historical/gems-kernel.git/source/THIRDPARTY/linux-old/drivers/char/tty_io.c

1827 lines
45 KiB
C
Raw Normal View History

/*
* linux/kernel/tty_io.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
* or rs-channels. It also implements echoing, cooked mode etc.
*
* Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
*
* Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
* tty_struct and tty_queue structures. Previously there was a array
* of 256 tty_struct's which was statically allocated, and the
* tty_queue structures were allocated at boot time. Both are now
* dynamically allocated only when the tty is open.
*
* Also restructured routines so that there is more of a separation
* between the high-level tty routines (tty_io.c and tty_ioctl.c) and
* the low-level tty routines (serial.c, pty.c, console.c). This
* makes for cleaner and more compact code. -TYT, 9/17/92
*
* Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
* which can be dynamically activated and de-activated by the line
* discipline handling modules (like SLIP).
*
* NOTE: pay no attention to the line discpline code (yet); its
* interface is still subject to change in this version...
* -- TYT, 1/31/92
*
* Added functionality to the OPOST tty handling. No delays, but all
* other bits should be there.
* -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
*
* Rewrote canonical mode and added more termios flags.
* -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
*/
#include <linux/types.h>
#include <linux/major.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/fcntl.h>
#include <linux/sched.h>
#include <linux/tty.h>
#include <linux/timer.h>
#include <linux/ctype.h>
#include <linux/kd.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/malloc.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include "kbd_kern.h"
#include "vt_kern.h"
#define CONSOLE_DEV MKDEV(TTY_MAJOR,0)
#define MAX_TTYS 256
struct tty_struct *tty_table[MAX_TTYS];
struct termios *tty_termios[MAX_TTYS]; /* We need to keep the termios state */
/* around, even when a tty is closed */
struct termios *termios_locked[MAX_TTYS]; /* Bitfield of locked termios flags*/
struct tty_ldisc ldiscs[NR_LDISCS]; /* line disc dispatch table */
int tty_check_write[MAX_TTYS/32]; /* bitfield for the bh handler */
/*
* fg_console is the current virtual console,
* redirect is the pseudo-tty that console output
* is redirected to if asked by TIOCCONS.
*/
int fg_console = 0;
struct tty_struct * redirect = NULL;
struct wait_queue * keypress_wait = NULL;
static void initialize_tty_struct(int line, struct tty_struct *tty);
static void initialize_termios(int line, struct termios *tp);
static int tty_read(struct inode *, struct file *, char *, int);
static int tty_write(struct inode *, struct file *, char *, int);
static int tty_select(struct inode *, struct file *, int, select_table *);
static int tty_open(struct inode *, struct file *);
static void tty_release(struct inode *, struct file *);
int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
{
if (disc < N_TTY || disc >= NR_LDISCS)
return -EINVAL;
if (new_ldisc) {
ldiscs[disc] = *new_ldisc;
ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
} else
memset(&ldiscs[disc], 0, sizeof(struct tty_ldisc));
return 0;
}
void put_tty_queue(unsigned char c, struct tty_queue * queue)
{
int head;
unsigned long flags;
save_flags(flags);
cli();
head = (queue->head + 1) & (TTY_BUF_SIZE-1);
if (head != queue->tail) {
queue->buf[queue->head] = c;
queue->head = head;
}
restore_flags(flags);
}
int get_tty_queue(struct tty_queue * queue)
{
int result = -1;
unsigned long flags;
save_flags(flags);
cli();
if (queue->tail != queue->head) {
result = queue->buf[queue->tail];
INC(queue->tail);
}
restore_flags(flags);
return result;
}
/*
* This routine copies out a maximum of buflen characters from the
* read_q; it is a convenience for line disciplines so they can grab a
* large block of data without calling get_tty_char directly. It
* returns the number of characters actually read. Return terminates
* if an error character is read from the queue and the return value
* is negated.
*/
int tty_read_raw_data(struct tty_struct *tty, unsigned char *bufp, int buflen)
{
int result = 0;
unsigned char *p = bufp;
unsigned long flags;
int head, tail;
int ok = 1;
save_flags(flags);
cli();
tail = tty->read_q.tail;
head = tty->read_q.head;
while ((result < buflen) && (tail!=head) && ok) {
ok = !clear_bit (tail, &tty->readq_flags);
*p++ = tty->read_q.buf[tail++];
tail &= TTY_BUF_SIZE-1;
result++;
}
tty->read_q.tail = tail;
restore_flags(flags);
return (ok) ? result : -result;
}
void tty_write_flush(struct tty_struct * tty)
{
if (!tty->write || EMPTY(&tty->write_q))
return;
if (set_bit(TTY_WRITE_BUSY,&tty->flags))
return;
tty->write(tty);
if (!clear_bit(TTY_WRITE_BUSY,&tty->flags))
printk("tty_write_flush: bit already cleared\n");
}
void tty_read_flush(struct tty_struct * tty)
{
if (!tty || EMPTY(&tty->read_q))
return;
if (set_bit(TTY_READ_BUSY, &tty->flags))
return;
ldiscs[tty->disc].handler(tty);
if (!clear_bit(TTY_READ_BUSY, &tty->flags))
printk("tty_read_flush: bit already cleared\n");
}
static int hung_up_tty_read(struct inode * inode, struct file * file, char * buf, int count)
{
return 0;
}
static int hung_up_tty_write(struct inode * inode, struct file * file, char * buf, int count)
{
return -EIO;
}
static int hung_up_tty_select(struct inode * inode, struct file * filp, int sel_type, select_table * wait)
{
return 1;
}
static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
unsigned int cmd, unsigned long arg)
{
return -EIO;
}
static int tty_lseek(struct inode * inode, struct file * file, off_t offset, int orig)
{
return -ESPIPE;
}
static struct file_operations tty_fops = {
tty_lseek,
tty_read,
tty_write,
NULL, /* tty_readdir */
tty_select,
tty_ioctl,
NULL, /* tty_mmap */
tty_open,
tty_release
};
static struct file_operations hung_up_tty_fops = {
tty_lseek,
hung_up_tty_read,
hung_up_tty_write,
NULL, /* hung_up_tty_readdir */
hung_up_tty_select,
hung_up_tty_ioctl,
NULL, /* hung_up_tty_mmap */
NULL, /* hung_up_tty_open */
tty_release /* hung_up_tty_release */
};
void do_tty_hangup(struct tty_struct * tty, struct file_operations *fops)
{
int i;
struct file * filp;
struct task_struct *p;
int dev;
if (!tty)
return;
dev = MKDEV(TTY_MAJOR,tty->line);
for (filp = first_file, i=0; i<nr_files; i++, filp = filp->f_next) {
if (!filp->f_count)
continue;
if (filp->f_rdev != dev)
continue;
if (filp->f_inode && filp->f_inode->i_rdev == CONSOLE_DEV)
continue;
if (filp->f_op != &tty_fops)
continue;
filp->f_op = fops;
}
flush_input(tty);
flush_output(tty);
wake_up_interruptible(&tty->secondary.proc_list);
if (tty->session > 0)
kill_sl(tty->session,SIGHUP,1);
tty->session = 0;
tty->pgrp = -1;
for_each_task(p) {
if (p->tty == tty->line)
p->tty = -1;
}
if (tty->hangup)
(tty->hangup)(tty);
}
void tty_hangup(struct tty_struct * tty)
{
#ifdef TTY_DEBUG_HANGUP
printk("tty%d hangup...\n", tty->line);
#endif
do_tty_hangup(tty, &hung_up_tty_fops);
}
void tty_vhangup(struct tty_struct * tty)
{
#ifdef TTY_DEBUG_HANGUP
printk("tty%d vhangup...\n", tty->line);
#endif
do_tty_hangup(tty, &hung_up_tty_fops);
}
int tty_hung_up_p(struct file * filp)
{
return (filp->f_op == &hung_up_tty_fops);
}
/*
* This function is typically called only by the session leader, when
* it wants to dissassociate itself from its controlling tty.
