*
* Check if this is the root of a file system.
*/
while (vp && vp->v_flag & VROOT) {
if (vp->v_mount == NULL) {
ret = EINVAL;
goto out_unlock;
}
if ((vp->v_mount->mnt_flag & MNT_ROOTFS) || (vp == proc_root_dir_vp)) {
/*
* It's the root of the root file system, so it's
* just "/".
*/
*--end = '/';
goto out_unlock;
} else {
/*
* This the root of the volume and the caller does not
* want to cross mount points. Therefore just return
* '/' as the relative path.
*/
#if CONFIG_FIRMLINKS
if (!(flags & BUILDPATH_NO_FIRMLINK) &&
(vp->v_flag & VFMLINKTARGET) && vp->v_fmlink && (vp->v_fmlink->v_type == VDIR)) {
vp = vp->v_fmlink;
} else
#endif
if (flags & BUILDPATH_VOLUME_RELATIVE) {
*--end = '/';
goto out_unlock;
} else {
vp = vp->v_mount->mnt_vnodecovered;
if (!mntpt_end && vp) {
mntpt_end = end;
}
}
}
}
while ((vp != NULLVP) && (vp->v_parent != vp)) {
int vid;
/*
* For hardlinks the v_name may be stale, so if its OK
* to enter a file system, ask the file system for the
* name and parent (below).
*/
fixhardlink = (vp->v_flag & VISHARDLINK) &&
(vp->v_mount->mnt_kern_flag & MNTK_PATH_FROM_ID) &&
!(flags & BUILDPATH_NO_FS_ENTER);
if (!fixhardlink) {
str = vp->v_name;
if (str == NULL || *str == '\0') {
if (vp->v_parent != NULL) {
ret = EINVAL;
} else {
ret = ENOENT;
}
goto out_unlock;
}
len = (unsigned int)strlen(str);
/*
* Check that there's enough space (including space for the '/')
*/
if ((unsigned int)(end - buff) < (len + 1)) {
ret = ENOSPC;
goto out_unlock;
}
/*
* Copy the name backwards.
*/
str += len;
for (; len > 0; len--) {
*--end = *--str;
}
/*
* Add a path separator.
*/
*--end = '/';
}
/*
* Walk up the parent chain.
*/
if (((vp->v_parent != NULLVP) && !fixhardlink) ||
(flags & BUILDPATH_NO_FS_ENTER)) {
/*
* In this if () block we are not allowed to enter the filesystem
* to conclusively get the most accurate parent identifier.
* As a result, if 'vp' does not identify '/' and it
* does not have a valid v_parent, then error out
* and disallow further path construction
*/
if ((vp->v_parent == NULLVP) && (rootvnode != vp)) {
/*
* Only '/' is allowed to have a NULL parent
* pointer. Upper level callers should ideally
* re-drive name lookup on receiving a ENOENT.
*/
ret = ENOENT;
/* The code below will exit early if 'tvp = vp' == NULL */
}
vp = vp->v_parent;
/*
* if the vnode we have in hand isn't a directory and it
* has a v_parent, then we started with the resource fork
* so skip up to avoid getting a duplicate copy of the
* file name in the path.
*/
if (vp && !vnode_isdir(vp) && vp->v_parent) {
vp = vp->v_parent;
}
} else {
/*
* No parent, go get it if supported.
*/
struct vnode_attr va;
vnode_t dvp;
/*
* Make sure file system supports obtaining a path from id.
*/
if (!(vp->v_mount->mnt_kern_flag & MNTK_PATH_FROM_ID)) {
ret = ENOENT;
goto out_unlock;
}
vid = vp->v_id;
vnode_hold(vp);
NAME_CACHE_UNLOCK();
if (vp != first_vp && vp != parent_vp && vp != vp_with_iocount) {
if (vp_with_iocount) {
vnode_put(vp_with_iocount);
vp_with_iocount = NULLVP;
}
if (vnode_getwithvid(vp, vid)) {
vnode_drop(vp);
goto again;
}
vp_with_iocount = vp;
}
vnode_drop(vp);
VATTR_INIT(&va);
VATTR_WANTED(&va, va_parentid);
if (fixhardlink) {
VATTR_WANTED(&va, va_name);
va.va_name = zalloc(ZV_NAMEI);
} else {
va.va_name = NULL;
}
/*
* Ask the file system for its parent id and for its name (optional).
*/
ret = vnode_getattr(vp, &va, ctx);
if (fixhardlink) {
if ((ret == 0) && (VATTR_IS_SUPPORTED(&va, va_name))) {
str = va.va_name;
vnode_update_identity(vp, NULL, str, (unsigned int)strlen(str), 0, VNODE_UPDATE_NAME);
} else if (vp->v_name) {
str = vp->v_name;
ret = 0;
} else {
ret = ENOENT;
goto bad_news;
}
len = (unsigned int)strlen(str);
/*
* Check that there's enough space.
*/
if ((unsigned int)(end - buff) < (len + 1)) {
ret = ENOSPC;
} else {
/* Copy the name backwards. */
str += len;
for (; len > 0; len--) {
*--end = *--str;
}
/*
* Add a path separator.
*/
*--end = '/';
}
bad_news:
zfree(ZV_NAMEI, va.va_name);
}
if (ret || !VATTR_IS_SUPPORTED(&va, va_parentid)) {
ret = ENOENT;
goto out;
}
/*
* Ask the file system for the parent vnode.
*/
if ((ret = VFS_VGET(vp->v_mount, (ino64_t)va.va_parentid, &dvp, ctx))) {
goto out;
}
if (!fixhardlink && (vp->v_parent != dvp)) {
vnode_update_identity(vp, dvp, NULL, 0, 0, VNODE_UPDATE_PARENT);
}
if (vp_with_iocount) {
vnode_put(vp_with_iocount);
}
vp = dvp;
vp_with_iocount = vp;
NAME_CACHE_LOCK_SHARED();
/*
* if the vnode we have in hand isn't a directory and it
* has a v_parent, then we started with the resource fork
* so skip up to avoid getting a duplicate copy of the
* file name in the path.
*/
if (vp && !vnode_isdir(vp) && vp->v_parent) {
vp = vp->v_parent;
}
}
if (vp && (flags & BUILDPATH_CHECKACCESS)) {
vid = vp->v_id;
vnode_hold(vp);
NAME_CACHE_UNLOCK();
if (vp != first_vp && vp != parent_vp && vp != vp_with_iocount) {
if (vp_with_iocount) {
vnode_put(vp_with_iocount);
vp_with_iocount = NULLVP;
}
if (vnode_getwithvid(vp, vid)) {
vnode_drop(vp);
goto again;
}
vp_with_iocount = vp;
}
vnode_drop(vp);
if ((ret = vnode_authorize(vp, NULL, KAUTH_VNODE_SEARCH, ctx))) {
goto out; /* no peeking */
}
NAME_CACHE_LOCK_SHARED();
}
/*
* When a mount point is crossed switch the vp.
* Continue until we find the root or we find
* a vnode that's not the root of a mounted
* file system.
*/
tvp = vp;
while (tvp) {
if (tvp == proc_root_dir_vp) {
goto out_unlock; /* encountered the root */
}
#if CONFIG_FIRMLINKS
if (!(flags & BUILDPATH_NO_FIRMLINK) &&
(tvp->v_flag & VFMLINKTARGET) && tvp->v_fmlink && (tvp->v_fmlink->v_type == VDIR)) {
tvp = tvp->v_fmlink;
break;
}
#endif
if (!(tvp->v_flag & VROOT) || !tvp->v_mount) {
break; /* not the root of a mounted FS */
}
if (flags & BUILDPATH_VOLUME_RELATIVE) {
/* Do not cross over mount points */
tvp = NULL;
} else {
tvp = tvp->v_mount->mnt_vnodecovered;
if (!mntpt_end && tvp) {
mntpt_end = end;
}
}
}
if (tvp == NULLVP) {
goto out_unlock;
}
vp = tvp;
}
out_unlock:
NAME_CACHE_UNLOCK();
out:
if (vp_with_iocount) {
vnode_put(vp_with_iocount);
}
/*
* Slide the name down to the beginning of the buffer.
*/
memmove(buff, end, &buff[buflen] - end);
/*
* length includes the trailing zero byte
*/
*outlen = (int)(&buff[buflen] - end);
if (mntpt_outlen && mntpt_end) {
*mntpt_outlen = (size_t)*outlen - (size_t)(&buff[buflen] - mntpt_end);
}
/* One of the parents was moved during path reconstruction.
* The caller is interested in knowing whether any of the
* parents moved via BUILDPATH_CHECK_MOVED, so return EAGAIN.
*/
if ((ret == ENOENT) && (flags & BUILDPATH_CHECK_MOVED)) {
ret = EAGAIN;
}
return ret;
}
int
build_path(vnode_t first_vp, char *buff, int buflen, int *outlen, int flags, vfs_context_t ctx)
{
return build_path_with_parent(first_vp, NULL, buff, buflen, outlen, NULL, flags, ctx);
}
/*
* return NULLVP if vp's parent doesn't
* exist, or we can't get a valid iocount
* else return the parent of vp
*/
vnode_t
vnode_getparent(vnode_t vp)
{
vnode_t pvp = NULLVP;
int pvid;
NAME_CACHE_LOCK_SHARED();
pvp = vp->v_parent;
/*
* v_parent is stable behind the name_cache lock
* however, the only thing we can really guarantee
* is that we've grabbed a valid iocount on the
* parent of 'vp' at the time we took the name_cache lock...
* once we drop the lock, vp could get re-parented
*/
if (pvp != NULLVP) {
pvid = pvp->v_id;
vnode_hold(pvp);
NAME_CACHE_UNLOCK();
if (vnode_getwithvid(pvp, pvid) != 0) {
vnode_drop(pvp);
pvp = NULL;
} else {
vnode_drop(pvp);
}
} else {
NAME_CACHE_UNLOCK();
}
return pvp;
}
/*
* Similar to vnode_getparent() but only returned parent vnode (with iocount
* held) if the actual parent vnode is different than the given 'pvp'.
