gems-kernel/source/THIRDPARTY/xnu/bsd/vfs/vfs_disk_conditioner.c
2024-06-03 11:29:39 -05:00

322 lines
10 KiB
C

/*
* Copyright (c) 2016-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <sys/fsctl.h>
#include <stdbool.h>
#include <sys/time.h>
#include <sys/buf.h>
#include <sys/mount_internal.h>
#include <sys/vnode_internal.h>
#include <sys/buf_internal.h>
#include <kern/kalloc.h>
#include <sys/kauth.h>
#include <IOKit/IOBSD.h>
#include <vfs/vfs_disk_conditioner.h>
#define DISK_CONDITIONER_SET_ENTITLEMENT "com.apple.private.dmc.set"
// number of total blocks for a mount
#define BLK_MAX(mp) ((mp->mnt_vfsstat.f_blocks * mp->mnt_vfsstat.f_bsize) / (mp->mnt_devblocksize))
// approx. time to spin up an idle HDD
#define DISK_SPINUP_SEC (8)
// idle period until assumed disk spin down
#define DISK_IDLE_SEC (10 * 60)
struct saved_mount_fields {
uint32_t mnt_maxreadcnt; /* Max. byte count for read */
uint32_t mnt_maxwritecnt; /* Max. byte count for write */
uint32_t mnt_segreadcnt; /* Max. segment count for read */
uint32_t mnt_segwritecnt; /* Max. segment count for write */
uint32_t mnt_ioqueue_depth; /* the maxiumum number of commands a device can accept */
uint32_t mnt_ioscale; /* scale the various throttles/limits imposed on the amount of I/O in flight */
};
struct _disk_conditioner_info_t {
disk_conditioner_info dcinfo; // all the original data from fsctl
struct saved_mount_fields mnt_fields; // fields to restore in mount_t when conditioner is disabled
daddr64_t last_blkno; // approx. last transfered block for simulating seek times
struct timeval last_io_timestamp; // the last time an I/O completed
};
void disk_conditioner_delay(buf_t, int, int, uint64_t);
void disk_conditioner_unmount(mount_t mp);
extern void throttle_info_mount_reset_period(mount_t, int isssd);
static double
weighted_scale_factor(double scale)
{
// 0 to 1 increasing quickly from 0. This weights smaller blkdiffs higher to add a type of minimum latency
// I would like to use log(10) / 2.0 + 1, but using different approximation due to no math library
// y = (x-1)^3 + 1
double x_m1 = scale - 1;
return x_m1 * x_m1 * x_m1 + 1;
}
void
disk_conditioner_delay(buf_t bp, int extents, int total_size, uint64_t already_elapsed_usec)
{
mount_t mp;
uint64_t delay_usec;
daddr64_t blkdiff;
daddr64_t last_blkno;
double access_time_scale;
struct _disk_conditioner_info_t *internal_info = NULL;
disk_conditioner_info *info = NULL;
struct timeval elapsed;
struct timeval start;
vnode_t vp;
vp = buf_vnode(bp);
if (!vp) {
return;
}
mp = vp->v_mount;
if (!mp) {
return;
}
internal_info = mp->mnt_disk_conditioner_info;
if (!internal_info || !internal_info->dcinfo.enabled) {
return;
}
info = &(internal_info->dcinfo);
if (!info->is_ssd) {
// calculate approximate seek time based on difference in block number
last_blkno = internal_info->last_blkno;
blkdiff = bp->b_blkno > last_blkno ? bp->b_blkno - last_blkno : last_blkno - bp->b_blkno;
internal_info->last_blkno = bp->b_blkno + bp->b_bcount;
} else {
blkdiff = BLK_MAX(mp);
}
// scale access time by (distance in blocks from previous I/O / maximum blocks)
access_time_scale = weighted_scale_factor((double)blkdiff / (double)BLK_MAX(mp));
if (__builtin_isnan(access_time_scale)) {
return;
}
// most cases should pass in extents==1 for optimal delay calculation, otherwise just multiply delay by extents
double temp = (((double)extents * (double)info->access_time_usec) * access_time_scale);
if (temp <= 0) {
delay_usec = 0;
} else if (temp >= (double)(18446744073709549568ULL)) { /* highest 64-bit unsigned integer representable as a double */
delay_usec = UINT64_MAX;
} else {
delay_usec = (uint64_t)temp;
}
if (info->read_throughput_mbps && (bp->b_flags & B_READ)) {
delay_usec += (uint64_t)(total_size / ((double)(info->read_throughput_mbps * 1024 * 1024 / 8) / USEC_PER_SEC));
} else if (info->write_throughput_mbps && !(bp->b_flags & B_READ)) {
delay_usec += (uint64_t)(total_size / ((double)(info->write_throughput_mbps * 1024 * 1024 / 8) / USEC_PER_SEC));
}
// try simulating disk spinup based on time since last I/O
if (!info->is_ssd) {
microuptime(&elapsed);
timevalsub(&elapsed, &internal_info->last_io_timestamp);
// avoid this delay right after boot (assuming last_io_timestamp is 0 and disk is already spinning)
if (elapsed.tv_sec > DISK_IDLE_SEC && internal_info->last_io_timestamp.tv_sec != 0) {