*
* It performs the following functions:
* (1) Sends a SIGHUP to the foreground process group
* (2) Clears the tty from being controlling the session
* (3) Clears the controlling tty for all processes in the
* session group.
*/
void disassociate_ctty(int priv)
{
struct tty_struct *tty;
struct task_struct *p;
if (current->tty >= 0) {
tty = tty_table[current->tty];
if (tty) {
if (tty->pgrp > 0)
kill_pg(tty->pgrp, SIGHUP, priv);
tty->session = 0;
tty->pgrp = -1;
} else
printk("disassociate_ctty: ctty is NULL?!?");
}
for_each_task(p)
if (p->session == current->session)
p->tty = -1;
}
/*
* Sometimes we want to wait until a particular VT has been activated. We
* do it in a very simple manner. Everybody waits on a single queue and
* get woken up at once. Those that are satisfied go on with their business,
* while those not ready go back to sleep. Seems overkill to add a wait
* to each vt just for this - usually this does nothing!
*/
static struct wait_queue *vt_activate_queue = NULL;
/*
* Sleeps until a vt is activated, or the task is interrupted. Returns
* 0 if activation, -1 if interrupted.
*/
int vt_waitactive(void)
{
interruptible_sleep_on(&vt_activate_queue);
return (current->signal & ~current->blocked) ? -1 : 0;
}
#define vt_wake_waitactive() wake_up(&vt_activate_queue)
extern int kill_proc(int pid, int sig, int priv);
/*
* Performs the back end of a vt switch
*/
void complete_change_console(unsigned int new_console)
{
unsigned char old_vc_mode;
if (new_console == fg_console || new_console >= NR_CONSOLES)
return;
/*
* If we're switching, we could be going from KD_GRAPHICS to
* KD_TEXT mode or vice versa, which means we need to blank or
* unblank the screen later.
*/
old_vc_mode = vt_cons[fg_console].vc_mode;
update_screen(new_console);
/*
* If this new console is under process control, send it a signal
* telling it that it has acquired. Also check if it has died and
* clean up (similar to logic employed in change_console())
*/
if (vt_cons[new_console].vt_mode.mode == VT_PROCESS)
{
/*
* Send the signal as privileged - kill_proc() will
* tell us if the process has gone or something else
* is awry
*/
if (kill_proc(vt_cons[new_console].vt_pid,
vt_cons[new_console].vt_mode.acqsig,
1) != 0)
{
/*
* The controlling process has died, so we revert back to
* normal operation. In this case, we'll also change back
* to KD_TEXT mode. I'm not sure if this is strictly correct
* but it saves the agony when the X server dies and the screen
* remains blanked due to KD_GRAPHICS! It would be nice to do
* this outside of VT_PROCESS but there is no single process
* to account for and tracking tty count may be undesirable.
*/
vt_cons[new_console].vc_mode = KD_TEXT;
clr_vc_kbd_mode(kbd_table + new_console, VC_RAW);
clr_vc_kbd_mode(kbd_table + new_console, VC_MEDIUMRAW);
vt_cons[new_console].vt_mode.mode = VT_AUTO;
vt_cons[new_console].vt_mode.waitv = 0;
vt_cons[new_console].vt_mode.relsig = 0;
vt_cons[new_console].vt_mode.acqsig = 0;
vt_cons[new_console].vt_mode.frsig = 0;
vt_cons[new_console].vt_pid = -1;
vt_cons[new_console].vt_newvt = -1;
}
}
/*
* We do this here because the controlling process above may have
* gone, and so there is now a new vc_mode
*/
if (old_vc_mode != vt_cons[new_console].vc_mode)
{
if (vt_cons[new_console].vc_mode == KD_TEXT)
unblank_screen();
else {
timer_active &= ~(1<<BLANK_TIMER);
blank_screen();
}
}
/*
* Wake anyone waiting for their VT to activate
*/
vt_wake_waitactive();
return;
}
/*
* Performs the front-end of a vt switch
*/
void change_console(unsigned int new_console)
{
if (new_console == fg_console || new_console >= NR_CONSOLES)
return;
/*
* If this vt is in process mode, then we need to handshake with
* that process before switching. Essentially, we store where that
* vt wants to switch to and wait for it to tell us when it's done
* (via VT_RELDISP ioctl).
*
* We also check to see if the controlling process still exists.
* If it doesn't, we reset this vt to auto mode and continue.
* This is a cheap way to track process control. The worst thing
* that can happen is: we send a signal to a process, it dies, and
* the switch gets "lost" waiting for a response; hopefully, the
* user will try again, we'll detect the process is gone (unless
* the user waits just the right amount of time :-) and revert the
* vt to auto control.
*/
if (vt_cons[fg_console].vt_mode.mode == VT_PROCESS)
{
/*
* Send the signal as privileged - kill_proc() will
* tell us if the process has gone or something else
* is awry
*/
if (kill_proc(vt_cons[fg_console].vt_pid,
vt_cons[fg_console].vt_mode.relsig,
1) == 0)
{
/*
* It worked. Mark the vt to switch to and
* return. The process needs to send us a
* VT_RELDISP ioctl to complete the switch.