*/
__private_extern__ vnode_t
vnode_getparent_if_different(vnode_t vp, vnode_t pvp)
{
vnode_t real_pvp = NULLVP;
int pvid;
if (vp->v_parent == pvp) {
goto out;
}
NAME_CACHE_LOCK_SHARED();
real_pvp = vp->v_parent;
if (real_pvp == NULLVP) {
NAME_CACHE_UNLOCK();
goto out;
}
/*
* Do the check again after namecache lock is acquired as the parent vnode
* could have changed.
*/
if (real_pvp != pvp) {
pvid = real_pvp->v_id;
vnode_hold(real_pvp);
NAME_CACHE_UNLOCK();
if (vnode_getwithvid(real_pvp, pvid) != 0) {
vnode_drop(real_pvp);
real_pvp = NULLVP;
} else {
vnode_drop(real_pvp);
}
} else {
real_pvp = NULLVP;
NAME_CACHE_UNLOCK();
}
out:
return real_pvp;
}
const char *
vnode_getname(vnode_t vp)
{
const char *name = NULL;
NAME_CACHE_LOCK_SHARED();
if (vp->v_name) {
name = vfs_addname(vp->v_name, (unsigned int)strlen(vp->v_name), 0, 0);
}
NAME_CACHE_UNLOCK();
return name;
}
void
vnode_putname(const char *name)
{
vfs_removename(name);
}
static const char unknown_vnodename[] = "(unknown vnode name)";
const char *
vnode_getname_printable(vnode_t vp)
{
const char *name = vnode_getname(vp);
if (name != NULL) {
return name;
}
switch (vp->v_type) {
case VCHR:
case VBLK:
{
/*
* Create an artificial dev name from
* major and minor device number
*/
char dev_name[64];
(void) snprintf(dev_name, sizeof(dev_name),
"%c(%u, %u)", VCHR == vp->v_type ? 'c':'b',
major(vp->v_rdev), minor(vp->v_rdev));
/*
* Add the newly created dev name to the name
* cache to allow easier cleanup. Also,
* vfs_addname allocates memory for the new name
* and returns it.
*/
NAME_CACHE_LOCK_SHARED();
name = vfs_addname(dev_name, (unsigned int)strlen(dev_name), 0, 0);
NAME_CACHE_UNLOCK();
return name;
}
default:
return unknown_vnodename;
}
}
void
vnode_putname_printable(const char *name)
{
if (name == unknown_vnodename) {
return;
}
vnode_putname(name);
}
/*
* if VNODE_UPDATE_PARENT, and we can take
* a reference on dvp, then update vp with
* it's new parent... if vp already has a parent,
* then drop the reference vp held on it
*
* if VNODE_UPDATE_NAME,
* then drop string ref on v_name if it exists, and if name is non-NULL
* then pick up a string reference on name and record it in v_name...
* optionally pass in the length and hashval of name if known
*
* if VNODE_UPDATE_CACHE, flush the name cache entries associated with vp
*/
void
vnode_update_identity(vnode_t vp, vnode_t dvp, const char *name, int name_len, uint32_t name_hashval, int flags)
{
struct namecache *ncp;
vnode_t old_parentvp = NULLVP;
int isstream = (vp->v_flag & VISNAMEDSTREAM);
int kusecountbumped = 0;
kauth_cred_t tcred = NULL;
const char *vname = NULL;
const char *tname = NULL;
if (name_len < 0) {
return;
}
if (flags & VNODE_UPDATE_PARENT) {
if (dvp && vnode_ref(dvp) != 0) {
dvp = NULLVP;
}
/* Don't count a stream's parent ref during unmounts */
if (isstream && dvp && (dvp != vp) && (dvp != vp->v_parent) && (dvp->v_type == VREG)) {
vnode_lock_spin(dvp);
++dvp->v_kusecount;
kusecountbumped = 1;
vnode_unlock(dvp);
}
} else {
dvp = NULLVP;
}
if ((flags & VNODE_UPDATE_NAME)) {
if (name != vp->v_name) {
if (name && *name) {
if (name_len == 0) {
name_len = (int)strlen(name);
}
tname = vfs_addname(name, name_len, name_hashval, 0);
}
} else {
flags &= ~VNODE_UPDATE_NAME;
}
}
if ((flags & (VNODE_UPDATE_PURGE | VNODE_UPDATE_PARENT | VNODE_UPDATE_CACHE | VNODE_UPDATE_NAME | VNODE_UPDATE_PURGEFIRMLINK))) {
NAME_CACHE_LOCK();
#if CONFIG_FIRMLINKS
if (flags & VNODE_UPDATE_PURGEFIRMLINK) {
vnode_t old_fvp = vp->v_fmlink;
if (old_fvp) {
vnode_lock_spin(vp);
vp->v_flag &= ~VFMLINKTARGET;
vp->v_fmlink = NULLVP;
vnode_unlock(vp);
NAME_CACHE_UNLOCK();
/*
* vnode_rele can result in cascading series of
* usecount releases. The combination of calling
* vnode_recycle and dont_reenter (3rd arg to
* vnode_rele_internal) ensures we don't have
* that issue.
*/
vnode_recycle(old_fvp);
vnode_rele_internal(old_fvp, O_EVTONLY, 1, 0);
NAME_CACHE_LOCK();
}
}
#endif
if ((flags & VNODE_UPDATE_PURGE)) {
if (vp->v_parent) {
vp->v_parent->v_nc_generation++;
}
while ((ncp = LIST_FIRST(&vp->v_nclinks))) {
cache_delete(ncp, 1);
}
while ((ncp = TAILQ_FIRST(&vp->v_ncchildren))) {
cache_delete(ncp, 1);
}
/*
* Use a temp variable to avoid kauth_cred_drop() while NAME_CACHE_LOCK is held
*/
tcred = vnode_cred(vp);
vp->v_cred = NOCRED;
vp->v_authorized_actions = 0;
vp->v_cred_timestamp = 0;
}
if ((flags & VNODE_UPDATE_NAME)) {
vname = vp->v_name;
vp->v_name = tname;
}
if (flags & VNODE_UPDATE_PARENT) {
if (dvp != vp && dvp != vp->v_parent) {
old_parentvp = vp->v_parent;
vp->v_parent = dvp;
dvp = NULLVP;
if (old_parentvp) {
flags |= VNODE_UPDATE_CACHE;
}
}
}
if (flags & VNODE_UPDATE_CACHE) {
while ((ncp = LIST_FIRST(&vp->v_nclinks))) {
cache_delete(ncp, 1);
}
}
NAME_CACHE_UNLOCK();
if (vname != NULL) {
vfs_removename(vname);
}
if (IS_VALID_CRED(tcred)) {
kauth_cred_unref(&tcred);
}
}
if (dvp != NULLVP) {
/* Back-out the ref we took if we lost a race for vp->v_parent. */
if (kusecountbumped) {
vnode_lock_spin(dvp);
if (dvp->v_kusecount > 0) {
--dvp->v_kusecount;
}
vnode_unlock(dvp);
}
vnode_rele(dvp);
}
if (old_parentvp) {
struct uthread *ut;
vnode_t vreclaims = NULLVP;
if (isstream) {
vnode_lock_spin(old_parentvp);
if ((old_parentvp->v_type != VDIR) && (old_parentvp->v_kusecount > 0)) {
--old_parentvp->v_kusecount;
}
vnode_unlock(old_parentvp);
}
ut = current_uthread();
/*
* indicated to vnode_rele that it shouldn't do a
* vnode_reclaim at this time... instead it will
* chain the vnode to the uu_vreclaims list...
* we'll be responsible for calling vnode_reclaim
* on each of the vnodes in this list...
*/
ut->uu_defer_reclaims = 1;
ut->uu_vreclaims = NULLVP;
while ((vp = old_parentvp) != NULLVP) {
vnode_hold(vp);
vnode_lock_spin(vp);
vnode_rele_internal(vp, 0, 0, 1);
/*
* check to see if the vnode is now in the state
* that would have triggered a vnode_reclaim in vnode_rele
* if it is, we save it's parent pointer and then NULL
* out the v_parent field... we'll drop the reference
* that was held on the next iteration of this loop...
* this short circuits a potential deep recursion if we
* have a long chain of parents in this state...
* we'll sit in this loop until we run into
* a parent in this chain that is not in this state
*
* make our check and the vnode_rele atomic
* with respect to the current vnode we're working on
* by holding the vnode lock
* if vnode_rele deferred the vnode_reclaim and has put
* this vnode on the list to be reaped by us, than
* it has left this vnode with an iocount == 1
*/
if (ut->uu_vreclaims == vp) {
/*
* This vnode is on the head of the uu_vreclaims chain
* which means vnode_rele wanted to do a vnode_reclaim
* on this vnode. Pull the parent pointer now so that when we do the
* vnode_reclaim for each of the vnodes in the uu_vreclaims
* list, we won't recurse back through here
*
* need to do a convert here in case vnode_rele_internal
* returns with the lock held in the spin mode... it
* can drop and retake the lock under certain circumstances
*/
vnode_lock_convert(vp);
NAME_CACHE_LOCK();
old_parentvp = vp->v_parent;
vp->v_parent = NULLVP;
NAME_CACHE_UNLOCK();
} else {
/*
* we're done... we ran into a vnode that isn't
* being terminated
*/
old_parentvp = NULLVP;
}
vnode_drop_and_unlock(vp);
}
vreclaims = ut->uu_vreclaims;
ut->uu_vreclaims = NULLVP;
ut->uu_defer_reclaims = 0;
while ((vp = vreclaims) != NULLVP) {
vreclaims = vp->v_defer_reclaimlist;
/*
* vnode_put will drive the vnode_reclaim if
* we are still the only reference on this vnode
*/
vnode_put(vp);
}
}
}
#if CONFIG_FIRMLINKS
errno_t
vnode_setasfirmlink(vnode_t vp, vnode_t target_vp)
{
int error = 0;
vnode_t old_target_vp = NULLVP;
vnode_t old_target_vp_v_fmlink = NULLVP;
kauth_cred_t target_vp_cred = NULL;
kauth_cred_t old_target_vp_cred = NULL;
if (!vp) {
return EINVAL;
}
if (target_vp) {
if (vp->v_fmlink == target_vp) { /* Will be checked again under the name cache lock */
return 0;
}
/*
* Firmlink source and target will take both a usecount
* and kusecount on each other.
