historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/target/xtensa/mmu_helper.c

1193 lines
38 KiB
C
Raw Normal View History

2024-01-16 17:20:27 +00:00
/*
* Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "qemu/qemu-print.h"
#include "qemu/units.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#define XTENSA_MPU_SEGMENT_MASK 0x0000001f
#define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
#define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
#define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
#define XTENSA_MPU_MEM_TYPE_SHIFT 12
#define XTENSA_MPU_ATTR_MASK 0x001fff00
#define XTENSA_MPU_PROBE_B 0x40000000
#define XTENSA_MPU_PROBE_V 0x80000000
#define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
#define XTENSA_MPU_SYSTEM_TYPE_NC 0x0002
#define XTENSA_MPU_SYSTEM_TYPE_C 0x0003
#define XTENSA_MPU_SYSTEM_TYPE_MASK 0x0003
#define XTENSA_MPU_TYPE_SYS_C 0x0010
#define XTENSA_MPU_TYPE_SYS_W 0x0020
#define XTENSA_MPU_TYPE_SYS_R 0x0040
#define XTENSA_MPU_TYPE_CPU_C 0x0100
#define XTENSA_MPU_TYPE_CPU_W 0x0200
#define XTENSA_MPU_TYPE_CPU_R 0x0400
#define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
#define XTENSA_MPU_TYPE_B 0x1000
#define XTENSA_MPU_TYPE_INT 0x2000
void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
{
/*
* Probe the memory; we don't care about the result but
* only the side-effects (ie any MMU or other exception)
*/
probe_access(env, vaddr, 1, MMU_INST_FETCH,
cpu_mmu_index(env, true), GETPC());
}
void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
{
v = (v & 0xffffff00) | 0x1;
if (v != env->sregs[RASID]) {
env->sregs[RASID] = v;
tlb_flush(env_cpu(env));
}
}
static uint32_t get_page_size(const CPUXtensaState *env,
bool dtlb, uint32_t way)
{
uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
switch (way) {
case 4:
return (tlbcfg >> 16) & 0x3;
case 5:
return (tlbcfg >> 20) & 0x1;
case 6:
return (tlbcfg >> 24) & 0x1;
default:
return 0;
}
}
/*!
* Get bit mask for the virtual address bits translated by the TLB way
*/
static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
bool dtlb, uint32_t way)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
bool varway56 = dtlb ?
env->config->dtlb.varway56 :
env->config->itlb.varway56;
switch (way) {
case 4:
return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
case 5:
if (varway56) {
return 0xf8000000 << get_page_size(env, dtlb, way);
} else {
return 0xf8000000;
}
case 6:
if (varway56) {
return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
} else {
return 0xf0000000;
}
default:
return 0xfffff000;
}
} else {
return REGION_PAGE_MASK;
}
}
/*!
* Get bit mask for the 'VPN without index' field.
* See ISA, 4.6.5.6, data format for RxTLB0
*/
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
if (way < 4) {
bool is32 = (dtlb ?
env->config->dtlb.nrefillentries :
env->config->itlb.nrefillentries) == 32;
return is32 ? 0xffff8000 : 0xffffc000;
} else if (way == 4) {
return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
} else if (way <= 6) {
uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
bool varway56 = dtlb ?
env->config->dtlb.varway56 :
env->config->itlb.varway56;
if (varway56) {
return mask << (way == 5 ? 2 : 3);
} else {
return mask << 1;
}
} else {
return 0xfffff000;
}
}
/*!
* Split virtual address into VPN (with index) and entry index
* for the given TLB way
*/
static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
bool dtlb, uint32_t *vpn,
uint32_t wi, uint32_t *ei)
{
bool varway56 = dtlb ?
env->config->dtlb.varway56 :
env->config->itlb.varway56;
if (!dtlb) {
wi &= 7;
}
if (wi < 4) {
bool is32 = (dtlb ?
env->config->dtlb.nrefillentries :
env->config->itlb.nrefillentries) == 32;
*ei = (v >> 12) & (is32 ? 0x7 : 0x3);
} else {
switch (wi) {
case 4:
{
uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
*ei = (v >> eibase) & 0x3;
}
break;
case 5:
if (varway56) {
uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
*ei = (v >> eibase) & 0x3;
} else {
*ei = (v >> 27) & 0x1;
}
break;
case 6:
if (varway56) {
uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
*ei = (v >> eibase) & 0x7;
} else {
*ei = (v >> 28) & 0x1;
}
break;
default:
*ei = 0;
break;
}
}
*vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
}
/*!