*/
vt_cons[fg_console].vt_newvt = new_console;
return;
}
/*
* The controlling process has died, so we revert back to
* normal operation. In this case, we'll also change back
* to KD_TEXT mode. I'm not sure if this is strictly correct
* but it saves the agony when the X server dies and the screen
* remains blanked due to KD_GRAPHICS! It would be nice to do
* this outside of VT_PROCESS but there is no single process
* to account for and tracking tty count may be undesirable.
*/
vt_cons[fg_console].vc_mode = KD_TEXT;
clr_vc_kbd_mode(kbd_table + fg_console, VC_RAW);
clr_vc_kbd_mode(kbd_table + fg_console, VC_MEDIUMRAW);
vt_cons[fg_console].vt_mode.mode = VT_AUTO;
vt_cons[fg_console].vt_mode.waitv = 0;
vt_cons[fg_console].vt_mode.relsig = 0;
vt_cons[fg_console].vt_mode.acqsig = 0;
vt_cons[fg_console].vt_mode.frsig = 0;
vt_cons[fg_console].vt_pid = -1;
vt_cons[fg_console].vt_newvt = -1;
/*
* Fall through to normal (VT_AUTO) handling of the switch...
*/
}
/*
* Ignore all switches in KD_GRAPHICS+VT_AUTO mode
*/
if (vt_cons[fg_console].vc_mode == KD_GRAPHICS)
return;
complete_change_console(new_console);
}
void wait_for_keypress(void)
{
sleep_on(&keypress_wait);
}
void stop_tty(struct tty_struct *tty)
{
if (tty->stopped)
return;
tty->stopped = 1;
if (tty->link && tty->link->packet) {
tty->ctrl_status &= ~TIOCPKT_START;
tty->ctrl_status |= TIOCPKT_STOP;
wake_up_interruptible(&tty->link->secondary.proc_list);
}
if (tty->stop)
(tty->stop)(tty);
if (IS_A_CONSOLE(tty->line)) {
set_vc_kbd_led(kbd_table + fg_console, VC_SCROLLOCK);
set_leds();
}
}
void start_tty(struct tty_struct *tty)
{
if (!tty->stopped)
return;
tty->stopped = 0;
if (tty->link && tty->link->packet) {
tty->ctrl_status &= ~TIOCPKT_STOP;
tty->ctrl_status |= TIOCPKT_START;
wake_up_interruptible(&tty->link->secondary.proc_list);
}
if (tty->start)
(tty->start)(tty);
TTY_WRITE_FLUSH(tty);
if (IS_A_CONSOLE(tty->line)) {
clr_vc_kbd_led(kbd_table + fg_console, VC_SCROLLOCK);
set_leds();
}
}
/* Perform OPOST processing. Returns -1 when the write_q becomes full
and the character must be retried. */
static int opost(unsigned char c, struct tty_struct *tty)
{
if (FULL(&tty->write_q))
return -1;
if (O_OPOST(tty)) {
switch (c) {
case '\n':
if (O_ONLRET(tty))
tty->column = 0;
if (O_ONLCR(tty)) {
if (LEFT(&tty->write_q) < 2)
return -1;
put_tty_queue('\r', &tty->write_q);
tty->column = 0;
}
tty->canon_column = tty->column;
break;
case '\r':
if (O_ONOCR(tty) && tty->column == 0)
return 0;
if (O_OCRNL(tty)) {
c = '\n';
if (O_ONLRET(tty))
tty->canon_column = tty->column = 0;
break;
}
tty->canon_column = tty->column = 0;
break;
case '\t':
if (O_TABDLY(tty) == XTABS) {
if (LEFT(&tty->write_q) < 8)
return -1;
do
put_tty_queue(' ', &tty->write_q);
while (++tty->column % 8);
return 0;
}
tty->column = (tty->column | 7) + 1;
break;
case '\b':
if (tty->column > 0)
tty->column--;
break;
default:
if (O_OLCUC(tty))
c = toupper(c);
if (!iscntrl(c))
tty->column++;
break;
}
}
put_tty_queue(c, &tty->write_q);
return 0;
}
/* Must be called only when L_ECHO(tty) is true. */
static void echo_char(unsigned char c, struct tty_struct *tty)
{
if (L_ECHOCTL(tty) && iscntrl(c) && c != '\t') {
opost('^', tty);
opost(c ^ 0100, tty);
} else
opost(c, tty);
}
static void eraser(unsigned char c, struct tty_struct *tty)
{
enum { ERASE, WERASE, KILL } kill_type;
int seen_alnums;
if (tty->secondary.head == tty->canon_head) {
/* opost('\a', tty); */ /* what do you think? */
return;
}
if (c == ERASE_CHAR(tty))
kill_type = ERASE;
else if (c == WERASE_CHAR(tty))
kill_type = WERASE;
else {
if (!L_ECHO(tty)) {
tty->secondary.head = tty->canon_head;
return;
}
if (!L_ECHOK(tty) || !L_ECHOKE(tty)) {
tty->secondary.head = tty->canon_head;
if (tty->erasing) {
opost('/', tty);
tty->erasing = 0;
}
echo_char(KILL_CHAR(tty), tty);
/* Add a newline if ECHOK is on and ECHOKE is off. */
if (L_ECHOK(tty))
opost('\n', tty);
return;
}
kill_type = KILL;
}
seen_alnums = 0;
while (tty->secondary.head != tty->canon_head) {
c = LAST(&tty->secondary);
if (kill_type == WERASE) {
/* Equivalent to BSD's ALTWERASE. */
if (isalnum(c) || c == '_')
seen_alnums++;
else if (seen_alnums)
break;
}
DEC(tty->secondary.head);
if (L_ECHO(tty)) {
if (L_ECHOPRT(tty)) {
if (!tty->erasing) {
opost('\\', tty);
tty->erasing = 1;
}
echo_char(c, tty);
} else if (!L_ECHOE(tty)) {
echo_char(ERASE_CHAR(tty), tty);
} else if (c == '\t') {
unsigned int col = tty->canon_column;
unsigned long tail = tty->canon_head;
/* Find the column of the last char. */
while (tail != tty->secondary.head) {
c = tty->secondary.buf[tail];
if (c == '\t')
col = (col | 7) + 1;
else if (iscntrl(c)) {
if (L_ECHOCTL(tty))
col += 2;
} else
col++;
INC(tail);
}
/* Now backup to that column. */
while (tty->column > col) {
/* Can't use opost here. */
put_tty_queue('\b', &tty->write_q);
tty->column--;
}
} else {
if (iscntrl(c) && L_ECHOCTL(tty)) {
opost('\b', tty);
opost(' ', tty);
opost('\b', tty);
}
if (!iscntrl(c) || L_ECHOCTL(tty)) {
opost('\b', tty);
opost(' ', tty);
opost('\b', tty);
}
}
}
if (kill_type == ERASE)
break;
}
if (tty->erasing && tty->secondary.head == tty->canon_head) {
opost('/', tty);
tty->erasing = 0;
}
}
static void isig(int sig, struct tty_struct *tty)
{
kill_pg(tty->pgrp, sig, 1);
if (!L_NOFLSH(tty)) {
flush_input(tty);
flush_output(tty);
}
}
static void copy_to_cooked(struct tty_struct * tty)
{
int c, special_flag;
unsigned long flags;
if (!tty) {
printk("copy_to_cooked: called with NULL tty\n");
return;
}
if (!tty->write) {
printk("copy_to_cooked: tty %d has null write routine\n",
tty->line);
}
while (1) {
/*
* Check to see how much room we have left in the
* secondary queue. Send a throttle command or abort
* if necessary.