*/
if ((error = vnode_ref_ext(target_vp, O_EVTONLY, VNODE_REF_FORCE))) {
return error;
}
if ((error = vnode_ref_ext(vp, O_EVTONLY, VNODE_REF_FORCE))) {
vnode_rele_ext(target_vp, O_EVTONLY, 1);
return error;
}
}
NAME_CACHE_LOCK();
old_target_vp = vp->v_fmlink;
if (target_vp && (target_vp == old_target_vp)) {
NAME_CACHE_UNLOCK();
return 0;
}
vp->v_fmlink = target_vp;
vnode_lock_spin(vp);
vp->v_flag &= ~VFMLINKTARGET;
vnode_unlock(vp);
if (target_vp) {
target_vp->v_fmlink = vp;
vnode_lock_spin(target_vp);
target_vp->v_flag |= VFMLINKTARGET;
vnode_unlock(target_vp);
cache_purge_locked(vp, &target_vp_cred);
}
if (old_target_vp) {
old_target_vp_v_fmlink = old_target_vp->v_fmlink;
old_target_vp->v_fmlink = NULLVP;
vnode_lock_spin(old_target_vp);
old_target_vp->v_flag &= ~VFMLINKTARGET;
vnode_unlock(old_target_vp);
cache_purge_locked(vp, &old_target_vp_cred);
}
NAME_CACHE_UNLOCK();
if (IS_VALID_CRED(target_vp_cred)) {
kauth_cred_unref(&target_vp_cred);
}
if (old_target_vp) {
if (IS_VALID_CRED(old_target_vp_cred)) {
kauth_cred_unref(&old_target_vp_cred);
}
vnode_rele_ext(old_target_vp, O_EVTONLY, 1);
if (old_target_vp_v_fmlink) {
vnode_rele_ext(old_target_vp_v_fmlink, O_EVTONLY, 1);
}
}
return 0;
}
errno_t
vnode_getfirmlink(vnode_t vp, vnode_t *target_vp)
{
int error;
if (!vp->v_fmlink) {
return ENODEV;
}
NAME_CACHE_LOCK_SHARED();
if (vp->v_fmlink && !(vp->v_flag & VFMLINKTARGET) &&
(vnode_get(vp->v_fmlink) == 0)) {
vnode_t tvp = vp->v_fmlink;
vnode_lock_spin(tvp);
if (tvp->v_lflag & (VL_TERMINATE | VL_DEAD)) {
vnode_unlock(tvp);
NAME_CACHE_UNLOCK();
vnode_put(tvp);
return ENOENT;
}
if (!(tvp->v_flag & VFMLINKTARGET)) {
panic("firmlink target for vnode %p does not have flag set", vp);
}
vnode_unlock(tvp);
*target_vp = tvp;
error = 0;
} else {
*target_vp = NULLVP;
error = ENODEV;
}
NAME_CACHE_UNLOCK();
return error;
}
#else /* CONFIG_FIRMLINKS */
errno_t
vnode_setasfirmlink(__unused vnode_t vp, __unused vnode_t src_vp)
{
return ENOTSUP;
}
errno_t
vnode_getfirmlink(__unused vnode_t vp, __unused vnode_t *target_vp)
{
return ENOTSUP;
}
#endif
/*
* Mark a vnode as having multiple hard links. HFS makes use of this
* because it keeps track of each link separately, and wants to know
* which link was actually used.
*
* This will cause the name cache to force a VNOP_LOOKUP on the vnode
* so that HFS can post-process the lookup. Also, volfs will call
* VNOP_GETATTR2 to determine the parent, instead of using v_parent.
*/
void
vnode_setmultipath(vnode_t vp)
{
vnode_lock_spin(vp);
/*
* In theory, we're changing the vnode's identity as far as the
* name cache is concerned, so we ought to grab the name cache lock
* here. However, there is already a race, and grabbing the name
* cache lock only makes the race window slightly smaller.
*
* The race happens because the vnode already exists in the name
* cache, and could be found by one thread before another thread
* can set the hard link flag.
*/
vp->v_flag |= VISHARDLINK;
vnode_unlock(vp);
}
/*
* backwards compatibility
*/
void
vnode_uncache_credentials(vnode_t vp)
{
vnode_uncache_authorized_action(vp, KAUTH_INVALIDATE_CACHED_RIGHTS);
}
/*
* use the exclusive form of NAME_CACHE_LOCK to protect the update of the
* following fields in the vnode: v_cred_timestamp, v_cred, v_authorized_actions
* we use this lock so that we can look at the v_cred and v_authorized_actions
* atomically while behind the NAME_CACHE_LOCK in shared mode in 'cache_lookup_path',
* which is the super-hot path... if we are updating the authorized actions for this
* vnode, we are already in the super-slow and far less frequented path so its not
* that bad that we take the lock exclusive for this case... of course we strive
* to hold it for the minimum amount of time possible
*/
void
vnode_uncache_authorized_action(vnode_t vp, kauth_action_t action)
{
kauth_cred_t tcred = NOCRED;
NAME_CACHE_LOCK();
vp->v_authorized_actions &= ~action;
if (action == KAUTH_INVALIDATE_CACHED_RIGHTS &&
IS_VALID_CRED(vp->v_cred)) {
/*
* Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
*/
tcred = vnode_cred(vp);
vp->v_cred = NOCRED;
}
NAME_CACHE_UNLOCK();
if (IS_VALID_CRED(tcred)) {
kauth_cred_unref(&tcred);
}
}
/* disable vnode_cache_is_authorized() by setting vnode_cache_defeat */
static TUNABLE(int, bootarg_vnode_cache_defeat, "-vnode_cache_defeat", 0);
boolean_t
vnode_cache_is_authorized(vnode_t vp, vfs_context_t ctx, kauth_action_t action)
{
kauth_cred_t ucred;
boolean_t retval = FALSE;
/* Boot argument to defeat rights caching */
if (bootarg_vnode_cache_defeat) {
return FALSE;
}
if ((vp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL))) {
/*
* a TTL is enabled on the rights cache... handle it here
* a TTL of 0 indicates that no rights should be cached
*/
if (vp->v_mount->mnt_authcache_ttl) {
if (!(vp->v_mount->mnt_kern_flag & MNTK_AUTH_CACHE_TTL)) {
/*
* For filesystems marked only MNTK_AUTH_OPAQUE (generally network ones),
* we will only allow a SEARCH right on a directory to be cached...
* that cached right always has a default TTL associated with it
*/
if (action != KAUTH_VNODE_SEARCH || vp->v_type != VDIR) {
vp = NULLVP;
}
}
if (vp != NULLVP && vnode_cache_is_stale(vp) == TRUE) {
vnode_uncache_authorized_action(vp, vp->v_authorized_actions);
vp = NULLVP;
}
} else {
vp = NULLVP;
}
}
if (vp != NULLVP) {
ucred = vfs_context_ucred(ctx);
NAME_CACHE_LOCK_SHARED();
if (vnode_cred(vp) == ucred && (vp->v_authorized_actions & action) == action) {
retval = TRUE;
}
NAME_CACHE_UNLOCK();
}
return retval;
}
void
vnode_cache_authorized_action(vnode_t vp, vfs_context_t ctx, kauth_action_t action)
{
kauth_cred_t tcred = NOCRED;
kauth_cred_t ucred;
struct timeval tv;
boolean_t ttl_active = FALSE;
ucred = vfs_context_ucred(ctx);
if (!IS_VALID_CRED(ucred) || action == 0) {
return;
}
if ((vp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL))) {
/*
* a TTL is enabled on the rights cache... handle it here
* a TTL of 0 indicates that no rights should be cached
*/
if (vp->v_mount->mnt_authcache_ttl == 0) {
return;
}
if (!(vp->v_mount->mnt_kern_flag & MNTK_AUTH_CACHE_TTL)) {
/*
* only cache SEARCH action for filesystems marked
* MNTK_AUTH_OPAQUE on VDIRs...
* the lookup_path code will time these out
*/
if ((action & ~KAUTH_VNODE_SEARCH) || vp->v_type != VDIR) {
return;
}
}
ttl_active = TRUE;
microuptime(&tv);
}
NAME_CACHE_LOCK();
tcred = vnode_cred(vp);
if (tcred == ucred) {
tcred = NOCRED;
} else {
/*
* Use a temp variable to avoid kauth_cred_drop() while NAME_CACHE_LOCK is held
*/
kauth_cred_ref(ucred);
vp->v_cred = ucred;
vp->v_authorized_actions = 0;
}
if (ttl_active == TRUE && vp->v_authorized_actions == 0) {
/*
* only reset the timestamnp on the
* first authorization cached after the previous
* timer has expired or we're switching creds...
* 'vnode_cache_is_authorized' will clear the
* authorized actions if the TTL is active and
* it has expired
*/
vp->v_cred_timestamp = (int)tv.tv_sec;
}
vp->v_authorized_actions |= action;
NAME_CACHE_UNLOCK();
if (IS_VALID_CRED(tcred)) {
kauth_cred_unref(&tcred);
}
}
boolean_t
vnode_cache_is_stale(vnode_t vp)
{
struct timeval tv;
boolean_t retval;
microuptime(&tv);
if ((tv.tv_sec - vp->v_cred_timestamp) > vp->v_mount->mnt_authcache_ttl) {
retval = TRUE;
} else {
retval = FALSE;
}
return retval;
}
VFS_SMR_DECLARE;
/*
* Components of nameidata (or objects it can point to) which may
* need restoring in case fast path lookup fails.
