150 lines
4.9 KiB
C
150 lines
4.9 KiB
C
|
/*---------------------------------------------------------------------------+
|
||
|
| poly_tan.c |
|
||
|
| |
|
||
|
| Compute the tan of a FPU_REG, using a polynomial approximation. |
|
||
|
| |
|
||
|
| Copyright (C) 1992,1993 |
|
||
|
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
|
||
|
| Australia. E-mail billm@vaxc.cc.monash.edu.au |
|
||
|
| |
|
||
|
| |
|
||
|
+---------------------------------------------------------------------------*/
|
||
|
|
||
|
#include "exception.h"
|
||
|
#include "reg_constant.h"
|
||
|
#include "fpu_emu.h"
|
||
|
#include "control_w.h"
|
||
|
|
||
|
|
||
|
#define HIPOWERop 3 /* odd poly, positive terms */
|
||
|
static unsigned short const oddplterms[HIPOWERop][4] =
|
||
|
{
|
||
|
{ 0x846a, 0x42d1, 0xb544, 0x921f},
|
||
|
{ 0x6fb2, 0x0215, 0x95c0, 0x099c},
|
||
|
{ 0xfce6, 0x0cc8, 0x1c9a, 0x0000}
|
||
|
};
|
||
|
|
||
|
#define HIPOWERon 2 /* odd poly, negative terms */
|
||
|
static unsigned short const oddnegterms[HIPOWERon][4] =
|
||
|
{
|
||
|
{ 0x6906, 0xe205, 0x25c8, 0x8838},
|
||
|
{ 0x1dd7, 0x3fe3, 0x944e, 0x002c}
|
||
|
};
|
||
|
|
||
|
#define HIPOWERep 2 /* even poly, positive terms */
|
||
|
static unsigned short const evenplterms[HIPOWERep][4] =
|
||
|
{
|
||
|
{ 0xdb8f, 0x3761, 0x1432, 0x2acf},
|
||
|
{ 0x16eb, 0x13c1, 0x3099, 0x0003}
|
||
|
};
|
||
|
|
||
|
#define HIPOWERen 2 /* even poly, negative terms */
|
||
|
static unsigned short const evennegterms[HIPOWERen][4] =
|
||
|
{
|
||
|
{ 0x3a7c, 0xe4c5, 0x7f87, 0x2945},
|
||
|
{ 0x572b, 0x664c, 0xc543, 0x018c}
|
||
|
};
|
||
|
|
||
|
|
||
|
/*--- poly_tan() ------------------------------------------------------------+
|
||
|
| |
|
||
|
+---------------------------------------------------------------------------*/
|
||
|
void poly_tan(FPU_REG const *arg, FPU_REG *result, int invert)
|
||
|
{
|
||
|
short exponent;
|
||
|
FPU_REG odd_poly, even_poly, pos_poly, neg_poly;
|
||
|
FPU_REG argSq;
|
||
|
unsigned long long arg_signif, argSqSq;
|
||
|
|
||
|
|
||
|
exponent = arg->exp - EXP_BIAS;
|
||
|
|
||
|
#ifdef PARANOID
|
||
|
if ( arg->sign != 0 ) /* Can't hack a number < 0.0 */
|
||
|
{ arith_invalid(result); return; } /* Need a positive number */
|
||
|
#endif PARANOID
|
||
|
|
||
|
arg_signif = significand(arg);
|
||
|
if ( exponent < -1 )
|
||
|
{
|
||
|
/* shift the argument right by the required places */
|
||
|
if ( shrx(&arg_signif, -1-exponent) >= 0x80000000U )
|
||
|
arg_signif++; /* round up */
|
||
|
}
|
||
|
|
||
|
mul64(&arg_signif, &arg_signif, &significand(&argSq));
|
||
|
mul64(&significand(&argSq), &significand(&argSq), &argSqSq);
|
||
|
|
||