*/
c = LEFT(&tty->secondary);
if (tty->throttle && (c < SQ_THRESHOLD_LW)
&& !set_bit(TTY_SQ_THROTTLED, &tty->flags))
tty->throttle(tty, TTY_THROTTLE_SQ_FULL);
if (c == 0)
break;
save_flags(flags); cli();
if (!EMPTY(&tty->read_q)) {
c = tty->read_q.buf[tty->read_q.tail];
special_flag = clear_bit(tty->read_q.tail,
&tty->readq_flags);
INC(tty->read_q.tail);
restore_flags(flags);
} else {
restore_flags(flags);
break;
}
if (special_flag) {
tty->char_error = c;
continue;
}
if (tty->char_error) {
if (tty->char_error == TTY_BREAK) {
tty->char_error = 0;
if (I_IGNBRK(tty))
continue;
/* A break is handled by the lower levels. */
if (I_BRKINT(tty))
continue;
if (I_PARMRK(tty)) {
put_tty_queue('\377', &tty->secondary);
put_tty_queue('\0', &tty->secondary);
}
put_tty_queue('\0', &tty->secondary);
continue;
}
if (tty->char_error == TTY_OVERRUN) {
tty->char_error = 0;
printk("tty%d: input overrun\n", tty->line);
continue;
}
/* Must be a parity or frame error */
tty->char_error = 0;
if (I_IGNPAR(tty)) {
continue;
}
if (I_PARMRK(tty)) {
put_tty_queue('\377', &tty->secondary);
put_tty_queue('\0', &tty->secondary);
put_tty_queue(c, &tty->secondary);
} else
put_tty_queue('\0', &tty->secondary);
continue;
}
if (I_ISTRIP(tty))
c &= 0x7f;
if (!tty->lnext) {
if (c == '\r') {
if (I_IGNCR(tty))
continue;
if (I_ICRNL(tty))
c = '\n';
} else if (c == '\n' && I_INLCR(tty))
c = '\r';
}
if (I_IUCLC(tty) && L_IEXTEN(tty))
c=tolower(c);
if (c == __DISABLED_CHAR)
tty->lnext = 1;
if (L_ICANON(tty) && !tty->lnext) {
if (c == ERASE_CHAR(tty) || c == KILL_CHAR(tty) ||
(c == WERASE_CHAR(tty) && L_IEXTEN(tty))) {
eraser(c, tty);
continue;
}
if (c == LNEXT_CHAR(tty) && L_IEXTEN(tty)) {
tty->lnext = 1;
if (L_ECHO(tty)) {
if (tty->erasing) {
opost('/', tty);
tty->erasing = 0;
}
if (L_ECHOCTL(tty)) {
opost('^', tty);
opost('\b', tty);
}
}
continue;
}
if (c == REPRINT_CHAR(tty) && L_ECHO(tty) &&
L_IEXTEN(tty)) {
unsigned long tail = tty->canon_head;
if (tty->erasing) {
opost('/', tty);
tty->erasing = 0;
}
echo_char(c, tty);
opost('\n', tty);
while (tail != tty->secondary.head) {
echo_char(tty->secondary.buf[tail],
tty);
INC(tail);
}
continue;
}
}
if (I_IXON(tty) && !tty->lnext) {
if ((tty->stopped && I_IXANY(tty) && L_IEXTEN(tty)) ||
c == START_CHAR(tty)) {
start_tty(tty);
continue;
}
if (c == STOP_CHAR(tty)) {
stop_tty(tty);
continue;
}
}
if (L_ISIG(tty) && !tty->lnext) {
if (c == INTR_CHAR(tty)) {
isig(SIGINT, tty);
continue;
}
if (c == QUIT_CHAR(tty)) {
isig(SIGQUIT, tty);
continue;
}
if (c == SUSP_CHAR(tty)) {
if (!is_orphaned_pgrp(tty->pgrp))
isig(SIGTSTP, tty);
continue;
}
}
if (tty->erasing) {
opost('/', tty);
tty->erasing = 0;
}
if (c == '\n' && !tty->lnext) {
if (L_ECHO(tty) || (L_ICANON(tty) && L_ECHONL(tty)))
opost('\n', tty);
} else if (L_ECHO(tty)) {
/* Don't echo the EOF char in canonical mode. Sun
handles this differently by echoing the char and
then backspacing, but that's a hack. */
if (c != EOF_CHAR(tty) || !L_ICANON(tty) ||
tty->lnext) {
/* Record the column of first canon char. */
if (tty->canon_head == tty->secondary.head)
tty->canon_column = tty->column;
echo_char(c, tty);
}
}
if (I_PARMRK(tty) && c == (unsigned char) '\377' &&
(c != EOF_CHAR(tty) || !L_ICANON(tty) || tty->lnext))
put_tty_queue(c, &tty->secondary);
if (L_ICANON(tty) && !tty->lnext &&
(c == '\n' || c == EOF_CHAR(tty) || c == EOL_CHAR(tty) ||
(c == EOL2_CHAR(tty) && L_IEXTEN(tty)))) {
if (c == EOF_CHAR(tty))
c = __DISABLED_CHAR;
set_bit(tty->secondary.head, &tty->secondary_flags);
put_tty_queue(c, &tty->secondary);
tty->canon_head = tty->secondary.head;
tty->canon_data++;
} else
put_tty_queue(c, &tty->secondary);
tty->lnext = 0;
}
if (!EMPTY(&tty->write_q))
TTY_WRITE_FLUSH(tty);
if (L_ICANON(tty) ? tty->canon_data : !EMPTY(&tty->secondary))
wake_up_interruptible(&tty->secondary.proc_list);
if (tty->throttle && (LEFT(&tty->read_q) >= RQ_THRESHOLD_HW)
&& clear_bit(TTY_RQ_THROTTLED, &tty->flags))
tty->throttle(tty, TTY_THROTTLE_RQ_AVAIL);
}
int is_ignored(int sig)
{
return ((current->blocked & (1<<(sig-1))) ||
(current->sigaction[sig-1].sa_handler == SIG_IGN));
}
static inline int input_available_p(struct tty_struct *tty)
{
/* Avoid calling TTY_READ_FLUSH unnecessarily. */
if (L_ICANON(tty)) {
if (tty->canon_data || FULL(&tty->read_q))
return 1;
} else if (!EMPTY(&tty->secondary))
return 1;
/* Shuffle any pending data down the queues. */
TTY_READ_FLUSH(tty);
if (tty->link)
TTY_WRITE_FLUSH(tty->link);
if (L_ICANON(tty)) {