*/
struct nameidata_state {
u_long ni_loopcnt;
char *ni_next;
u_int ni_pathlen;
int32_t ni_flag;
char *cn_nameptr;
int cn_namelen;
int cn_flags;
uint32_t cn_hash;
};
static void
save_ndp_state(struct nameidata *ndp, struct componentname *cnp, struct nameidata_state *saved_statep)
{
saved_statep->ni_loopcnt = ndp->ni_loopcnt;
saved_statep->ni_next = ndp->ni_next;
saved_statep->ni_pathlen = ndp->ni_pathlen;
saved_statep->ni_flag = ndp->ni_flag;
saved_statep->cn_nameptr = cnp->cn_nameptr;
saved_statep->cn_namelen = cnp->cn_namelen;
saved_statep->cn_flags = cnp->cn_flags;
saved_statep->cn_hash = cnp->cn_hash;
}
static void
restore_ndp_state(struct nameidata *ndp, struct componentname *cnp, struct nameidata_state *saved_statep)
{
ndp->ni_loopcnt = saved_statep->ni_loopcnt;
ndp->ni_next = saved_statep->ni_next;
ndp->ni_pathlen = saved_statep->ni_pathlen;
ndp->ni_flag = saved_statep->ni_flag;
cnp->cn_nameptr = saved_statep->cn_nameptr;
cnp->cn_namelen = saved_statep->cn_namelen;
cnp->cn_flags = saved_statep->cn_flags;
cnp->cn_hash = saved_statep->cn_hash;
}
static inline bool
vid_is_same(vnode_t vp, uint32_t vid)
{
return !(os_atomic_load(&vp->v_lflag, relaxed) & (VL_DRAIN | VL_TERMINATE | VL_DEAD)) && (vnode_vid(vp) == vid);
}
static inline bool
can_check_v_mountedhere(vnode_t vp)
{
return (os_atomic_load(&vp->v_usecount, relaxed) > 0) &&
(os_atomic_load(&vp->v_flag, relaxed) & VMOUNTEDHERE) &&
!(os_atomic_load(&vp->v_lflag, relaxed) & (VL_TERMINATE | VL_DEAD) &&
(vp->v_type == VDIR));
}
/*
* Returns: 0 Success
* ERECYCLE vnode was recycled from underneath us. Force lookup to be re-driven from namei.
* This errno value should not be seen by anyone outside of the kernel.
*/
int
cache_lookup_path(struct nameidata *ndp, struct componentname *cnp, vnode_t dp,
vfs_context_t ctx, int *dp_authorized, vnode_t last_dp)
{
struct nameidata_state saved_state;
char *cp; /* pointer into pathname argument */
uint32_t vid;
uint32_t vvid = 0; /* protected by vp != NULLVP */
vnode_t vp = NULLVP;
vnode_t tdp = NULLVP;
vnode_t start_dp = dp;
kauth_cred_t ucred;
boolean_t ttl_enabled = FALSE;
struct timeval tv;
mount_t mp;
mount_t dmp;
unsigned int hash;
int error = 0;
boolean_t dotdotchecked = FALSE;
bool locked = false;
bool needs_lock = false;
bool dp_iocount_taken = false;
#if CONFIG_TRIGGERS
vnode_t trigger_vp;
#endif /* CONFIG_TRIGGERS */
ucred = vfs_context_ucred(ctx);
retry:
if (nc_smr_enabled && !needs_lock) {
save_ndp_state(ndp, cnp, &saved_state);
vfs_smr_enter();
} else {
NAME_CACHE_LOCK_SHARED();
locked = true;
}
ndp->ni_flag &= ~(NAMEI_TRAILINGSLASH);
dmp = dp->v_mount;
vid = dp->v_id;
if (dmp && (dmp->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL))) {
ttl_enabled = TRUE;
microuptime(&tv);
}
for (;;) {
/*
* Search a directory.
*
* The cn_hash value is for use by cache_lookup
* The last component of the filename is left accessible via
* cnp->cn_nameptr for callers that need the name.
*/
hash = 0;
cp = cnp->cn_nameptr;
while (*cp && (*cp != '/')) {
hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
}
/*
* the crc generator can legitimately generate
* a 0... however, 0 for us means that we
* haven't computed a hash, so use 1 instead
*/
if (hash == 0) {
hash = 1;
}
cnp->cn_hash = hash;
cnp->cn_namelen = (int)(cp - cnp->cn_nameptr);
ndp->ni_pathlen -= cnp->cn_namelen;
ndp->ni_next = cp;
/*
* Replace multiple slashes by a single slash and trailing slashes
* by a null. This must be done before VNOP_LOOKUP() because some
* fs's don't know about trailing slashes. Remember if there were
* trailing slashes to handle symlinks, existing non-directories
* and non-existing files that won't be directories specially later.
*/
while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
cp++;
ndp->ni_pathlen--;
if (*cp == '\0') {
ndp->ni_flag |= NAMEI_TRAILINGSLASH;
*ndp->ni_next = '\0';
}
}
ndp->ni_next = cp;
cnp->cn_flags &= ~(MAKEENTRY | ISLASTCN | ISDOTDOT);
if (*cp == '\0') {
cnp->cn_flags |= ISLASTCN;
}
if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.') {
cnp->cn_flags |= ISDOTDOT;
}
#if NAMEDRSRCFORK
/*
* Process a request for a file's resource fork.
*
* Consume the _PATH_RSRCFORKSPEC suffix and tag the path.
*/
if ((ndp->ni_pathlen == sizeof(_PATH_RSRCFORKSPEC)) &&
(cp[1] == '.' && cp[2] == '.') &&
bcmp(cp, _PATH_RSRCFORKSPEC, sizeof(_PATH_RSRCFORKSPEC)) == 0) {
/* Skip volfs file systems that don't support native streams. */
if ((dmp != NULL) &&
(dmp->mnt_flag & MNT_DOVOLFS) &&
(dmp->mnt_kern_flag & MNTK_NAMED_STREAMS) == 0) {
goto skiprsrcfork;
}
cnp->cn_flags |= CN_WANTSRSRCFORK;
cnp->cn_flags |= ISLASTCN;
ndp->ni_next[0] = '\0';
ndp->ni_pathlen = 1;
}
skiprsrcfork:
#endif
*dp_authorized = 0;
#if CONFIG_FIRMLINKS
if ((cnp->cn_flags & ISDOTDOT) && (dp->v_flag & VFMLINKTARGET) && dp->v_fmlink) {
/*
* If this is a firmlink target then dp has to be switched to the
* firmlink "source" before exiting this loop.
*
* For a firmlink "target", the policy is to pick the parent of the
* firmlink "source" as the parent. This means that you can never
* get to the "real" parent of firmlink target via a dotdot lookup.
*/
vnode_t v_fmlink = dp->v_fmlink;
uint32_t old_vid = vid;
mp = dmp;
if (v_fmlink) {
vid = v_fmlink->v_id;
dmp = v_fmlink->v_mount;
if ((dp->v_fmlink == v_fmlink) && dmp) {
dp = v_fmlink;
} else {
vid = old_vid;
dmp = mp;
}
}
}
#endif
if (ttl_enabled &&
(dmp->mnt_authcache_ttl == 0 ||
((tv.tv_sec - dp->v_cred_timestamp) > dmp->mnt_authcache_ttl))) {
break;
}
/*
* NAME_CACHE_LOCK holds these fields stable
*
* We can't cache KAUTH_VNODE_SEARCHBYANYONE for root correctly
* so we make an ugly check for root here. root is always
* allowed and breaking out of here only to find out that is
* authorized by virtue of being root is very very expensive.
* However, the check for not root is valid only for filesystems
* which use local authorization.
*
* XXX: Remove the check for root when we can reliably set
* KAUTH_VNODE_SEARCHBYANYONE as root.
*/
int v_authorized_actions = os_atomic_load(&dp->v_authorized_actions, relaxed);
if ((vnode_cred(dp) != ucred || !(v_authorized_actions & KAUTH_VNODE_SEARCH)) &&
!(v_authorized_actions & KAUTH_VNODE_SEARCHBYANYONE) &&
(ttl_enabled || !vfs_context_issuser(ctx))) {
break;
}
/*
* indicate that we're allowed to traverse this directory...
* even if we fail the cache lookup or decide to bail for
* some other reason, this information is valid and is used
* to avoid doing a vnode_authorize before the call to VNOP_LOOKUP
*/
*dp_authorized = 1;
if ((cnp->cn_flags & (ISLASTCN | ISDOTDOT))) {
if (cnp->cn_nameiop != LOOKUP) {
break;
}
if (cnp->cn_flags & LOCKPARENT) {
break;
}
if (cnp->cn_flags & NOCACHE) {
break;
}
if (cnp->cn_flags & ISDOTDOT) {
/*
* Force directory hardlinks to go to
* file system for ".." requests.
*/
if ((dp->v_flag & VISHARDLINK)) {
break;
}
/*
* Quit here only if we can't use
* the parent directory pointer or
* don't have one. Otherwise, we'll
* use it below.
*/
if ((dp->v_flag & VROOT) ||
dp == ndp->ni_rootdir ||
dp->v_parent == NULLVP) {
break;
}
}
}
if ((cnp->cn_flags & CN_SKIPNAMECACHE)) {
/*
* Force lookup to go to the filesystem with
* all cnp fields set up.
*/
break;
}
/*
* "." and ".." aren't supposed to be cached, so check
* for them before checking the cache.
*/
if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
vp = dp;
vvid = vid;
} else if ((cnp->cn_flags & ISDOTDOT)) {
/*
* If this is a chrooted process, we need to check if
* the process is trying to break out of its chrooted
* jail. We do that by trying to determine if dp is
* a subdirectory of ndp->ni_rootdir. If we aren't
* able to determine that by the v_parent pointers, we
* will leave the fast path.
*
* Since this function may see dotdot components
* many times and it has the name cache lock held for
* the entire duration, we optimise this by doing this
* check only once per cache_lookup_path call.
* If dotdotchecked is set, it means we've done this
* check once already and don't need to do it again.
*/
if (!locked && (ndp->ni_rootdir != rootvnode)) {
vfs_smr_leave();
needs_lock = true;
goto prep_lock_retry;
} else if (locked && !dotdotchecked && (ndp->ni_rootdir != rootvnode)) {
vnode_t tvp = dp;
boolean_t defer = FALSE;
boolean_t is_subdir = FALSE;
defer = cache_check_vnode_issubdir(tvp,
ndp->ni_rootdir, &is_subdir, &tvp);
if (defer) {
/* defer to Filesystem */
break;
} else if (!is_subdir) {
/*
* This process is trying to break out
* of its chrooted jail, so all its
* dotdot accesses will be translated to
* its root directory.