delay_usec += DISK_SPINUP_SEC * USEC_PER_SEC;
}
}
if (delay_usec <= already_elapsed_usec) {
microuptime(&internal_info->last_io_timestamp);
return;
}
delay_usec -= already_elapsed_usec;
while (delay_usec) {
microuptime(&start);
assert(delay_usec <= INT_MAX);
delay((int)delay_usec);
microuptime(&elapsed);
timevalsub(&elapsed, &start);
if (elapsed.tv_sec * USEC_PER_SEC < delay_usec) {
delay_usec -= elapsed.tv_sec * USEC_PER_SEC;
} else {
break;
}
if ((uint64_t)elapsed.tv_usec < delay_usec) {
delay_usec -= elapsed.tv_usec;
} else {
break;
}
}
microuptime(&internal_info->last_io_timestamp);
}
int
disk_conditioner_get_info(mount_t mp, disk_conditioner_info *uinfo)
{
struct _disk_conditioner_info_t *info;
if (!mp) {
return EINVAL;
}
info = mp->mnt_disk_conditioner_info;
if (info) {
memcpy(uinfo, &(info->dcinfo), sizeof(disk_conditioner_info));
}
return 0;
}
static inline void
disk_conditioner_restore_mount_fields(mount_t mp, struct saved_mount_fields *mnt_fields)
{
mp->mnt_maxreadcnt = mnt_fields->mnt_maxreadcnt;
mp->mnt_maxwritecnt = mnt_fields->mnt_maxwritecnt;
mp->mnt_segreadcnt = mnt_fields->mnt_segreadcnt;
mp->mnt_segwritecnt = mnt_fields->mnt_segwritecnt;
mp->mnt_ioqueue_depth = mnt_fields->mnt_ioqueue_depth;
mp->mnt_ioscale = mnt_fields->mnt_ioscale;
}
int
disk_conditioner_set_info(mount_t mp, disk_conditioner_info *uinfo)
{
struct _disk_conditioner_info_t *internal_info;
disk_conditioner_info *info;
struct saved_mount_fields *mnt_fields;
if (!kauth_cred_issuser(kauth_cred_get()) || !IOCurrentTaskHasEntitlement(DISK_CONDITIONER_SET_ENTITLEMENT)) {
return EPERM;
}
if (!mp) {
return EINVAL;
}
mount_lock(mp);
internal_info = mp->mnt_disk_conditioner_info;
if (!internal_info) {
internal_info = kalloc_type(struct _disk_conditioner_info_t,
Z_WAITOK | Z_ZERO);
mp->mnt_disk_conditioner_info = internal_info;
mnt_fields = &(internal_info->mnt_fields);
/* save mount_t fields for restoration later */
mnt_fields->mnt_maxreadcnt = mp->mnt_maxreadcnt;
mnt_fields->mnt_maxwritecnt = mp->mnt_maxwritecnt;
mnt_fields->mnt_segreadcnt = mp->mnt_segreadcnt;
mnt_fields->mnt_segwritecnt = mp->mnt_segwritecnt;
mnt_fields->mnt_ioqueue_depth = mp->mnt_ioqueue_depth;
mnt_fields->mnt_ioscale = mp->mnt_ioscale;
}
info = &(internal_info->dcinfo);
mnt_fields = &(internal_info->mnt_fields);
if (!uinfo->enabled && info->enabled) {
/* disk conditioner is being disabled when already enabled */
disk_conditioner_restore_mount_fields(mp, mnt_fields);
}
memcpy(info, uinfo, sizeof(disk_conditioner_info));
/* scale back based on hardware advertised limits */
if (uinfo->ioqueue_depth == 0 || uinfo->ioqueue_depth > mnt_fields->mnt_ioqueue_depth) {
info->ioqueue_depth = mnt_fields->mnt_ioqueue_depth;
}
if (uinfo->maxreadcnt == 0 || uinfo->maxreadcnt > mnt_fields->mnt_maxreadcnt) {
info->maxreadcnt = mnt_fields->mnt_maxreadcnt;
}
if (uinfo->maxwritecnt == 0 || uinfo->maxwritecnt > mnt_fields->mnt_maxwritecnt) {
info->maxwritecnt = mnt_fields->mnt_maxwritecnt;
}
if (uinfo->segreadcnt == 0 || uinfo->segreadcnt > mnt_fields->mnt_segreadcnt) {
info->segreadcnt = mnt_fields->mnt_segreadcnt;
}
if (uinfo->segwritecnt == 0 || uinfo->segwritecnt > mnt_fields->mnt_segwritecnt) {
info->segwritecnt = mnt_fields->mnt_segwritecnt;
}
if (uinfo->enabled) {
mp->mnt_maxreadcnt = info->maxreadcnt;
mp->mnt_maxwritecnt = info->maxwritecnt;
mp->mnt_segreadcnt = info->segreadcnt;
mp->mnt_segwritecnt = info->segwritecnt;
mp->mnt_ioqueue_depth = info->ioqueue_depth;
mp->mnt_ioscale = MNT_IOSCALE(info->ioqueue_depth);
}
mount_unlock(mp);
microuptime(&internal_info->last_io_timestamp);
// make sure throttling picks up the new periods
throttle_info_mount_reset_period(mp, info->is_ssd);
return 0;
}
void
disk_conditioner_unmount(mount_t mp)
{
struct _disk_conditioner_info_t *internal_info = mp->mnt_disk_conditioner_info;
if (!internal_info) {
return;
}
if (internal_info->dcinfo.enabled) {
disk_conditioner_restore_mount_fields(mp, &(internal_info->mnt_fields));
}
mp->mnt_disk_conditioner_info = NULL;
kfree_type(struct _disk_conditioner_info_t, internal_info);
}
boolean_t
disk_conditioner_mount_is_ssd(mount_t mp)
{
struct _disk_conditioner_info_t *internal_info = mp->mnt_disk_conditioner_info;
if (!internal_info || !internal_info->dcinfo.enabled) {
if (mp->mnt_kern_flag & MNTK_SSD) {
return TRUE;
}
return FALSE;
}
return internal_info->dcinfo.is_ssd;
}