if (tty->canon_data || FULL(&tty->read_q))
return 1;
} else if (!EMPTY(&tty->secondary))
return 1;
return 0;
}
static int read_chan(struct tty_struct *tty, struct file *file,
unsigned char *buf, unsigned int nr)
{
struct wait_queue wait = { current, NULL };
int c;
unsigned char *b = buf;
int minimum, time;
int retval = 0;
if (L_ICANON(tty)) {
minimum = time = 0;
current->timeout = (unsigned long) -1;
} else {
time = (HZ / 10) * TIME_CHAR(tty);
minimum = MIN_CHAR(tty);
if (minimum)
current->timeout = (unsigned long) -1;
else {
if (time) {
current->timeout = time + jiffies;
time = 0;
} else
current->timeout = 0;
minimum = 1;
}
}
add_wait_queue(&tty->secondary.proc_list, &wait);
while (1) {
/* Job control check -- must be done at start and after
every sleep (POSIX.1 7.1.1.4). */
/* don't stop on /dev/console */
if (file->f_inode->i_rdev != CONSOLE_DEV &&
current->tty == tty->line) {
if (tty->pgrp <= 0)
printk("read_chan: tty->pgrp <= 0!\n");
else if (current->pgrp != tty->pgrp) {
if (is_ignored(SIGTTIN) ||
is_orphaned_pgrp(current->pgrp)) {
retval = -EIO;
break;
}
kill_pg(current->pgrp, SIGTTIN, 1);
retval = -ERESTARTSYS;
break;
}
}
/* First test for status change. */
if (tty->packet && tty->link->ctrl_status) {
if (b != buf)
break;
put_fs_byte(tty->link->ctrl_status, b++);
tty->link->ctrl_status = 0;
break;
}
/* This statement must be first before checking for input
so that any interrupt will set the state back to
TASK_RUNNING. */
current->state = TASK_INTERRUPTIBLE;
if (!input_available_p(tty)) {
if (tty->flags & (1 << TTY_SLAVE_CLOSED)) {
retval = -EIO;
break;
}
if (tty_hung_up_p(file))
break;
if (!current->timeout)
break;
if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
break;
}
if (current->signal & ~current->blocked) {
retval = -ERESTARTSYS;
break;
}
schedule();
continue;
}
current->state = TASK_RUNNING;
/* Deal with packet mode. */
if (tty->packet && b == buf) {
put_fs_byte(TIOCPKT_DATA, b++);
nr--;
}
while (nr > 0) {
int eol;
cli();
if (EMPTY(&tty->secondary)) {
sti();
break;
}
eol = clear_bit(tty->secondary.tail,
&tty->secondary_flags);
c = tty->secondary.buf[tty->secondary.tail];
INC(tty->secondary.tail);
sti();
if (eol) {
if (--tty->canon_data < 0) {
printk("read_chan: canon_data < 0!\n");
tty->canon_data = 0;
}
if (c == __DISABLED_CHAR)
break;
put_fs_byte(c, b++);
nr--;
break;
}
put_fs_byte(c, b++);
nr--;
}
/* If there is enough space in the secondary queue now, let the
low-level driver know. */
if (tty->throttle && (LEFT(&tty->secondary) >= SQ_THRESHOLD_HW)
&& !clear_bit(TTY_SQ_THROTTLED, &tty->flags))
tty->throttle(tty, TTY_THROTTLE_SQ_AVAIL);
/* XXX packet mode's status byte is mistakenly counted */
if (b - buf >= minimum || !nr)
break;
if (time)
current->timeout = time + jiffies;
}
remove_wait_queue(&tty->secondary.proc_list, &wait);
current->state = TASK_RUNNING;
current->timeout = 0;
return (b - buf) ? b - buf : retval;
}
static int write_chan(struct tty_struct * tty, struct file * file,
unsigned char * buf, unsigned int nr)
{
struct wait_queue wait = { current, NULL };
int c;
unsigned char *b = buf;
int retval = 0;
/* Job control check -- must be done at start (POSIX.1 7.1.1.4). */
if (L_TOSTOP(tty) && file->f_inode->i_rdev != CONSOLE_DEV) {
retval = check_change(tty, tty->line);
if (retval)
return retval;
}
add_wait_queue(&tty->write_q.proc_list, &wait);
while (1) {
current->state = TASK_INTERRUPTIBLE;
if (current->signal & ~current->blocked) {
retval = -ERESTARTSYS;
break;
}
if (tty_hung_up_p(file) || (tty->link && !tty->link->count)) {
retval = -EIO;
break;
}
while (nr > 0) {
c = get_fs_byte(b);
/* Care is needed here: opost() can abort even
if the write_q is not full. */
if (opost(c, tty) < 0)
break;
b++; nr--;
}
TTY_WRITE_FLUSH(tty);
if (!nr)
break;
if (EMPTY(&tty->write_q) && !need_resched)
continue;
schedule();
}
current->state = TASK_RUNNING;
remove_wait_queue(&tty->write_q.proc_list, &wait);
return (b - buf) ? b - buf : retval;
}
static int tty_read(struct inode * inode, struct file * file, char * buf, int count)
{
int i, dev;
struct tty_struct * tty;
dev = file->f_rdev;
if (MAJOR(dev) != TTY_MAJOR) {
printk("tty_read: bad pseudo-major nr #%d\n", MAJOR(dev));
return -EINVAL;
}
dev = MINOR(dev);
tty = TTY_TABLE(dev);
if (!tty || (tty->flags & (1 << TTY_IO_ERROR)))
return -EIO;
/* This check not only needs to be done before reading, but also
whenever read_chan() gets woken up after sleeping, so I've
moved it to there. This should only be done for the N_TTY