*/
vp = ndp->ni_rootdir;
} else {
/*
* All good, let this dotdot access
* proceed normally
*/
vp = dp->v_parent;
}
dotdotchecked = TRUE;
} else {
vp = dp->v_parent;
}
if (!vp) {
break;
}
vvid = vp->v_id;
} else {
if (!locked) {
vp = cache_lookup_smr(dp, cnp, &vvid);
if (!vid_is_same(dp, vid)) {
vp = NULLVP;
needs_lock = true;
vfs_smr_leave();
goto prep_lock_retry;
}
} else {
vp = cache_lookup_locked(dp, cnp, &vvid);
}
if (!vp) {
break;
}
if ((vp->v_flag & VISHARDLINK)) {
/*
* The file system wants a VNOP_LOOKUP on this vnode
*/
vp = NULL;
break;
}
#if CONFIG_FIRMLINKS
vnode_t v_fmlink = vp->v_fmlink;
if (v_fmlink && !(vp->v_flag & VFMLINKTARGET)) {
if (cnp->cn_flags & CN_FIRMLINK_NOFOLLOW ||
((vp->v_type != VDIR) && (vp->v_type != VLNK))) {
/* Leave it to the filesystem */
vp = NULLVP;
break;
}
/*
* Always switch to the target unless it is a VLNK
* and it is the last component and we have NOFOLLOW
* semantics
*/
if (vp->v_type == VDIR) {
vp = v_fmlink;
vvid = vnode_vid(vp);
} else if ((cnp->cn_flags & FOLLOW) ||
(ndp->ni_flag & NAMEI_TRAILINGSLASH) || *ndp->ni_next == '/') {
if (ndp->ni_loopcnt >= MAXSYMLINKS - 1) {
vp = NULLVP;
break;
}
ndp->ni_loopcnt++;
vp = v_fmlink;
vvid = vnode_vid(vp);
}
}
#endif
}
if ((cnp->cn_flags & ISLASTCN)) {
break;
}
if (vp->v_type != VDIR) {
if (vp->v_type != VLNK) {
vp = NULL;
}
break;
}
/*
* v_mountedhere is PAC protected which means vp has to be a VDIR
* to access that pointer as v_mountedhere. However, if we don't
* have the name cache lock or an iocount (which we won't in the
* !locked case) we can't guarantee that. So we try to detect it
* via other fields to avoid having to dereference v_mountedhere
* when we don't need to. Note that in theory if entire reclaim
* happens between the time we check can_check_v_mountedhere()
* and the subsequent access this will still fail but the fields
* we check make that exceedingly unlikely and will result in
* the chances of that happening being practically zero (but not
* zero).
*/
if ((locked || can_check_v_mountedhere(vp)) &&
(mp = vp->v_mountedhere) && ((cnp->cn_flags & NOCROSSMOUNT) == 0)) {
vnode_t tmp_vp;
int tmp_vid;
if (!(locked || vid_is_same(vp, vvid))) {
vp = NULL;
break;
}
tmp_vp = mp->mnt_realrootvp;
tmp_vid = mp->mnt_realrootvp_vid;
if (tmp_vp == NULLVP || mp->mnt_generation != mount_generation ||
tmp_vid != tmp_vp->v_id) {
break;
}
if ((mp = tmp_vp->v_mount) == NULL) {
break;
}
vp = tmp_vp;
vvid = tmp_vid;
dmp = mp;
if (dmp->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL)) {
ttl_enabled = TRUE;
microuptime(&tv);
} else {
ttl_enabled = FALSE;
}
}
#if CONFIG_TRIGGERS
/*
* After traversing all mountpoints stacked here, if we have a
* trigger in hand, resolve it. Note that we don't need to
* leave the fast path if the mount has already happened.
*/
if (vp->v_resolve) {
break;
}
#endif /* CONFIG_TRIGGERS */
if (!(locked || vid_is_same(vp, vvid))) {
vp = NULL;
break;
}
dp = vp;
vid = vvid;
vp = NULLVP;
vvid = 0;
cnp->cn_nameptr = ndp->ni_next + 1;
ndp->ni_pathlen--;
while (*cnp->cn_nameptr == '/') {
cnp->cn_nameptr++;
ndp->ni_pathlen--;
}
}
if (!locked) {
if (vp && !vnode_hold_smr(vp)) {
vp = NULLVP;
vvid = 0;
}
if (!vnode_hold_smr(dp)) {
vfs_smr_leave();
if (vp) {
vnode_drop(vp);
vp = NULLVP;
vvid = 0;
}
goto prep_lock_retry;
}
vfs_smr_leave();
} else {
if (vp != NULLVP) {
vvid = vp->v_id;
vnode_hold(vp);
}
vid = dp->v_id;
vnode_hold(dp);
NAME_CACHE_UNLOCK();
}
tdp = NULLVP;
if (!(cnp->cn_flags & DONOTAUTH) &&
(vp != NULLVP) && (vp->v_type != VLNK) &&
((cnp->cn_flags & (ISLASTCN | LOCKPARENT | WANTPARENT | SAVESTART)) == ISLASTCN)) {
/*
* if we've got a child and it's the last component, and
* the lookup doesn't need to return the parent then we
* can skip grabbing an iocount on the parent, since all
* we're going to do with it is a vnode_put just before
* we return from 'lookup'. If it's a symbolic link,
* we need the parent in case the link happens to be
* a relative pathname.
*
* However, we can't make this optimisation if we have to call
* a MAC hook.
*/
tdp = dp;
dp = NULLVP;
} else {
need_dp:
/*
* return the last directory we looked at
* with an io reference held. If it was the one passed
* in as a result of the last iteration of VNOP_LOOKUP,
* it should already hold an io ref. No need to increase ref.
*/
if (last_dp != dp) {
if (dp == ndp->ni_usedvp) {
/*
* if this vnode matches the one passed in via USEDVP
* than this context already holds an io_count... just
* use vnode_get to get an extra ref for lookup to play
* with... can't use the getwithvid variant here because
* it will block behind a vnode_drain which would result
* in a deadlock (since we already own an io_count that the
* vnode_drain is waiting on)... vnode_get grabs the io_count
* immediately w/o waiting... it always succeeds
*/
vnode_get(dp);
} else if ((error = vnode_getwithvid_drainok(dp, vid))) {
/*
* failure indicates the vnode
* changed identity or is being
* TERMINATED... in either case
* punt this lookup.
*
* don't necessarily return ENOENT, though, because
* we really want to go back to disk and make sure it's
* there or not if someone else is changing this
* vnode. That being said, the one case where we do want
* to return ENOENT is when the vnode's mount point is
* in the process of unmounting and we might cause a deadlock
* in our attempt to take an iocount. An ENODEV error return
* is from vnode_get* is an indication this but we change that
* ENOENT for upper layers.
*/
if (error == ENODEV) {
error = ENOENT;
} else {
error = ERECYCLE;
}
vnode_drop(dp);
if (vp) {
vnode_drop(vp);
}
goto errorout;
}
dp_iocount_taken = true;
}
vnode_drop(dp);
}
#if CONFIG_MACF
/*
* Name cache provides authorization caching (see below)
* that will short circuit MAC checks in lookup().
* We must perform MAC check here. On denial
* dp_authorized will remain 0 and second check will
* be perfomed in lookup().
*/
if (!(cnp->cn_flags & DONOTAUTH)) {
error = mac_vnode_check_lookup(ctx, dp, cnp);
if (error) {
*dp_authorized = 0;
if (dp_iocount_taken) {
vnode_put(dp);
}
if (vp) {
vnode_drop(vp);
vp = NULLVP;
}
goto errorout;
}
}
#endif /* MAC */
if (vp != NULLVP) {
if ((vnode_getwithvid_drainok(vp, vvid))) {
vnode_drop(vp);
vp = NULLVP;
/*
* can't get reference on the vp we'd like
* to return... if we didn't grab a reference
* on the directory (due to fast path bypass),
* then we need to do it now... we can't return
* with both ni_dvp and ni_vp NULL, and no
* error condition
*/
if (dp == NULLVP) {
dp = tdp;
tdp = NULLVP;
goto need_dp;
}
} else {
vnode_drop(vp);
}
if (dp_iocount_taken && vp && (vp->v_type != VLNK) &&
((cnp->cn_flags & (ISLASTCN | LOCKPARENT | WANTPARENT | SAVESTART)) == ISLASTCN)) {
vnode_put(dp);
dp = NULLVP;
}
}
if (tdp) {
vnode_drop(tdp);
tdp = NULLVP;
}
ndp->ni_dvp = dp;
ndp->ni_vp = vp;
#if CONFIG_TRIGGERS
trigger_vp = vp ? vp : dp;
if ((error == 0) && (trigger_vp != NULLVP) && vnode_isdir(trigger_vp)) {
error = vnode_trigger_resolve(trigger_vp, ndp, ctx);
if (error) {
if (vp) {
vnode_put(vp);
}
if (dp) {
vnode_put(dp);
}
goto errorout;
}
}
#endif /* CONFIG_TRIGGERS */
errorout:
/*
* If we came into cache_lookup_path after an iteration of the lookup loop that
* resulted in a call to VNOP_LOOKUP, then VNOP_LOOKUP returned a vnode with a io ref
* on it. It is now the job of cache_lookup_path to drop the ref on this vnode
* when it is no longer needed. If we get to this point, and last_dp is not NULL
* and it is ALSO not the dvp we want to return to caller of this function, it MUST be
* the case that we got to a subsequent path component and this previous vnode is
* no longer needed. We can then drop the io ref on it.