* Split TLB address into TLB way, entry index and VPN (with index).
* See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
*/
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
uint32_t *vpn, uint32_t *wi, uint32_t *ei)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
*wi = v & (dtlb ? 0xf : 0x7);
split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
} else {
*vpn = v & REGION_PAGE_MASK;
*wi = 0;
*ei = (v >> 29) & 0x7;
}
}
static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
unsigned wi, unsigned ei)
{
return dtlb ?
env->dtlb[wi] + ei :
env->itlb[wi] + ei;
}
static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
uint32_t v, bool dtlb, uint32_t *pwi)
{
uint32_t vpn;
uint32_t wi;
uint32_t ei;
split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
if (pwi) {
*pwi = wi;
}
return xtensa_tlb_get_entry(env, dtlb, wi, ei);
}
static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
xtensa_tlb_entry *entry, bool dtlb,
unsigned wi, unsigned ei, uint32_t vpn,
uint32_t pte)
{
entry->vaddr = vpn;
entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
entry->attr = pte & 0xf;
}
static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
unsigned wi, unsigned ei,
uint32_t vpn, uint32_t pte)
{
CPUState *cs = env_cpu(env);
xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
if (entry->variable) {
if (entry->asid) {
tlb_flush_page(cs, entry->vaddr);
}
xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
tlb_flush_page(cs, entry->vaddr);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s %d, %d, %d trying to set immutable entry\n",
__func__, dtlb, wi, ei);
}
} else {
tlb_flush_page(cs, entry->vaddr);
if (xtensa_option_enabled(env->config,
XTENSA_OPTION_REGION_TRANSLATION)) {
entry->paddr = pte & REGION_PAGE_MASK;
}
entry->attr = pte & 0xf;
}
}
hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
uint32_t paddr;
uint32_t page_size;
unsigned access;
if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
&paddr, &page_size, &access) == 0) {
return paddr;
}
if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
&paddr, &page_size, &access) == 0) {
return paddr;
}
return ~0;
}
static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
const xtensa_tlb *tlb,
xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
unsigned wi, ei;
for (wi = 0; wi < tlb->nways; ++wi) {
for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
entry[wi][ei].asid = 0;
entry[wi][ei].variable = true;
}
}
}
static void reset_tlb_mmu_ways56(CPUXtensaState *env,
const xtensa_tlb *tlb,
xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
if (!tlb->varway56) {
static const xtensa_tlb_entry way5[] = {
{
.vaddr = 0xd0000000,
.paddr = 0,
.asid = 1,
.attr = 7,
.variable = false,
}, {
.vaddr = 0xd8000000,
.paddr = 0,
.asid = 1,
.attr = 3,
.variable = false,
}
};
static const xtensa_tlb_entry way6[] = {
{
.vaddr = 0xe0000000,
.paddr = 0xf0000000,
.asid = 1,
.attr = 7,
.variable = false,
}, {
.vaddr = 0xf0000000,
.paddr = 0xf0000000,
.asid = 1,
.attr = 3,
.variable = false,
}
};
memcpy(entry[5], way5, sizeof(way5));
memcpy(entry[6], way6, sizeof(way6));
} else {
uint32_t ei;
for (ei = 0; ei < 8; ++ei) {
entry[6][ei].vaddr = ei << 29;
entry[6][ei].paddr = ei << 29;
entry[6][ei].asid = 1;
entry[6][ei].attr = 3;
}
}
}
static void reset_tlb_region_way0(CPUXtensaState *env,
xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
unsigned ei;
for (ei = 0; ei < 8; ++ei) {
entry[0][ei].vaddr = ei << 29;
entry[0][ei].paddr = ei << 29;
entry[0][ei].asid = 1;
entry[0][ei].attr = 2;
entry[0][ei].variable = true;
}
}
void reset_mmu(CPUXtensaState *env)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
env->sregs[RASID] = 0x04030201;
env->sregs[ITLBCFG] = 0;
env->sregs[DTLBCFG] = 0;
env->autorefill_idx = 0;
reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
} else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
unsigned i;
env->sregs[MPUENB] = 0;
env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
env->sregs[CACHEADRDIS] = 0;
assert(env->config->n_mpu_bg_segments > 0 &&
env->config->mpu_bg[0].vaddr == 0);
for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
assert(env->config->mpu_bg[i].vaddr >=
env->config->mpu_bg[i - 1].vaddr);
}
} else {
env->sregs[CACHEATTR] = 0x22222222;
reset_tlb_region_way0(env, env->itlb);
reset_tlb_region_way0(env, env->dtlb);
}
}
static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
{
unsigned i;
for (i = 0; i < 4; ++i) {
if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
return i;
}
}
return 0xff;
}
/*!