line discipline, anyway. Same goes for write_chan(). -- jlc. */
#if 0
if ((inode->i_rdev != CONSOLE_DEV) && /* don't stop on /dev/console */
(tty->pgrp > 0) &&
(current->tty == dev) &&
(tty->pgrp != current->pgrp))
if (is_ignored(SIGTTIN) || is_orphaned_pgrp(current->pgrp))
return -EIO;
else {
(void) kill_pg(current->pgrp, SIGTTIN, 1);
return -ERESTARTSYS;
}
#endif
if (ldiscs[tty->disc].read)
/* XXX casts are for what kernel-wide prototypes should be. */
i = (ldiscs[tty->disc].read)(tty,file,(unsigned char *)buf,(unsigned int)count);
else
i = -EIO;
if (i > 0)
inode->i_atime = CURRENT_TIME;
return i;
}
static int tty_write(struct inode * inode, struct file * file, char * buf, int count)
{
int dev, i, is_console;
struct tty_struct * tty;
dev = file->f_rdev;
is_console = (inode->i_rdev == CONSOLE_DEV);
if (MAJOR(dev) != TTY_MAJOR) {
printk("tty_write: pseudo-major != TTY_MAJOR\n");
return -EINVAL;
}
dev = MINOR(dev);
if (is_console && redirect)
tty = redirect;
else
tty = TTY_TABLE(dev);
if (!tty || !tty->write || (tty->flags & (1 << TTY_IO_ERROR)))
return -EIO;
#if 0
if (!is_console && L_TOSTOP(tty) && (tty->pgrp > 0) &&
(current->tty == dev) && (tty->pgrp != current->pgrp)) {
if (is_orphaned_pgrp(current->pgrp))
return -EIO;
if (!is_ignored(SIGTTOU)) {
(void) kill_pg(current->pgrp, SIGTTOU, 1);
return -ERESTARTSYS;
}
}
#endif
if (ldiscs[tty->disc].write)
/* XXX casts are for what kernel-wide prototypes should be. */
i = (ldiscs[tty->disc].write)(tty,file,(unsigned char *)buf,(unsigned int)count);
else
i = -EIO;
if (i > 0)
inode->i_mtime = CURRENT_TIME;
return i;
}
/*
* This is so ripe with races that you should *really* not touch this
* unless you know exactly what you are doing. All the changes have to be
* made atomically, or there may be incorrect pointers all over the place.
*/
static int init_dev(int dev)
{
struct tty_struct *tty, *o_tty;
struct termios *tp, *o_tp, *ltp, *o_ltp;
int retval;
int o_dev;
o_dev = PTY_OTHER(dev);
tty = o_tty = NULL;
tp = o_tp = NULL;
ltp = o_ltp = NULL;
repeat:
retval = -EAGAIN;
if (IS_A_PTY_MASTER(dev) && tty_table[dev] && tty_table[dev]->count)
goto end_init;
retval = -ENOMEM;
if (!tty_table[dev] && !tty) {
if (!(tty = (struct tty_struct*) get_free_page(GFP_KERNEL)))
goto end_init;
initialize_tty_struct(dev, tty);
goto repeat;
}
if (!tty_termios[dev] && !tp) {
tp = (struct termios *) kmalloc(sizeof(struct termios),
GFP_KERNEL);
if (!tp)
goto end_init;
initialize_termios(dev, tp);
goto repeat;
}
if (!termios_locked[dev] && !ltp) {
ltp = (struct termios *) kmalloc(sizeof(struct termios),
GFP_KERNEL);
if (!ltp)
goto end_init;
memset(ltp, 0, sizeof(struct termios));
goto repeat;
}
if (IS_A_PTY(dev)) {
if (!tty_table[o_dev] && !o_tty) {
o_tty = (struct tty_struct *)
get_free_page(GFP_KERNEL);
if (!o_tty)
goto end_init;
initialize_tty_struct(o_dev, o_tty);
goto repeat;
}
if (!tty_termios[o_dev] && !o_tp) {
o_tp = (struct termios *)
kmalloc(sizeof(struct termios), GFP_KERNEL);
if (!o_tp)
goto end_init;
initialize_termios(o_dev, o_tp);
goto repeat;
}
if (!termios_locked[o_dev] && !o_ltp) {
o_ltp = (struct termios *)
kmalloc(sizeof(struct termios), GFP_KERNEL);
if (!o_ltp)
goto end_init;
memset(o_ltp, 0, sizeof(struct termios));
goto repeat;
}
}
/* Now we have allocated all the structures: update all the pointers.. */
if (!tty_termios[dev]) {
tty_termios[dev] = tp;
tp = NULL;
}
if (!tty_table[dev]) {
tty->termios = tty_termios[dev];
tty_table[dev] = tty;
tty = NULL;
}
if (!termios_locked[dev]) {
termios_locked[dev] = ltp;
ltp = NULL;
}
if (IS_A_PTY(dev)) {
if (!tty_termios[o_dev]) {
tty_termios[o_dev] = o_tp;
o_tp = NULL;
}
if (!termios_locked[o_dev]) {
termios_locked[o_dev] = o_ltp;
o_ltp = NULL;
}
if (!tty_table[o_dev]) {
o_tty->termios = tty_termios[o_dev];
tty_table[o_dev] = o_tty;
o_tty = NULL;
}
tty_table[dev]->link = tty_table[o_dev];
tty_table[o_dev]->link = tty_table[dev];
}
tty_table[dev]->count++;
if (IS_A_PTY_MASTER(dev))
tty_table[o_dev]->count++;
retval = 0;
end_init:
if (tty)
free_page((unsigned long) tty);
if (o_tty)
free_page((unsigned long) o_tty);
if (tp)
kfree_s(tp, sizeof(struct termios));
if (o_tp)
kfree_s(o_tp, sizeof(struct termios));
if (ltp)
kfree_s(ltp, sizeof(struct termios));
if (o_ltp)
kfree_s(o_ltp, sizeof(struct termios));
return retval;
}
/*
* Even releasing the tty structures is a tricky business.. We have
* to be very careful that the structures are all released at the
* same time, as interrupts might otherwise get the wrong pointers.