*/
if ((last_dp != NULLVP) && (last_dp != ndp->ni_dvp)) {
vnode_put(last_dp);
}
//initialized to 0, should be the same if no error cases occurred.
return error;
prep_lock_retry:
restore_ndp_state(ndp, cnp, &saved_state);
dp = start_dp;
goto retry;
}
static vnode_t
cache_lookup_locked(vnode_t dvp, struct componentname *cnp, uint32_t *vidp)
{
struct namecache *ncp;
long namelen = cnp->cn_namelen;
unsigned int hashval = cnp->cn_hash;
if (nc_disabled) {
return NULL;
}
smrq_serialized_foreach(ncp, NCHHASH(dvp, cnp->cn_hash), nc_hash) {
if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
if (strncmp(ncp->nc_name, cnp->cn_nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0) {
break;
}
}
}
if (ncp == 0) {
/*
* We failed to find an entry
*/
NCHSTAT(ncs_miss);
NC_SMR_STATS(clp_next_fail);
return NULL;
}
NCHSTAT(ncs_goodhits);
if (!ncp->nc_vp) {
return NULL;
}
*vidp = ncp->nc_vid;
NC_SMR_STATS(clp_next);
return ncp->nc_vp;
}
static vnode_t
cache_lookup_smr(vnode_t dvp, struct componentname *cnp, uint32_t *vidp)
{
struct namecache *ncp;
long namelen = cnp->cn_namelen;
unsigned int hashval = cnp->cn_hash;
vnode_t vp = NULLVP;
uint32_t vid = 0;
uint32_t counter = 1;
if (nc_disabled) {
return NULL;
}
smrq_entered_foreach(ncp, NCHHASH(dvp, cnp->cn_hash), nc_hash) {
counter = os_atomic_load(&ncp->nc_counter, acquire);
if (!(counter & NC_VALID)) {
ncp = NULL;
goto out;
}
if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
const char *nc_name =
os_atomic_load(&ncp->nc_name, relaxed);
if (nc_name &&
strncmp(nc_name, cnp->cn_nameptr, namelen) == 0 &&
nc_name[namelen] == 0) {
break;
} else if (!nc_name) {
ncp = NULL;
goto out;
}
}
}
/* We failed to find an entry */
if (ncp == 0) {
goto out;
}
vp = ncp->nc_vp;
vid = ncp->nc_vid;
/*
* The validity of vp and vid depends on the value of the counter being
* the same when we read it first in the loop and now. Anything else
* and we can't use this vp & vid.
* Hopefully this ncp wasn't reused 2 billion times between the time
* we read it first and when we the counter value again.
*/
if (os_atomic_load(&ncp->nc_counter, acquire) != counter) {
vp = NULLVP;
goto out;
}
*vidp = vid;
NC_SMR_STATS(clp_smr_next);
return vp;
out:
NC_SMR_STATS(clp_smr_next_fail);
return NULL;
}
unsigned int hash_string(const char *cp, int len);
//
// Have to take a len argument because we may only need to
// hash part of a componentname.
//
unsigned int
hash_string(const char *cp, int len)
{
unsigned hash = 0;
if (len) {
while (len--) {
hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
}
} else {
while (*cp != '\0') {
hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
}
}
/*
* the crc generator can legitimately generate
* a 0... however, 0 for us means that we
* haven't computed a hash, so use 1 instead
*/
if (hash == 0) {
hash = 1;
}
return hash;
}
/*
* Lookup an entry in the cache
*
* We don't do this if the segment name is long, simply so the cache
* can avoid holding long names (which would either waste space, or
* add greatly to the complexity).
*
* Lookup is called with dvp pointing to the directory to search,
* cnp pointing to the name of the entry being sought. If the lookup
* succeeds, the vnode is returned in *vpp, and a status of -1 is
* returned. If the lookup determines that the name does not exist
* (negative cacheing), a status of ENOENT is returned. If the lookup
* fails, a status of zero is returned.
*/
static int
cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp)
{
struct namecache *ncp;
long namelen = cnp->cn_namelen;
unsigned int hashval = cnp->cn_hash;
boolean_t have_exclusive = FALSE;
uint32_t vid;
vnode_t vp;
NAME_CACHE_LOCK_SHARED();
relook:
smrq_serialized_foreach(ncp, NCHHASH(dvp, cnp->cn_hash), nc_hash) {
if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
if (strncmp(ncp->nc_name, cnp->cn_nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0) {
break;
}
}
}
/* We failed to find an entry */
if (ncp == 0) {
NCHSTAT(ncs_miss);
NAME_CACHE_UNLOCK();
return 0;
}
/* We don't want to have an entry, so dump it */
if ((cnp->cn_flags & MAKEENTRY) == 0) {
if (have_exclusive == TRUE) {
NCHSTAT(ncs_badhits);
cache_delete(ncp, 1);
NAME_CACHE_UNLOCK();
return 0;
}
if (!NAME_CACHE_LOCK_SHARED_TO_EXCLUSIVE()) {
NAME_CACHE_LOCK();
}
have_exclusive = TRUE;
goto relook;
}
vp = ncp->nc_vp;
/* We found a "positive" match, return the vnode */
if (vp) {
NCHSTAT(ncs_goodhits);
vid = ncp->nc_vid;
vnode_hold(vp);
NAME_CACHE_UNLOCK();
if (vnode_getwithvid(vp, vid)) {
vnode_drop(vp);
#if COLLECT_STATS
NAME_CACHE_LOCK();
NCHSTAT(ncs_badvid);
NAME_CACHE_UNLOCK();
#endif
return 0;
}
vnode_drop(vp);
*vpp = vp;
NC_SMR_STATS(cl_lock_hits);
return -1;
}
/* We found a negative match, and want to create it, so purge */
if (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) {
if (have_exclusive == TRUE) {
NCHSTAT(ncs_badhits);
cache_delete(ncp, 1);
NAME_CACHE_UNLOCK();
return 0;
}
if (!NAME_CACHE_LOCK_SHARED_TO_EXCLUSIVE()) {
NAME_CACHE_LOCK();
}
have_exclusive = TRUE;
goto relook;
}
/*
* We found a "negative" match, ENOENT notifies client of this match.
*/
NCHSTAT(ncs_neghits);
NAME_CACHE_UNLOCK();
return ENOENT;
}
/*
* Lookup an entry in the cache
*
* Lookup is called with dvp pointing to the directory to search,
* cnp pointing to the name of the entry being sought. If the lookup
* succeeds, the vnode is returned in *vpp, and a status of -1 is
* returned. If the lookup determines that the name does not exist
* (negative cacheing), a status of ENOENT is returned. If the lookup
* fails, a status of zero is returned.
*/
int
cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp)
{
struct namecache *ncp;
long namelen = cnp->cn_namelen;
vnode_t vp;
uint32_t vid = 0;
uint32_t counter = 1;
unsigned int hashval;
*vpp = NULLVP;
if (cnp->cn_hash == 0) {
cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
}
hashval = cnp->cn_hash;
if (nc_disabled) {
return 0;
}
if (!nc_smr_enabled) {
goto out_fallback;
}
/* We don't want to have an entry, so dump it */
if ((cnp->cn_flags & MAKEENTRY) == 0) {
goto out_fallback;
}
vfs_smr_enter();
smrq_entered_foreach(ncp, NCHHASH(dvp, cnp->cn_hash), nc_hash) {
counter = os_atomic_load(&ncp->nc_counter, acquire);
if (!(counter & NC_VALID)) {
vfs_smr_leave();
goto out_fallback;
}
if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
const char *nc_name =
os_atomic_load(&ncp->nc_name, relaxed);
if (nc_name &&
strncmp(nc_name, cnp->cn_nameptr, namelen) == 0 &&
nc_name[namelen] == 0) {
break;
} else if (!nc_name) {
vfs_smr_leave();
goto out_fallback;
}
}
}
/* We failed to find an entry */
if (ncp == 0) {
NCHSTAT(ncs_miss);
vfs_smr_leave();
NC_SMR_STATS(cl_smr_miss);
return 0;
}
vp = ncp->nc_vp;
vid = ncp->nc_vid;
/*
* The validity of vp and vid depends on the value of the counter being
* the same when we read it first in the loop and now. Anything else
* and we can't use this vp & vid.
* Hopefully this ncp wasn't reused 2 billion times between the time
* we read it first and when we the counter value again.
*/
if (os_atomic_load(&ncp->nc_counter, acquire) != counter) {
vfs_smr_leave();
goto out_fallback;
}
if (vp) {
bool holdcount_acquired = vnode_hold_smr(vp);
vfs_smr_leave();
if (!holdcount_acquired) {
goto out_fallback;
}
if (vnode_getwithvid(vp, vid) != 0) {
vnode_drop(vp);
goto out_fallback;
}
vnode_drop(vp);
NCHSTAT(ncs_goodhits);
*vpp = vp;
NC_SMR_STATS(cl_smr_hits);
return -1;
}
vfs_smr_leave();
/* We found a negative match, and want to create it, so purge */
if (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) {
goto out_fallback;
}
/*
* We found a "negative" match, ENOENT notifies client of this match.
*/
NCHSTAT(ncs_neghits);
NC_SMR_STATS(cl_smr_negative_hits);
return ENOENT;
out_fallback:
NC_SMR_STATS(cl_smr_fallback);
return cache_lookup_fallback(dvp, vpp, cnp);
}
const char *
cache_enter_create(vnode_t dvp, vnode_t vp, struct componentname *cnp)
{
const char *strname;
if (cnp->cn_hash == 0) {
cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
}
/*
* grab 2 references on the string entered
* one for the cache_enter_locked to consume
* and the second to be consumed by v_name (vnode_create call point)
*/
strname = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, TRUE, 0);
NAME_CACHE_LOCK();
cache_enter_locked(dvp, vp, cnp, strname);
NAME_CACHE_UNLOCK();
return strname;
}
/*
* Add an entry to the cache...
* but first check to see if the directory
* that this entry is to be associated with has
* had any cache_purges applied since we took
* our identity snapshot... this check needs to
* be done behind the name cache lock
*/
void
cache_enter_with_gen(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, int gen)
{
if (cnp->cn_hash == 0) {
cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
}
NAME_CACHE_LOCK();
if (dvp->v_nc_generation == gen) {
(void)cache_enter_locked(dvp, vp, cnp, NULL);
}
NAME_CACHE_UNLOCK();
}
/*
* Add an entry to the cache.