|
/* will be a valid positive nr with expon = 0 */
|
||
|
*(short *)&(pos_poly.sign) = 0;
|
||
|
pos_poly.exp = EXP_BIAS;
|
||
|
|
||
|
/* Do the basic fixed point polynomial evaluation */
|
||
|
polynomial(&pos_poly.sigl, (unsigned *)&argSqSq, oddplterms, HIPOWERop-1);
|
||
|
|
||
|
/* will be a valid positive nr with expon = 0 */
|
||
|
*(short *)&(neg_poly.sign) = 0;
|
||
|
neg_poly.exp = EXP_BIAS;
|
||
|
|
||
|
/* Do the basic fixed point polynomial evaluation */
|
||
|
polynomial(&neg_poly.sigl, (unsigned *)&argSqSq, oddnegterms, HIPOWERon-1);
|
||
|
mul64(&significand(&argSq), &significand(&neg_poly),
|
||
|
&significand(&neg_poly));
|
||
|
|
||
|
/* Subtract the mantissas */
|
||
|
significand(&pos_poly) -= significand(&neg_poly);
|
||
|
|
||
|
/* Convert to 64 bit signed-compatible */
|
||
|
pos_poly.exp -= 1;
|
||
|
|
||
|
reg_move(&pos_poly, &odd_poly);
|
||
|
normalize(&odd_poly);
|
||
|
|
||
|
reg_mul(&odd_poly, arg, &odd_poly, FULL_PRECISION);
|
||
|
/* Complete the odd polynomial. */
|
||
|
reg_u_add(&odd_poly, arg, &odd_poly, FULL_PRECISION);
|
||
|
|
||
|
/* will be a valid positive nr with expon = 0 */
|
||
|
*(short *)&(pos_poly.sign) = 0;
|
||
|
pos_poly.exp = EXP_BIAS;
|
||
|
|
||
|
/* Do the basic fixed point polynomial evaluation */
|
||
|
polynomial(&pos_poly.sigl, (unsigned *)&argSqSq, evenplterms, HIPOWERep-1);
|
||
|
mul64(&significand(&argSq),
|
||
|
&significand(&pos_poly), &significand(&pos_poly));
|
||
|
|
||
|
/* will be a valid positive nr with expon = 0 */
|
||
|
*(short *)&(neg_poly.sign) = 0;
|
||
|
neg_poly.exp = EXP_BIAS;
|
||
|
|
||
|
/* Do the basic fixed point polynomial evaluation */
|
||
|
polynomial(&neg_poly.sigl, (unsigned *)&argSqSq, evennegterms, HIPOWERen-1);
|
||
|
|
||
|
/* Subtract the mantissas */
|
||
|
significand(&neg_poly) -= significand(&pos_poly);
|
||
|
/* and multiply by argSq */
|
||
|
|
||
|
/* Convert argSq to a valid reg number */
|
||
|
*(short *)&(argSq.sign) = 0;
|
||
|
argSq.exp = EXP_BIAS - 1;
|
||
|
normalize(&argSq);
|
||
|
|
||
|
/* Convert to 64 bit signed-compatible */
|
||
|
neg_poly.exp -= 1;
|
||
|
|
||
|
reg_move(&neg_poly, &even_poly);
|
||
|
normalize(&even_poly);
|
||
|
|
||
|
reg_mul(&even_poly, &argSq, &even_poly, FULL_PRECISION);
|
||
|
reg_add(&even_poly, &argSq, &even_poly, FULL_PRECISION);
|
||
|
/* Complete the even polynomial */
|
||
|
reg_sub(&CONST_1, &even_poly, &even_poly, FULL_PRECISION);
|
||
|
|
||
|
/* Now ready to copy the results */
|
||
|
if ( invert )
|
||
|
{ reg_div(&even_poly, &odd_poly, result, FULL_PRECISION); }
|
||
|
else
|
||
|
{ reg_div(&odd_poly, &even_poly, result, FULL_PRECISION); }
|
||
|
|
||
|
}
|