*/
static void release_dev(int dev, struct file * filp)
{
struct tty_struct *tty, *o_tty;
struct termios *tp, *o_tp;
struct task_struct **p;
tty = tty_table[dev];
tp = tty_termios[dev];
o_tty = NULL;
o_tp = NULL;
if (!tty) {
printk("release_dev: tty_table[%d] was NULL\n", dev);
return;
}
if (!tp) {
printk("release_dev: tty_termios[%d] was NULL\n", dev);
return;
}
#ifdef TTY_DEBUG_HANGUP
printk("release_dev of tty%d (tty count=%d)...", dev, tty->count);
#endif
if (IS_A_PTY(dev)) {
o_tty = tty_table[PTY_OTHER(dev)];
o_tp = tty_termios[PTY_OTHER(dev)];
if (!o_tty) {
printk("release_dev: pty pair(%d) was NULL\n", dev);
return;
}
if (!o_tp) {
printk("release_dev: pty pair(%d) termios was NULL\n", dev);
return;
}
if (tty->link != o_tty || o_tty->link != tty) {
printk("release_dev: bad pty pointers\n");
return;
}
}
tty->write_data_cnt = 0; /* Clear out pending trash */
if (tty->close)
tty->close(tty, filp);
if (IS_A_PTY_MASTER(dev)) {
if (--tty->link->count < 0) {
printk("release_dev: bad tty slave count (dev = %d): %d\n",
dev, tty->count);
tty->link->count = 0;
}
}
if (--tty->count < 0) {
printk("release_dev: bad tty_table[%d]->count: %d\n",
dev, tty->count);
tty->count = 0;
}
if (tty->count)
return;
#ifdef TTY_DEBUG_HANGUP
printk("freeing tty structure...");
#endif
/*
* Make sure there aren't any processes that still think this
* tty is their controlling tty.
*/
for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) {
if ((*p) && (*p)->tty == tty->line)
(*p)->tty = -1;
}
/*
* Shutdown the current line discipline, and reset it to
* N_TTY.
*/
if (ldiscs[tty->disc].close != NULL)
ldiscs[tty->disc].close(tty);
tty->disc = N_TTY;
tty->termios->c_line = N_TTY;
if (o_tty) {
if (o_tty->count)
return;
else {
tty_table[PTY_OTHER(dev)] = NULL;
tty_termios[PTY_OTHER(dev)] = NULL;
}
}
tty_table[dev] = NULL;
if (IS_A_PTY(dev)) {
tty_termios[dev] = NULL;
kfree_s(tp, sizeof(struct termios));
}
if (tty == redirect || o_tty == redirect)
redirect = NULL;
free_page((unsigned long) tty);
if (o_tty)
free_page((unsigned long) o_tty);
if (o_tp)
kfree_s(o_tp, sizeof(struct termios));
}
/*
* tty_open and tty_release keep up the tty count that contains the
* number of opens done on a tty. We cannot use the inode-count, as
* different inodes might point to the same tty.
*
* Open-counting is needed for pty masters, as well as for keeping
* track of serial lines: DTR is dropped when the last close happens.
* (This is not done solely through tty->count, now. - Ted 1/27/92)
*
* The termios state of a pty is reset on first open so that
* settings don't persist across reuse.
*/
static int tty_open(struct inode * inode, struct file * filp)
{
struct tty_struct *tty;
int major, minor;
int noctty, retval;
retry_open:
minor = MINOR(inode->i_rdev);
major = MAJOR(inode->i_rdev);
noctty = filp->f_flags & O_NOCTTY;
if (major == TTYAUX_MAJOR) {
if (!minor) {
major = TTY_MAJOR;
minor = current->tty;
}
/* noctty = 1; */
} else if (major == TTY_MAJOR) {
if (!minor) {
minor = fg_console + 1;
noctty = 1;
}
} else {
printk("Bad major #%d in tty_open\n", MAJOR(inode->i_rdev));
return -ENODEV;
}
if (minor <= 0)
return -ENXIO;
if (IS_A_PTY_MASTER(minor))
noctty = 1;
filp->f_rdev = (major << 8) | minor;
retval = init_dev(minor);
if (retval)
return retval;
tty = tty_table[minor];
#ifdef TTY_DEBUG_HANGUP
printk("opening tty%d...", tty->line);
#endif
if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !suser())
return -EBUSY;
#if 0
/* clean up the packet stuff. */
/*
* Why is this not done in init_dev? Right here, if another
* process opens up a tty in packet mode, all the packet
* variables get cleared. Come to think of it, is anything
* using the packet mode at all??? - Ted, 1/27/93
*
* Not to worry, a pty master can only be opened once.
* And rlogind and telnetd both use packet mode. -- jrs
*
* Not needed. These are cleared in initialize_tty_struct. -- jlc
*/
tty->ctrl_status = 0;
tty->packet = 0;
#endif
if (tty->open) {
retval = tty->open(tty, filp);
} else {
retval = -ENODEV;
}
if (retval) {
#ifdef TTY_DEBUG_HANGUP
printk("error %d in opening tty%d...", retval, tty->line);
#endif
release_dev(minor, filp);
if (retval != -ERESTARTSYS)
return retval;
if (current->signal & ~current->blocked)
return retval;
schedule();
goto retry_open;
}
if (!noctty &&
current->leader &&
current->tty<0 &&
tty->session==0) {
current->tty = minor;
tty->session = current->session;
tty->pgrp = current->pgrp;
}
filp->f_rdev = MKDEV(TTY_MAJOR,minor); /* Set it to something normal */
return 0;
}
/*
* Note that releasing a pty master also releases the child, so
* we have to make the redirection checks after that and on both
* sides of a pty.
*/
static void tty_release(struct inode * inode, struct file * filp)
{
int dev;
dev = filp->f_rdev;
if (MAJOR(dev) != TTY_MAJOR) {
printk("tty_release: tty pseudo-major != TTY_MAJOR\n");
return;
}
dev = MINOR(filp->f_rdev);
if (!dev) {
printk("tty_release: bad f_rdev\n");
return;
}
release_dev(dev, filp);
}
static int tty_select(struct inode * inode, struct file * filp, int sel_type, select_table * wait)
{
int dev;
struct tty_struct * tty;
dev = filp->f_rdev;
if (MAJOR(dev) != TTY_MAJOR) {
printk("tty_select: tty pseudo-major != TTY_MAJOR\n");
return 0;
}
dev = MINOR(filp->f_rdev);
tty = TTY_TABLE(dev);
if (!tty) {
printk("tty_select: tty struct for dev %d was NULL\n", dev);
return 0;
}
if (ldiscs[tty->disc].select)
return (ldiscs[tty->disc].select)(tty, inode, filp,
sel_type, wait);
return 0;
}
static int normal_select(struct tty_struct * tty, struct inode * inode,
struct file * file, int sel_type, select_table *wait)
{
switch (sel_type) {
case SEL_IN:
if (input_available_p(tty))
return 1;
/* fall through */
case SEL_EX:
if (tty->packet && tty->link->ctrl_status)
return 1;
if (tty->flags & (1 << TTY_SLAVE_CLOSED))
return 1;
if (tty_hung_up_p(file))
return 1;
select_wait(&tty->secondary.proc_list, wait);
return 0;
case SEL_OUT:
if (!FULL(&tty->write_q))
return 1;
select_wait(&tty->write_q.proc_list, wait);
return 0;
}
return 0;
}
/*
* This implements the "Secure Attention Key" --- the idea is to
* prevent trojan horses by killing all processes associated with this
* tty when the user hits the "Secure Attention Key". Required for
* super-paranoid applications --- see the Orange Book for more details.