* Lookup xtensa TLB for the given virtual address.
* See ISA, 4.6.2.2
*
* \param pwi: [out] way index
* \param pei: [out] entry index
* \param pring: [out] access ring
* \return 0 if ok, exception cause code otherwise
*/
static int xtensa_tlb_lookup(const CPUXtensaState *env,
uint32_t addr, bool dtlb,
uint32_t *pwi, uint32_t *pei, uint8_t *pring)
{
const xtensa_tlb *tlb = dtlb ?
&env->config->dtlb : &env->config->itlb;
const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
env->dtlb : env->itlb;
int nhits = 0;
unsigned wi;
for (wi = 0; wi < tlb->nways; ++wi) {
uint32_t vpn;
uint32_t ei;
split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
unsigned ring = get_ring(env, entry[wi][ei].asid);
if (ring < 4) {
if (++nhits > 1) {
return dtlb ?
LOAD_STORE_TLB_MULTI_HIT_CAUSE :
INST_TLB_MULTI_HIT_CAUSE;
}
*pwi = wi;
*pei = ei;
*pring = ring;
}
}
}
return nhits ? 0 :
(dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
}
uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
uint32_t wi;
const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
} else {
return v & REGION_PAGE_MASK;
}
}
uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
return entry->paddr | entry->attr;
}
void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
uint32_t wi;
xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
if (entry->variable && entry->asid) {
tlb_flush_page(env_cpu(env), entry->vaddr);
entry->asid = 0;
}
}
}
uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
uint32_t wi;
uint32_t ei;
uint8_t ring;
int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
switch (res) {
case 0:
if (ring >= xtensa_get_ring(env)) {
return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
}
break;
case INST_TLB_MULTI_HIT_CAUSE:
case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
HELPER(exception_cause_vaddr)(env, env->pc, res, v);
break;
}
return 0;
} else {
return (v & REGION_PAGE_MASK) | 0x1;
}
}
void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
{
uint32_t vpn;
uint32_t wi;
uint32_t ei;
split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
}
/*!
* Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, 4.6.5.10
*/
static unsigned mmu_attr_to_access(uint32_t attr)
{
unsigned access = 0;
if (attr < 12) {
access |= PAGE_READ;
if (attr & 0x1) {
access |= PAGE_EXEC;
}
if (attr & 0x2) {
access |= PAGE_WRITE;
}
switch (attr & 0xc) {
case 0:
access |= PAGE_CACHE_BYPASS;
break;
case 4:
access |= PAGE_CACHE_WB;
break;
case 8:
access |= PAGE_CACHE_WT;
break;
}
} else if (attr == 13) {
access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
}
return access;
}
/*!
* Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, 4.6.3.3
*/
static unsigned region_attr_to_access(uint32_t attr)
{
static const unsigned access[16] = {
[0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
[1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
[2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
[3] = PAGE_EXEC | PAGE_CACHE_WB,
[4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
[5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
[14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
};
return access[attr & 0xf];
}
/*!
* Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, A.2.14 The Cache Attribute Register
*/
static unsigned cacheattr_attr_to_access(uint32_t attr)
{
static const unsigned access[16] = {
[0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
[1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
[2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
[3] = PAGE_EXEC | PAGE_CACHE_WB,
[4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
[14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
};
return access[attr & 0xf];
}
struct attr_pattern {
uint32_t mask;
uint32_t value;
};
static int attr_pattern_match(uint32_t attr,
const struct attr_pattern *pattern,
size_t n)
{
size_t i;
for (i = 0; i < n; ++i) {
if ((attr & pattern[i].mask) == pattern[i].value) {
return 1;
}
}
return 0;
}
static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
{
static const struct attr_pattern cpu_c[] = {
{ .mask = 0x18f, .value = 0x089 },
{ .mask = 0x188, .value = 0x080 },
{ .mask = 0x180, .value = 0x180 },
};
unsigned type = 0;
if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
type |= XTENSA_MPU_TYPE_CPU_CACHE;
if (attr & 0x10) {
type |= XTENSA_MPU_TYPE_CPU_C;
}
if (attr & 0x20) {
type |= XTENSA_MPU_TYPE_CPU_W;
}
if (attr & 0x40) {
type |= XTENSA_MPU_TYPE_CPU_R;
}
}
return type;
}
static unsigned mpu_attr_to_type(uint32_t attr)
{
static const struct attr_pattern device_type[] = {
{ .mask = 0x1f6, .value = 0x000 },
{ .mask = 0x1f6, .value = 0x006 },
};
static const struct attr_pattern sys_nc_type[] = {
{ .mask = 0x1fe, .value = 0x018 },
{ .mask = 0x1fe, .value = 0x01e },
{ .mask = 0x18f, .value = 0x089 },
};
static const struct attr_pattern sys_c_type[] = {
{ .mask = 0x1f8, .value = 0x010 },
{ .mask = 0x188, .value = 0x080 },
{ .mask = 0x1f0, .value = 0x030 },
{ .mask = 0x180, .value = 0x180 },
};
static const struct attr_pattern b[] = {
{ .mask = 0x1f7, .value = 0x001 },
{ .mask = 0x1f7, .value = 0x007 },
{ .mask = 0x1ff, .value = 0x019 },
{ .mask = 0x1ff, .value = 0x01f },
};
unsigned type = 0;
attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
if (attr & 0x80) {
type |= XTENSA_MPU_TYPE_INT;
}
}
if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
type |= XTENSA_MPU_SYSTEM_TYPE_NC;
}
if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
type |= XTENSA_MPU_SYSTEM_TYPE_C;
if (attr & 0x1) {
type |= XTENSA_MPU_TYPE_SYS_C;
}
if (attr & 0x2) {
type |= XTENSA_MPU_TYPE_SYS_W;
}
if (attr & 0x4) {
type |= XTENSA_MPU_TYPE_SYS_R;
}
}
if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
type |= XTENSA_MPU_TYPE_B;
}
type |= mpu_attr_to_cpu_cache(attr);
return type;
}
static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
{
static const unsigned access[2][16] = {
[0] = {
[4] = PAGE_READ,
[5] = PAGE_READ | PAGE_EXEC,
[6] = PAGE_READ | PAGE_WRITE,
[7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
[8] = PAGE_WRITE,
[9] = PAGE_READ | PAGE_WRITE,
[10] = PAGE_READ | PAGE_WRITE,
[11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
[12] = PAGE_READ,
[13] = PAGE_READ | PAGE_EXEC,
[14] = PAGE_READ | PAGE_WRITE,
[15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
},
[1] = {
[8] = PAGE_WRITE,
[9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
[10] = PAGE_READ,
[11] = PAGE_READ | PAGE_EXEC,
[12] = PAGE_READ,
[13] = PAGE_READ | PAGE_EXEC,
[14] = PAGE_READ | PAGE_WRITE,
[15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
},
};
unsigned rv;
unsigned type;
type = mpu_attr_to_cpu_cache(attr);
rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
XTENSA_MPU_ACC_RIGHTS_SHIFT];
if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
} else {
rv |= PAGE_CACHE_BYPASS;
}
return rv;
}
static bool is_access_granted(unsigned access, int is_write)
{
switch (is_write) {
case 0:
return access & PAGE_READ;
case 1:
return access & PAGE_WRITE;
case 2:
return access & PAGE_EXEC;
default:
return 0;
}
}
static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size,
unsigned *access, bool may_lookup_pt)
{
bool dtlb = is_write != 2;
uint32_t wi;
uint32_t ei;
uint8_t ring;
uint32_t vpn;
uint32_t pte;
const xtensa_tlb_entry *entry = NULL;
xtensa_tlb_entry tmp_entry;
int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
may_lookup_pt && get_pte(env, vaddr, &pte)) {
ring = (pte >> 4) & 0x3;
wi = 0;
split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
if (update_tlb) {
wi = ++env->autorefill_idx & 0x3;
xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
env->sregs[EXCVADDR] = vaddr;
qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
__func__, vaddr, vpn, pte);
} else {
xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
entry = &tmp_entry;
}
ret = 0;
}
if (ret != 0) {
return ret;
}
if (entry == NULL) {
entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
}
if (ring < mmu_idx) {
return dtlb ?