*/
void
cache_enter(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
{
const char *strname;
if (cnp->cn_hash == 0) {
cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
}
/*
* grab 1 reference on the string entered
* for the cache_enter_locked to consume
*/
strname = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, FALSE, 0);
NAME_CACHE_LOCK();
cache_enter_locked(dvp, vp, cnp, strname);
NAME_CACHE_UNLOCK();
}
static void
cache_enter_locked(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, const char *strname)
{
struct namecache *ncp, *negp;
struct smrq_list_head *ncpp;
if (nc_disabled) {
return;
}
/*
* if the entry is for -ve caching vp is null
*/
if ((vp != NULLVP) && (LIST_FIRST(&vp->v_nclinks))) {
/*
* someone beat us to the punch..
* this vnode is already in the cache
*/
if (strname != NULL) {
vfs_removename(strname);
}
return;
}
/*
* We allocate a new entry if we are less than the maximum
* allowed and the one at the front of the list is in use.
* Otherwise we use the one at the front of the list.
*/
if (numcache < desiredNodes &&
((ncp = nchead.tqh_first) == NULL ||
(ncp->nc_counter & NC_VALID))) {
/*
* Allocate one more entry
*/
if (nc_smr_enabled) {
ncp = zalloc_smr(namecache_zone, Z_WAITOK_ZERO_NOFAIL);
} else {
ncp = zalloc(namecache_zone);
}
ncp->nc_counter = 0;
numcache++;
} else {
/*
* reuse an old entry
*/
ncp = TAILQ_FIRST(&nchead);
TAILQ_REMOVE(&nchead, ncp, nc_entry);
if (ncp->nc_counter & NC_VALID) {
/*
* still in use... we need to
* delete it before re-using it
*/
NCHSTAT(ncs_stolen);
cache_delete(ncp, 0);
}
}
NCHSTAT(ncs_enters);
/*
* Fill in cache info, if vp is NULL this is a "negative" cache entry.
*/
if (vp) {
ncp->nc_vid = vnode_vid(vp);
vnode_hold(vp);
}
ncp->nc_vp = vp;
ncp->nc_dvp = dvp;
ncp->nc_hashval = cnp->cn_hash;
if (strname == NULL) {
ncp->nc_name = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, FALSE, 0);
} else {
ncp->nc_name = strname;
}
//
// If the bytes of the name associated with the vnode differ,
// use the name associated with the vnode since the file system
// may have set that explicitly in the case of a lookup on a
// case-insensitive file system where the case of the looked up
// name differs from what is on disk. For more details, see:
// <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
//
const char *vn_name = vp ? vp->v_name : NULL;
unsigned int len = vn_name ? (unsigned int)strlen(vn_name) : 0;
if (vn_name && ncp && ncp->nc_name && strncmp(ncp->nc_name, vn_name, len) != 0) {
unsigned int hash = hash_string(vn_name, len);
vfs_removename(ncp->nc_name);
ncp->nc_name = add_name_internal(vn_name, len, hash, FALSE, 0);
ncp->nc_hashval = hash;
}
/*
* make us the newest entry in the cache
* i.e. we'll be the last to be stolen
*/
TAILQ_INSERT_TAIL(&nchead, ncp, nc_entry);
ncpp = NCHHASH(dvp, cnp->cn_hash);
#if DIAGNOSTIC
{
struct namecache *p;
smrq_serialized_foreach(p, ncpp, nc_hash) {
if (p == ncp) {
panic("cache_enter: duplicate");
}
}
}
#endif
/*
* make us available to be found via lookup
*/
smrq_serialized_insert_head(ncpp, &ncp->nc_hash);
if (vp) {
/*
* add to the list of name cache entries
* that point at vp
*/
LIST_INSERT_HEAD(&vp->v_nclinks, ncp, nc_un.nc_link);
} else {
/*
* this is a negative cache entry (vp == NULL)
* stick it on the negative cache list.
*/
TAILQ_INSERT_TAIL(&neghead, ncp, nc_un.nc_negentry);
ncs_negtotal++;
if (ncs_negtotal > desiredNegNodes) {
/*
* if we've reached our desired limit
* of negative cache entries, delete
* the oldest
*/
negp = TAILQ_FIRST(&neghead);
cache_delete(negp, 1);
}
}
/*
* add us to the list of name cache entries that
* are children of dvp
*/
if (vp) {
TAILQ_INSERT_TAIL(&dvp->v_ncchildren, ncp, nc_child);
} else {
TAILQ_INSERT_HEAD(&dvp->v_ncchildren, ncp, nc_child);
}
/*
* nc_counter represents a sequence counter and 1 bit valid flag.
* When the counter value is odd, it represents a valid and in use
* namecache structure. We increment the value on every state transition
* (invalid to valid (here) and valid to invalid (in cache delete).
* Lockless readers have to read the value before reading other fields
* and ensure that the field is valid and remains the same after the fields
* have been read.
*/
uint32_t old_count = os_atomic_inc_orig(&ncp->nc_counter, release);
if (old_count & NC_VALID) {
/* This is a invalid to valid transition */
panic("Incorrect state for old nc_counter(%d), should be even", old_count);
}
}
/*
* Initialize CRC-32 remainder table.
*/
static void
init_crc32(void)
{
/*
* the CRC-32 generator polynomial is:
* x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^10
* + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
*/
unsigned int crc32_polynomial = 0x04c11db7;
unsigned int i, j;
/*
* pre-calculate the CRC-32 remainder for each possible octet encoding
*/
for (i = 0; i < 256; i++) {
unsigned int crc_rem = i << 24;
for (j = 0; j < 8; j++) {
if (crc_rem & 0x80000000) {
crc_rem = (crc_rem << 1) ^ crc32_polynomial;
} else {
crc_rem = (crc_rem << 1);
}
}
crc32tab[i] = crc_rem;
}
}
/*
* Name cache initialization, from vfs_init() when we are booting
*/
void
nchinit(void)
{
desiredNegNodes = (desiredvnodes / 10);
desiredNodes = desiredvnodes + desiredNegNodes;
if (nc_smr_enabled) {
zone_enable_smr(namecache_zone, VFS_SMR(), &namecache_smr_free);
zone_enable_smr(stringcache_zone, VFS_SMR(), &string_smr_free);
}
TAILQ_INIT(&nchead);
TAILQ_INIT(&neghead);
init_crc32();
nchashtbl = hashinit(MAX(CONFIG_NC_HASH, (2 * desiredNodes)), M_CACHE, &nchash);
nchashmask = nchash;
nchash++;
init_string_table();
for (int i = 0; i < NUM_STRCACHE_LOCKS; i++) {
lck_mtx_init(&strcache_mtx_locks[i], &strcache_lck_grp, &strcache_lck_attr);
}
}
void
name_cache_lock_shared(void)
{
lck_rw_lock_shared(&namecache_rw_lock);
NC_SMR_STATS(nc_lock_shared);
}
void
name_cache_lock(void)
{
lck_rw_lock_exclusive(&namecache_rw_lock);
NC_SMR_STATS(nc_lock);
}
boolean_t
name_cache_lock_shared_to_exclusive(void)
{
return lck_rw_lock_shared_to_exclusive(&namecache_rw_lock);
}
void
name_cache_unlock(void)
{
lck_rw_done(&namecache_rw_lock);
}
int
resize_namecache(int newsize)
{
struct smrq_list_head *new_table;
struct smrq_list_head *old_table;
struct smrq_list_head *old_head;
struct namecache *entry;
uint32_t i, hashval;
int dNodes, dNegNodes, nelements;
u_long new_size, old_size;
if (newsize < 0) {
return EINVAL;
}
dNegNodes = (newsize / 10);
dNodes = newsize + dNegNodes;
// we don't support shrinking yet
if (dNodes <= desiredNodes) {
return 0;
}
if (os_mul_overflow(dNodes, 2, &nelements)) {
return EINVAL;
}
new_table = hashinit(nelements, M_CACHE, &nchashmask);
new_size = nchashmask + 1;
if (new_table == NULL) {
return ENOMEM;
}
NAME_CACHE_LOCK();
/* No need to switch if the hash table size hasn't changed. */
if (new_size == nchash) {
NAME_CACHE_UNLOCK();
hashdestroy(new_table, M_CACHE, new_size - 1);
return 0;
}
// do the switch!
old_table = nchashtbl;
nchashtbl = new_table;
old_size = nchash;
nchash = new_size;
// walk the old table and insert all the entries into
// the new table
//
for (i = 0; i < old_size; i++) {
old_head = &old_table[i];
smrq_serialized_foreach_safe(entry, old_head, nc_hash) {
//
// XXXdbg - Beware: this assumes that hash_string() does
// the same thing as what happens in
// lookup() over in vfs_lookup.c
hashval = hash_string(entry->nc_name, 0);
entry->nc_hashval = hashval;
smrq_serialized_insert_head(NCHHASH(entry->nc_dvp, hashval), &entry->nc_hash);
}
}
desiredNodes = dNodes;
desiredNegNodes = dNegNodes;
NAME_CACHE_UNLOCK();
hashdestroy(old_table, M_CACHE, old_size - 1);
return 0;
}
static void
namecache_smr_free(void *_ncp, __unused size_t _size)
{
struct namecache *ncp = _ncp;
bzero(ncp, sizeof(*ncp));
}
static void
cache_delete(struct namecache *ncp, int free_entry)
{
NCHSTAT(ncs_deletes);
/*
* See comment at the end of cache_enter_locked expalining the usage of
* nc_counter.