*
* This code could be nicer; ideally it should send a HUP, wait a few
* seconds, then send a INT, and then a KILL signal. But you then
* have to coordinate with the init process, since all processes associated
* with the current tty must be dead before the new getty is allowed
* to spawn.
*/
void do_SAK( struct tty_struct *tty)
{
#ifdef TTY_SOFT_SAK
tty_hangup(tty);
#else
struct task_struct **p;
int line = tty->line;
int session = tty->session;
int i;
struct file *filp;
flush_input(tty);
flush_output(tty);
for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) {
if (!(*p))
continue;
if (((*p)->tty == line) ||
((session > 0) && ((*p)->session == session)))
send_sig(SIGKILL, *p, 1);
else {
for (i=0; i < NR_OPEN; i++) {
filp = (*p)->filp[i];
if (filp && (filp->f_op == &tty_fops) &&
(MINOR(filp->f_rdev) == line)) {
send_sig(SIGKILL, *p, 1);
break;
}
}
}
}
#endif
}
/*
* This routine allows a kernel routine to send a large chunk of data
* to a particular tty; if all of the data can be queued up for ouput
* immediately, tty_write_data() will return 0. If, however, not all
* of the data can be immediately queued for delivery, the number of
* bytes left to be queued up will be returned, and the rest of the
* data will be queued up when there is room. The callback function
* will be called (with the argument callarg) when the last of the
* data is finally in the queue.
*
* Note that the callback routine will _not_ be called if all of the
* data could be queued immediately. This is to avoid a problem with
* the kernel stack getting too deep, which might happen if the
* callback routine calls tty_write_data with itself as an argument.
*/
int tty_write_data(struct tty_struct *tty, char *bufp, int buflen,
void (*callback)(void * data), void * callarg)
{
int head, tail, count;
unsigned long flags;
char *p;
#define VLEFT ((tail-head-1)&(TTY_BUF_SIZE-1))
save_flags(flags);
cli();
if (tty->write_data_cnt) {
restore_flags(flags);
return -EBUSY;
}
head = tty->write_q.head;
tail = tty->write_q.tail;
count = buflen;
p = bufp;
while (count && VLEFT > 0) {
tty->write_q.buf[head++] = *p++;
head &= TTY_BUF_SIZE-1;
count--;
}
tty->write_q.head = head;
if (count) {
tty->write_data_cnt = count;
tty->write_data_ptr = (unsigned char *) p;
tty->write_data_callback = callback;
tty->write_data_arg = callarg;
}
restore_flags(flags);
tty->write(tty);
return count;
}
/*
* This routine routine is called after an interrupt has drained a
* tty's write queue, so that there is more space for data waiting to
* be sent in tty->write_data_ptr.
*
* tty_check_write[8] is a bitstring which indicates which ttys
* needs to be processed.
*/
void tty_bh_routine(void * unused)
{
int i, j, line, mask;
int head, tail, count;
unsigned char * p;
struct tty_struct * tty;
for (i = 0, line = 0; i < MAX_TTYS / 32; i++) {
if (!tty_check_write[i]) {
line += 32;
continue;
}
for (j=0, mask=0; j < 32; j++, line++, mask <<= 1) {
if (clear_bit(j, &tty_check_write[i])) {
tty = tty_table[line];
if (!tty || !tty->write_data_cnt)
continue;
cli();
head = tty->write_q.head;
tail = tty->write_q.tail;
count = tty->write_data_cnt;
p = tty->write_data_ptr;
while (count && VLEFT > 0) {
tty->write_q.buf[head++] = *p++;
head &= TTY_BUF_SIZE-1;
count--;
}
tty->write_q.head = head;
tty->write_data_ptr = p;
tty->write_data_cnt = count;
sti();
if (!count)
(tty->write_data_callback)
(tty->write_data_arg);
}
}
}
}
/*
* This subroutine initializes a tty structure. We have to set up
* things correctly for each different type of tty.
*/
static void initialize_tty_struct(int line, struct tty_struct *tty)
{
memset(tty, 0, sizeof(struct tty_struct));
tty->line = line;
tty->disc = N_TTY;
tty->pgrp = -1;
if (IS_A_CONSOLE(line)) {
tty->open = con_open;
tty->winsize.ws_row = video_num_lines;
tty->winsize.ws_col = video_num_columns;
} else if IS_A_SERIAL(line) {
tty->open = rs_open;
} else if IS_A_PTY(line) {
tty->open = pty_open;
}
}
static void initialize_termios(int line, struct termios * tp)
{
memset(tp, 0, sizeof(struct termios));
memcpy(tp->c_cc, INIT_C_CC, NCCS);
if (IS_A_CONSOLE(line) || IS_A_PTY_SLAVE(line)) {
tp->c_iflag = ICRNL | IXON;
tp->c_oflag = OPOST | ONLCR;
tp->c_cflag = B38400 | CS8 | CREAD;
tp->c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
ECHOCTL | ECHOKE | IEXTEN;
} else if (IS_A_SERIAL(line)) {
tp->c_iflag = ICRNL | IXON;
tp->c_oflag = OPOST | ONLCR | XTABS;
tp->c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
tp->c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
ECHOCTL | ECHOKE | IEXTEN;
} else if (IS_A_PTY_MASTER(line))
tp->c_cflag = B9600 | CS8 | CREAD;
}
static struct tty_ldisc tty_ldisc_N_TTY = {
0, /* flags */
NULL, /* open */
NULL, /* close */
read_chan, /* read */
write_chan, /* write */
NULL, /* ioctl */
normal_select, /* select */
copy_to_cooked /* handler */
};
long tty_init(long kmem_start)
{
int i;
if (sizeof(struct tty_struct) > PAGE_SIZE)
panic("size of tty structure > PAGE_SIZE!");
if (register_chrdev(TTY_MAJOR,"tty",&tty_fops))
panic("unable to get major %d for tty device", TTY_MAJOR);
if (register_chrdev(TTYAUX_MAJOR,"tty",&tty_fops))
panic("unable to get major %d for tty device", TTYAUX_MAJOR);
for (i=0 ; i< MAX_TTYS ; i++) {
tty_table[i] = 0;
tty_termios[i] = 0;
}
memset(tty_check_write, 0, sizeof(tty_check_write));
bh_base[TTY_BH].routine = tty_bh_routine;
/* Setup the default TTY line discipline. */
memset(ldiscs, 0, sizeof(ldiscs));
(void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
kmem_start = kbd_init(kmem_start);
kmem_start = con_init(kmem_start);
kmem_start = rs_init(kmem_start);
return kmem_start;
}