LOAD_STORE_PRIVILEGE_CAUSE :
INST_FETCH_PRIVILEGE_CAUSE;
}
*access = mmu_attr_to_access(entry->attr) &
~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
if (!is_access_granted(*access, is_write)) {
return dtlb ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
*page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
return 0;
}
static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
{
CPUState *cs = env_cpu(env);
uint32_t paddr;
uint32_t page_size;
unsigned access;
uint32_t pt_vaddr =
(env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
&paddr, &page_size, &access, false);
if (ret == 0) {
qemu_log_mask(CPU_LOG_MMU,
"%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
__func__, vaddr, pt_vaddr, paddr);
} else {
qemu_log_mask(CPU_LOG_MMU,
"%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
__func__, vaddr, pt_vaddr, ret);
}
if (ret == 0) {
MemTxResult result;
*pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
&result);
if (result != MEMTX_OK) {
qemu_log_mask(CPU_LOG_MMU,
"%s: couldn't load PTE: transaction failed (%u)\n",
__func__, (unsigned)result);
ret = 1;
}
}
return ret == 0;
}
static int get_physical_addr_region(CPUXtensaState *env,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size,
unsigned *access)
{
bool dtlb = is_write != 2;
uint32_t wi = 0;
uint32_t ei = (vaddr >> 29) & 0x7;
const xtensa_tlb_entry *entry =
xtensa_tlb_get_entry(env, dtlb, wi, ei);
*access = region_attr_to_access(entry->attr);
if (!is_access_granted(*access, is_write)) {
return dtlb ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
*page_size = ~REGION_PAGE_MASK + 1;
return 0;
}
static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
uint32_t vaddr, unsigned *segment)
{
unsigned nhits = 0;
unsigned i;
for (i = 0; i < n; ++i) {
if (vaddr >= entry[i].vaddr &&
(i == n - 1 || vaddr < entry[i + 1].vaddr)) {
if (nhits++) {
break;
}
*segment = i;
}
}
return nhits;
}
void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
{
v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
if (v != env->sregs[MPUENB]) {
env->sregs[MPUENB] = v;
tlb_flush(env_cpu(env));
}
}
void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
{
unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
if (segment < env->config->n_mpu_fg_segments) {
env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
tlb_flush(env_cpu(env));
}
}
uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
{
unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
if (segment < env->config->n_mpu_fg_segments) {
return env->mpu_fg[segment].vaddr |
extract32(env->sregs[MPUENB], segment, 1);
} else {
return 0;
}
}
uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
{
unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
if (segment < env->config->n_mpu_fg_segments) {
return env->mpu_fg[segment].attr;
} else {
return 0;
}
}
uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
{
unsigned nhits;
unsigned segment = XTENSA_MPU_PROBE_B;
unsigned bg_segment;
nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
v, &segment);
if (nhits > 1) {
HELPER(exception_cause_vaddr)(env, env->pc,
LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
} else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
} else {
xtensa_mpu_lookup(env->config->mpu_bg,
env->config->n_mpu_bg_segments,
v, &bg_segment);
return env->config->mpu_bg[bg_segment].attr | segment;
}
}
static int get_physical_addr_mpu(CPUXtensaState *env,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size,
unsigned *access)
{
unsigned nhits;
unsigned segment;
uint32_t attr;
nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
vaddr, &segment);
if (nhits > 1) {
return is_write < 2 ?
LOAD_STORE_TLB_MULTI_HIT_CAUSE :
INST_TLB_MULTI_HIT_CAUSE;
} else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
attr = env->mpu_fg[segment].attr;
} else {
xtensa_mpu_lookup(env->config->mpu_bg,
env->config->n_mpu_bg_segments,
vaddr, &segment);
attr = env->config->mpu_bg[segment].attr;
}
*access = mpu_attr_to_access(attr, mmu_idx);
if (!is_access_granted(*access, is_write)) {
return is_write < 2 ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = vaddr;
*page_size = env->config->mpu_align;
return 0;
}
/*!
* Convert virtual address to physical addr.
* MMU may issue pagewalk and change xtensa autorefill TLB way entry.