*/
uint32_t old_count = os_atomic_inc_orig(&ncp->nc_counter, release);
if (!(old_count & NC_VALID)) {
/* This should be a valid to invalid transition */
panic("Incorrect state for old nc_counter(%d), should be odd", old_count);
}
if (ncp->nc_vp) {
LIST_REMOVE(ncp, nc_un.nc_link);
} else {
TAILQ_REMOVE(&neghead, ncp, nc_un.nc_negentry);
ncs_negtotal--;
}
TAILQ_REMOVE(&(ncp->nc_dvp->v_ncchildren), ncp, nc_child);
smrq_serialized_remove((NCHHASH(ncp->nc_dvp, ncp->nc_hashval)), &ncp->nc_hash);
const char *nc_name = ncp->nc_name;
ncp->nc_name = NULL;
vfs_removename(nc_name);
if (ncp->nc_vp) {
vnode_t vp = ncp->nc_vp;
ncp->nc_vp = NULLVP;
vnode_drop(vp);
}
if (free_entry) {
TAILQ_REMOVE(&nchead, ncp, nc_entry);
if (nc_smr_enabled) {
zfree_smr(namecache_zone, ncp);
} else {
zfree(namecache_zone, ncp);
}
numcache--;
}
}
/*
* purge the entry associated with the
* specified vnode from the name cache
*/
static void
cache_purge_locked(vnode_t vp, kauth_cred_t *credp)
{
struct namecache *ncp;
*credp = NULL;
if ((LIST_FIRST(&vp->v_nclinks) == NULL) &&
(TAILQ_FIRST(&vp->v_ncchildren) == NULL) &&
(vnode_cred(vp) == NOCRED) &&
(vp->v_parent == NULLVP)) {
return;
}
if (vp->v_parent) {
vp->v_parent->v_nc_generation++;
}
while ((ncp = LIST_FIRST(&vp->v_nclinks))) {
cache_delete(ncp, 1);
}
while ((ncp = TAILQ_FIRST(&vp->v_ncchildren))) {
cache_delete(ncp, 1);
}
/*
* Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
*/
*credp = vnode_cred(vp);
vp->v_cred = NOCRED;
vp->v_authorized_actions = 0;
}
void
cache_purge(vnode_t vp)
{
kauth_cred_t tcred = NULL;
if ((LIST_FIRST(&vp->v_nclinks) == NULL) &&
(TAILQ_FIRST(&vp->v_ncchildren) == NULL) &&
(vnode_cred(vp) == NOCRED) &&
(vp->v_parent == NULLVP)) {
return;
}
NAME_CACHE_LOCK();
cache_purge_locked(vp, &tcred);
NAME_CACHE_UNLOCK();
if (IS_VALID_CRED(tcred)) {
kauth_cred_unref(&tcred);
}
}
/*
* Purge all negative cache entries that are children of the
* given vnode. A case-insensitive file system (or any file
* system that has multiple equivalent names for the same
* directory entry) can use this when creating or renaming
* to remove negative entries that may no longer apply.
*/
void
cache_purge_negatives(vnode_t vp)
{
struct namecache *ncp, *next_ncp;
NAME_CACHE_LOCK();
TAILQ_FOREACH_SAFE(ncp, &vp->v_ncchildren, nc_child, next_ncp) {
if (ncp->nc_vp) {
break;
}
cache_delete(ncp, 1);
}
NAME_CACHE_UNLOCK();
}
/*
* Flush all entries referencing a particular filesystem.
*
* Since we need to check it anyway, we will flush all the invalid
* entries at the same time.
*/
void
cache_purgevfs(struct mount *mp)
{
struct smrq_list_head *ncpp;
struct namecache *ncp;
NAME_CACHE_LOCK();
/* Scan hash tables for applicable entries */
for (ncpp = &nchashtbl[nchash - 1]; ncpp >= nchashtbl; ncpp--) {
restart:
smrq_serialized_foreach(ncp, ncpp, nc_hash) {
if (ncp->nc_dvp->v_mount == mp) {
cache_delete(ncp, 0);
goto restart;
}
}
}
NAME_CACHE_UNLOCK();
}
//
// String ref routines
//
static LIST_HEAD(stringhead, string_t) * string_ref_table;
static u_long string_table_mask;
static uint32_t filled_buckets = 0;
static void
resize_string_ref_table(void)
{
struct stringhead *new_table;
struct stringhead *old_table;
struct stringhead *old_head, *head;
string_t *entry, *next;
uint32_t i, hashval;
u_long new_mask, old_mask;
/*
* need to hold the table lock exclusively
* in order to grow the table... need to recheck
* the need to resize again after we've taken
* the lock exclusively in case some other thread
* beat us to the punch
*/
lck_rw_lock_exclusive(&strtable_rw_lock);
if (4 * filled_buckets < ((string_table_mask + 1) * 3)) {
lck_rw_done(&strtable_rw_lock);
return;
}
assert(string_table_mask < INT32_MAX);
new_table = hashinit((int)(string_table_mask + 1) * 2, M_CACHE, &new_mask);
if (new_table == NULL) {
printf("failed to resize the hash table.\n");
lck_rw_done(&strtable_rw_lock);
return;
}
// do the switch!
old_table = string_ref_table;
string_ref_table = new_table;
old_mask = string_table_mask;
string_table_mask = new_mask;
filled_buckets = 0;
// walk the old table and insert all the entries into
// the new table
//
for (i = 0; i <= old_mask; i++) {
old_head = &old_table[i];
for (entry = old_head->lh_first; entry != NULL; entry = next) {
hashval = hash_string((const char *)entry->str, 0);
head = &string_ref_table[hashval & string_table_mask];
if (head->lh_first == NULL) {
filled_buckets++;
}
next = entry->hash_chain.le_next;
LIST_INSERT_HEAD(head, entry, hash_chain);
}
}
lck_rw_done(&strtable_rw_lock);
hashdestroy(old_table, M_CACHE, old_mask);
}
static void
init_string_table(void)
{
string_ref_table = hashinit(CONFIG_VFS_NAMES, M_CACHE, &string_table_mask);
}
const char *
vfs_addname(const char *name, uint32_t len, u_int hashval, u_int flags)
{
return add_name_internal(name, len, hashval, FALSE, flags);
}
static const char *
add_name_internal(const char *name, uint32_t len, u_int hashval, boolean_t need_extra_ref, __unused u_int flags)
{
struct stringhead *head;
string_t *entry;
uint32_t chain_len = 0;
uint32_t hash_index;
uint32_t lock_index;
char *ptr;
if (len > MAXPATHLEN) {
len = MAXPATHLEN;
}
/*
* if the length already accounts for the null-byte, then
* subtract one so later on we don't index past the end
* of the string.
*/
if (len > 0 && name[len - 1] == '\0') {
len--;
}
if (hashval == 0) {
hashval = hash_string(name, len);
}
/*
* take this lock 'shared' to keep the hash stable
* if someone else decides to grow the pool they
* will take this lock exclusively
*/
lck_rw_lock_shared(&strtable_rw_lock);
/*
* If the table gets more than 3/4 full, resize it
*/
if (4 * filled_buckets >= ((string_table_mask + 1) * 3)) {
lck_rw_done(&strtable_rw_lock);
resize_string_ref_table();
lck_rw_lock_shared(&strtable_rw_lock);
}
hash_index = hashval & string_table_mask;
lock_index = hash_index % NUM_STRCACHE_LOCKS;
head = &string_ref_table[hash_index];
lck_mtx_lock_spin(&strcache_mtx_locks[lock_index]);
for (entry = head->lh_first; entry != NULL; chain_len++, entry = entry->hash_chain.le_next) {
if (strncmp(entry->str, name, len) == 0 && entry->str[len] == 0) {
entry->refcount++;
break;
}
}
if (entry == NULL) {
const uint32_t buflen = len + 1;
lck_mtx_convert_spin(&strcache_mtx_locks[lock_index]);
/*
* it wasn't already there so add it.
*/
if (nc_smr_enabled) {
entry = zalloc_smr(stringcache_zone, Z_WAITOK_ZERO_NOFAIL);
} else {
entry = zalloc(stringcache_zone);
}
if (head->lh_first == NULL) {
OSAddAtomic(1, &filled_buckets);
}
ptr = kalloc_data(buflen, Z_WAITOK);
strncpy(ptr, name, len);
ptr[len] = '\0';
entry->str = ptr;
entry->strbuflen = buflen;
entry->refcount = 1;
LIST_INSERT_HEAD(head, entry, hash_chain);
}
if (need_extra_ref == TRUE) {
entry->refcount++;
}
lck_mtx_unlock(&strcache_mtx_locks[lock_index]);
lck_rw_done(&strtable_rw_lock);
return (const char *)entry->str;
}
static void
string_smr_free(void *_entry, __unused size_t size)
{
string_t *entry = _entry;
kfree_data(entry->str, entry->strbuflen);
bzero(entry, sizeof(*entry));
}
int
vfs_removename(const char *nameref)
{
struct stringhead *head;
string_t *entry;
uint32_t hashval;
uint32_t hash_index;
uint32_t lock_index;
int retval = ENOENT;
hashval = hash_string(nameref, 0);
/*
* take this lock 'shared' to keep the hash stable
* if someone else decides to grow the pool they
* will take this lock exclusively
*/
lck_rw_lock_shared(&strtable_rw_lock);
/*
* must compute the head behind the table lock
* since the size and location of the table
* can change on the fly
*/
hash_index = hashval & string_table_mask;
lock_index = hash_index % NUM_STRCACHE_LOCKS;
head = &string_ref_table[hash_index];
lck_mtx_lock_spin(&strcache_mtx_locks[lock_index]);
for (entry = head->lh_first; entry != NULL; entry = entry->hash_chain.le_next) {
if (entry->str == nameref) {
entry->refcount--;
if (entry->refcount == 0) {
LIST_REMOVE(entry, hash_chain);
if (head->lh_first == NULL) {
OSAddAtomic(-1, &filled_buckets);
}
} else {
entry = NULL;
}
retval = 0;
break;
}
}
lck_mtx_unlock(&strcache_mtx_locks[lock_index]);
lck_rw_done(&strtable_rw_lock);
if (entry) {
assert(entry->refcount == 0);
if (nc_smr_enabled) {
zfree_smr(stringcache_zone, entry);
} else {
kfree_data(entry->str, entry->strbuflen);
entry->str = NULL;
entry->strbuflen = 0;
zfree(stringcache_zone, entry);
}
}
return retval;
}
#ifdef DUMP_STRING_TABLE
void
dump_string_table(void)
{
struct stringhead *head;
string_t *entry;
u_long i;
lck_rw_lock_shared(&strtable_rw_lock);
for (i = 0; i <= string_table_mask; i++) {
head = &string_ref_table[i];
for (entry = head->lh_first; entry != NULL; entry = entry->hash_chain.le_next) {
printf("%6d - %s\n", entry->refcount, entry->str);
}
}
lck_rw_done(&strtable_rw_lock);
}
#endif /* DUMP_STRING_TABLE */