*
* \return 0 if ok, exception cause code otherwise
*/
int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size,
unsigned *access)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
return get_physical_addr_mmu(env, update_tlb,
vaddr, is_write, mmu_idx, paddr,
page_size, access, true);
} else if (xtensa_option_bits_enabled(env->config,
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
paddr, page_size, access);
} else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
paddr, page_size, access);
} else {
*paddr = vaddr;
*page_size = TARGET_PAGE_SIZE;
*access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
((vaddr & 0xe0000000) >> 27));
return 0;
}
}
static void dump_tlb(CPUXtensaState *env, bool dtlb)
{
unsigned wi, ei;
const xtensa_tlb *conf =
dtlb ? &env->config->dtlb : &env->config->itlb;
unsigned (*attr_to_access)(uint32_t) =
xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
mmu_attr_to_access : region_attr_to_access;
for (wi = 0; wi < conf->nways; ++wi) {
uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
const char *sz_text;
bool print_header = true;
if (sz >= 0x100000) {
sz /= MiB;
sz_text = "MB";
} else {
sz /= KiB;
sz_text = "KB";
}
for (ei = 0; ei < conf->way_size[wi]; ++ei) {
const xtensa_tlb_entry *entry =
xtensa_tlb_get_entry(env, dtlb, wi, ei);
if (entry->asid) {
static const char * const cache_text[8] = {
[PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
[PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
[PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
[PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
};
unsigned access = attr_to_access(entry->attr);
unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
PAGE_CACHE_SHIFT;
if (print_header) {
print_header = false;
qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
qemu_printf("\tVaddr Paddr ASID Attr RWX Cache\n"
"\t---------- ---------- ---- ---- --- -------\n");
}
qemu_printf("\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
entry->vaddr,
entry->paddr,
entry->asid,
entry->attr,
(access & PAGE_READ) ? 'R' : '-',
(access & PAGE_WRITE) ? 'W' : '-',
(access & PAGE_EXEC) ? 'X' : '-',
cache_text[cache_idx] ?
cache_text[cache_idx] : "Invalid");
}
}
}
}
static void dump_mpu(CPUXtensaState *env,
const xtensa_mpu_entry *entry, unsigned n)
{
unsigned i;
qemu_printf("\t%s Vaddr Attr Ring0 Ring1 System Type CPU cache\n"
"\t%s ---------- ---------- ----- ----- ------------- ---------\n",
env ? "En" : " ",
env ? "--" : " ");
for (i = 0; i < n; ++i) {
uint32_t attr = entry[i].attr;
unsigned access0 = mpu_attr_to_access(attr, 0);
unsigned access1 = mpu_attr_to_access(attr, 1);
unsigned type = mpu_attr_to_type(attr);
char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
qemu_printf("\t %c 0x%08x 0x%08x %c%c%c %c%c%c ",
env ?
((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
entry[i].vaddr, attr,
(access0 & PAGE_READ) ? 'R' : '-',
(access0 & PAGE_WRITE) ? 'W' : '-',
(access0 & PAGE_EXEC) ? 'X' : '-',
(access1 & PAGE_READ) ? 'R' : '-',
(access1 & PAGE_WRITE) ? 'W' : '-',
(access1 & PAGE_EXEC) ? 'X' : '-');
switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
qemu_printf("Device %cB %3s\n",
(type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
(type & XTENSA_MPU_TYPE_INT) ? "int" : "");
break;
case XTENSA_MPU_SYSTEM_TYPE_NC:
qemu_printf("Sys NC %cB %c%c%c\n",
(type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
(type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
(type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
(type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
break;
case XTENSA_MPU_SYSTEM_TYPE_C:
qemu_printf("Sys C %c%c%c %c%c%c\n",
(type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
(type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
(type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
(type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
(type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
(type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
break;
default:
qemu_printf("Unknown\n");
break;
}
}
}
void dump_mmu(CPUXtensaState *env)
{
if (xtensa_option_bits_enabled(env->config,
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
qemu_printf("ITLB:\n");
dump_tlb(env, false);
qemu_printf("\nDTLB:\n");
dump_tlb(env, true);
} else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
qemu_printf("Foreground map:\n");
dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
qemu_printf("\nBackground map:\n");
dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
} else {
qemu_printf("No TLB for this CPU core\n");
}
}